JPH0475263A - Package type fuel cell power generating unit - Google Patents

Package type fuel cell power generating unit

Info

Publication number
JPH0475263A
JPH0475263A JP2189856A JP18985690A JPH0475263A JP H0475263 A JPH0475263 A JP H0475263A JP 2189856 A JP2189856 A JP 2189856A JP 18985690 A JP18985690 A JP 18985690A JP H0475263 A JPH0475263 A JP H0475263A
Authority
JP
Japan
Prior art keywords
package
fuel cell
air
upstream
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2189856A
Other languages
Japanese (ja)
Inventor
Takashi Ouchi
崇 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2189856A priority Critical patent/JPH0475263A/en
Publication of JPH0475263A publication Critical patent/JPH0475263A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To retain differential pressure from package room on the upstream side to a package chamber on the downstream side to fresh air by ventilating and cooling a fuel cell portion using air exhausted from the package on the upstream side. CONSTITUTION:A power changing portion 8 is ventilated and cooled by room temperature air fed into a package room 20A on the upstream side by a ventilating fan 3 and then a fuel cell portion 6 is cooled and ventilated by air fed into a package room 20B on the downstream side via a connecting duct 20C and the temperature-raised cooling air is exhausted from an exhaust port 9 to the outside. The inside of the package room 20A on the upstream side is maintained at an atmospheric pressure higher than the outside atmospheric pressure by the pressure of the bloom air by the ventilating fan 3 and also the inside of the package room 20B on the downstream side is maintained at pressure between the atmospheric pressure inside the package room on the upstream and the outside atmospheric pressure.

Description

【発明の詳細な説明】 〔産業上の利用分針〕 この発明は、移動用電源装置、オンサイト用電源装置と
して使用されるパッケージ型燃料電池発電装置、ことに
パッケージ内に収納された装置の換気冷却構造に関する
[Detailed Description of the Invention] [Industrial Application Minute Hand] This invention relates to a packaged fuel cell power generation device used as a mobile power supply device or an on-site power supply device, and especially to ventilation of a device housed in a package. Regarding cooling structure.

〔従来の技術〕[Conventional technology]

燃料電池発電装置は一般に、燃料改質装置によってメタ
ノール、天然ガスなどの原燃料を水素リッチな燃料ガス
に改質して燃料電池の燃料極に供給し、かつ反応空気を
燃料電池の空気極に供給し、電解質をイオン伝導媒体と
して@接見1It−行う吃のであ夛、その発電電力をチ
ョッパ、インバータ等からなる電力変換装置によシ、そ
の出力電流。
In general, a fuel cell power generation device uses a fuel reformer to reform raw fuel such as methanol or natural gas into hydrogen-rich fuel gas and supplies it to the fuel electrode of the fuel cell, and then converts the reaction air to the air electrode of the fuel cell. The electrolyte is supplied as an ion conductive medium, and the generated power is transferred to a power conversion device consisting of a chopper, an inverter, etc., and its output current is generated.

電圧等を制御して負荷回路に供給するものである。It controls voltage, etc. and supplies it to the load circuit.

燃料電池発電装置を移動用[源、オンサイト用電源など
として使用する場合、その搬送および据付作業を容易化
するために、発電装置を一つの金属製パッケージ中に収
納したパッケージ型燃料電池発電装置が知られている。
A packaged fuel cell power generation device in which the power generation device is housed in a single metal package to facilitate transportation and installation when the fuel cell power generation device is used as a mobile power source, on-site power source, etc. It has been known.

燃料電池発電装置け、一般に各所から熱を発生する0例
えば電解質としてリン酸液を使用し、水素と酸素とを反
応させて発電をするリン酸型燃料電池の反応温度は約2
00℃であ〕、断熱層の厚さにより外表面は50〜10
0℃に及ぶ、また、燃焼加熱によ)水素リッチな改質ガ
スを生成するfIIB科改質器もその外表面は燃焼熱で
300℃を超えることがある。一方、[力変換装置も発
熱するが、その発熱量Fi士述の燃料電池部に比べて少
く、むしろ表面温度の高い燃料改質器や燃料電池からの
熱影響を回避して1例えば半導体素子などの運転111
度をその許容温度(一般に10Dtl:以下)に保つた
めの換気冷却が必要になる。
Fuel cell power generation devices generally generate heat from various places.For example, the reaction temperature of a phosphoric acid fuel cell, which uses phosphoric acid liquid as an electrolyte and generates electricity by reacting hydrogen and oxygen, is approximately 2.
00℃], and the outer surface is 50-10℃ depending on the thickness of the insulation layer.
The temperature of the fIIB reformer, which produces hydrogen-rich reformed gas (by combustion heating), can reach a temperature of over 300°C on its outer surface due to the heat of combustion. On the other hand, although the force transducer also generates heat, the amount of heat generated is less than that of the fuel cell section described in the previous section. Driving such as 111
Ventilation cooling will be required to keep the temperature at its permissible temperature (generally below 10 Dtl).

第3図は従来のパッケージ型燃料電池発電装置の換気冷
却構造を模式化して示す断面図であ〕、外部空気の取入
ロア、排気口9 ’に有スルパッケージ10は、その取
入口Z何に換気ファン3t−備え。
FIG. 3 is a cross-sectional view schematically showing the ventilation and cooling structure of a conventional packaged fuel cell power generation device. Equipped with 3 tons of ventilation fans.

風上側にチ覆ツバ8A、インバータ8B 、およびその
制御部80等からなる電力変換部8が収納され、風下側
には燃料電池1.燃料改質装置2および反応空気プロワ
4や改質器バーナの燃焼空気プロア5などの補機で構成
される燃料電池部6が収納される。
A power conversion section 8 consisting of a tip cover 8A, an inverter 8B, a control section 80, etc. is housed on the windward side, and a fuel cell 1. A fuel cell section 6 comprising a fuel reformer 2 and auxiliary equipment such as a reaction air blower 4 and a combustion air blower 5 of a reformer burner is housed.

このように構成された従来の換気冷却方式では、換気7
アン3によってパッケージに送シ込まれる常温の空気に
よって電力変換s8が換気冷却され、幾分温度上昇した
空気によって高部の燃料電池部6が換気冷却されるが、
燃料を触部6側からの空気の環流や輻射熱の影響を電力
変換部8が受けるため、両者間に断熱スペースを設けて
電力変換部8側への熱影響を低減するよう構成される。
In the conventional ventilation cooling system configured in this way, ventilation 7
The power converter s8 is ventilated and cooled by the room temperature air pumped into the package by the antenna 3, and the fuel cell section 6 in the upper part is ventilated and cooled by the air whose temperature has risen somewhat.
Since the power conversion unit 8 is affected by air circulation and radiant heat from the fuel contacting portion 6 side, a heat insulating space is provided between the two to reduce the thermal influence on the power conversion unit 8 side.

第4図は従来の異なる換気冷却構造を示す模式化した断
面図であり、パッケージ10内に燃料電池部6と電力変
換部8とを仕切る隔壁10Aを設け、かつこの隔壁に換
気ファン3A、3B等を設は虎魚が前述の従来構造と異
なっており、隔壁1[)AK断熱材を用いることによっ
て輻射熱を遮断するとともに、高温の燃料電池部6に換
気7アン3A、3B等によって冷却空気を吹き付けて強
制風冷することによ〕、よシ高い冷却性能が得られるよ
う構成されている。また、隔壁10Aを設けるととKよ
って断熱スペースを縮小できるので、パッケージ10t
−小型化できる利点が得られる。
FIG. 4 is a schematic cross-sectional view showing a different conventional ventilation cooling structure, in which a partition wall 10A is provided in the package 10 to partition the fuel cell section 6 and the power conversion section 8, and ventilation fans 3A, 3B are provided on this partition wall. The structure of Toragyo is different from the conventional structure described above, in that it blocks radiant heat by using partition wall 1 [) AK insulation material, and also provides cooling air to the high-temperature fuel cell section 6 through ventilation 7 Annes 3A, 3B, etc. It is configured to provide even higher cooling performance by using forced air cooling. In addition, if the partition wall 10A is provided, the insulation space can be reduced, so the package 10t
-The advantage of miniaturization can be obtained.

C発明が解決しようとする課題〕 パッケージ型燃料電池発電装置は、天然ガスやメタノー
ルなどの原燃料と、水素リッチな改質ガスを使用するた
めに1万が一可燃性ガスがパッケージ内に漏れ次場合に
も、パッケージ内で爆鳴気を生じないよう十分な換気を
行うとと4に、電磁接勉器など電気火花を生ずる制御機
6を含む電力変換部8@に可燃性ガスが侵入しないよう
パッケージ内における冷却空気の流れに配慮が求められ
る。また、パッケージ型燃料電池発電装置を屋外で使用
する場合、パッケージ1oは雨水の侵入を防ぐ防滴構造
とすることが求められる。
Problems to be solved by invention C] Packaged fuel cell power generation devices use raw fuel such as natural gas or methanol and hydrogen-rich reformed gas, so if flammable gas leaks into the package, In addition, sufficient ventilation must be provided to prevent explosions from occurring inside the package. 4) In order to prevent flammable gas from entering the power converter 8, which includes the controller 6 that generates electrical sparks, such as an electromagnetic connector, Consideration must be given to the flow of cooling air within the package. Furthermore, when the packaged fuel cell power generation device is used outdoors, the package 1o is required to have a drip-proof structure to prevent rainwater from entering.

第3図に示す従来の構造では、パッケージ内に燃料電池
部6と電力変換部8とを仕切る隔壁がないために、パッ
ケージ内に冷却空気の循環流を生じやすく、換気量を増
やしても、電力変換部に可燃性のリークガスが環流する
ことを十分には防止できないと匹う問題がある。tた、
第4図に示す従来の構造では、t力変換部8を収納した
区mlが、換気ファン3A、3Bの吸込、み側に位置し
て、外気および燃料電池部6側の区tmi*の双方に対
して減圧状態となる。このため、パッケージ1oの防滴
構造の強化を必要とするとともに、隔壁1゜Aの隙き間
を介して可燃性ガスが電力変換部に環流すること1:防
止するために、パッケージと隔壁との気密性を高める必
l!Iがあシ、バクケージの防111′構造および隔壁
の気sS造が複雑化するという問題が発生する。
In the conventional structure shown in FIG. 3, since there is no partition wall inside the package that partitions the fuel cell section 6 and the power conversion section 8, a circulating flow of cooling air tends to occur inside the package, and even if the ventilation rate is increased, There is a similar problem in that it is not possible to sufficiently prevent flammable leak gas from flowing back into the power converter. It was,
In the conventional structure shown in FIG. 4, the section ml that houses the t-force converter 8 is located on the suction side of the ventilation fans 3A and 3B, and is connected to both the outside air and the section tmi* on the fuel cell section 6 side. It becomes a state of reduced pressure. For this reason, it is necessary to strengthen the drip-proof structure of the package 1o, and to prevent flammable gas from flowing back into the power converter through the gap in the partition wall 1°A, the package and partition wall must be Must improve airtightness! A problem arises in that the structure of the barrier 111' of the back cage and the gas structure of the partition become complicated.

この発明の目的は、パッケージの構造を複雑化した力、
大型化したりすることなく、十分かつ安全な換気・冷却
性能および防滴性能を得ることにある。
The purpose of this invention is to reduce the power of complicating the structure of the package.
The objective is to obtain sufficient and safe ventilation/cooling performance and drip-proof performance without increasing the size.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明にょれく燃料改質
装置および補機を含むfIa科1池部触部燃料電池の出
力11に配されたチ冒ツバ−、インバータ、およびその
制御W5を含む電力変換部とが、換気ファンを有するパ
ッケージ中忙収納された亀のにおいて、前記電力変換部
を収容し、その外部空気の取入口側に換気ファンを有す
る上!5!側パッケージ室と、前記燃料電池部を収容し
、前記上流側パッケージ宣が排出する冷却空気によル冷
却される下流側パッケージ室とからなるパッケージ會備
えてなるものとする。
In order to solve the above problems, the present invention includes a fuel reformer and an inverter disposed at the output 11 of a fuel cell containing an auxiliary device, an inverter, and a control W5 thereof. The power converter is housed in a package with a ventilation fan, and the power converter is accommodated, and the outside air intake side has a ventilation fan! 5! The package chamber includes a side package chamber and a downstream package chamber that accommodates the fuel cell section and is cooled by cooling air discharged from the upstream package chamber.

〔作用〕[Effect]

この発明の構成において、パッケージが換気の取入口側
に換気ファンを有する上流側パッケージ室と、その換気
出口側(連通した下流側パッケージ室とからなり、上流
側パッケージ室Ktfi電カ変換部を、下R@パッケー
ジ室には燃料電池部を収納するよう構成したことにより
、パラ−ケージ内の気圧が外気より高くなって防滴構造
を簡素化できる。また、上流側パッケージ室内の気圧が
下15!側パッケージ室内のそれと同等以上となシ、下
流側パッケージ内で可燃性・ガスが漏れても、可燃性ガ
スを含む空気が上流側パッケージ室に侵入することYr
@止できるとともに、両パッケージ室の隔壁の気密構造
を簡素化できる。
In the configuration of this invention, the package consists of an upstream package chamber having a ventilation fan on the ventilation intake side, and a downstream package chamber that communicates with the ventilation outlet side, and the upstream package chamber Ktfi electric power converter. By configuring the lower R @ package chamber to house the fuel cell section, the air pressure inside the para cage becomes higher than the outside air, simplifying the drip-proof structure.In addition, the air pressure inside the upstream package chamber is lower than 15. !The air containing flammable gas will not enter the upstream package chamber even if flammable gas leaks in the downstream package.
At the same time, the airtight structure of the partition walls of both package chambers can be simplified.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図はこの発明の実施例になるパッケージ型燃料電池
発電装置を模式化して示す断面図であシ、従来の装置と
同じ構成要素Ka同一参照符号が付しである0図におい
て、パッケージ20#i外気ノ取入ロZ側に換気ファン
3を有する上流側パッケージ室2OAと、上流側パッケ
ージ室2OAの換気の出口#に連結ダク)2DCを介し
て連結された下流側パッケージ室20Bとで構成され、
上流側パッケージ室2OAにFi電力変換部8が収納さ
れ、下流側パッケージ室20BKは燃料を池1゜燃料改
質装置21および補機5,6等を含む燃料電池部6が収
納され、換気ファン3によって上流側パッケージ室2O
Aに送夛込まれた常温の空気によって電力変化部8が換
気冷却され念後、連結ダク)200を介して下流側パッ
ケージ室に送り込まれる空気によ〕、燃料電池部6の風
冷および換気が行われ、温度の上った冷却空気は排気口
9から外部に排出される。また、二つのパッケージ室は
共通の架台によって一体化されるとともに、連結ダク)
20Cを包囲するパッケージ室間の除き間には外気が自
然対流し、パッケージ室が外気によって冷却されること
によシ、両パッケージ室間の熱影響を排除するよう構成
される。
FIG. 1 is a sectional view schematically showing a packaged fuel cell power generation device according to an embodiment of the present invention. In FIG. The upstream package room 2OA has a ventilation fan 3 on the outside air intake hole Z side, and the downstream package room 20B is connected to the ventilation outlet # of the upstream package room 2OA via a duct 2DC. configured,
The upstream package chamber 2OA houses the Fi power converter 8, and the downstream package chamber 20BK houses the fuel cell unit 6 including a fuel pond 1, fuel reformer 21, auxiliary equipment 5, 6, etc., and a ventilation fan. 3 to upstream package chamber 2O
The power converting section 8 is ventilated and cooled by the room temperature air sent into A, and then the air is sent to the downstream package chamber via the connecting duct 200 to cool and ventilate the fuel cell section 6. The heated cooling air is discharged to the outside from the exhaust port 9. In addition, the two package chambers are integrated by a common pedestal, and a connecting duct)
Natural air convection occurs between the package chambers surrounding the package chamber 20C, and the package chamber is cooled by the outside air, thereby eliminating heat influence between the two package chambers.

上述のように構成され九冥施例においては、換気ファン
3の送風圧力によって上流側パッケージ室2OA内が外
気圧よ)高い気圧に保たれ、かつ下流側パッケージ室2
0B内が上流側パッケージ室内気圧と外気圧との中間の
気圧に保たれるので、パッケージ20に除き間があって
も外気を吸い込むことがなく、シたがって必要とする防
滴性能が容易に得られるとともに、下I5!何パッケー
ジ室内に可燃ガス漏れしても、これが気圧の高い上流側
パッケージ室に循環流として侵入することはなく、かつ
室内空気の換気によって希釈されて排気口9から外部に
排出されるので、パッケージ室内に爆鳴気が形成される
危険性と、電力変換部での電気火花による点火源の形成
とをほぼ完全に回避することができる。
In the Kumei Example configured as described above, the pressure inside the upstream package chamber 2OA is maintained at a higher pressure (than the outside pressure) by the air blowing pressure of the ventilation fan 3, and the pressure inside the downstream package chamber 2OA is maintained at a higher pressure than the outside pressure.
Since the inside of 0B is maintained at an intermediate pressure between the upstream package indoor pressure and the outside air pressure, outside air will not be sucked in even if there is a gap in the package 20, and therefore the required drip-proof performance can be easily achieved. As well as being obtained, lower I5! Even if flammable gas leaks into the package chamber, it will not enter the high-pressure upstream package chamber as a circulating flow, and will be diluted by indoor air ventilation and exhausted to the outside from the exhaust port 9. The risk of the formation of explosive atmosphere in the room and the formation of ignition sources by electrical sparks at the power converter can be almost completely avoided.

第2図はこの発明の異なる実施例を示す模式化した断面
図であ夛、上流側パッケージ室30Aを下流側パッケー
ジ室3QB忙内包させてパッケージ3Dを形成し虎魚が
前述の実施例と異なりてお)、換気7アン3を上流側パ
ッケージ室30Aの空気取入ロア#に配して上流側パッ
ケージ室の気圧を高め、かつその排気口39を下流側パ
ッケージ室30B内の要所に設けてパッケージ室の換気
および燃料電池部6を風冷するよう構成される。
FIG. 2 is a schematic sectional view showing a different embodiment of the present invention, in which the upstream package chamber 30A is enclosed in the downstream package chamber 3QB to form a package 3D. E), the ventilation 7 An 3 is placed in the air intake lower # of the upstream package chamber 30A to increase the air pressure in the upstream package chamber, and its exhaust port 39 is provided at key points in the downstream package chamber 30B. It is configured to ventilate the package chamber and cool the fuel cell section 6 with air.

この実施例では、上流側パッケージ室30Aは下流側パ
ッケージ室30Bとの間に気圧差を保てる程度の簡単な
構造の箱状でよく、気圧差によって可燃性ガスを含む下
流側パッケージ室内空気の逆流を阻止できる。まな、防
滴性能は下流側パッケージ室30Bによって保持される
が、上流側パッケージ室30Aの気圧が高いことによっ
て電力変換器等の電気系Rを収納する上流側パッケージ
室の防滴性能を高度に保持できる利点が得られる。
In this embodiment, the upstream package chamber 30A may have a box shape with a simple structure that can maintain a pressure difference between it and the downstream package chamber 30B, and the pressure difference causes backflow of downstream package room air containing flammable gas. can be prevented. Although the drip-proof performance is maintained by the downstream package chamber 30B, the high atmospheric pressure of the upstream package chamber 30A increases the drip-proof performance of the upstream package chamber that houses the electrical system R such as the power converter. It gives you the advantage of being able to retain it.

さらに、上流側パッケージ室30Aに断熱材を被着する
よう構成すれば、燃料iE池触部らの熱影響を阻止でき
るので、断熱のためのスペースの縮小が可能であり、パ
ッケージ30を小型化できる利点が得られる。
Furthermore, by configuring the upstream package chamber 30A to be coated with a heat insulating material, it is possible to prevent the influence of heat from the parts that touch the fuel iE pond, so the space for heat insulation can be reduced, and the package 30 can be made smaller. You can get the benefits that you can.

CR1男の効果〕 この発明は前述のように、電力変換部を上流側パッケー
ジ室に収納して外気の取入口側に換気ファンを設け、そ
の排気口に連通ずる下流側パッケージ室に高温の燃料電
池部を収納して上流側パッケージの排出空気により燃料
電池部の換気と冷却を行うよう構成した。その結果、換
気ファンの送風圧力によって上流側パッケージ室、下流
側パッケージ室、外気の順忙差圧を保つことが可能にな
シ、従来技術で問題となった電力変換部全収納するパッ
ケージ内が減圧状態となることによって生ずる、FJ1
11構造の複雑化や、漏れた可燃性ガスが電力変換器側
に環流することによる爆鳴気の形成およびその燃焼の危
険性が排除されるので、パッケージ構造を複雑化するこ
となく冷却性能、防滴性能に優れ、かつ可燃性ガスの漏
れに対する安全性に優れたパッケージ型燃料電池発電装
置を提供することができる。また、上流側パッケージ室
を下流側パッケージ内に設けるよう構成してもよく、こ
の場合、上流側パッケー?1.室を大幅に、簡素化して
も高り冷却性能、FJ滴性能、および安全性が得られる
とと本に、下流側パッケージ室の断熱スペースを省スペ
ース化してパッケージを小型化できる利点が得られる。
Effects of CR1 Man] As described above, this invention stores the power converter in the upstream package chamber, provides a ventilation fan on the outside air intake side, and supplies high-temperature fuel to the downstream package chamber that communicates with the exhaust port. The structure is such that the battery section is housed and the fuel cell section is ventilated and cooled by the exhaust air from the upstream package. As a result, it is possible to maintain the differential pressure between the upstream package room, the downstream package room, and the outside air using the air blowing pressure of the ventilation fan, and the inside of the package that houses all the power converters, which was a problem with conventional technology, can be maintained. FJ1, which occurs due to reduced pressure
11 This eliminates the risk of complicating the structure and the formation of detonation air due to leaked flammable gas circulating back to the power converter side and its combustion, thereby improving cooling performance and improving cooling performance without complicating the package structure. It is possible to provide a packaged fuel cell power generation device that has excellent drip-proof performance and excellent safety against leakage of combustible gas. Further, the upstream package chamber may be configured to be provided within the downstream package, and in this case, the upstream package chamber may be provided within the downstream package. 1. Even if the chamber is significantly simplified, high cooling performance, FJ droplet performance, and safety can be obtained.In addition, the insulation space of the downstream package chamber can be saved and the package can be made smaller. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例になるパッケージ型燃料電池
発電装置を模式化して示す断面図、第2図はこの発明の
異なる実施例を示す模式化した断面図、第3図および第
4図は互いに異なる従来のパッケージ型燃料電池発電装
ft模式化して示す断面図である。 1・・・燃料電池、2・・・燃料改質装置、3.3A。 3B・・・換気ファン、4.5・・・ブロワ(補機)、
6・・・燃料電池部、7・・・外気の取入口、9・・・
排気口、8A・・・チ冒ツAf3B・・・インバータ、
8C・・・制御部、8・・・電力変換部、10,2[)
、30・・・パッケージ、2OA、30A・・・上流側
パッケージ室、20E、30B・・・下流側パッケージ
室、20C・・・達見3図 第2図 第4図
FIG. 1 is a sectional view schematically showing a packaged fuel cell power generation device according to an embodiment of the invention, FIG. 2 is a sectional view schematically showing a different embodiment of the invention, and FIGS. 3 and 4 1A and 1B are cross-sectional views schematically showing different conventional packaged fuel cell power generation systems. 1...Fuel cell, 2...Fuel reformer, 3.3A. 3B...Ventilation fan, 4.5...Blower (auxiliary equipment),
6...Fuel cell section, 7...Outside air intake, 9...
Exhaust port, 8A...Chi Af3B...Inverter,
8C...Control unit, 8...Power conversion unit, 10, 2[)
, 30...Package, 2OA, 30A...Upstream package chamber, 20E, 30B...Downstream package chamber, 20C...Full view 3 Figure 2 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)燃料改質装置および補機を含む燃料電池部と、燃料
電池の出力側に配されたチョッパー、インバータ、およ
びその制御部を含む電力変換部とが、換気ファンを有す
るパッケージ中に収納されたものにおいて、前記電力変
換部を収容し、その外部空気の取入口側に換気ファンを
有する上流側パッケージ室と、前記燃料電池部を収容し
、前記上流側パッケージ室が排出する冷却空気により冷
却される下流側パッケージ室とからなるパッケージを備
えてなることを特徴とするパッケージ型燃料電池発電装
置。
1) A fuel cell unit including a fuel reformer and auxiliary equipment, and a power conversion unit including a chopper, an inverter, and its control unit arranged on the output side of the fuel cell are housed in a package having a ventilation fan. an upstream package chamber that accommodates the power conversion section and has a ventilation fan on its external air intake side; and an upstream package chamber that accommodates the fuel cell section and is cooled by cooling air discharged from the upstream package chamber. What is claimed is: 1. A packaged fuel cell power generation device comprising: a package comprising a downstream package chamber in which a downstream package chamber is provided;
JP2189856A 1990-07-18 1990-07-18 Package type fuel cell power generating unit Pending JPH0475263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189856A JPH0475263A (en) 1990-07-18 1990-07-18 Package type fuel cell power generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189856A JPH0475263A (en) 1990-07-18 1990-07-18 Package type fuel cell power generating unit

Publications (1)

Publication Number Publication Date
JPH0475263A true JPH0475263A (en) 1992-03-10

Family

ID=16248327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189856A Pending JPH0475263A (en) 1990-07-18 1990-07-18 Package type fuel cell power generating unit

Country Status (1)

Country Link
JP (1) JPH0475263A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290868A (en) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd Ventilation structure for package type fuel cell power generation device
JPH0676851A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Portable power source
JPH08293316A (en) * 1995-04-21 1996-11-05 Tokyo Gas Co Ltd Method for releasing exhaust gas of fuel cell generating device, and device therefor
JPH0963616A (en) * 1995-08-18 1997-03-07 Tokyo Gas Co Ltd Package fuel cell power generating apparatus
JPH09199152A (en) * 1996-01-19 1997-07-31 Toshiba Corp Ventilating method for package type fuel cell power plant
JPH1167256A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Fuel cell system
JP2000260445A (en) * 1999-03-08 2000-09-22 Sanyo Electric Co Ltd Fuel cell power generation device
JP2002539584A (en) * 1999-03-10 2002-11-19 シーメンス アクチエンゲゼルシヤフト Operation method of fuel cell equipment and fuel cell equipment
JP2002367647A (en) * 2001-06-06 2002-12-20 Toyota Motor Corp Case for fuel cell
JP2003182379A (en) * 2001-09-26 2003-07-03 Honda Motor Co Ltd Fuel cell mounted battery-powered car and fuel cell system box
JP2005183117A (en) * 2003-12-18 2005-07-07 Toshiba Home Technology Corp Fuel cell device
EP1235292A3 (en) * 2001-02-27 2005-07-20 Matsushita Electric Industrial Co., Ltd. Fuel cell generation system
JP2006049093A (en) * 2004-08-04 2006-02-16 Corona Corp Fuel cell cogeneration system
WO2006087946A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2006294409A (en) * 2005-04-11 2006-10-26 Fuji Electric Holdings Co Ltd Fuel cell power generator
JP2007200650A (en) * 2006-01-25 2007-08-09 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation device and its ventilation method
JP2008235094A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Fuel cell system
JP2008235109A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Fuel cell system
JP2008293779A (en) * 2007-05-24 2008-12-04 Fuji Electric Holdings Co Ltd Fuel cell power generation device
US7494731B2 (en) 2001-12-27 2009-02-24 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system
JP2009224246A (en) * 2008-03-18 2009-10-01 Kyocera Corp Fuel cell device
WO2009122766A1 (en) * 2008-03-31 2009-10-08 トヨタ自動車株式会社 Fuel cell system
JP2009266613A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Fuel cell system
WO2010026844A1 (en) 2008-09-08 2010-03-11 本田技研工業株式会社 Fuel cell system
JP2010062133A (en) * 2008-08-07 2010-03-18 Honda Motor Co Ltd Fuel cell system
JP2011029117A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell device
USRE42720E1 (en) 2001-06-06 2011-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell mounting structure
WO2012091029A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
WO2012091096A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2012182149A (en) * 2012-05-24 2012-09-20 Panasonic Corp Fuel cell system
JP2012182148A (en) * 2012-05-24 2012-09-20 Panasonic Corp Fuel cell system
JP2013235852A (en) * 2013-07-25 2013-11-21 Panasonic Corp Fuel battery power generation system
JP2013235851A (en) * 2013-07-25 2013-11-21 Panasonic Corp Fuel battery power generation system
JP2013243153A (en) * 2013-07-25 2013-12-05 Panasonic Corp Fuel cell power generation system
JP2014032753A (en) * 2012-08-01 2014-02-20 Toshiba Fuel Cell Power Systems Corp Fuel cell system
US8679689B2 (en) 2008-08-07 2014-03-25 Honda Motor Co., Ltd. Fuel cell system
WO2019004032A1 (en) * 2017-06-30 2019-01-03 ダイニチ工業株式会社 Fuel cell device
CN112640171A (en) * 2018-08-30 2021-04-09 瓦特燃料电池公司 Container for reformer and fuel cell system

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290868A (en) * 1992-04-09 1993-11-05 Fuji Electric Co Ltd Ventilation structure for package type fuel cell power generation device
JPH0676851A (en) * 1992-08-31 1994-03-18 Sanyo Electric Co Ltd Portable power source
JPH08293316A (en) * 1995-04-21 1996-11-05 Tokyo Gas Co Ltd Method for releasing exhaust gas of fuel cell generating device, and device therefor
JPH0963616A (en) * 1995-08-18 1997-03-07 Tokyo Gas Co Ltd Package fuel cell power generating apparatus
JPH09199152A (en) * 1996-01-19 1997-07-31 Toshiba Corp Ventilating method for package type fuel cell power plant
JPH1167256A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Fuel cell system
JP2000260445A (en) * 1999-03-08 2000-09-22 Sanyo Electric Co Ltd Fuel cell power generation device
JP2002539584A (en) * 1999-03-10 2002-11-19 シーメンス アクチエンゲゼルシヤフト Operation method of fuel cell equipment and fuel cell equipment
EP1235292A3 (en) * 2001-02-27 2005-07-20 Matsushita Electric Industrial Co., Ltd. Fuel cell generation system
KR100818430B1 (en) * 2001-02-27 2008-04-01 마츠시타 덴끼 산교 가부시키가이샤 Fuel cell generation system
US7011901B2 (en) 2001-02-27 2006-03-14 Matsushita Electric Industrial Co., Ltd. Fuel cell generation system and method
JP2002367647A (en) * 2001-06-06 2002-12-20 Toyota Motor Corp Case for fuel cell
USRE42720E1 (en) 2001-06-06 2011-09-20 Toyota Jidosha Kabushiki Kaisha Fuel cell mounting structure
JP2003182379A (en) * 2001-09-26 2003-07-03 Honda Motor Co Ltd Fuel cell mounted battery-powered car and fuel cell system box
US7494731B2 (en) 2001-12-27 2009-02-24 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system
JP2005183117A (en) * 2003-12-18 2005-07-07 Toshiba Home Technology Corp Fuel cell device
JP2006049093A (en) * 2004-08-04 2006-02-16 Corona Corp Fuel cell cogeneration system
WO2006087946A1 (en) * 2005-02-18 2006-08-24 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2006294409A (en) * 2005-04-11 2006-10-26 Fuji Electric Holdings Co Ltd Fuel cell power generator
JP2007200650A (en) * 2006-01-25 2007-08-09 Toshiba Fuel Cell Power Systems Corp Fuel cell power generation device and its ventilation method
JP2008235094A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Fuel cell system
JP2008235109A (en) * 2007-03-22 2008-10-02 Honda Motor Co Ltd Fuel cell system
JP2008293779A (en) * 2007-05-24 2008-12-04 Fuji Electric Holdings Co Ltd Fuel cell power generation device
JP2009224246A (en) * 2008-03-18 2009-10-01 Kyocera Corp Fuel cell device
CN101981737A (en) * 2008-03-31 2011-02-23 丰田自动车株式会社 Fuel cell system
JP2009245814A (en) * 2008-03-31 2009-10-22 Aisin Seiki Co Ltd Fuel cell system
WO2009122766A1 (en) * 2008-03-31 2009-10-08 トヨタ自動車株式会社 Fuel cell system
JP2009266613A (en) * 2008-04-25 2009-11-12 Aisin Seiki Co Ltd Fuel cell system
US8679689B2 (en) 2008-08-07 2014-03-25 Honda Motor Co., Ltd. Fuel cell system
JP2010062133A (en) * 2008-08-07 2010-03-18 Honda Motor Co Ltd Fuel cell system
US8728673B2 (en) 2008-08-07 2014-05-20 Honda Motor Co., Ltd. Fuel cell system
WO2010026844A1 (en) 2008-09-08 2010-03-11 本田技研工業株式会社 Fuel cell system
US8883362B2 (en) 2008-09-08 2014-11-11 Honda Motor Co., Ltd. Fuel cell system
JP2011029117A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell device
WO2012091029A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
WO2012091096A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JPWO2012091096A1 (en) * 2010-12-28 2014-06-05 Jx日鉱日石エネルギー株式会社 Fuel cell system
JP2012182149A (en) * 2012-05-24 2012-09-20 Panasonic Corp Fuel cell system
JP2012182148A (en) * 2012-05-24 2012-09-20 Panasonic Corp Fuel cell system
JP2014032753A (en) * 2012-08-01 2014-02-20 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2013243153A (en) * 2013-07-25 2013-12-05 Panasonic Corp Fuel cell power generation system
JP2013235851A (en) * 2013-07-25 2013-11-21 Panasonic Corp Fuel battery power generation system
JP2013235852A (en) * 2013-07-25 2013-11-21 Panasonic Corp Fuel battery power generation system
WO2019004032A1 (en) * 2017-06-30 2019-01-03 ダイニチ工業株式会社 Fuel cell device
JPWO2019004032A1 (en) * 2017-06-30 2020-04-02 ダイニチ工業株式会社 Fuel cell device
CN112640171A (en) * 2018-08-30 2021-04-09 瓦特燃料电池公司 Container for reformer and fuel cell system
JP2021536103A (en) * 2018-08-30 2021-12-23 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. Reformer container and fuel cell system

Similar Documents

Publication Publication Date Title
JPH0475263A (en) Package type fuel cell power generating unit
JPH05290868A (en) Ventilation structure for package type fuel cell power generation device
JP3837383B2 (en) Fuel cell power supply
JP5318506B2 (en) Fuel cell system
JP2011204446A (en) Solid oxide fuel cell system
CA2367099C (en) Method for operating a fuel cell facility, and fuel cell facility
JP4932265B2 (en) Fuel cell system
JP3138118B2 (en) Package type fuel cell power generator
JP2004221070A (en) High temperature seal
JP2006252982A (en) Fuel cell equipped with heat shielding container
JP2011119095A (en) Fuel cell system
JP2008218277A (en) Fuel cell
JP5026383B2 (en) Fuel cell power generation system
KR101126876B1 (en) Reacting apparatus
JP2007026928A (en) Fuel cell
AU2019331405B2 (en) Container for reformer and fuel cell system
JP6932515B2 (en) Fuel cell and combined cycle system and how to operate them
KR102187720B1 (en) Fuel cell system
JP2019079678A (en) Fuel cell system and control method of fuel cell system
JP2002008687A (en) Fuel cell power generator
JPH0777132B2 (en) Fuel cell power generator
JP2002208427A (en) Reforming device for fuel cell
JP5057601B2 (en) Fuel cell power generation system
JP2000268837A (en) Fuel cell system
JP2020136228A (en) Fuel cell module and power generating system