WO2012091029A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2012091029A1
WO2012091029A1 PCT/JP2011/080256 JP2011080256W WO2012091029A1 WO 2012091029 A1 WO2012091029 A1 WO 2012091029A1 JP 2011080256 W JP2011080256 W JP 2011080256W WO 2012091029 A1 WO2012091029 A1 WO 2012091029A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidant
heat
hydrogen
fuel cell
unit
Prior art date
Application number
PCT/JP2011/080256
Other languages
French (fr)
Japanese (ja)
Inventor
俊幸 海野
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Priority to JP2012550990A priority Critical patent/JPWO2012091029A1/en
Publication of WO2012091029A1 publication Critical patent/WO2012091029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04037Electrical heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • the fuel cell system includes a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel, a cell stack that generates power using the hydrogen-containing gas, and an auxiliary device for supplying hydrogen-containing fuel, an oxidant, and the like. And sensors. Further, the fuel cell system includes a power conditioner that adjusts electricity generated by the cell stack, a system controller that controls the system, and the like. Electronic components such as power conditioners and system controllers generate heat because they perform electrical processing. Therefore, the fuel cell system includes a fan for cooling the electronic component by taking in outside air and sending air to the electronic component.
  • the fan used in the fuel cell system described above is provided only for cooling electronic components, and does not directly contribute to power generation in the cell stack. Moreover, the cost as a component is high, which affects the cost increase of the system. Therefore, it has been required to omit the cooling fan.
  • the present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell system that does not require a cooling fan, reduces the number of components, and can reduce the cost. .
  • a fuel cell system includes a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel, a cell stack that generates power using the hydrogen-containing gas, and an oxidant that is supplied to the cell stack.
  • This fuel cell system includes a heat exchanging unit that removes (that is, cools) heat of the heat generating unit with an oxidant supplied to the cell stack.
  • the oxidant supply unit is an essential component in the power generation of the cell stack. That is, the heat exchanging unit can omit the cooling fan by cooling the heat generating unit using the oxidant supply unit which is an essential component in the fuel cell system.
  • the fuel cell system eliminates the need for a cooling fan, reduces the number of parts, and reduces the cost.
  • the heat exchanging unit includes a box having an oxidant flow path therein, and fins extending along the flow path in the flow path, and the heat generating part is formed of the box. It may be provided outside. Since the heat generating part is provided outside the box of the heat exchange part, the heat from the heat generating part is transmitted to the box. Since the oxidant flows through the flow path inside the box of the heat exchange part, heat can be released to the oxidant. Since fins are provided in the flow path, heat is efficiently released to the oxidant. Further, since the fin extends along the flow path, the flow of the oxidizing agent is not hindered.
  • a cooling fan is not required, the number of parts can be reduced, and the cost can be reduced.
  • FIG. 1 is a block diagram showing the configuration of a fuel cell system according to an embodiment of the present invention.
  • FIG. 2 is a block configuration diagram illustrating a configuration related to a heat exchange unit in the system.
  • FIG. 3 is a perspective view showing the configuration of the heat exchange unit.
  • FIG. 4 is a cross-sectional view of the heat exchanging portion as seen from the bottom side.
  • Fig.5 (a) is sectional drawing which shows the modification of a heat exchange part
  • FIG.5 (b) is sectional drawing which shows the modification of a heat exchange part.
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • a fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the fuel cell system 1 can cool electronic components and the like in the system using an oxidant supplied to the cathode 13 of the cell stack 5.
  • the fuel cell system 1 includes a heat generating unit 20 that generates heat by performing an electrical process, and a heat exchange unit 21 that removes heat from the heat generating unit 20.
  • Each component of the fuel cell system 1 is housed in a sealed state in a housing 100 as shown in FIG. Since the fuel cell system 1 does not include a fan that forms an air flow by forming an opening in the housing 100 to cool electronic components and the like, the housing 100 can be sealed. . Note that the housing 100 is not necessarily sealed.
  • the heat generating unit 20 is configured by electronic components that generate heat when energized in the fuel cell system 1.
  • the control unit 11 and the power conditioner 10 are included in the heat generating unit 20.
  • the heat generating unit 20 is configured by a control board on which electronic components such as the control unit 11 and the power conditioner 10 are mounted.
  • the heat exchanging part 21 is arranged on the upstream side of the cell stack 5 with respect to the oxidant.
  • the heat exchanging part 21 cools the heat generating part 20 by recovering the heat from the heat generating part 20 and releasing the recovered heat to the oxidant.
  • the oxidant supply unit 9 includes a cathode blower 9a, and a supply line 9b that connects the supply source of the oxidant and the cathode blower 9a.
  • the heat exchanging unit 21 is disposed between the cathode blower 9 a constituting the oxidant supply unit 9 and the cell stack 5.
  • the heat exchange unit 21 may be disposed anywhere as long as an oxidant flow is formed and the upstream side of the cell stack 5.
  • the heat exchange part 21 may be arrange
  • the heat exchange unit 21 includes a box body 22 having an internal space, fins 23 arranged in the internal space of the box body 22, an oxidant inlet 26, and an oxidant outlet 27. It is equipped with.
  • the box 22 has a rectangular parallelepiped shape, and the heat generating portion 20 is provided outside.
  • an oxidant inlet 26 is formed on the side plate 22b, and an oxidant outlet 27 is formed on the side plate 22c facing the side plate 22b.
  • the internal space of the box 22 functions as a flow path FL through which the oxidant flows from the oxidant inlet 26 toward the oxidant outlet 27.
  • a heat generating portion 20 is attached to the outer surface of the upper plate 22a of the box 22.
  • the control base constituting the heat generating portion 20 is insulated.
  • the mounting direction of the heat exchange part 21 is not particularly limited, and the upper plate 22a may be disposed sideways, or the upper plate 22a may be disposed downward.
  • the heat exchange unit 21 includes a plurality of fins 23 in the internal space of the box body 22.
  • the fins 23 extend along the flow path FL.
  • a plurality of fins 23 are arranged at regular intervals so as to be parallel to each other.
  • the direction in which the fins 23 face each other (that is, the direction in which the fins 23 are arranged) is orthogonal to the flow path FL. 3 and 4, the fins 23 are fixed to the upper plate 22a and extend downward toward the bottom plate 22d.
  • the fins 23 are separated from the bottom plate 22d. Both end portions of the fin 23 are separated from the side plates 22b and 22c.
  • the oxidant that has flowed into the box 22 from the oxidant inlet 26 is branched before the fins 23, passes between the fins 23, merges before the oxidant outlet 27, and the oxidant outlet 27. Discharged from.
  • the fins 23 are fixed to a plate (the upper plate 22a in the present embodiment) on which the heat generating portion 20 is provided among the respective plates constituting the wall of the box 22.
  • the fins 23 can efficiently release the heat from the heat generating part 20 to the oxidant.
  • the length of each fin 23 is the same, but the length of each fin is not particularly limited.
  • the fins 23 in the vicinity of the oxidant inlet 26 and the oxidant outlet 27 are long, and as the fins 23 move away from the oxidant inlet 26 and the oxidant outlet 27 in a direction in which the fins face each other (a direction orthogonal to the flow path FL), The length of may be shortened. As a result, the oxidant easily spreads over the entire internal space of the box 22.
  • the fuel cell system 1 includes the heat exchanging unit 21 that removes (that is, cools) the heat of the heat generating unit 20 with the oxidant supplied to the cell stack 5.
  • the oxidant supply unit 9 is an essential component in the power generation of the cell stack 5. That is, the heat exchange unit 21 can omit the cooling fan by cooling the heat generating unit 21 using the oxidant supply unit 9 which is an essential component in the fuel cell system 1.
  • the fuel cell system 1 eliminates the need for a cooling fan, reduces the number of components, and can reduce the cost.
  • the output of the cathode pump 9a that supplies the oxidant to the cell stack 5 is larger than that of the cooling fan that is generally used conventionally (depending on the size of the fuel cell system). Therefore, the oxidant supply unit 9 can flow a larger amount of oxidant to the heat exchange unit than a conventional cooling fan. Therefore, the cooling efficiency of the heat generating portion 20 is significantly increased as compared with the case where a conventional cooling fan is used.
  • the housing 100 may have a sealed structure.
  • a dustproof effect and a soundproof effect can be obtained.
  • the moisture prevention effect with respect to the electronic component of the heat generating part 20 can also be acquired.
  • the heat exchanging section 21 includes a box 22 having an oxidant flow path FL therein, and fins 23 extending along the flow path FL in the flow path FL.
  • the heat generating part 20 is disposed outside the box body 22. Since the heat generating unit 20 is provided outside the box 22 of the heat exchange unit 21, the heat from the heat generating unit 20 is transmitted to the box 22. Moreover, since the heat generating part 20 is provided so as to be in surface contact with the upper surface of the upper plate 22 a of the box body 22, the heat from the heat generating part 20 is efficiently transmitted to the box body 22. Since the oxidant flows through the internal flow path FL, the box 22 of the heat exchange unit 21 can release heat to the oxidant. Since the fins 23 are provided in the flow path FL, heat is efficiently released to the oxidant. Further, since the fin 23 extends along the flow path FL, the flow of the oxidizing agent is not hindered.
  • the shape of the fin 23 is not particularly limited, and may be any structure as long as the heat of the heat generating portion 20 can be released to the oxidant. A structure that does not hinder the flow of the oxidant is preferable.
  • the fins 33 of the heat exchanging section 31 are shorter than the fins 23 described above and are arranged alternately.
  • the fin 43 of the heat exchange unit 41 has an end on the oxidant inlet 26 side inclined toward the oxidant inlet 26 and an end on the oxidant outlet 26 side inclined toward the oxidant outlet 27.
  • a gas that does not require reforming such as pure hydrogen or a hydrogen-enriched gas, can also be supplied as the hydrogen-containing fuel.
  • a reformer included in the hydrogen generator is not necessary.
  • the present invention can be used for a fuel cell system.
  • SYMBOLS 1 Fuel cell system, 4 ... Hydrogen generating part, 5 ... Cell stack, 9 ... Oxidant supply part, 10 ... Power conditioner (heat generating part), 11 ... Control part (heat generating part), 20 ... Heat generating part, 21, 31 , 41 ... heat exchange part, 22 ... box (heat exchange part), 23, 33, 43 ... fin (heat exchange part), FL ... flow path.

Abstract

A fuel cell system is provided with: a hydrogen generation unit for generating hydrogen-containing gas using hydrogen-containing fuel; a fuel cell stack for generating power using the hydrogen-containing gas; an oxidant supply unit for supplying the fuel cell stack with an oxidant; a heat generation unit for generating heat by performing an electrical process; and a heat exchange unit for removing heat from the heat generation unit by using the oxidant, and positioned on the upstream side of the fuel cell stack in relation to the oxidant.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 従来の燃料電池システムとして、特許文献1に示すものが知られている。この燃料電池システムは、水素含有燃料を用いて水素含有ガスを発生させる水素発生部と、水素含有ガスを用いて発電を行うセルスタックと、水素含有燃料や酸化剤等を供給するための補機やセンサなどを備えている。更に、この燃料電池システムは、セルスタックで発電された電気の調整を行うパワーコンディショナーや、システム内の制御を行うシステム制御器などを備えている。パワーコンディショナーやシステム制御器などの電子部品は、電気的な処理を行うものであるため発熱する。従って、燃料電池システムは、外気を取り込んで電子部品に風を送ることによって、電子部品を冷却するためのファンを備えている。 As a conventional fuel cell system, the one shown in Patent Document 1 is known. The fuel cell system includes a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel, a cell stack that generates power using the hydrogen-containing gas, and an auxiliary device for supplying hydrogen-containing fuel, an oxidant, and the like. And sensors. Further, the fuel cell system includes a power conditioner that adjusts electricity generated by the cell stack, a system controller that controls the system, and the like. Electronic components such as power conditioners and system controllers generate heat because they perform electrical processing. Therefore, the fuel cell system includes a fan for cooling the electronic component by taking in outside air and sending air to the electronic component.
特開2008-192393号公報JP 2008-192393 A
 ここで、従来より、燃料電池システムにおいては、部品点数を減らすと共にコストを低くすることが要求されている。上述の燃料電池システムで用いられているファンは、電子部品の冷却のためだけに設けられているものであり、セルスタックでの発電に直接的に寄与するものではない。また、部品としてのコストも高く、システムのコストアップに影響する。従って、冷却用のファンを省略することが求められていた。 Here, conventionally, in the fuel cell system, it is required to reduce the number of parts and to reduce the cost. The fan used in the fuel cell system described above is provided only for cooling electronic components, and does not directly contribute to power generation in the cell stack. Moreover, the cost as a component is high, which affects the cost increase of the system. Therefore, it has been required to omit the cooling fan.
 本発明は、このような課題を解決するためになされたものであり、冷却用のファンを不要とし、部品点数を減らすと共にコストダウンを図ることのできる燃料電池システムを提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a fuel cell system that does not require a cooling fan, reduces the number of components, and can reduce the cost. .
 本発明の一側面に係る燃料電池システムは、水素含有燃料を用いて水素含有ガスを発生させる水素発生部と、水素含有ガスを用いて発電を行うセルスタックと、セルスタックへ酸化剤を供給する酸化剤供給部と、電気的な処理を行うことによって発熱する発熱部と、酸化剤に対してセルスタックの上流側に配置され、酸化剤によって発熱部の熱を除去する熱交換部と、を備える。 A fuel cell system according to one aspect of the present invention includes a hydrogen generation unit that generates a hydrogen-containing gas using a hydrogen-containing fuel, a cell stack that generates power using the hydrogen-containing gas, and an oxidant that is supplied to the cell stack. An oxidant supply unit, a heat generation unit that generates heat by performing electrical processing, and a heat exchange unit that is disposed upstream of the cell stack with respect to the oxidant and removes heat from the heat generation unit by the oxidant. Prepare.
 この燃料電池システムは、セルスタックに供給される酸化剤によって発熱部の熱を除去(すなわち冷却)する熱交換部を備えている。酸化剤供給部は、セルスタックの発電において必須とされる構成要素である。すなわち、熱交換部は、燃料電池システムにおいて必須の構成要素である酸化剤供給部を用いて発熱部を冷却することによって、冷却用のファンを省略することができる。以上によって、燃料電池システムは、冷却用のファンを不要とし、部品点数を減らすと共にコストダウンを図ることができる。 This fuel cell system includes a heat exchanging unit that removes (that is, cools) heat of the heat generating unit with an oxidant supplied to the cell stack. The oxidant supply unit is an essential component in the power generation of the cell stack. That is, the heat exchanging unit can omit the cooling fan by cooling the heat generating unit using the oxidant supply unit which is an essential component in the fuel cell system. As described above, the fuel cell system eliminates the need for a cooling fan, reduces the number of parts, and reduces the cost.
 また、燃料電池システムにおいて、熱交換部は、酸化剤の流路を内部に有する箱体と、流路内において、当該流路に沿って延びるフィンと、を備え、発熱部は、箱体の外側に設けられてもよい。発熱部は、熱交換部の箱体の外側に設けられているため、発熱部からの熱は箱体に伝達される。熱交換部の箱体は、内部の流路に酸化剤が流れるため、当該酸化剤に熱を放出することができる。流路にはフィンが設けられているため、熱は効率よく酸化剤に放出される。また、フィンは、流路に沿って延びているため、酸化剤の流れを妨げない。 Further, in the fuel cell system, the heat exchanging unit includes a box having an oxidant flow path therein, and fins extending along the flow path in the flow path, and the heat generating part is formed of the box. It may be provided outside. Since the heat generating part is provided outside the box of the heat exchange part, the heat from the heat generating part is transmitted to the box. Since the oxidant flows through the flow path inside the box of the heat exchange part, heat can be released to the oxidant. Since fins are provided in the flow path, heat is efficiently released to the oxidant. Further, since the fin extends along the flow path, the flow of the oxidizing agent is not hindered.
 本発明によれば、冷却用のファンを不要とし、部品点数を減らすと共にコストダウンを図ることができる。 According to the present invention, a cooling fan is not required, the number of parts can be reduced, and the cost can be reduced.
図1は、本発明の一実施形態に係る燃料電池システムの構成を示すブロック構成図である。FIG. 1 is a block diagram showing the configuration of a fuel cell system according to an embodiment of the present invention. 図2は、システム内の熱交換部に関する構成を示すブロック構成図である。FIG. 2 is a block configuration diagram illustrating a configuration related to a heat exchange unit in the system. 図3は、熱交換部の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the heat exchange unit. 図4は、熱交換部を底面側からみた断面図である。FIG. 4 is a cross-sectional view of the heat exchanging portion as seen from the bottom side. 図5(a)は、熱交換部の変形例を示す断面図であり、図5(b)は、熱交換部の変形例を示す断面図である。Fig.5 (a) is sectional drawing which shows the modification of a heat exchange part, FIG.5 (b) is sectional drawing which shows the modification of a heat exchange part.
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same or an equivalent part, and the overlapping description is abbreviate | omitted.
 図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。 As shown in FIG. 1, the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided. The fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell (PAFC: Phosphoric Acid Fuel Cell), a molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel, for example, a hydrocarbon fuel is used. As the hydrocarbon fuel, a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。 As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。 The desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4. The desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel. As the desulfurization method of the desulfurization unit 2, for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed. The desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。 The water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water. For the heating of the water in the water vaporization unit 3, for example, heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this. The water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガスを発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。 The hydrogen generation unit 4 generates a hydrogen rich gas using the hydrogen-containing fuel from the desulfurization unit 2. The hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。 The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。 The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。 The hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2. The water supply unit 8 supplies water to the water vaporization unit 3. The oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5. The hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。 The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。 The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example. The control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
 本実施形態に係る燃料電池システム1は、セルスタック5のカソード13へ供給される酸化剤を用いて、システム内の電子部品等を冷却することができる。図1及び図2に示すように、燃料電池システム1は、電気的な処理を行うことによって発熱する発熱部20と、発熱部20の熱を除去する熱交換部21と、を備えている。燃料電池システム1の各構成部品は、図2に示すように、筐体100に密閉状態で収納される。燃料電池システム1は、筐体100に開口部を形成することにより空気の流れを形成して電子部品等を冷却するファンを備えていないため、筐体100を密閉状態とすることが可能である。なお、筐体100は、密閉状態でなくともよい。 The fuel cell system 1 according to the present embodiment can cool electronic components and the like in the system using an oxidant supplied to the cathode 13 of the cell stack 5. As shown in FIGS. 1 and 2, the fuel cell system 1 includes a heat generating unit 20 that generates heat by performing an electrical process, and a heat exchange unit 21 that removes heat from the heat generating unit 20. Each component of the fuel cell system 1 is housed in a sealed state in a housing 100 as shown in FIG. Since the fuel cell system 1 does not include a fan that forms an air flow by forming an opening in the housing 100 to cool electronic components and the like, the housing 100 can be sealed. . Note that the housing 100 is not necessarily sealed.
 発熱部20は、燃料電池システム1内において通電されることによって発熱する電子部品等によって構成される。図1においては、制御部11及びパワーコンディショナー10が、発熱部20に含まれる。なお、システム内において電気的な処理を行うものであれば、発熱部20に含むことができ、図1に示されていない電子部品等を含んでもよい。図3に示す例では、発熱部20は、制御部11やパワーコンディショナー10などの電子部品を実装させた制御基盤によって構成されている。 The heat generating unit 20 is configured by electronic components that generate heat when energized in the fuel cell system 1. In FIG. 1, the control unit 11 and the power conditioner 10 are included in the heat generating unit 20. In addition, as long as an electrical process is performed in the system, it can be included in the heat generating part 20 and may include electronic components not shown in FIG. In the example illustrated in FIG. 3, the heat generating unit 20 is configured by a control board on which electronic components such as the control unit 11 and the power conditioner 10 are mounted.
 熱交換部21は、酸化剤に対してセルスタック5の上流側に配置されている。熱交換部21は、発熱部20からの熱を回収し、回収した熱を酸化剤へ放出することによって、発熱部20を冷却する。図2の例では、酸化剤供給部9は、カソードブロワ9aと、酸化剤の供給源とカソードブロワ9aとを接続する供給ライン9bと、を有している。この例では、熱交換部21は、酸化剤供給部9を構成するカソードブロワ9aとセルスタック5との間に配置されている。ただし、熱交換部21は、酸化剤の流れが形成されており、セルスタック5より上流側であればどこに配置されていてもよい。図2において、熱交換部21は、カソードブロワ9aの上流側、すなわち供給ライン9bに配置されていてもよい。 The heat exchanging part 21 is arranged on the upstream side of the cell stack 5 with respect to the oxidant. The heat exchanging part 21 cools the heat generating part 20 by recovering the heat from the heat generating part 20 and releasing the recovered heat to the oxidant. In the example of FIG. 2, the oxidant supply unit 9 includes a cathode blower 9a, and a supply line 9b that connects the supply source of the oxidant and the cathode blower 9a. In this example, the heat exchanging unit 21 is disposed between the cathode blower 9 a constituting the oxidant supply unit 9 and the cell stack 5. However, the heat exchange unit 21 may be disposed anywhere as long as an oxidant flow is formed and the upstream side of the cell stack 5. In FIG. 2, the heat exchange part 21 may be arrange | positioned in the upstream of the cathode blower 9a, ie, the supply line 9b.
 次に、図3及び図4を用い、熱交換部21のより詳細な構成について説明する。図3及び図4に示すように、熱交換部21は、内部空間を有する箱体22と、箱体22の内部空間に配置されるフィン23と、酸化剤入口26と、酸化剤出口27と、を備えている。 Next, a more detailed configuration of the heat exchange unit 21 will be described with reference to FIGS. 3 and 4. As shown in FIGS. 3 and 4, the heat exchange unit 21 includes a box body 22 having an internal space, fins 23 arranged in the internal space of the box body 22, an oxidant inlet 26, and an oxidant outlet 27. It is equipped with.
 箱体22は、直方体をなしており、外側に発熱部20が設けられる。箱体22は、側面板22bに酸化剤入口26が形成され、当該側面板22bと対向する側面板22cに酸化剤出口27が形成される。これによって箱体22の内部空間は、酸化剤入口26から酸化剤出口27へ向かって酸化剤が流れる流路FLとして機能する。箱体22の上板22aの外面には発熱部20が取り付けられている。なお、発熱部20を構成する制御基盤には絶縁加工が施されている。熱交換部21の取り付け向きは特に限定されず、上板22aが横向きに配置されてもよく、上板22aが下向きに配置されてもよい。 The box 22 has a rectangular parallelepiped shape, and the heat generating portion 20 is provided outside. In the box 22, an oxidant inlet 26 is formed on the side plate 22b, and an oxidant outlet 27 is formed on the side plate 22c facing the side plate 22b. As a result, the internal space of the box 22 functions as a flow path FL through which the oxidant flows from the oxidant inlet 26 toward the oxidant outlet 27. A heat generating portion 20 is attached to the outer surface of the upper plate 22a of the box 22. Note that the control base constituting the heat generating portion 20 is insulated. The mounting direction of the heat exchange part 21 is not particularly limited, and the upper plate 22a may be disposed sideways, or the upper plate 22a may be disposed downward.
 熱交換部21は、箱体22の内部空間に複数のフィン23を備えている。フィン23は、流路FLに沿って延びている。フィン23は、互いに平行をなすように、一定間隔で複数並べられる。各フィン23が互いに向かい合う方向(すなわち、各フィン23が並ぶ方向)は、流路FLと直交する。図3及び図4の例では、フィン23は、上板22aに固定されており、底板22dに向かって下方へ延びている。フィン23は、底板22dからは離間している。フィン23の両端部は、側板22b,22cから離間している。これによって、酸化剤入口26から箱体22内部に流入した酸化剤は、フィン23の手前で分岐され、各フィン23の間を通り、酸化剤出口27の手前で合流して当該酸化剤出口27から排出される。フィン23は、箱体22の壁を構成する各板のうち、発熱部20が設けられている板(本実施形態では上板22a)と固定されている。これによって、フィン23は、発熱部20からの熱を効率よく酸化剤へ放出することができる。流路FLに沿った方向(酸化剤入口26から酸化剤出口27へ向かう方向)において、各フィン23の長さは同一であるが、各フィンの長さは特に限定されない。例えば、酸化剤入口26及び酸化剤出口27付近のフィン23が長く、フィン同士が対向する方向(流路FLと直交する方向)において、酸化剤入口26及び酸化剤出口27から遠ざかるに従って、フィン23の長さが短くなってもよい。これによって、酸化剤が箱体22の内部空間全体に広がり易くなる。 The heat exchange unit 21 includes a plurality of fins 23 in the internal space of the box body 22. The fins 23 extend along the flow path FL. A plurality of fins 23 are arranged at regular intervals so as to be parallel to each other. The direction in which the fins 23 face each other (that is, the direction in which the fins 23 are arranged) is orthogonal to the flow path FL. 3 and 4, the fins 23 are fixed to the upper plate 22a and extend downward toward the bottom plate 22d. The fins 23 are separated from the bottom plate 22d. Both end portions of the fin 23 are separated from the side plates 22b and 22c. As a result, the oxidant that has flowed into the box 22 from the oxidant inlet 26 is branched before the fins 23, passes between the fins 23, merges before the oxidant outlet 27, and the oxidant outlet 27. Discharged from. The fins 23 are fixed to a plate (the upper plate 22a in the present embodiment) on which the heat generating portion 20 is provided among the respective plates constituting the wall of the box 22. Thus, the fins 23 can efficiently release the heat from the heat generating part 20 to the oxidant. In the direction along the flow path FL (direction from the oxidant inlet 26 to the oxidant outlet 27), the length of each fin 23 is the same, but the length of each fin is not particularly limited. For example, the fins 23 in the vicinity of the oxidant inlet 26 and the oxidant outlet 27 are long, and as the fins 23 move away from the oxidant inlet 26 and the oxidant outlet 27 in a direction in which the fins face each other (a direction orthogonal to the flow path FL), The length of may be shortened. As a result, the oxidant easily spreads over the entire internal space of the box 22.
 以上のように、燃料電池システム1は、セルスタック5に供給される酸化剤によって発熱部20の熱を除去(すなわち冷却)する熱交換部21を備えている。酸化剤供給部9は、セルスタック5の発電において必須とされる構成要素である。すなわち、熱交換部21は、燃料電池システム1において必須の構成要素である酸化剤供給部9を用いて発熱部21を冷却することによって、冷却用のファンを省略することができる。以上によって、燃料電池システム1は、冷却用のファンを不要とし、部品点数を減らすと共にコストダウンを図ることができる。 As described above, the fuel cell system 1 includes the heat exchanging unit 21 that removes (that is, cools) the heat of the heat generating unit 20 with the oxidant supplied to the cell stack 5. The oxidant supply unit 9 is an essential component in the power generation of the cell stack 5. That is, the heat exchange unit 21 can omit the cooling fan by cooling the heat generating unit 21 using the oxidant supply unit 9 which is an essential component in the fuel cell system 1. As described above, the fuel cell system 1 eliminates the need for a cooling fan, reduces the number of components, and can reduce the cost.
 また、従来より一般的に用いられる冷却用のファンの出力に比べ、セルスタック5に酸化剤を供給するカソードポンプ9aの出力は(ただし、燃料電池システムの大きさによるが)大きい。従って、酸化剤供給部9は、従来の冷却用のファンに比べ、大量の酸化剤を熱交換部に流すことができる。従って、発熱部20の冷却効率は、従来の冷却用ファンを用いる場合に比して、大幅に上昇する。 Also, the output of the cathode pump 9a that supplies the oxidant to the cell stack 5 is larger than that of the cooling fan that is generally used conventionally (depending on the size of the fuel cell system). Therefore, the oxidant supply unit 9 can flow a larger amount of oxidant to the heat exchange unit than a conventional cooling fan. Therefore, the cooling efficiency of the heat generating portion 20 is significantly increased as compared with the case where a conventional cooling fan is used.
 また、従来の冷却用のファンを用いる場合、外気を取り込む必要があるため、燃料電池システムを収容する筐体に外気を取込むために、開口部を形成して筐体を開放する必要がある。これによって、外気と発熱部との間の空気の流れが形成される。しかしながら、本実施形態における燃料電池システム1は、酸化剤供給部9による酸化剤の流れを利用して冷却を行うため、筐体100を密閉構造としてもよい。筐体100を密閉構造とした場合、防塵効果や、防音効果を得ることができる。また、発熱部20の電子部品に対する湿気防止効果も得ることができる。 In addition, when a conventional cooling fan is used, it is necessary to take in the outside air. Therefore, in order to take in the outside air into the housing that houses the fuel cell system, it is necessary to form an opening and open the housing. . As a result, an air flow between the outside air and the heat generating portion is formed. However, since the fuel cell system 1 in the present embodiment performs cooling using the flow of the oxidant by the oxidant supply unit 9, the housing 100 may have a sealed structure. When the housing 100 has a sealed structure, a dustproof effect and a soundproof effect can be obtained. Moreover, the moisture prevention effect with respect to the electronic component of the heat generating part 20 can also be acquired.
 また、燃料電池システム1において、熱交換部21は、酸化剤の流路FLを内部に有する箱体22と、流路FL内において、当該流路FLに沿って延びるフィン23と、を備える。発熱部20は、箱体22の外側に配置されている。発熱部20は、熱交換部21の箱体22の外側に設けられているため、発熱部20からの熱は箱体22に伝達される。また、発熱部20は、箱体22の上板22aの上面と面接触するように設けられているため、発熱部20からの熱は効率よく箱体22に伝達される。熱交換部21の箱体22は、内部の流路FLに酸化剤が流れるため、当該酸化剤に熱を放出することができる。流路FLにはフィン23が設けられているため、熱は効率よく酸化剤に放出される。また、フィン23は、流路FLに沿って延びているため、酸化剤の流れを妨げない。 In the fuel cell system 1, the heat exchanging section 21 includes a box 22 having an oxidant flow path FL therein, and fins 23 extending along the flow path FL in the flow path FL. The heat generating part 20 is disposed outside the box body 22. Since the heat generating unit 20 is provided outside the box 22 of the heat exchange unit 21, the heat from the heat generating unit 20 is transmitted to the box 22. Moreover, since the heat generating part 20 is provided so as to be in surface contact with the upper surface of the upper plate 22 a of the box body 22, the heat from the heat generating part 20 is efficiently transmitted to the box body 22. Since the oxidant flows through the internal flow path FL, the box 22 of the heat exchange unit 21 can release heat to the oxidant. Since the fins 23 are provided in the flow path FL, heat is efficiently released to the oxidant. Further, since the fin 23 extends along the flow path FL, the flow of the oxidizing agent is not hindered.
 以上、本発明の好適な実施形態について説明したが、本発明に係る燃料電池システムは、実施形態に係る上記燃料電池システム1に限定されない。 The preferred embodiment of the present invention has been described above, but the fuel cell system according to the present invention is not limited to the fuel cell system 1 according to the embodiment.
 例えば、フィンの23の形状は特に限定されず、発熱部20の熱を酸化剤に放出できる構造であればどのような構造であってもよい。また、酸化剤の流れを妨げない構造が好ましい。例えば、図5(a)に示すような熱交換部31を適用してもよい。熱交換部31のフィン33は、前述のフィン23よりも短く、互い違いになるように配置されている。また、図5(b)に示すような熱交換部41を適用してもよい。熱交換部41のフィン43は、酸化剤入口26側の端部が酸化剤入口26に向かって傾き、酸化剤出口26側の端部が酸化剤出口27に向かって傾いている。フィン33やフィン43を適用することによって、酸化剤は、箱体22内の流路FL全体にわたって広がりやすくなる。これによって、発熱部20の冷却効率を向上させることができる。 For example, the shape of the fin 23 is not particularly limited, and may be any structure as long as the heat of the heat generating portion 20 can be released to the oxidant. A structure that does not hinder the flow of the oxidant is preferable. For example, you may apply the heat exchange part 31 as shown to Fig.5 (a). The fins 33 of the heat exchanging section 31 are shorter than the fins 23 described above and are arranged alternately. Moreover, you may apply the heat exchange part 41 as shown in FIG.5 (b). The fin 43 of the heat exchange unit 41 has an end on the oxidant inlet 26 side inclined toward the oxidant inlet 26 and an end on the oxidant outlet 26 side inclined toward the oxidant outlet 27. By applying the fins 33 and the fins 43, the oxidant is easily spread over the entire flow path FL in the box body 22. Thereby, the cooling efficiency of the heat generating part 20 can be improved.
 また、上記実施形態では、水素含有燃料として、純水素や水素富化ガス等の改質が不要なガスを供給することもできる。この場合、水素発生部が有する改質器は不要となる。 In the above embodiment, a gas that does not require reforming, such as pure hydrogen or a hydrogen-enriched gas, can also be supplied as the hydrogen-containing fuel. In this case, a reformer included in the hydrogen generator is not necessary.
 本発明は、燃料電池システムに利用可能である。 The present invention can be used for a fuel cell system.
 1…燃料電池システム、4…水素発生部、5…セルスタック、9…酸化剤供給部、10…パワーコンディショナー(発熱部)、11…制御部(発熱部)、20…発熱部、21,31,41…熱交換部、22…箱体(熱交換部)、23,33,43…フィン(熱交換部)、FL…流路。 DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 4 ... Hydrogen generating part, 5 ... Cell stack, 9 ... Oxidant supply part, 10 ... Power conditioner (heat generating part), 11 ... Control part (heat generating part), 20 ... Heat generating part, 21, 31 , 41 ... heat exchange part, 22 ... box (heat exchange part), 23, 33, 43 ... fin (heat exchange part), FL ... flow path.

Claims (2)

  1.  水素含有燃料を用いて水素含有ガスを発生させる水素発生部と、
     前記水素含有ガスを用いて発電を行うセルスタックと、
     前記セルスタックへ酸化剤を供給する酸化剤供給部と、
     電気的な処理を行うことによって発熱する発熱部と、
     前記酸化剤に対して前記セルスタックの上流側に配置され、前記酸化剤によって前記発熱部の熱を除去する熱交換部と、を備える燃料電池システム。
    A hydrogen generation section for generating a hydrogen-containing gas using a hydrogen-containing fuel;
    A cell stack for generating power using the hydrogen-containing gas;
    An oxidant supply unit for supplying an oxidant to the cell stack;
    A heat generating part that generates heat by performing electrical treatment;
    A fuel cell system comprising: a heat exchanging unit that is disposed upstream of the cell stack with respect to the oxidant and removes heat of the heat generating part by the oxidant.
  2.  前記熱交換部は、
      前記酸化剤の流路を内部に有する箱体と、
      前記流路内において、当該流路に沿って延びるフィンと、を備え、
     前記発熱部は、前記箱体の外側に設けられる請求項1記載の燃料電池システム。
    The heat exchange part is
    A box having a channel for the oxidant therein;
    A fin extending along the flow path in the flow path,
    The fuel cell system according to claim 1, wherein the heat generating portion is provided outside the box.
PCT/JP2011/080256 2010-12-28 2011-12-27 Fuel cell system WO2012091029A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550990A JPWO2012091029A1 (en) 2010-12-28 2011-12-27 Fuel cell system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292380 2010-12-28
JP2010292380 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091029A1 true WO2012091029A1 (en) 2012-07-05

Family

ID=46383120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080256 WO2012091029A1 (en) 2010-12-28 2011-12-27 Fuel cell system

Country Status (2)

Country Link
JP (1) JPWO2012091029A1 (en)
WO (1) WO2012091029A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211202A (en) * 2012-03-30 2013-10-10 Toto Ltd Fuel cell unit
WO2014156212A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石エネルギー株式会社 Fuel cell device and fuel cell system
JP2014191895A (en) * 2013-03-26 2014-10-06 Jx Nippon Oil & Energy Corp Fuel cell device and fuel cell system
JP2014191896A (en) * 2013-03-26 2014-10-06 Jx Nippon Oil & Energy Corp Fuel cell device and fuel cell system
JP2016177883A (en) * 2015-03-18 2016-10-06 富士電機株式会社 Air preheater and power generator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JP2000260445A (en) * 1999-03-08 2000-09-22 Sanyo Electric Co Ltd Fuel cell power generation device
JP2001017372A (en) * 1999-07-05 2001-01-23 Hitachi Ltd Dish washer and drier
JP2002329515A (en) * 2001-02-27 2002-11-15 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003208915A (en) * 2002-01-15 2003-07-25 Ebara Ballard Corp Fuel cell power generating system
JP2007207441A (en) * 2006-01-30 2007-08-16 Kyocera Corp Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0475263A (en) * 1990-07-18 1992-03-10 Fuji Electric Co Ltd Package type fuel cell power generating unit
JP2000260445A (en) * 1999-03-08 2000-09-22 Sanyo Electric Co Ltd Fuel cell power generation device
JP2001017372A (en) * 1999-07-05 2001-01-23 Hitachi Ltd Dish washer and drier
JP2002329515A (en) * 2001-02-27 2002-11-15 Matsushita Electric Ind Co Ltd Fuel cell power generating system
JP2003208915A (en) * 2002-01-15 2003-07-25 Ebara Ballard Corp Fuel cell power generating system
JP2007207441A (en) * 2006-01-30 2007-08-16 Kyocera Corp Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013211202A (en) * 2012-03-30 2013-10-10 Toto Ltd Fuel cell unit
WO2014156212A1 (en) * 2013-03-26 2014-10-02 Jx日鉱日石エネルギー株式会社 Fuel cell device and fuel cell system
JP2014191895A (en) * 2013-03-26 2014-10-06 Jx Nippon Oil & Energy Corp Fuel cell device and fuel cell system
JP2014191896A (en) * 2013-03-26 2014-10-06 Jx Nippon Oil & Energy Corp Fuel cell device and fuel cell system
JP2016177883A (en) * 2015-03-18 2016-10-06 富士電機株式会社 Air preheater and power generator

Also Published As

Publication number Publication date
JPWO2012091029A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6030547B2 (en) Fuel cell module
JP5852011B2 (en) Fuel cell system
WO2012137934A1 (en) Fuel cell module
US9614233B2 (en) Fuel cell module
WO2012091029A1 (en) Fuel cell system
JP6114197B2 (en) Fuel cell system
JP2009059658A (en) Indirect interior-reformed solid oxide fuel cell
JP2006269332A (en) Solid oxide type fuel cell system
JP5939858B2 (en) Fuel cell module
US9698440B2 (en) Fuel cell module
WO2012090875A1 (en) Fuel cell system and desulfurization device
WO2012090865A1 (en) Desulfurization device and fuel cell system
JP2014107186A (en) Solid oxide fuel cell system
JP6224329B2 (en) Fuel cell system
JPWO2012091030A1 (en) Fuel cell system
WO2012091131A1 (en) Fuel cell system
WO2012091132A1 (en) Fuel cell system
WO2012091063A1 (en) Fuel cell system
WO2012090964A1 (en) Fuel cell system
JP5738317B2 (en) Desulfurization apparatus and fuel cell system
JP5728497B2 (en) Fuel cell system
JP2015191785A (en) reformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854443

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550990

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854443

Country of ref document: EP

Kind code of ref document: A1