WO2014156212A1 - Fuel cell device and fuel cell system - Google Patents

Fuel cell device and fuel cell system Download PDF

Info

Publication number
WO2014156212A1
WO2014156212A1 PCT/JP2014/050165 JP2014050165W WO2014156212A1 WO 2014156212 A1 WO2014156212 A1 WO 2014156212A1 JP 2014050165 W JP2014050165 W JP 2014050165W WO 2014156212 A1 WO2014156212 A1 WO 2014156212A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
oxidant
cell stack
supply member
fuel
Prior art date
Application number
PCT/JP2014/050165
Other languages
French (fr)
Japanese (ja)
Inventor
遼 岸田
門脇 正天
水野 康
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013064106A external-priority patent/JP6140497B2/en
Priority claimed from JP2013064107A external-priority patent/JP6092681B2/en
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2014156212A1 publication Critical patent/WO2014156212A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell device, and more particularly to a solid oxide fuel cell device. Furthermore, the present invention relates to a fuel cell system including a fuel cell device.
  • a fuel cell device is the core of a fuel cell system, and is an assembly of a plurality of fuel cells that generate electricity by reacting a hydrogen-enriched fuel (including pure hydrogen) and an oxidant (generally air).
  • the fuel cell stack includes an off-gas combustion unit that burns off gas discharged from the upper end of the fuel cell stack and maintains the fuel cell stack at a high temperature.
  • the oxidant supply member for supplying the oxidant to the fuel cell stack is a hollow plate shape (flat container shape) and is disposed along the lateral side surface of the fuel cell stack or a cell group constituting a part thereof.
  • the upper end portion has an oxidant inlet and the lower end portion has an oxidant jet.
  • Patent Document 1 discloses such a fuel cell device.
  • Patent Document 2 discloses a structure of an oxidant supply member for making the temperature distribution of the fuel cell stack uniform.
  • the flow path blocking member is filled in the both ends (except for the lower part) in the lateral direction in the oxidant supply member, so that the first flow path goes from the top to the bottom in the lateral direction, and the first flow path. And a second flow path that extends across the entire lateral direction.
  • the present invention improves the internal structure of the oxidant supply member, achieves a uniform temperature distribution of the fuel cell stack without reducing the heat exchange area with the fuel cell stack, and improves power generation performance.
  • the purpose is to improve.
  • Another object of the present invention is to improve the power generation efficiency comprehensively without increasing the pressure loss.
  • the present invention extends laterally at both lateral ends of the upper portion in the oxidant supply member and laterally flows the oxidant in the upper portion in the oxidant supply member.
  • a pair of right and left focusing guide pieces to be concentrated on the central part, and the laterally extending in the vertical and horizontal central parts in the oxidant supply member, receiving the flow of the oxidant from above and laterally It is set as the structure which provides at least one among the dispersion
  • the present invention it is possible to effectively cool the high temperature region of the fuel cell stack by concentrating the flow of the oxidant at the upper portion in the oxidant supply member to the central portion in the lateral direction by the focusing guide piece. it can. And / or by dispersing the oxidant that has flowed through the central portion in the lateral direction in the oxidant supply member and is heated to both ends in the lateral direction by the dispersing guide piece, the low temperature region of the fuel cell stack is effectively reduced. Can be heated. Therefore, the temperature distribution of the fuel cell stack can be made uniform, and the power generation performance can be improved.
  • the guide piece extending in the lateral direction by using the guide piece extending in the lateral direction, the reduction of the heat exchange area between the fuel cell stack and the oxidant supply member is suppressed, and the temperature of the oxidant supplied to the fuel cell stack is sufficiently increased. It is possible to increase the power generation efficiency and to suppress a decrease in power generation efficiency, and to improve the power generation efficiency comprehensively without increasing the pressure loss.
  • FIG. 1 is a schematic front view of a fuel cell device showing an embodiment of the present invention.
  • FIG. 1 is a schematic front view of a fuel cell device showing an embodiment of the present invention
  • FIG. 2 is a schematic side view of the same fuel cell device.
  • the fuel cell device of the present embodiment is a solid oxide fuel cell (SOFC) system, and a housing 1 includes a fuel cell stack 3 that is an assembly of a plurality of fuel cells, an off-gas combustion unit 5, a fuel reformer. A quality device 7 and an oxidant supply member 9 are provided.
  • SOFC solid oxide fuel cell
  • the casing 1 is made of a heat-resistant metal, and includes a combustion chamber partition member 2 that is open at the top with a gap therebetween.
  • a fuel cell stack 3, an off-gas combustion unit 5, a fuel reformer 7, and an oxidant supply member 9 are disposed in the combustion chamber partition member 2.
  • the fuel cell stack 3 is an assembly in which a plurality of solid oxide fuel cells are assembled and connected in series (and in parallel), and is erected on a pedestal 4 disposed at the bottom of the combustion chamber partition member 2. Has been.
  • Each fuel cell is formed by laminating an anode (fuel electrode), an electrolyte made of a solid oxide, and a cathode (oxidant electrode) on the surface of a cell support extending in the vertical direction.
  • the cell support is porous while a fuel passage is formed inside along the extending direction. Accordingly, the hydrogen-rich fuel is supplied to the anode from the inside of the cell support.
  • An oxidizing agent generally air is supplied to the cathode from the outside.
  • Electrolyte conducts oxide ions at high temperature.
  • the anode reacts oxide ions with hydrogen in the fuel to generate electrons and water.
  • the cathode reacts oxygen and electrons in the oxidant to generate oxide ions.
  • the electrode reaction of the following formula (1) is caused at the cathode of each fuel cell, and the electrode reaction of the following formula (2) is caused at the anode to generate electric power.
  • the fuel cell device includes a large number of fuel cells as described above, and these are electrically connected in series (and in parallel) to form a fuel cell stack 3 that is an assembly of fuel cells.
  • a large number of fuel cells constituting the fuel cell stack 3 are divided into two groups, that is, a first cell group 3A and a second cell group 3B.
  • the supply of the hydrogen-enriched fuel to the fuel cell stack 3 is performed from the pedestal 4 side (the lower end side of the fuel cell stack 3), and the pedestal 4 has a fuel distribution function.
  • the hydrogen enriched fuel the reformed fuel is supplied from the fuel reformer 7.
  • the oxidant (generally air) is supplied to the fuel cell stack 3 through an oxidant supply member 9 described in detail later.
  • the oxidant supply member 9 faces the fuel cell stack 3, that is, between the first and second cell groups 3A and 3B. In other words, the fuel cell stack 3 is divided into the first cell group 3A and the second cell group 3B by the oxidant supply member 9.
  • the off-gas combustion unit 5 burns surplus hydrogen-enriched fuel in the fuel cell stack 3 (off-gas discharged as power generation unreacted gas) in the presence of surplus oxidant, and the fuel cell stack 3 and the fuel reformer 7 is maintained at a high temperature.
  • the upper end portion of the fuel cell stack 3 serves as a discharge portion for off-gas from the fuel cell stack 3, and this off-gas is ignited by an ignition device (not shown) and burns. Therefore, the upper end side of the fuel cell stack 3 is the off-gas combustion unit 5.
  • the fuel cell stack 3 is maintained in a high-temperature state capable of generating power by the combustion heat in the off-gas combustion unit 5.
  • High-temperature exhaust gas generated by combustion is discharged out of the housing 1 from the exhaust outlet 6 through an opening (exhaust passage) between the housing 1 and the combustion chamber compartment member 2 from an open portion at the top of the combustion chamber compartment member 2. Is done.
  • the waste heat is used as appropriate.
  • the fuel reformer 7 reforms the hydrogen-containing fuel by a reforming reaction using a reforming catalyst to generate a hydrogen-enriched fuel (reformed gas). For this reason, fuel is supplied to the fuel reformer 7 by a fuel pump (not shown) outside the housing 1.
  • hydrocarbon fuel As the hydrogen-containing fuel (raw fuel), a hydrocarbon-based fuel is generally used.
  • the hydrocarbon fuel here refers to a compound containing carbon and hydrogen in a molecule (may contain other elements such as oxygen) or a mixture thereof, for example, hydrocarbons, alcohols, Examples include ethers and biofuels.
  • Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, gasoline, naphtha, kerosene, and light oil.
  • alcohols include methanol and ethanol.
  • ethers include dimethyl ether.
  • biofuels include biogas, bioethanol, biodiesel, and biojet.
  • the reforming method in the fuel reformer 7 is not particularly limited.
  • steam reforming SR
  • partial oxidation reforming POX
  • autothermal reforming ATR
  • other reforming methods can be adopted.
  • SR steam reforming
  • a water vaporization unit is provided in (or separate from) the fuel reformer 7, and water supplied from outside the housing 1 is vaporized to generate steam.
  • the fuel reformer 7 of the present embodiment is disposed above the fuel cell stack 3 in the combustion chamber partition member 2 so as to be heated by the combustion heat in the off-gas combustion unit 5. Further, the fuel reformer 7 of the present embodiment is constituted by two cylindrical fuel reformers that are arranged in parallel with a space therebetween because of the layout of the oxidant supply member 9. In this case, the two cylindrical fuel reformers may be connected so that the fuel flows in parallel, or may be connected so that the fuel flows back in series. A supply pipe (not shown) for the generated reformed fuel is led out from the outlet side of the fuel reformer 7 and connected to a base (fuel distribution unit) 4 of the fuel cell stack 3.
  • the oxidant supply member 9 is a flat member disposed along the side surfaces between the first and second cell groups 3A and 3B constituting the fuel cell stack 3 in order to supply the oxidant to the fuel cell stack 3.
  • a container (hollow plate-like body) is mainly used.
  • the flat container (hollow plate-like body) is a rectangular container having an upper surface opened and both side surfaces forming a flat surface and facing the side surface portions of the cell groups 3A and 3B.
  • the oxidant supply member 9 is inserted into the case 1 through a slit formed in the upper wall surface of the case 1, and the opening on the upper end side is connected to an oxidant supply source outside the case 1 to oxidize the oxidant supply member 9.
  • An agent inlet 10 is formed.
  • a plurality of oxidant jets 11 are formed on both side surfaces in the vicinity of the bottom of the flat container constituting the oxidant supply member 9, and from the oxidant jets 11 on both sides.
  • An oxidant is supplied to each of the cell groups 3A and 3B.
  • the oxidant supply member 9 has the oxidant introduction port 10 on the upper end side of the flat container and the oxidant jet 11 on the lower end side.
  • the oxidant flows from the oxidant introduction port 10 of the oxidant supply member 9, flows from the top to the bottom in the flat container, and is ejected from the oxidant ejection port 11 to be supplied to the cathodes of the respective cell groups 3A and 3B. Is done.
  • a plurality of circular holes may be provided side by side as in the illustrated embodiment, or one or more horizontally long slits may be provided.
  • the current concentrates in the central portion of the fuel cell stack 3 and the off-gas is burned on the upper end portion side of the fuel cell stack 3, so The part side becomes hot. Therefore, there is a problem that it is necessary to effectively cool the high temperature region of the fuel cell stack 3.
  • Structural Example 1 (1-1 to 1-4) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below.
  • FIG. 3 is a side longitudinal sectional view showing a structural example 1-1 of the oxidant supply member.
  • a pair of right and left focusing guide pieces 21 and 22 are provided at both ends in the upper horizontal direction in the oxidant supply member 9.
  • the focusing guide pieces 21 and 22 extend in the lateral direction so as to protrude from the end walls at both lateral ends in the oxidant supply member 9, and the oxidant at the upper part in the oxidant supply member 9. Concentrate the flow in the horizontal center.
  • the oxidant that flows from the top to the bottom in the lateral direction at the upper part in the oxidant supply member 9 is turned inward by colliding with the focusing guide pieces 21 and 22, and the central part in the lateral direction is changed. It begins to flow.
  • the focusing guide pieces 21 and 22 are provided at substantially the same height as the upper end portion of the fuel cell stack 3 in relation to the fuel cell stack 3.
  • the oxidant is disposed at the upper part of the fuel cell stack 3 and the central part in the lateral direction. It is possible to concentrate in a high temperature region. Moreover, in the concentration area
  • the guide pieces 21, 22 extending in the lateral direction, the reduction of the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidation supplied to the fuel cell stack 3.
  • the temperature of the agent can be raised sufficiently to maintain and improve the power generation performance.
  • FIG. 4 is a side longitudinal sectional view showing a structural example 1-2 of the oxidant supply member.
  • the focusing guide pieces 21 and 22 are inclined obliquely downward toward the central portion in the horizontal direction.
  • the oxidant can be guided in the focusing direction and can be focused more smoothly. Moreover, it becomes possible to guide without countering the flow of the oxidizing agent, and an increase in pressure loss can be suppressed. By these, the flow rate of an oxidizing agent can be raised more and heat exchange efficiency can be improved.
  • FIG. 5 is a side longitudinal sectional view showing a structural example 1-3 of the oxidant supply member.
  • the inclined portions (FIG. 4) of the focusing guide pieces 21 and 22 have a convex curve on the upper side.
  • the oxidant when the flow of the oxidant is changed inward and then guided downward in the central portion in the lateral direction, the oxidant can be smoothly guided, and the flow rate of the oxidant is increased. Can be increased.
  • FIG. 6 is a side longitudinal sectional view showing Structural Example 1-4 of the oxidant supply member.
  • the inclined portions (FIG. 4) of the focusing guide pieces 21 and 22 have a concave curvature on the upper side.
  • Structural Example 2 (2-1 to 2-6) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below.
  • FIG. 7 is a side longitudinal sectional view showing a structural example 2-1 of the oxidant supply member.
  • the dispersing guide piece 23 is provided at the center in the vertical and horizontal directions in the oxidant supply member 9.
  • the central part in the vertical direction and the horizontal direction here means that at least the both ends in the vertical direction and the both ends in the horizontal direction are excluded.
  • the dispersing guide piece 23 extends in the horizontal direction at the center in the vertical and horizontal directions in the oxidant supply member 9, receives the flow of the oxidant from above, and disperses it to both ends in the horizontal direction. . Note that the dispersion guide piece 23 is provided at the same height as the central portion of the fuel cell stack 3 in relation to the fuel cell stack 3.
  • the low temperature region of the fuel cell stack 3 can be effectively obtained by dispersing the oxidant that has flowed through the central portion in the lateral direction in the oxidant supply member 9 and heated to both ends in the lateral direction. Heating can be performed to increase the temperature and to suppress a decrease in power generation efficiency.
  • the dispersion guide piece 23 corresponding to the highest temperature range of the fuel cell stack 3 (the central portion of the oxidant supply member 9), the lateral direction from the lateral central portion (high temperature region) of the fuel cell stack 3 is achieved. It is possible to disperse the oxidant to both ends (low temperature region) and to achieve heat transfer. Therefore, by making such a gas flow, heat transfer from the lateral center of the fuel cell stack 3 to both lateral ends of the fuel cell stack 3 by the oxidant is promoted, and the temperature distribution of the fuel cell stack 3 is optimized. Can do. That is, it is possible to reduce the overall temperature difference by reducing the cell temperature of the part that is excessively high, and increasing the cell temperature of the low temperature part such as the lower part or the end part.
  • the guide piece 23 extending in the lateral direction, a reduction in the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidant supplied to the fuel cell stack 3 is reduced.
  • the temperature can be raised sufficiently to maintain and improve the power generation performance.
  • FIG. 8 is a side longitudinal sectional view showing a structural example 2-2 of the oxidant supply member.
  • the dispersion guide piece 23 has a concave bent shape (V shape).
  • the gas flow to both ends in the lateral direction can be more effectively formed by using the V shape. That is, the oxidant is not only moved from the laterally central portion to the lateral end portions, but can be moved obliquely upward to increase the movement distance and improve the heat exchange efficiency.
  • an upwardly concave bent shape (V-shape) is used, but an upwardly concave curved shape may be used to guide more smoothly.
  • FIG. 9 is a side longitudinal sectional view showing a structural example 2-3 of the oxidant supply member.
  • a gap portion (dividing portion) 24 through which a part of the oxidant from above passes downward is provided in the central portion in the horizontal direction of the dispersing guide piece 23 in the structural example 2-1 (FIG. 7). Is provided.
  • the supply ratios from the plurality of oxidant jets 11 arranged in the lateral direction (cell arrangement direction) of the fuel cell stack 3 can be made uniform (diffusion suppression), leading to improved power generation efficiency of the fuel cell stack 3.
  • the uniformity of the air distribution improves the robustness with respect to the supply air amount.
  • an increase in pressure loss can be suppressed. When the pressure loss increases, the power consumption of the auxiliary equipment increases, and even if the fuel cell device having the same DC power generation efficiency is used, the AC power generation efficiency as the whole fuel cell system is reduced. This leads to an improvement in AC power generation efficiency as a fuel cell system.
  • FIG. 10 is a side longitudinal sectional view showing a structural example 2-4 of the oxidant supply member.
  • a gap (dividing part) 24 that allows a part of the oxidant from above to pass downward is provided in the central portion in the horizontal direction of the dispersing guide piece 23 in the structural example 2-2 (FIG. 8). Is provided.
  • the effects of the structural example 2-2 (FIG. 8) + the structural example 2-3 (FIG. 9) can be obtained.
  • FIG. 11 is a side longitudinal sectional view showing Structural Example 2-5 of the oxidant supply member.
  • the dispersing guide piece 23 is formed in a concave bent shape (V shape) on the left and right pair, and thus has a W shape as a whole.
  • a gap (dividing part) that allows a part of the oxidant from above to pass downwardly between the laterally central part of the dispersing guide piece 23, more specifically, between the left and right pair of concave bent shapes. 24 is provided.
  • Structural Example 2-5 by combining two V-shapes into a W-shape, the oxidant is guided relatively smoothly, and the decrease in gas flow rate is suppressed, and both ends in the lateral direction are achieved. It becomes possible to disperse the gas. Further, by providing a gap (dividing part) 24 at the center of the dispersion guide piece 23, as in the structural examples 2-3 and 2-4 (FIGS. 9 and 10), it is possible to suppress the drift and reduce the pressure loss. Can be planned.
  • FIG. 12 is a side longitudinal sectional view showing a structural example 2-6 of the oxidant supply member.
  • the dispersion guide piece 23 has a concave curved shape on the left and right pair. Further, a gap (dividing part) that allows a part of the oxidant from above to pass downwardly between the concave central curved shape on the laterally central portion of the dispersion guide piece 23, more specifically on the left and right pair. 24 is provided.
  • the oxidant can be guided more smoothly, and the gas flow can be controlled without reducing the gas flow rate. , Heat exchange efficiency is improved. Moreover, it is possible to suppress an increase in pressure loss.
  • the gap (divided portion) 24 is provided, but this may be omitted.
  • both lateral ends of the fuel cell stack 3 and The lower part becomes cold.
  • Structural Example 3 (3-1 to 3-4) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below. To do. Note that the first problem is solved by the focusing guide pieces 21 and 22 shown in the structural example 1, and the second problem is solved by the dispersing guide piece 23 shown in the structural example 2. .
  • FIG. 13 is a side longitudinal sectional view showing a structural example 3-1 of the oxidant supply member.
  • this structural example 3-1 in the downstream side of the focusing guide pieces 21 and 22 (FIG. 3) in the oxidant supply member 9, more specifically on the downstream side of the oxidizing agent passage between the focusing guide pieces 21 and 22, Dispersion guide pieces 23 (FIG. 7) are provided.
  • the focusing guide pieces 21 and 22 extend in the lateral direction so as to protrude from the end wall at both lateral ends of the upper portion in the oxidant supply member 9, and in the upper portion in the oxidant supply member 9. Concentrate the flow of oxidant to the center in the lateral direction.
  • the dispersing guide piece 23 extends in the lateral direction in the oxidant supply member 9 at the lateral center of the focusing guide pieces 21 and 22 and receives the flow of the oxidant from above. , Disperse to both lateral ends.
  • the focusing guide pieces 21 and 22 are provided at substantially the same height as the upper end portion of the fuel cell stack 3 in relation to the fuel cell stack 3, and the dispersing guide piece 23 is related to the fuel cell stack 3. Then, the fuel cell stack 3 is provided at substantially the same height as the central portion.
  • the oxidant is added to the upper part of the fuel cell stack 3 and the central part in the lateral direction. It is possible to concentrate in a high temperature region. Moreover, in the concentration area
  • the concentration of the gas to the high temperature region of the fuel cell stack 3 and the improvement of the gas flow rate can be achieved by the focusing guide pieces 21 and 22.
  • heat exchange between the oxidant (low temperature) and the fuel cell stack (high temperature) is promoted, and a decrease in the cell stack temperature and an increase in the oxidant gas temperature in the region can be achieved.
  • region of the fuel cell stack 3 is heated effectively by disperse
  • the dispersion guide piece 23 corresponding to the highest temperature range of the fuel cell stack 3 (the central portion of the oxidant supply member 9), the lateral direction from the lateral central portion (high temperature region) of the fuel cell stack 3 is achieved. It is possible to disperse the oxidant to both ends (low temperature region) and to achieve heat transfer. Therefore, by making such a gas flow, heat transfer from the lateral center of the fuel cell stack 3 to both lateral ends of the fuel cell stack 3 by the oxidant is promoted, and the temperature distribution of the fuel cell stack 3 is optimized. Can do.
  • the guide pieces 21 to 23 extending in the lateral direction, a reduction in the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidation supplied to the fuel cell stack 3 is suppressed.
  • the temperature of the agent can be raised sufficiently to maintain and improve the power generation performance.
  • FIG. 14 is a side longitudinal sectional view showing a structural example 3-2 of the oxidant supply member.
  • the focusing guide pieces 21 and 22 are inclined obliquely downward toward the central portion in the horizontal direction.
  • the dispersion guide piece 23 has a concave bent shape (V-shape).
  • the oxidant can be guided in the focusing direction by the inclined focusing guide pieces 21 and 22, and can be focused more smoothly. Moreover, it becomes possible to guide without countering the flow of the oxidizing agent, and an increase in pressure loss can be suppressed. By these, the flow rate of an oxidizing agent can be raised more and heat exchange efficiency can be improved.
  • the dispersion guide piece 23 V-shaped, it becomes possible to more effectively form a gas flow to both ends in the lateral direction. That is, the back portions of the focusing guide pieces 21 and 22 tend to be dead spaces, which may cause a substantial reduction in the heat exchange area. In this case, the oxidant is not simply moved from the laterally central portion to the lateral end portions by the dispersing guide piece 23, but is jumped up to the space behind the focusing guide pieces 21 and 22 so that the space is dead. It becomes space and can suppress that a heat exchange area reduces.
  • the dispersion guide piece 23 has a concave bent shape (V-shape) upward, but it may be guided more smoothly as a concave curved shape upward. Further, in this structural example 3-2, the dispersion guide piece 23 having a concavely bent or curved shape is combined with the inclined focusing guide pieces 21 and 22. Thereby, it is possible to increase the temperature of the dead space that is particularly likely to occur when the inclined focusing guides 21 and 22 are used.
  • FIG. 15 is a side longitudinal sectional view showing a structural example 3-3 of the oxidant supply member.
  • the inclined focusing guide pieces 21 and 22 described in the structural example 1-2 (FIG. 4) and the pair of left and right described in the structural example 2-5 (FIG. 11) are recessed.
  • FIG. 16 is a side longitudinal sectional view showing Structural Example 3-4 of the oxidant supply member.
  • Structural Example 3-4 the inclined focusing guide pieces 21 and 22 described in Structural Example 1-2 (FIG. 4) and the pair of left and right described in Structural Example 2-6 (FIG. 12) are recessed.
  • the dispersion guide piece 23 having a curved shape is combined.
  • the dispersion guide piece 23 is changed to the inclined focusing guide pieces 21 and 22 by setting the flip-up angle of the dispersion guide piece 23.
  • the root portion By directing the root portion, it is possible to eliminate dead space (increase the heat exchange area).
  • the gap portion (dividing portion) 24 at the center portion of the dispersion guide piece 23, as described above, it is possible to suppress drift and reduce pressure loss.
  • FIG. 17 is a cross-sectional view of the main part of the oxidant supply member showing an example of formation of guide pieces.
  • the hollow plate-like (flat container shape) oxidant supply member 9 is formed by bonding edges (not shown) of the two plate members 91 and 92 between the two plate members 91 and 92.
  • the premise is to create a distribution space for oxidants.
  • the two plate members 91 and 92 are pressed from the outer surface to form inward convex portions 91a and 92a.
  • the convex portions 91a and 92a The tip portions are welded, and the guide pieces 21, 22 or 23 are formed by these convex portions 91a and 92a.
  • the convex parts 91a and 92a for guide pieces can be formed simultaneously with the press work of the board
  • the method of forming the guide pieces 21, 22 or 23 is not limited to this, and it goes without saying that a plate material to be the guide pieces may be fixed by welding.
  • FIG. 18 is a schematic front view of a fuel cell device showing another embodiment of the present invention.
  • the oxidant supply member 9 is divided into two parts and is disposed along both the left and right side portions so as to sandwich the fuel cell stack 3 that is an assembly of a plurality of fuel cells. ing. Even in such an arrangement, the same effect can be obtained by providing the focusing guide pieces 21 and 22 and / or the dispersing guide pieces 23 inside each oxidant supply member 9.
  • a hydrocarbon-based fuel is used as the hydrogen-containing fuel, and the fuel reformer 7 reforms the fuel into a hydrogen-rich reformed fuel (hydrogen-enriched fuel).
  • an organic hydride is used as the hydrogen-containing fuel, the fuel reformer 7 is replaced with a dehydrogenation reaction type, and a hydrogen-rich gas (hydrogen-enriched fuel) generated by the dehydrogenation reaction of the organic hydride is used as a fuel cell. It may be supplied to the anode of the stack 3. It is also possible to use pure hydrogen as the hydrogen-enriched fuel. In this case, the fuel reformer 7 can be omitted, and the hydrogen-enriched fuel can be directly supplied from the hydrogen tank or the like outside the housing 1 to the anode of the fuel cell stack 3.
  • the fuel cell stack 3 is divided into two cell groups, and the oxidant supply member 9 is arranged therebetween.
  • the fuel cell stack 3 is divided into three cell groups.
  • the oxidant supply member 9 may be disposed between them.
  • two oxidant supply members 9 are arranged on both side surfaces of the fuel cell stack 3, but in addition to this, the fuel cell stack 3 is divided into two cell groups.
  • the oxidant supply member 9 may be disposed between the two.
  • FIG. 19 shows a configuration example of a fuel cell system including the fuel cell device.
  • the fuel cell device 100 includes the fuel cell stack 3, the off-gas combustion unit 5, and the fuel reformer 7 as already described.
  • the fuel reformer 7 includes a water vaporization unit therein.
  • a water vaporization unit may be provided separately from the fuel reformer 7.
  • the raw material supply device 200 is a device that supplies fuel, an oxidant, and water for reforming to the fuel cell device 100.
  • the power conditioner (PCS) 300 has a function of taking out the generated power of the fuel cell device 100 (fuel cell stack 3), converting the DC power into AC power, and supplying it to an external load.
  • the fuel cell system includes the fuel cell device 100, the raw material supply device 200 that supplies the fuel and the oxidant to the fuel cell device 100, and the power conditioner 300 that extracts the generated power of the fuel cell device 100.
  • the fuel cell system may include, as a cogeneration system, a hot water supply unit that uses heat generated secondary by the fuel cell device.

Abstract

The purpose is to provide an oxidizing agent feeding member in which the temperature distribution in a fuel cell stack can be made more uniform. The oxidizing agent feeding member (9) is formed as a hollow plate, and is disposed along the side surface part of the fuel cell stack in order to feed an oxidizing agent to the fuel cell stack. The oxidizing agent feeding member (9) has an oxidizing agent introduction port (10) on the upper end side and an oxidizing agent jetting port (11) on the lower end side. A pair of left and right convergence guide pieces (21, 22) which extend laterally and which concentrate the flow of the oxidizing agent to the center part with respect to the lateral direction are provided at both lateral end parts of the upper part in the oxidizing agent feeding member (9). A dispersion guide piece (23) which extends laterally, receives the flow of the oxidizing agent from above, and causes the flow of the oxidizing agent to disperse to both lateral end parts is provided at the center part with respect to the lateral direction at a position, in the oxidizing agent feeding member (9), lower than the convergence guide pieces (21, 22).

Description

燃料電池装置及び燃料電池システムFuel cell device and fuel cell system
 本発明は、燃料電池装置に関し、特に固体酸化物形の燃料電池装置に関する。更には、燃料電池装置を備える燃料電池システムに関する。 The present invention relates to a fuel cell device, and more particularly to a solid oxide fuel cell device. Furthermore, the present invention relates to a fuel cell system including a fuel cell device.
 燃料電池装置は、燃料電池システムの中核をなすもので、水素富化燃料(純水素を含む)と酸化剤(一般に空気)とを反応させて発電を行う複数の燃料電池セルの集合体である燃料電池スタックと、燃料電池スタックの上端部から排出されるオフガスを燃焼させて燃料電池スタックを高温状態に維持するオフガス燃焼部と、を含んで構成される。 A fuel cell device is the core of a fuel cell system, and is an assembly of a plurality of fuel cells that generate electricity by reacting a hydrogen-enriched fuel (including pure hydrogen) and an oxidant (generally air). The fuel cell stack includes an off-gas combustion unit that burns off gas discharged from the upper end of the fuel cell stack and maintains the fuel cell stack at a high temperature.
 一方、燃料電池スタックに酸化剤を供給するための酸化剤供給部材は、中空板状(扁平容器形状)で、燃料電池スタック若しくはその一部を構成するセルグループの横長の側面部に沿って配置され、その上端部側に酸化剤導入口を有し、下端部側に酸化剤噴出口を有している。特許文献1には、このような燃料電池装置が開示されている。 On the other hand, the oxidant supply member for supplying the oxidant to the fuel cell stack is a hollow plate shape (flat container shape) and is disposed along the lateral side surface of the fuel cell stack or a cell group constituting a part thereof. The upper end portion has an oxidant inlet and the lower end portion has an oxidant jet. Patent Document 1 discloses such a fuel cell device.
 また、特許文献2には、燃料電池スタックの温度分布の均一化のための、酸化剤供給部材の構造が開示されている。本構造では、酸化剤供給部材内の横方向両端部(下部を除く)に流通阻止部材を充填することにより、横方向中央部を上から下へ向かう第1流路と、この第1流路の下端側に接続されて横方向全域に広がる第2流路とを形成している。 Patent Document 2 discloses a structure of an oxidant supply member for making the temperature distribution of the fuel cell stack uniform. In this structure, the flow path blocking member is filled in the both ends (except for the lower part) in the lateral direction in the oxidant supply member, so that the first flow path goes from the top to the bottom in the lateral direction, and the first flow path. And a second flow path that extends across the entire lateral direction.
日本国公開特許公報:特開2004-288374号Japanese Patent Publication: JP-A-2004-288374 日本国公開特許公報:特開2010-146783号Japanese Patent Publication: JP 2010-146783 A
 ところで、特許文献2のように、燃料電池スタックの温度分布の均一化のために、前記第1流路及び第2流路を形成した場合、酸化剤供給部材内での酸化剤の流れを燃料電池スタックの高温領域に集中させて、高温領域を冷却することはできるものの、酸化剤供給部材内の流通阻止部材充填部では熱交換がなされにくいことから、熱交換面積が減少し、燃料電池スタックへ供給される酸化剤の温度が全体的に低下し、発電効率の低下を招くと考えられる。
 また、従来、空気導入部材の両端面を閉塞し、ガス流速を速め、その部分での熱交換を促進させ、温度分布を均一化することも考えられるものの、全体的な圧力損失が増大するという問題が生じる。
By the way, as in Patent Document 2, when the first flow path and the second flow path are formed in order to make the temperature distribution of the fuel cell stack uniform, the flow of the oxidant in the oxidant supply member is reduced to the fuel. Although the high temperature region can be cooled by concentrating on the high temperature region of the battery stack, the heat exchange area is reduced because the heat exchange is difficult to be performed in the flow blocking member filling portion in the oxidant supply member, and the fuel cell stack is reduced. It is considered that the temperature of the oxidant supplied to the battery decreases as a whole, leading to a decrease in power generation efficiency.
Conventionally, both end faces of the air introduction member are closed, the gas flow rate is increased, heat exchange at that part is promoted, and the temperature distribution is made uniform, but the overall pressure loss increases. Problems arise.
 本発明は、上述した事情に鑑み、酸化剤供給部材の内部構造の改良により、燃料電池スタックとの熱交換面積を減少させることなく、燃料電池スタックの温度分布の均一化を図り、発電性能の向上を図ることを目的とする。また、本発明においては、圧力損失を増加させることなく、総合的に発電効率の向上を図ることを目的とする。 In view of the above-described circumstances, the present invention improves the internal structure of the oxidant supply member, achieves a uniform temperature distribution of the fuel cell stack without reducing the heat exchange area with the fuel cell stack, and improves power generation performance. The purpose is to improve. Another object of the present invention is to improve the power generation efficiency comprehensively without increasing the pressure loss.
 上記の課題を解決するために、本発明は、酸化剤供給部材内の上部の横方向両端部に、横方向に延在し、酸化剤供給部材内の上部での酸化剤の流れを横方向中央部へ集中させる左右一対の集束用ガイド片と、酸化剤供給部材内の上下方向及び横方向の中央部に、横方向に延在し、上方からの酸化剤の流れを受け止めて、横方向両端部へ分散させる分散用ガイド片と、のうち、少なくとも一方を設ける構成とする。 In order to solve the above problems, the present invention extends laterally at both lateral ends of the upper portion in the oxidant supply member and laterally flows the oxidant in the upper portion in the oxidant supply member. A pair of right and left focusing guide pieces to be concentrated on the central part, and the laterally extending in the vertical and horizontal central parts in the oxidant supply member, receiving the flow of the oxidant from above and laterally It is set as the structure which provides at least one among the dispersion | distribution guide pieces disperse | distributed to both ends.
 本発明によれば、集束用ガイド片により、酸化剤供給部材内の上部での酸化剤の流れを横方向中央部へ集中させることで、燃料電池スタックの高温領域を効果的に冷却することができる。及び/又は、分散用ガイド片により、酸化剤供給部材内の横方向中央部を流れて高温となった酸化剤を横方向両端部へ分散させることで、燃料電池スタックの低温領域を効果的に加熱することができる。よって、燃料電池スタックの温度分布の均一化を図り、発電性能の向上を図ることができる。 According to the present invention, it is possible to effectively cool the high temperature region of the fuel cell stack by concentrating the flow of the oxidant at the upper portion in the oxidant supply member to the central portion in the lateral direction by the focusing guide piece. it can. And / or by dispersing the oxidant that has flowed through the central portion in the lateral direction in the oxidant supply member and is heated to both ends in the lateral direction by the dispersing guide piece, the low temperature region of the fuel cell stack is effectively reduced. Can be heated. Therefore, the temperature distribution of the fuel cell stack can be made uniform, and the power generation performance can be improved.
 また、横方向に延在するガイド片を用いることで、燃料電池スタックと酸化剤供給部材との間の熱交換面積の低下を抑制し、燃料電池スタックへ供給される酸化剤の温度を十分に上昇させ、発電効率の低下を抑制することができ、更に、圧力損失を増加させることなく、総合的に発電効率の向上を図ることができる。 In addition, by using the guide piece extending in the lateral direction, the reduction of the heat exchange area between the fuel cell stack and the oxidant supply member is suppressed, and the temperature of the oxidant supplied to the fuel cell stack is sufficiently increased. It is possible to increase the power generation efficiency and to suppress a decrease in power generation efficiency, and to improve the power generation efficiency comprehensively without increasing the pressure loss.
本発明の一実施形態を示す燃料電池装置の概略正面図1 is a schematic front view of a fuel cell device showing an embodiment of the present invention. 同上の燃料電池装置の概略側面図Schematic side view of the above fuel cell device 酸化剤供給部材の構造例1-1を示す側面断面図Side sectional view showing Structural Example 1-1 of oxidizing agent supply member 酸化剤供給部材の構造例1-2を示す側面断面図Side surface sectional view showing Structural Example 1-2 of the oxidizing agent supply member 酸化剤供給部材の構造例1-3を示す側面断面図Side sectional view showing Structural Example 1-3 of oxidizing agent supply member 酸化剤供給部材の構造例1-4を示す側面断面図Side sectional view showing Structural Example 1-4 of oxidizing agent supply member 酸化剤供給部材の構造例2-1を示す側面断面図Side surface sectional view showing the structural example 2-1 of the oxidizing agent supply member 酸化剤供給部材の構造例2-2を示す側面断面図Side surface sectional view showing Structural Example 2-2 of the oxidizing agent supply member 酸化剤供給部材の構造例2-3を示す側面断面図Side surface sectional view showing Structural Example 2-3 of the oxidizing agent supply member 酸化剤供給部材の構造例2-4を示す側面断面図Side sectional view showing Structural Example 2-4 of oxidizing agent supply member 酸化剤供給部材の構造例2-5を示す側面断面図Side sectional view showing Structural Example 2-5 of oxidizing agent supply member 酸化剤供給部材の構造例2-6を示す側面断面図Side sectional view showing Structural Example 2-6 of oxidizing agent supply member 酸化剤供給部材の構造例3-1を示す側面断面図Side sectional view showing Structural Example 3-1 of oxidizing agent supply member 酸化剤供給部材の構造例3-2を示す側面断面図Side surface sectional view showing Structural Example 3-2 of the oxidizing agent supply member 酸化剤供給部材の構造例3-3を示す側面断面図Side surface sectional view showing Structural Example 3-3 of the oxidizing agent supply member 酸化剤供給部材の構造例3-4を示す側面断面図Side sectional view showing structural example 3-4 of the oxidant supply member ガイド片の形成例を示す酸化剤供給部材の要部断面図Sectional drawing of the principal part of the oxidizing agent supply member which shows the example of formation of a guide piece 本発明の他の実施形態を示す燃料電池装置の概略正面図Schematic front view of a fuel cell device showing another embodiment of the present invention 燃料電池システムとしての構成例を示す概略図Schematic showing a configuration example as a fuel cell system
 以下、本発明の実施の形態について、詳細に説明する。
 図1は本発明の一実施形態を示す燃料電池装置の概略正面図、図2は同上の燃料電池装置の概略側面図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic front view of a fuel cell device showing an embodiment of the present invention, and FIG. 2 is a schematic side view of the same fuel cell device.
 本実施形態の燃料電池装置は、固体酸化物形燃料電池(SOFC)方式であり、筐体1内に、複数の燃料電池セルの集合体である燃料電池スタック3、オフガス燃焼部5、燃料改質器7、及び、酸化剤供給部材9を備える。 The fuel cell device of the present embodiment is a solid oxide fuel cell (SOFC) system, and a housing 1 includes a fuel cell stack 3 that is an assembly of a plurality of fuel cells, an off-gas combustion unit 5, a fuel reformer. A quality device 7 and an oxidant supply member 9 are provided.
 筐体1は、耐熱性金属により形成されており、その内部に空隙を隔てて上部開放の燃焼室区画部材2を備える。この燃焼室区画部材2内に燃料電池スタック3、オフガス燃焼部5、燃料改質器7、及び、酸化剤供給部材9が配置される。 The casing 1 is made of a heat-resistant metal, and includes a combustion chamber partition member 2 that is open at the top with a gap therebetween. A fuel cell stack 3, an off-gas combustion unit 5, a fuel reformer 7, and an oxidant supply member 9 are disposed in the combustion chamber partition member 2.
 燃料電池スタック3は、複数の固体酸化物形燃料電池セルを集合し直列(及び並列)に接続してなる集合体であり、燃焼室区画部材2の底部に配置される台座4上に立設されている。 The fuel cell stack 3 is an assembly in which a plurality of solid oxide fuel cells are assembled and connected in series (and in parallel), and is erected on a pedestal 4 disposed at the bottom of the combustion chamber partition member 2. Has been.
 各燃料電池セルは、上下方向に延びるセル支持体の表面に、アノード(燃料極)、固体酸化物からなる電解質、カソード(酸化剤極)を積層してなる。セル支持体は、その延在方向に沿って内部に燃料通路が形成されると共に、多孔質である。よって、アノードにはセル支持体内部から水素富化燃料が供給される。カソードには外部から酸化剤(一般に空気)が供給される。 Each fuel cell is formed by laminating an anode (fuel electrode), an electrolyte made of a solid oxide, and a cathode (oxidant electrode) on the surface of a cell support extending in the vertical direction. The cell support is porous while a fuel passage is formed inside along the extending direction. Accordingly, the hydrogen-rich fuel is supplied to the anode from the inside of the cell support. An oxidizing agent (generally air) is supplied to the cathode from the outside.
 電解質は、高温下で酸化物イオンを伝導する。アノードは、酸化物イオンと燃料中の水素とを反応させて、電子及び水を発生させる。カソードは、酸化剤中の酸素と電子とを反応させて、酸化物イオンを発生させる。 Electrolyte conducts oxide ions at high temperature. The anode reacts oxide ions with hydrogen in the fuel to generate electrons and water. The cathode reacts oxygen and electrons in the oxidant to generate oxide ions.
 従って、各燃料電池セルのカソードにて、下記(1)式の電極反応が生起され、アノードにて、下記(2)式の電極反応が生起されて、発電がなされる。
 カソード: 1/2O+2e→O2-(電解質)  ・・・(1)
 アノード: O2-(電解質)+H→HO+2e-  ・・・(2)
Therefore, the electrode reaction of the following formula (1) is caused at the cathode of each fuel cell, and the electrode reaction of the following formula (2) is caused at the anode to generate electric power.
Cathode: 1 / 2O 2 + 2e → O 2− (electrolyte) (1)
Anode: O 2− (electrolyte) + H 2 → H 2 O + 2e (2)
 燃料電池装置には上記のような燃料電池セルが多数備えられ、これらは電気的に直列(及び並列)に接続されて、燃料電池セルの集合体である燃料電池スタック3を構成している。本実施形態では、燃料電池スタック3を構成する多数の燃料電池セルは、2つのグループ、すなわち第1セルグループ3Aと第2セルグループ3Bとに分けられている。 The fuel cell device includes a large number of fuel cells as described above, and these are electrically connected in series (and in parallel) to form a fuel cell stack 3 that is an assembly of fuel cells. In the present embodiment, a large number of fuel cells constituting the fuel cell stack 3 are divided into two groups, that is, a first cell group 3A and a second cell group 3B.
 ここで、燃料電池スタック3への水素富化燃料の供給は、台座4側(燃料電池スタック3の下端部側)からなされ、台座4は燃料分配機能を有している。水素富化燃料としては、燃料改質器7から改質燃料が供給される。 Here, the supply of the hydrogen-enriched fuel to the fuel cell stack 3 is performed from the pedestal 4 side (the lower end side of the fuel cell stack 3), and the pedestal 4 has a fuel distribution function. As the hydrogen enriched fuel, the reformed fuel is supplied from the fuel reformer 7.
 燃料電池スタック3への酸化剤(一般に空気)の供給は、後に詳述する酸化剤供給部材9を介してなされる。本実施形態では、酸化剤供給部材9は、燃料電池スタック3内、すなわち第1及び第2セルグループ3A、3B間に臨んでいる。言い換えれば、燃料電池スタック3は、酸化剤供給部材9によって、第1セルグループ3Aと第2セルグループ3Bとに分割されている。 The oxidant (generally air) is supplied to the fuel cell stack 3 through an oxidant supply member 9 described in detail later. In the present embodiment, the oxidant supply member 9 faces the fuel cell stack 3, that is, between the first and second cell groups 3A and 3B. In other words, the fuel cell stack 3 is divided into the first cell group 3A and the second cell group 3B by the oxidant supply member 9.
 オフガス燃焼部5は、燃料電池スタック3での余剰の水素富化燃料(発電未反応ガスとして排出されるオフガス)を余剰の酸化剤の存在下で燃焼させ、燃料電池スタック3及び燃料改質器7を高温状態に維持する。ここで、燃料電池スタック3の上端部が燃料電池スタック3からのオフガスの排出部となり、このオフガスは着火デバイス(図示せず)により着火されて燃焼する。従って、燃料電池スタック3の上端部側がオフガス燃焼部5となる。オフガス燃焼部5での燃焼熱により燃料電池スタック3は発電可能な高温状態に維持される。燃焼によって生成された高温の排気ガスは燃焼室区画部材2上部の開放部から筐体1と燃焼室区画部材2との間の空隙(排気通路)を経て排気出口6より筐体1外に排出される。その廃熱は適宜熱利用される。 The off-gas combustion unit 5 burns surplus hydrogen-enriched fuel in the fuel cell stack 3 (off-gas discharged as power generation unreacted gas) in the presence of surplus oxidant, and the fuel cell stack 3 and the fuel reformer 7 is maintained at a high temperature. Here, the upper end portion of the fuel cell stack 3 serves as a discharge portion for off-gas from the fuel cell stack 3, and this off-gas is ignited by an ignition device (not shown) and burns. Therefore, the upper end side of the fuel cell stack 3 is the off-gas combustion unit 5. The fuel cell stack 3 is maintained in a high-temperature state capable of generating power by the combustion heat in the off-gas combustion unit 5. High-temperature exhaust gas generated by combustion is discharged out of the housing 1 from the exhaust outlet 6 through an opening (exhaust passage) between the housing 1 and the combustion chamber compartment member 2 from an open portion at the top of the combustion chamber compartment member 2. Is done. The waste heat is used as appropriate.
 燃料改質器7は、改質触媒を用いた改質反応により、水素含有燃料を改質して、水素富化燃料(改質ガス)を生成する。このため、燃料改質器7には筐体1外の燃料ポンプ(図示せず)により燃料が供給される。 The fuel reformer 7 reforms the hydrogen-containing fuel by a reforming reaction using a reforming catalyst to generate a hydrogen-enriched fuel (reformed gas). For this reason, fuel is supplied to the fuel reformer 7 by a fuel pump (not shown) outside the housing 1.
 水素含有燃料(原燃料)としては、一般に炭化水素系燃料が用いられる。ここでいう炭化水素系燃料とは、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物をいい、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。 As the hydrogen-containing fuel (raw fuel), a hydrocarbon-based fuel is generally used. The hydrocarbon fuel here refers to a compound containing carbon and hydrogen in a molecule (may contain other elements such as oxygen) or a mixture thereof, for example, hydrocarbons, alcohols, Examples include ethers and biofuels. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
 燃料改質器7での改質方式は、特に限定されず、例えば、水蒸気改質(SR)、部分酸化改質(POX)、自己熱改質(ATR)、その他の改質方式を採用できる。水蒸気改質を用いる場合は、燃料改質器7内(又はこれとは別)に水気化部を設け、筐体1外から供給される水を気化して、水蒸気を生成する。 The reforming method in the fuel reformer 7 is not particularly limited. For example, steam reforming (SR), partial oxidation reforming (POX), autothermal reforming (ATR), and other reforming methods can be adopted. . When steam reforming is used, a water vaporization unit is provided in (or separate from) the fuel reformer 7, and water supplied from outside the housing 1 is vaporized to generate steam.
 本実施形態の燃料改質器7は、オフガス燃焼部5での燃焼熱によって加熱されるように、燃焼室区画部材2内で燃料電池スタック3の上方に配置される。
 また、本実施形態の燃料改質器7は、酸化剤供給部材9のレイアウトのため、間隔をあけて平行に配置される2つの筒形燃料改質器により構成される。この場合、2つの筒形燃料改質器は燃料が並列に流れるように接続してもよいし、折り返して直列に流れるように接続してもよい。
 燃料改質器7の出口側からは、生成された改質燃料の供給管(図示せず)が導出され、燃料電池スタック3の台座(燃料分配部)4に接続されている。
The fuel reformer 7 of the present embodiment is disposed above the fuel cell stack 3 in the combustion chamber partition member 2 so as to be heated by the combustion heat in the off-gas combustion unit 5.
Further, the fuel reformer 7 of the present embodiment is constituted by two cylindrical fuel reformers that are arranged in parallel with a space therebetween because of the layout of the oxidant supply member 9. In this case, the two cylindrical fuel reformers may be connected so that the fuel flows in parallel, or may be connected so that the fuel flows back in series.
A supply pipe (not shown) for the generated reformed fuel is led out from the outlet side of the fuel reformer 7 and connected to a base (fuel distribution unit) 4 of the fuel cell stack 3.
 酸化剤供給部材9は、燃料電池スタック3に酸化剤を供給するため、燃料電池スタック3を構成する第1及び第2セルグループ3A、3B間に、これらの側面部に沿って配置される扁平容器(中空板状体)を主体として構成される。この扁平容器(中空板状体)は、上面が開口し、両側面が扁平面をなして各セルグループ3A、3Bの側面部に相対する矩形の容器である。 The oxidant supply member 9 is a flat member disposed along the side surfaces between the first and second cell groups 3A and 3B constituting the fuel cell stack 3 in order to supply the oxidant to the fuel cell stack 3. A container (hollow plate-like body) is mainly used. The flat container (hollow plate-like body) is a rectangular container having an upper surface opened and both side surfaces forming a flat surface and facing the side surface portions of the cell groups 3A and 3B.
 酸化剤供給部材9は、筐体1の上壁面に予め形成されたスリットより筐体1内に挿入され、上端部側の開口部は筐体1外の酸化剤の供給源に接続され、酸化剤導入口10をなしている。 The oxidant supply member 9 is inserted into the case 1 through a slit formed in the upper wall surface of the case 1, and the opening on the upper end side is connected to an oxidant supply source outside the case 1 to oxidize the oxidant supply member 9. An agent inlet 10 is formed.
 酸化剤供給部材9の下端部側には、酸化剤供給部材9を構成する扁平容器の底部近傍の両側面に、複数の酸化剤噴出口11が形成され、両側面の酸化剤噴出口11より各セルグループ3A、3Bに酸化剤を供給するように構成されている。 On the lower end side of the oxidant supply member 9, a plurality of oxidant jets 11 are formed on both side surfaces in the vicinity of the bottom of the flat container constituting the oxidant supply member 9, and from the oxidant jets 11 on both sides. An oxidant is supplied to each of the cell groups 3A and 3B.
 従って、酸化剤供給部材9は、扁平容器の上端部側に酸化剤導入口10を有し、下端部側に酸化剤噴出口11を有する。酸化剤は、酸化剤供給部材9の酸化剤導入口10より流入して、扁平容器内を上から下へ流れ、酸化剤噴出口11から噴出して、各セルグループ3A、3Bのカソードに供給される。尚、酸化剤噴出口11としては、図示の実施形態のように円形の孔を複数並べて設ける他、横長のスリットを1~複数設けるようにするなどしてもよい。 Therefore, the oxidant supply member 9 has the oxidant introduction port 10 on the upper end side of the flat container and the oxidant jet 11 on the lower end side. The oxidant flows from the oxidant introduction port 10 of the oxidant supply member 9, flows from the top to the bottom in the flat container, and is ejected from the oxidant ejection port 11 to be supplied to the cathodes of the respective cell groups 3A and 3B. Is done. As the oxidant jet port 11, a plurality of circular holes may be provided side by side as in the illustrated embodiment, or one or more horizontally long slits may be provided.
 上記のような燃料電池装置では、燃料電池スタック3の中心部に電流が集中するため、及び、燃料電池スタック3の上端部側でオフガスを燃焼させるため、燃料電池スタック3の中心部側及び上端部側が高温となる。従って、燃料電池スタック3の高温領域を効果的に冷却することが必要であるという課題がある。 In the fuel cell device as described above, the current concentrates in the central portion of the fuel cell stack 3 and the off-gas is burned on the upper end portion side of the fuel cell stack 3, so The part side becomes hot. Therefore, there is a problem that it is necessary to effectively cool the high temperature region of the fuel cell stack 3.
 上記の課題に鑑みて、燃料電池スタック3の温度分布を均一化するための、酸化剤供給部材9の構造例1(1-1~1-4)について、以下に説明する。 In view of the above problems, Structural Example 1 (1-1 to 1-4) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below.
 図3は酸化剤供給部材の構造例1-1を示す側面縦断面図である。
 本構造例1-1では、酸化剤供給部材9内の上部の横方向両端部に、左右一対の集束用ガイド片21、22を設ける。
FIG. 3 is a side longitudinal sectional view showing a structural example 1-1 of the oxidant supply member.
In this structural example 1-1, a pair of right and left focusing guide pieces 21 and 22 are provided at both ends in the upper horizontal direction in the oxidant supply member 9.
 集束用ガイド片21、22は、酸化剤供給部材9内の横方向両端部にて、端壁から張り出す形で、横方向に延在し、酸化剤供給部材9内の上部での酸化剤の流れを横方向中央部へ集中させる。 The focusing guide pieces 21 and 22 extend in the lateral direction so as to protrude from the end walls at both lateral ends in the oxidant supply member 9, and the oxidant at the upper part in the oxidant supply member 9. Concentrate the flow in the horizontal center.
 すなわち、酸化剤供給部材9内の上部における横方向両端部を上から下へ流れる酸化剤は、集束用ガイド片21、22に衝突することで、内側に向きを変えられ、横方向中央部を流れるようになる。
 尚、集束用ガイド片21、22は、燃料電池スタック3との関係では、燃料電池スタック3の上端部とほぼ同じ高さ位置に設ける。
That is, the oxidant that flows from the top to the bottom in the lateral direction at the upper part in the oxidant supply member 9 is turned inward by colliding with the focusing guide pieces 21 and 22, and the central part in the lateral direction is changed. It begins to flow.
The focusing guide pieces 21 and 22 are provided at substantially the same height as the upper end portion of the fuel cell stack 3 in relation to the fuel cell stack 3.
 本構造例1-1によれば、酸化剤供給部材9内の上部での酸化剤の流れを横方向中央部へ集中させることで、酸化剤を燃料電池スタック3の上部及び横方向中央部の高温領域に集中させることが可能となる。また、酸化剤の集中域においては、酸化剤の流速が増加する。これらにより、燃料電池スタック3の高温領域を効果的に冷却して、温度低下を図り、熱劣化を抑制することができる。 According to this structural example 1-1, by concentrating the flow of the oxidant at the upper part in the oxidant supply member 9 to the central part in the lateral direction, the oxidant is disposed at the upper part of the fuel cell stack 3 and the central part in the lateral direction. It is possible to concentrate in a high temperature region. Moreover, in the concentration area | region of an oxidizing agent, the flow rate of an oxidizing agent increases. By these, the high temperature area | region of the fuel cell stack 3 can be cooled effectively, temperature reduction can be aimed at and thermal degradation can be suppressed.
 また、横方向に延在するガイド片21、22を用いることで、燃料電池スタック3と酸化剤供給部材9との間の熱交換面積の低下を抑制し、燃料電池スタック3へ供給される酸化剤の温度を十分に上昇させ、発電性能の維持・向上を図ることができる。 Further, by using the guide pieces 21, 22 extending in the lateral direction, the reduction of the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidation supplied to the fuel cell stack 3. The temperature of the agent can be raised sufficiently to maintain and improve the power generation performance.
 図4は酸化剤供給部材の構造例1-2を示す側面縦断面図である。
 本構造例1-2では、集束用ガイド片21、22を横方向中央部に向かって斜め下向きに傾斜させている。
FIG. 4 is a side longitudinal sectional view showing a structural example 1-2 of the oxidant supply member.
In this structural example 1-2, the focusing guide pieces 21 and 22 are inclined obliquely downward toward the central portion in the horizontal direction.
 本構造例1-2によれば、酸化剤を集束方向に案内して、よりスムーズに集束させることができる。また、酸化剤の流れに逆らうことなく案内することが可能となり、圧力損失の増加を抑制することができる。これらにより、酸化剤の流速をより高めて、熱交換効率を向上させることができる。 According to the present structural example 1-2, the oxidant can be guided in the focusing direction and can be focused more smoothly. Moreover, it becomes possible to guide without countering the flow of the oxidizing agent, and an increase in pressure loss can be suppressed. By these, the flow rate of an oxidizing agent can be raised more and heat exchange efficiency can be improved.
 図5は酸化剤供給部材の構造例1-3を示す側面縦断面図である。
 本構造例1-3では、集束用ガイド片21、22の傾斜部(図4)に上側に凸の湾曲を持たせている。
FIG. 5 is a side longitudinal sectional view showing a structural example 1-3 of the oxidant supply member.
In this structural example 1-3, the inclined portions (FIG. 4) of the focusing guide pieces 21 and 22 have a convex curve on the upper side.
 本構造例1-3によれば、酸化剤の流れを内向きに変えた後、横方向中央部にて下向きに案内するときに、酸化剤をスムーズに案内することができ、酸化剤の流速を高めることができる。 According to the present structural example 1-3, when the flow of the oxidant is changed inward and then guided downward in the central portion in the lateral direction, the oxidant can be smoothly guided, and the flow rate of the oxidant is increased. Can be increased.
 図6は酸化剤供給部材の構造例1-4を示す側面縦断面図である。
 本構造例1-4では、集束用ガイド片21、22の傾斜部(図4)に上側に凹の湾曲を持たせている。
FIG. 6 is a side longitudinal sectional view showing Structural Example 1-4 of the oxidant supply member.
In this structural example 1-4, the inclined portions (FIG. 4) of the focusing guide pieces 21 and 22 have a concave curvature on the upper side.
 本構造例1-4によれば、酸化剤の流れを内向きに変えるときに、酸化剤をスムーズに案内でき、酸化剤の流速を高めることができる。その一方、高温領域にて左右両方からの酸化剤を勢いよく衝突させて、高温領域の冷却を図ることができる。 According to this structural example 1-4, when the flow of the oxidant is changed inward, the oxidant can be guided smoothly and the flow rate of the oxidant can be increased. On the other hand, it is possible to cool the high temperature region by vigorously colliding oxidants from both the left and right sides in the high temperature region.
 また、上記のような燃料電池装置では、燃料電池スタック3の横方向両端部及び下部から放熱を生じるため、及び、燃料電池スタック3の下端部側から燃料及び酸化剤を供給するため、燃料電池スタック3の横方向両端部及び下部が低温となる。従って、燃料電池スタック3の低温領域を効果的に加熱することが必要であるという課題がある。 Further, in the fuel cell device as described above, heat is generated from both lateral ends and the lower part of the fuel cell stack 3, and fuel and oxidant are supplied from the lower end side of the fuel cell stack 3. The lateral end portions and the lower portion of the stack 3 become low temperature. Therefore, there is a problem that it is necessary to effectively heat the low temperature region of the fuel cell stack 3.
 上記の課題に鑑みて、燃料電池スタック3の温度分布を均一化するための、酸化剤供給部材9の構造例2(2-1~2-6)について、以下に説明する。 In view of the above problems, Structural Example 2 (2-1 to 2-6) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below.
 図7は酸化剤供給部材の構造例2-1を示す側面縦断面図である。
 本構造例2-1では、酸化剤供給部材9内の上下方向及び横方向の中央部に、分散用ガイド片23を設ける。ここでいう上下方向及び横方向の中央部とは、少なくとも、上下方向の両端部と横方向の両端部とを除くという意である。
FIG. 7 is a side longitudinal sectional view showing a structural example 2-1 of the oxidant supply member.
In the present structural example 2-1, the dispersing guide piece 23 is provided at the center in the vertical and horizontal directions in the oxidant supply member 9. The central part in the vertical direction and the horizontal direction here means that at least the both ends in the vertical direction and the both ends in the horizontal direction are excluded.
 分散用ガイド片23は、酸化剤供給部材9内の上下方向及び横方向の中央部にて、横方向に延在し、上方からの酸化剤の流れを受け止めて、横方向両端部へ分散させる。
 尚、分散用ガイド片23は、燃料電池スタック3との関係では、燃料電池スタック3の中央部とほぼ同じ高さ位置に設ける。
The dispersing guide piece 23 extends in the horizontal direction at the center in the vertical and horizontal directions in the oxidant supply member 9, receives the flow of the oxidant from above, and disperses it to both ends in the horizontal direction. .
Note that the dispersion guide piece 23 is provided at the same height as the central portion of the fuel cell stack 3 in relation to the fuel cell stack 3.
 本構造例2-1によれば、酸化剤供給部材9内の横方向中央部を流れて高温となった酸化剤を横方向両端部へ分散させることで、燃料電池スタック3の低温領域を効果的に加熱して、温度上昇を図り、発電効率の低下を抑制することができる。 According to this structural example 2-1, the low temperature region of the fuel cell stack 3 can be effectively obtained by dispersing the oxidant that has flowed through the central portion in the lateral direction in the oxidant supply member 9 and heated to both ends in the lateral direction. Heating can be performed to increase the temperature and to suppress a decrease in power generation efficiency.
 すなわち、燃料電池スタック3の最高温域(酸化剤供給部材9の中央部)に対応させて分散用ガイド片23を設けることにより、燃料電池スタック3の横方向中央部(高温域)から横方向両端部(低温域)へ酸化剤を分散させ、熱移動を図ることが可能となる。従って、このようなガス流れを作ることにより、酸化剤による燃料電池スタック3の横方向中央部から横方向両端部への熱移動を促進させ、燃料電池スタック3の温度分布の適正化を図ることができる。すなわち、過度に高温になっている部分のセル温度を低減し、下部や端部など、低温部のセル温度を上昇させて、全体の温度差を低減することができる。 That is, by providing the dispersion guide piece 23 corresponding to the highest temperature range of the fuel cell stack 3 (the central portion of the oxidant supply member 9), the lateral direction from the lateral central portion (high temperature region) of the fuel cell stack 3 is achieved. It is possible to disperse the oxidant to both ends (low temperature region) and to achieve heat transfer. Therefore, by making such a gas flow, heat transfer from the lateral center of the fuel cell stack 3 to both lateral ends of the fuel cell stack 3 by the oxidant is promoted, and the temperature distribution of the fuel cell stack 3 is optimized. Can do. That is, it is possible to reduce the overall temperature difference by reducing the cell temperature of the part that is excessively high, and increasing the cell temperature of the low temperature part such as the lower part or the end part.
 また、横方向に延在するガイド片23を用いることで、燃料電池スタック3と酸化剤供給部材9との間の熱交換面積の低下を抑制し、燃料電池スタック3へ供給される酸化剤の温度を十分に上昇させ、発電性能の維持・向上を図ることができる。 In addition, by using the guide piece 23 extending in the lateral direction, a reduction in the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidant supplied to the fuel cell stack 3 is reduced. The temperature can be raised sufficiently to maintain and improve the power generation performance.
 図8は酸化剤供給部材の構造例2-2を示す側面縦断面図である。
 本構造例2-2では、分散用ガイド片23を上に凹の屈曲形状(V字形状)としている。
FIG. 8 is a side longitudinal sectional view showing a structural example 2-2 of the oxidant supply member.
In this structural example 2-2, the dispersion guide piece 23 has a concave bent shape (V shape).
 本構造例2-2によれば、V字形状とすることにより、より効果的に横方向両端部へのガスの流れを形成することが可能となる。すなわち、酸化剤を単に横方向中央部から横方向両端部へ移動させるだけでなく、斜め上方へ跳ね上げることにより、移動距離を長くとって、熱交換効率を向上させることができる。
 尚、本構造例2-2では、上に凹の屈曲形状(V字形状)としたが、上に凹の湾曲形状として、より滑らかに案内するようにしてもよい。
According to this structural example 2-2, the gas flow to both ends in the lateral direction can be more effectively formed by using the V shape. That is, the oxidant is not only moved from the laterally central portion to the lateral end portions, but can be moved obliquely upward to increase the movement distance and improve the heat exchange efficiency.
In this structural example 2-2, an upwardly concave bent shape (V-shape) is used, but an upwardly concave curved shape may be used to guide more smoothly.
 図9は酸化剤供給部材の構造例2-3を示す側面縦断面図である。
 本構造例2-3では、構造例2-1(図7)の分散用ガイド片23の横方向中央部に、上方からの酸化剤の一部を下方へ通過させる隙間部(分断部)24を設けている。
FIG. 9 is a side longitudinal sectional view showing a structural example 2-3 of the oxidant supply member.
In this structural example 2-3, a gap portion (dividing portion) 24 through which a part of the oxidant from above passes downward is provided in the central portion in the horizontal direction of the dispersing guide piece 23 in the structural example 2-1 (FIG. 7). Is provided.
 本構造例2-3によれば、次のような効果が得られる。燃料電池スタック3の横方向(セル配列方向)に配置された複数の酸化剤噴出口11からの供給比を均一化すること(偏流抑制)ができ、燃料電池スタック3の発電効率向上につながる。しかも、空気分配の均一化により、供給空気量に対してロバスト性が向上する。また、隙間部24を設けることで、圧力損失の増加を抑制できる。圧力損失が増加すると、補機の消費電力が増加し、同じDC発電効率の燃料電池装置を使用しても、燃料電池システム全体としてのAC発電効率が低下するが、圧力損失の増加抑制により、燃料電池システムとしてのAC発電効率の向上につながる。 According to this structural example 2-3, the following effects can be obtained. The supply ratios from the plurality of oxidant jets 11 arranged in the lateral direction (cell arrangement direction) of the fuel cell stack 3 can be made uniform (diffusion suppression), leading to improved power generation efficiency of the fuel cell stack 3. In addition, the uniformity of the air distribution improves the robustness with respect to the supply air amount. Further, by providing the gap 24, an increase in pressure loss can be suppressed. When the pressure loss increases, the power consumption of the auxiliary equipment increases, and even if the fuel cell device having the same DC power generation efficiency is used, the AC power generation efficiency as the whole fuel cell system is reduced. This leads to an improvement in AC power generation efficiency as a fuel cell system.
 図10は酸化剤供給部材の構造例2-4を示す側面縦断面図である。
 本構造例2-4では、構造例2-2(図8)の分散用ガイド片23の横方向中央部に、上方からの酸化剤の一部を下方へ通過させる隙間部(分断部)24を設けている。本構造例2-4によれば、構造例2-2(図8)+構造例2-3(図9)の効果が得られる。
FIG. 10 is a side longitudinal sectional view showing a structural example 2-4 of the oxidant supply member.
In this structural example 2-4, a gap (dividing part) 24 that allows a part of the oxidant from above to pass downward is provided in the central portion in the horizontal direction of the dispersing guide piece 23 in the structural example 2-2 (FIG. 8). Is provided. According to this structural example 2-4, the effects of the structural example 2-2 (FIG. 8) + the structural example 2-3 (FIG. 9) can be obtained.
 図11は酸化剤供給部材の構造例2-5を示す側面縦断面図である。
 本構造例2-5では、分散用ガイド片23を左右一対の上に凹の屈曲形状(V字形状)、従って全体ではW字形状としている。また、分散用ガイド片23の横方向中央部、より具体的には左右一対の上に凹の屈曲形状の間に、上方からの酸化剤の一部を下方へ通過させる隙間部(分断部)24を設けている。
FIG. 11 is a side longitudinal sectional view showing Structural Example 2-5 of the oxidant supply member.
In this structural example 2-5, the dispersing guide piece 23 is formed in a concave bent shape (V shape) on the left and right pair, and thus has a W shape as a whole. In addition, a gap (dividing part) that allows a part of the oxidant from above to pass downwardly between the laterally central part of the dispersing guide piece 23, more specifically, between the left and right pair of concave bent shapes. 24 is provided.
 本構造例2-5によれば、V字形状を2つ組み合わせて、W字形状とすることにより、酸化剤を比較的滑らかに案内し、ガス流速の低下を抑えつつ、横方向両端部へガスを分散させることが可能となる。
 また、分散用ガイド片23の中央部に隙間部(分断部)24を設けることにより、構造例2-3、2-4(図9、図10)と同様、偏流抑制、圧力損失低減などを図ることができる。
According to Structural Example 2-5, by combining two V-shapes into a W-shape, the oxidant is guided relatively smoothly, and the decrease in gas flow rate is suppressed, and both ends in the lateral direction are achieved. It becomes possible to disperse the gas.
Further, by providing a gap (dividing part) 24 at the center of the dispersion guide piece 23, as in the structural examples 2-3 and 2-4 (FIGS. 9 and 10), it is possible to suppress the drift and reduce the pressure loss. Can be planned.
 図12は酸化剤供給部材の構造例2-6を示す側面縦断面図である。
 本構造例2-6では、分散用ガイド片23を左右一対の上に凹の湾曲形状としている。また、分散用ガイド片23の横方向中央部、より具体的には左右一対の上に凹の湾曲形状の間に、上方からの酸化剤の一部を下方へ通過させる隙間部(分断部)24を設けている。
FIG. 12 is a side longitudinal sectional view showing a structural example 2-6 of the oxidant supply member.
In Structural Example 2-6, the dispersion guide piece 23 has a concave curved shape on the left and right pair. Further, a gap (dividing part) that allows a part of the oxidant from above to pass downwardly between the concave central curved shape on the laterally central portion of the dispersion guide piece 23, more specifically on the left and right pair. 24 is provided.
 本構造例2-6によれば、構造例2-5(図11)との比較で、酸化剤をより滑らかに案内し、ガス流速を低下させることなく、ガス流れを制御することが可能となり、熱交換効率が向上する。また、圧力損失の増加を抑えることが可能である。
 尚、構造例2-5、2-6(図11、図12)では、隙間部(分断部)24を設けたが、これを省略してもよい。
According to this structural example 2-6, compared with structural example 2-5 (FIG. 11), the oxidant can be guided more smoothly, and the gas flow can be controlled without reducing the gas flow rate. , Heat exchange efficiency is improved. Moreover, it is possible to suppress an increase in pressure loss.
In the structural examples 2-5 and 2-6 (FIGS. 11 and 12), the gap (divided portion) 24 is provided, but this may be omitted.
 また、上記のような燃料電池装置では、既に述べたように、燃料電池スタック3の中心部に電流が集中するため、及び、燃料電池スタック3の上端部側でオフガスを燃焼させるため、燃料電池スタック3の中心部側及び上端部側が高温となる。
 その一方、燃料電池スタック3の横方向両端部及び下部から放熱を生じるため、及び、燃料電池スタック3の下端部側から燃料及び酸化剤を供給するため、燃料電池スタック3の横方向両端部及び下部が低温となる。
Further, in the fuel cell apparatus as described above, since the current concentrates in the central portion of the fuel cell stack 3 and the off gas is combusted on the upper end side of the fuel cell stack 3 as described above, The center part side and the upper end part side of the stack 3 are hot.
On the other hand, in order to generate heat from both lateral ends and the lower part of the fuel cell stack 3 and to supply fuel and oxidant from the lower end side of the fuel cell stack 3, both lateral ends of the fuel cell stack 3 and The lower part becomes cold.
 従って、燃料電池スタック3の高温領域を効果的に冷却することが必要であるという第1の課題に加え、燃料電池スタック3の低温領域を効果的に加熱することが必要であるという第2の課題がある。 Therefore, in addition to the first problem that it is necessary to effectively cool the high temperature region of the fuel cell stack 3, the second problem that it is necessary to effectively heat the low temperature region of the fuel cell stack 3 is required. There are challenges.
 上記の第1及び第2の課題に鑑みて、燃料電池スタック3の温度分布を均一化するための、酸化剤供給部材9の構造例3(3-1~3-4)について、以下に説明する。
 尚、第1の課題については構造例1に示した集束用ガイド片21、22により解決することとし、第2の課題については構造例2に示した分散用ガイド片23により解決することとしている。
In view of the above first and second problems, Structural Example 3 (3-1 to 3-4) of the oxidant supply member 9 for making the temperature distribution of the fuel cell stack 3 uniform will be described below. To do.
Note that the first problem is solved by the focusing guide pieces 21 and 22 shown in the structural example 1, and the second problem is solved by the dispersing guide piece 23 shown in the structural example 2. .
 図13は酸化剤供給部材の構造例3-1を示す側面縦断面図である。
 本構造例3-1では、酸化剤供給部材9内の集束用ガイド片21、22(図3)の下流側、詳しくは集束用ガイド片21、22間の酸化剤通過部の下流側に、分散用ガイド片23(図7)を設けている。
FIG. 13 is a side longitudinal sectional view showing a structural example 3-1 of the oxidant supply member.
In this structural example 3-1, in the downstream side of the focusing guide pieces 21 and 22 (FIG. 3) in the oxidant supply member 9, more specifically on the downstream side of the oxidizing agent passage between the focusing guide pieces 21 and 22, Dispersion guide pieces 23 (FIG. 7) are provided.
 集束用ガイド片21、22は、酸化剤供給部材9内の上部の横方向両端部にて、端壁から張り出す形で、横方向に延在し、酸化剤供給部材9内の上部での酸化剤の流れを横方向中央部へ集中させる。
 分散用ガイド片23は、酸化剤供給部材9内で、集束用ガイド片21、22より下側位置の横方向中央部に、横方向に延在し、上方からの酸化剤の流れを受け止めて、横方向両端部へ分散させる。
 尚、集束用ガイド片21、22は、燃料電池スタック3との関係では、燃料電池スタック3の上端部とほぼ同じ高さ位置に設け、分散用ガイド片23は、燃料電池スタック3との関係では、燃料電池スタック3の中央部とほぼ同じ高さ位置に設ける。
The focusing guide pieces 21 and 22 extend in the lateral direction so as to protrude from the end wall at both lateral ends of the upper portion in the oxidant supply member 9, and in the upper portion in the oxidant supply member 9. Concentrate the flow of oxidant to the center in the lateral direction.
The dispersing guide piece 23 extends in the lateral direction in the oxidant supply member 9 at the lateral center of the focusing guide pieces 21 and 22 and receives the flow of the oxidant from above. , Disperse to both lateral ends.
Note that the focusing guide pieces 21 and 22 are provided at substantially the same height as the upper end portion of the fuel cell stack 3 in relation to the fuel cell stack 3, and the dispersing guide piece 23 is related to the fuel cell stack 3. Then, the fuel cell stack 3 is provided at substantially the same height as the central portion.
 本構造例3-1によれば、酸化剤供給部材9内の上部での酸化剤の流れを横方向中央部へ集中させることで、酸化剤を燃料電池スタック3の上部及び横方向中央部の高温領域に集中させることが可能となる。また、酸化剤の集中域においては、酸化剤の流速が増加する。これらにより、燃料電池スタック3の高温領域を効果的に冷却して、温度低下を図り、熱劣化を抑制することができる。 According to the present structural example 3-1, by concentrating the flow of the oxidant in the upper part of the oxidant supply member 9 to the central part in the lateral direction, the oxidant is added to the upper part of the fuel cell stack 3 and the central part in the lateral direction. It is possible to concentrate in a high temperature region. Moreover, in the concentration area | region of an oxidizing agent, the flow rate of an oxidizing agent increases. By these, the high temperature area | region of the fuel cell stack 3 can be cooled effectively, temperature reduction can be aimed at and thermal degradation can be suppressed.
 言い換えれば、集束用ガイド片21、22により、燃料電池スタック3の高温域へのガス集中、及び、ガス流速向上を図ることができる。これにより、酸化剤(低温)と燃料電池スタック(高温)との熱交換が促進され、当該領域におけるセルスタック温度の低下、及び、酸化剤ガス温度の上昇を達成することができる。 In other words, the concentration of the gas to the high temperature region of the fuel cell stack 3 and the improvement of the gas flow rate can be achieved by the focusing guide pieces 21 and 22. As a result, heat exchange between the oxidant (low temperature) and the fuel cell stack (high temperature) is promoted, and a decrease in the cell stack temperature and an increase in the oxidant gas temperature in the region can be achieved.
 そして、酸化剤供給部材9内の横方向中央部を流れて高温となった酸化剤を横方向両端部へ分散させることで、燃料電池スタック3の低温領域を効果的に加熱して、温度上昇を図り、発電効率の低下を抑制することができる。 And the low temperature area | region of the fuel cell stack 3 is heated effectively by disperse | distributing the oxidizing agent which flowed through the horizontal direction center part in the oxidizing agent supply member 9 to the horizontal direction both ends, and temperature rise Therefore, a decrease in power generation efficiency can be suppressed.
 すなわち、燃料電池スタック3の最高温域(酸化剤供給部材9の中央部)に対応させて分散用ガイド片23を設けることにより、燃料電池スタック3の横方向中央部(高温域)から横方向両端部(低温域)へ酸化剤を分散させ、熱移動を図ることが可能となる。従って、このようなガス流れを作ることにより、酸化剤による燃料電池スタック3の横方向中央部から横方向両端部への熱移動を促進させ、燃料電池スタック3の温度分布の適正化を図ることができる。 That is, by providing the dispersion guide piece 23 corresponding to the highest temperature range of the fuel cell stack 3 (the central portion of the oxidant supply member 9), the lateral direction from the lateral central portion (high temperature region) of the fuel cell stack 3 is achieved. It is possible to disperse the oxidant to both ends (low temperature region) and to achieve heat transfer. Therefore, by making such a gas flow, heat transfer from the lateral center of the fuel cell stack 3 to both lateral ends of the fuel cell stack 3 by the oxidant is promoted, and the temperature distribution of the fuel cell stack 3 is optimized. Can do.
 また、横方向に延在するガイド片21~23を用いることで、燃料電池スタック3と酸化剤供給部材9との間の熱交換面積の低下を抑制し、燃料電池スタック3へ供給される酸化剤の温度を十分に上昇させ、発電性能の維持・向上を図ることができる。 Further, by using the guide pieces 21 to 23 extending in the lateral direction, a reduction in the heat exchange area between the fuel cell stack 3 and the oxidant supply member 9 is suppressed, and the oxidation supplied to the fuel cell stack 3 is suppressed. The temperature of the agent can be raised sufficiently to maintain and improve the power generation performance.
 図14は酸化剤供給部材の構造例3-2を示す側面縦断面図である。
 本構造例3-2では、集束用ガイド片21、22を横方向中央部に向かって斜め下向きに傾斜させている。
 また、分散用ガイド片23を上に凹の屈曲形状(V字形状)としている。
FIG. 14 is a side longitudinal sectional view showing a structural example 3-2 of the oxidant supply member.
In Structural Example 3-2, the focusing guide pieces 21 and 22 are inclined obliquely downward toward the central portion in the horizontal direction.
Further, the dispersion guide piece 23 has a concave bent shape (V-shape).
 本構造例3-2によれば、傾斜させた集束用ガイド片21、22により、酸化剤を集束方向に案内して、よりスムーズに集束させることができる。また、酸化剤の流れに逆らうことなく案内することが可能となり、圧力損失の増加を抑制することができる。これらにより、酸化剤の流速をより高めて、熱交換効率を向上させることができる。 According to the present structural example 3-2, the oxidant can be guided in the focusing direction by the inclined focusing guide pieces 21 and 22, and can be focused more smoothly. Moreover, it becomes possible to guide without countering the flow of the oxidizing agent, and an increase in pressure loss can be suppressed. By these, the flow rate of an oxidizing agent can be raised more and heat exchange efficiency can be improved.
 また、本構造例3-2によれば、分散用ガイド片23をV字形状とすることにより、より効果的に横方向両端部へのガスの流れを形成することが可能となる。すなわち、集束用ガイド片21、22の背部はデッドスペースとなり易く、熱交換面積の実質的な低下を招く恐れがある。この場合に、分散用ガイド片23により酸化剤を単に横方向中央部から横方向両端部へ移動させるだけでなく、集束用ガイド片21、22背部の空間へ跳ね上げることにより、当該空間がデッドスペースとなって、熱交換面積が減少するのを抑制することができる。 Further, according to the present structural example 3-2, by making the dispersion guide piece 23 V-shaped, it becomes possible to more effectively form a gas flow to both ends in the lateral direction. That is, the back portions of the focusing guide pieces 21 and 22 tend to be dead spaces, which may cause a substantial reduction in the heat exchange area. In this case, the oxidant is not simply moved from the laterally central portion to the lateral end portions by the dispersing guide piece 23, but is jumped up to the space behind the focusing guide pieces 21 and 22 so that the space is dead. It becomes space and can suppress that a heat exchange area reduces.
 尚、本構造例3-2では、分散用ガイド片23を上に凹の屈曲形状(V字形状)としたが、上に凹の湾曲形状として、より滑らかに案内するようにしてもよい。
 また、本構造例3-2では、上に凹の屈曲若しくは湾曲形状の分散用ガイド片23を傾斜型の集束用ガイド片21、22と組み合わせた。これにより、傾斜型の集束用ガイド21、22を用いる場合に特に生じやすいデッドスペースの温度上昇を図ることができる。この場合、分散用ガイド片23の跳ね上げ角度は、集束用ガイド片21、22の傾斜角度との関係で、適宜設定することが望ましい(跳ね上げ角度>傾斜角度、跳ね上げ角度≒傾斜角度、又は、跳ね上げ角度<傾斜角度)。
In the present structural example 3-2, the dispersion guide piece 23 has a concave bent shape (V-shape) upward, but it may be guided more smoothly as a concave curved shape upward.
Further, in this structural example 3-2, the dispersion guide piece 23 having a concavely bent or curved shape is combined with the inclined focusing guide pieces 21 and 22. Thereby, it is possible to increase the temperature of the dead space that is particularly likely to occur when the inclined focusing guides 21 and 22 are used. In this case, it is desirable to appropriately set the flip-up angle of the dispersion guide piece 23 in relation to the inclination angle of the focusing guide pieces 21 and 22 (bounce-up angle> inclination angle, jump-up angle≈inclination angle, Or the flip-up angle <the tilt angle).
 図15は酸化剤供給部材の構造例3-3を示す側面縦断面図である。
 本構造例3-3では、構造例1-2(図4)で説明した傾斜型の集束用ガイド片21、22と、構造例2-5(図11)で説明した左右一対の上に凹の屈曲形状(V字形状)からなる分散用ガイド片23とを組み合わせている。
FIG. 15 is a side longitudinal sectional view showing a structural example 3-3 of the oxidant supply member.
In this structural example 3-3, the inclined focusing guide pieces 21 and 22 described in the structural example 1-2 (FIG. 4) and the pair of left and right described in the structural example 2-5 (FIG. 11) are recessed. And a dispersion guide piece 23 having a bent shape (V-shape).
 図16は酸化剤供給部材の構造例3-4を示す側面縦断面図である。
 本構造例3-4では、構造例1-2(図4)で説明した傾斜型の集束用ガイド片21、22と、構造例2-6(図12)で説明した左右一対の上に凹の湾曲形状からなる分散用ガイド片23とを組み合わせている。
FIG. 16 is a side longitudinal sectional view showing Structural Example 3-4 of the oxidant supply member.
In Structural Example 3-4, the inclined focusing guide pieces 21 and 22 described in Structural Example 1-2 (FIG. 4) and the pair of left and right described in Structural Example 2-6 (FIG. 12) are recessed. The dispersion guide piece 23 having a curved shape is combined.
 これらの構造例3-3、3-4(図15、図16)では、分散用ガイド片23の跳ね上げ角度の設定により、分散用ガイド片23を傾斜型の集束用ガイド片21、22の付け根部分を指向させることで、デッドスペースの解消(熱交換面積の増加)を図ることができる。
 また、分散用ガイド片23の中央部に隙間部(分断部)24を設けることにより、既に述べたように、偏流抑制、圧力損失低減などを図ることができる。
In these structural examples 3-3 and 3-4 (FIGS. 15 and 16), the dispersion guide piece 23 is changed to the inclined focusing guide pieces 21 and 22 by setting the flip-up angle of the dispersion guide piece 23. By directing the root portion, it is possible to eliminate dead space (increase the heat exchange area).
Further, by providing the gap portion (dividing portion) 24 at the center portion of the dispersion guide piece 23, as described above, it is possible to suppress drift and reduce pressure loss.
 尚、構造例1と構造例2との組み合わせである構造例3として、図13~図16に4つの組み合わせ例を示して説明したが、これに限るものでないことは言うまでもない。構造例1(図3~図6)で説明した各種の収束用ガイド片21、22と、構造例2(図7~図12)として説明した各種の分散用ガイド片23と、の任意の組み合わせが可能である。 In addition, as the structural example 3 which is a combination of the structural example 1 and the structural example 2, the four combination examples are shown in FIGS. 13 to 16, but it is needless to say that the present invention is not limited to this. Arbitrary combinations of the various convergence guide pieces 21 and 22 described in the structural example 1 (FIGS. 3 to 6) and the various dispersion guide pieces 23 described in the structural example 2 (FIGS. 7 to 12) Is possible.
 次に、上記ガイド片21、22及び23の形成手法について説明する。
 図17はガイド片の形成例を示す酸化剤供給部材の要部断面図である。
Next, a method for forming the guide pieces 21, 22 and 23 will be described.
FIG. 17 is a cross-sectional view of the main part of the oxidant supply member showing an example of formation of guide pieces.
 本形成例では、中空板状(扁平容器形状)の酸化剤供給部材9は、2枚の板材91、92の縁部(図示せず)を貼り合わせて、2枚の板材91、92の間に酸化剤の流通空間を作ることを前提としている。
 その上で、貼り合わせ前に、2枚の板材91、92を外側の面からプレスして、内側への凸部91a、92aを形成しておき、貼り合わせと同時に、凸部91a、92aの先端間を溶着し、これらの凸部91a、92aによって、ガイド片21、22又は23を形成する。
In this example, the hollow plate-like (flat container shape) oxidant supply member 9 is formed by bonding edges (not shown) of the two plate members 91 and 92 between the two plate members 91 and 92. The premise is to create a distribution space for oxidants.
Then, before bonding, the two plate members 91 and 92 are pressed from the outer surface to form inward convex portions 91a and 92a. At the same time as the pasting, the convex portions 91a and 92a The tip portions are welded, and the guide pieces 21, 22 or 23 are formed by these convex portions 91a and 92a.
 このような手法であれば、板材91、92のプレス加工と同時にガイド片用の凸部91a、92aを形成でき、製造コストの増加を抑制することができる。
 但し、ガイド片21、22又は23の形成手法は、これに限るものではなく、ガイド片となる板材を溶接により固着するなどしてもよいことは言うまでもない。
If it is such a method, the convex parts 91a and 92a for guide pieces can be formed simultaneously with the press work of the board | plate materials 91 and 92, and the increase in manufacturing cost can be suppressed.
However, the method of forming the guide pieces 21, 22 or 23 is not limited to this, and it goes without saying that a plate material to be the guide pieces may be fixed by welding.
 次に、本発明の他の実施形態について説明する。
 図18は本発明の他の実施形態を示す燃料電池装置の概略正面図である。
 本実施形態では、酸化剤供給部材9は、2つに分けて設けられ、複数の燃料電池セルの集合体である燃料電池スタック3を挟むように、その左右両方の側面部に沿って配置されている。
 このような配置の場合も、各酸化剤供給部材9の内部に上記の集束用ガイド片21、22、及び/又は、分散用ガイド片23を設けることで、同様の効果が得られる。
Next, another embodiment of the present invention will be described.
FIG. 18 is a schematic front view of a fuel cell device showing another embodiment of the present invention.
In the present embodiment, the oxidant supply member 9 is divided into two parts and is disposed along both the left and right side portions so as to sandwich the fuel cell stack 3 that is an assembly of a plurality of fuel cells. ing.
Even in such an arrangement, the same effect can be obtained by providing the focusing guide pieces 21 and 22 and / or the dispersing guide pieces 23 inside each oxidant supply member 9.
 尚、上記の実施形態では、水素含有燃料として炭化水素系燃料を用い、燃料改質器7により、水素リッチな改質燃料(水素富化燃料)に改質して、燃料電池スタック3のアノードに供給する構成としたが、水素含有燃料として、有機ハイドライドを用い、燃料改質器7を脱水素反応型に代え、有機ハイドライドの脱水素反応によって生じる水素リッチガス(水素富化燃料)を燃料電池スタック3のアノードに供給してもよい。また、水素富化燃料として、純水素を用いることも可能である。この場合には、燃料改質器7を省略し、筐体1外の水素タンクなどから燃料電池スタック3のアノードに水素富化燃料を直接供給することができる。 In the above embodiment, a hydrocarbon-based fuel is used as the hydrogen-containing fuel, and the fuel reformer 7 reforms the fuel into a hydrogen-rich reformed fuel (hydrogen-enriched fuel). However, an organic hydride is used as the hydrogen-containing fuel, the fuel reformer 7 is replaced with a dehydrogenation reaction type, and a hydrogen-rich gas (hydrogen-enriched fuel) generated by the dehydrogenation reaction of the organic hydride is used as a fuel cell. It may be supplied to the anode of the stack 3. It is also possible to use pure hydrogen as the hydrogen-enriched fuel. In this case, the fuel reformer 7 can be omitted, and the hydrogen-enriched fuel can be directly supplied from the hydrogen tank or the like outside the housing 1 to the anode of the fuel cell stack 3.
 また、図1に示す実施形態においては、燃料電池スタック3を2つのセルグループに分割し、これらの間に酸化剤供給部材9を配置したが、燃料電池スタック3を3つのセルグループに分割し、それぞれの間に酸化剤供給部材9を配置してもよい。 In the embodiment shown in FIG. 1, the fuel cell stack 3 is divided into two cell groups, and the oxidant supply member 9 is arranged therebetween. However, the fuel cell stack 3 is divided into three cell groups. The oxidant supply member 9 may be disposed between them.
 また、図18に示す実施形態においては、2個の酸化剤供給部材9を燃料電池スタック3の両側面に配置したが、これに加え、燃料電池スタック3を2つのセルグループに分割し、これらの間にも酸化剤供給部材9を配置するようにしてもよい。 Further, in the embodiment shown in FIG. 18, two oxidant supply members 9 are arranged on both side surfaces of the fuel cell stack 3, but in addition to this, the fuel cell stack 3 is divided into two cell groups. The oxidant supply member 9 may be disposed between the two.
 また、上記の実施形態では、燃料電池装置について説明したが、図19に燃料電池装置を含んで構成される燃料電池システムの構成例を示している。
 図19について説明すると、燃料電池装置100は、既に説明したように、燃料電池スタック3、オフガス燃焼部5、燃料改質器7を備えている。この例では、燃料改質器7は内部に水気化部を備えている。但し、燃料改質器7とは別に水気化部を設けてもよい。
 原料供給装置200は、燃料電池装置100に燃料、酸化剤、改質用の水を供給する装置である。
 パワーコンディショナー(PCS)300は、燃料電池装置100(燃料電池スタック3)の発電電力を取り出し、直流電力を交流電力に変換して、外部負荷に供給する機能を有している。
 従って、燃料電池システムは、燃料電池装置100と、燃料電池装置100へ燃料及び酸化剤を供給する原料供給装置200と、燃料電池装置100の発電電力を取り出すパワーコンディショナー300とを含んで構成される。また、ここでは省略したが、燃料電池システムは、コジェネレーションシステムとして、燃料電池装置にて副次的に発生する熱を利用する給湯ユニット等を含んでいてもよい。
In the above embodiment, the fuel cell device has been described. FIG. 19 shows a configuration example of a fuel cell system including the fuel cell device.
Referring to FIG. 19, the fuel cell device 100 includes the fuel cell stack 3, the off-gas combustion unit 5, and the fuel reformer 7 as already described. In this example, the fuel reformer 7 includes a water vaporization unit therein. However, a water vaporization unit may be provided separately from the fuel reformer 7.
The raw material supply device 200 is a device that supplies fuel, an oxidant, and water for reforming to the fuel cell device 100.
The power conditioner (PCS) 300 has a function of taking out the generated power of the fuel cell device 100 (fuel cell stack 3), converting the DC power into AC power, and supplying it to an external load.
Accordingly, the fuel cell system includes the fuel cell device 100, the raw material supply device 200 that supplies the fuel and the oxidant to the fuel cell device 100, and the power conditioner 300 that extracts the generated power of the fuel cell device 100. . Although omitted here, the fuel cell system may include, as a cogeneration system, a hot water supply unit that uses heat generated secondary by the fuel cell device.
 また、図示の実施形態はあくまで本発明を例示するものであり、本発明は、説明した実施形態により直接的に示されるものに加え、請求の範囲内で当業者によりなされる各種の改良・変更を包含するものであることは言うまでもない。 The illustrated embodiments are merely examples of the present invention, and the present invention includes various improvements and modifications made by those skilled in the art within the scope of the claims in addition to those directly shown by the described embodiments. Needless to say, it is included.
 1 筐体
 2 燃焼室区画部材
 3 燃料電池スタック(複数の燃料電池セルの集合体)
 3A、3B セルグループ
 4 台座
 5 オフガス燃焼部
 6 排気出口
 7 燃料改質器
 9 酸化剤供給部材
10 酸化剤導入口
11 酸化剤噴出口
21、22 集束用ガイド片
23 分散用ガイド片
24 隙間部
100 燃料電池装置
200 原料供給装置
300 パワーコンディショナー
DESCRIPTION OF SYMBOLS 1 Case 2 Combustion chamber partition member 3 Fuel cell stack (A collection of a plurality of fuel cells)
3A, 3B Cell group 4 Base 5 Off-gas combustion section 6 Exhaust outlet 7 Fuel reformer 9 Oxidant supply member 10 Oxidant inlet 11 Oxidant outlets 21 and 22 Focusing guide piece 23 Dispersing guide piece 24 Gap part 100 Fuel cell device 200 Raw material supply device 300 Power conditioner

Claims (11)

  1.  水素富化燃料と酸化剤とを反応させて発電を行う複数の燃料電池セルの集合体である燃料電池スタックと、
     前記燃料電池スタックの上端部から排出されるオフガスを燃焼させて前記燃料電池スタックを高温状態に維持するオフガス燃焼部と、
     前記燃料電池スタックに酸化剤を供給するため、前記燃料電池スタック若しくはその一部を構成するセルグループの横長の側面部に沿って配置される中空板状の酸化剤供給部材と、
    を含んで構成され、
     前記中空板状の酸化剤供給部材は、上端部側に酸化剤導入口を有し、下端部側に酸化剤噴出口を有する、燃料電池装置であって、
     前記酸化剤供給部材内の上部の横方向両端部に、横方向に延在し、前記酸化剤供給部材内の上部での酸化剤の流れを横方向中央部へ集中させる左右一対の集束用ガイド片と、
     前記酸化剤供給部材内の上下方向及び横方向の中央部に、横方向に延在し、上方からの酸化剤の流れを受け止めて、横方向両端部へ分散させる分散用ガイド片と、
    のうち、少なくとも一方を設けたことを特徴とする、燃料電池装置。
    A fuel cell stack that is an assembly of a plurality of fuel cells that generate electricity by reacting a hydrogen-rich fuel with an oxidant;
    An off-gas combustion unit that burns off-gas discharged from an upper end of the fuel cell stack to maintain the fuel cell stack in a high temperature state;
    In order to supply an oxidant to the fuel cell stack, a hollow plate-shaped oxidant supply member disposed along a laterally long side surface portion of the fuel cell stack or a cell group constituting a part thereof,
    Comprising
    The hollow plate-shaped oxidant supply member is a fuel cell device having an oxidant inlet on the upper end side and an oxidant jet on the lower end side,
    A pair of right and left focusing guides that extend laterally at both lateral ends of the upper portion in the oxidant supply member and concentrate the flow of the oxidant in the upper portion in the oxidant supply member to the central portion in the lateral direction. With a piece,
    Dispersion guide pieces that extend in the horizontal direction in the vertical and horizontal central portions in the oxidant supply member, receive the flow of the oxidant from above, and disperse to both ends in the horizontal direction,
    A fuel cell device characterized in that at least one of them is provided.
  2.  前記集束用ガイド片は、横方向中央部に向かって斜め下向きに傾斜していることを特徴とする、請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the focusing guide piece is inclined obliquely downward toward a laterally central portion.
  3.  前記集束用ガイド片の傾斜部は、上側に凸の湾曲をなしていることを特徴とする、請求項2記載の燃料電池装置。 3. The fuel cell device according to claim 2, wherein the inclined portion of the converging guide piece has a convex curve upward.
  4.  前記集束用ガイド片の傾斜部は、上側に凹の湾曲をなしていることを特徴とする、請求項2記載の燃料電池装置。 3. The fuel cell device according to claim 2, wherein the inclined portion of the focusing guide piece has a concave curvature on the upper side.
  5.  前記分散用ガイド片は、上側に凹の屈曲若しくは湾曲形状であることを特徴とする、請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the dispersing guide piece has a concave bent or curved shape on the upper side.
  6.  前記分散用ガイド片は、左右一対の上側に凹の屈曲若しくは湾曲形状であることを特徴とする、請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the dispersing guide piece has a concave or bent shape on a pair of left and right upper sides.
  7.  前記分散用ガイド片は、その横方向中央部に上方からの酸化剤の一部を下方へ通過させる隙間部を有することを特徴とする、請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein the dispersion guide piece has a gap portion that allows a part of the oxidant from above to pass downward at a central portion in the lateral direction.
  8.  前記燃料電池スタックは、複数のセルグループに分割されており、前記酸化剤供給部材は、セルグループ間に配置されることを特徴とする、請求項1記載の燃料電池装置。 The fuel cell apparatus according to claim 1, wherein the fuel cell stack is divided into a plurality of cell groups, and the oxidant supply member is disposed between the cell groups.
  9.  前記酸化剤供給部材は、前記燃料電池スタックを挟むように、複数配置されることを特徴とする、請求項1記載の燃料電池装置。 2. The fuel cell device according to claim 1, wherein a plurality of the oxidant supply members are disposed so as to sandwich the fuel cell stack.
  10.  水素富化燃料と酸化剤とを反応させて発電を行う複数の燃料電池セルの集合体である燃料電池スタックと、
     前記燃料電池スタックの上端部から排出されるオフガスを燃焼させて前記燃料電池スタックを高温状態に維持するオフガス燃焼部と、
     前記燃料電池スタックに酸化剤を供給するため、前記燃料電池スタック若しくはその一部を構成するセルグループの横長の側面部に沿って配置される中空板状の酸化剤供給部材と、
    を含んで構成され、
     前記中空板状の酸化剤供給部材は、上端部側に酸化剤導入口を有し、下端部側に酸化剤噴出口を有する、燃料電池装置であって、
     前記酸化剤供給部材内の上部の横方向両端部に、横方向に延在し、前記酸化剤供給部材内の上部での酸化剤の流れを横方向中央部へ集中させる左右一対の集束用ガイド片と、
     前記酸化剤供給部材内で、前記集束用ガイド片より下側位置の横方向中央部に、横方向に延在し、上方からの酸化剤の流れを受け止めて、横方向両端部へ分散させる分散用ガイド片と、
    を設けたことを特徴とする、燃料電池装置。
    A fuel cell stack that is an assembly of a plurality of fuel cells that generate electricity by reacting a hydrogen-rich fuel with an oxidant;
    An off-gas combustion unit that burns off-gas discharged from an upper end of the fuel cell stack to maintain the fuel cell stack in a high temperature state;
    In order to supply an oxidant to the fuel cell stack, a hollow plate-shaped oxidant supply member disposed along a laterally long side surface portion of the fuel cell stack or a cell group constituting a part thereof,
    Comprising
    The hollow plate-shaped oxidant supply member is a fuel cell device having an oxidant inlet on the upper end side and an oxidant jet on the lower end side,
    A pair of right and left focusing guides that extend laterally at both lateral ends of the upper portion in the oxidant supply member and concentrate the flow of the oxidant in the upper portion in the oxidant supply member to the central portion in the lateral direction. With a piece,
    In the oxidant supply member, a dispersion that extends in the lateral direction at the central portion in the lateral direction below the focusing guide piece, receives the flow of the oxidant from above, and disperses it at both lateral ends. A guide piece,
    A fuel cell device comprising:
  11.  請求項1又は請求項10記載の燃料電池装置と、前記燃料電池装置に前記燃料及び前記酸化剤を供給する原料供給装置と、前記燃料電池装置の発電電力を取り出すパワーコンディショナーと、を含んで構成される、燃料電池システム。 A fuel cell device according to claim 1 or 10, a raw material supply device that supplies the fuel and the oxidant to the fuel cell device, and a power conditioner that extracts the generated power of the fuel cell device. A fuel cell system.
PCT/JP2014/050165 2013-03-26 2014-01-08 Fuel cell device and fuel cell system WO2014156212A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-064106 2013-03-26
JP2013064106A JP6140497B2 (en) 2013-03-26 2013-03-26 Fuel cell device and fuel cell system
JP2013064107A JP6092681B2 (en) 2013-03-26 2013-03-26 Fuel cell device and fuel cell system
JP2013-064107 2013-03-26

Publications (1)

Publication Number Publication Date
WO2014156212A1 true WO2014156212A1 (en) 2014-10-02

Family

ID=51623219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050165 WO2014156212A1 (en) 2013-03-26 2014-01-08 Fuel cell device and fuel cell system

Country Status (1)

Country Link
WO (1) WO2014156212A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013269A1 (en) * 2017-07-13 2019-01-17 京セラ株式会社 Reaction gas introduction member, fuel cell module and fuel cell device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
JP2007234384A (en) * 2006-01-31 2007-09-13 Kyocera Corp Fuel cell stack device and fuel cell module
JP2008300275A (en) * 2007-06-01 2008-12-11 Toto Ltd Fuel cell
WO2009119616A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Reformer, cell stack device, fuel cell module, and fuel cell device
JP2010146783A (en) * 2008-12-17 2010-07-01 Kyocera Corp Fuel battery module and fuel battery device
JP2011129279A (en) * 2009-12-15 2011-06-30 Toyota Motor Corp Fuel cell module
WO2012091029A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
JP2007234384A (en) * 2006-01-31 2007-09-13 Kyocera Corp Fuel cell stack device and fuel cell module
JP2008300275A (en) * 2007-06-01 2008-12-11 Toto Ltd Fuel cell
WO2009119616A1 (en) * 2008-03-26 2009-10-01 京セラ株式会社 Reformer, cell stack device, fuel cell module, and fuel cell device
JP2010146783A (en) * 2008-12-17 2010-07-01 Kyocera Corp Fuel battery module and fuel battery device
JP2011129279A (en) * 2009-12-15 2011-06-30 Toyota Motor Corp Fuel cell module
WO2012091029A1 (en) * 2010-12-28 2012-07-05 Jx日鉱日石エネルギー株式会社 Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013269A1 (en) * 2017-07-13 2019-01-17 京セラ株式会社 Reaction gas introduction member, fuel cell module and fuel cell device
JP6498851B1 (en) * 2017-07-13 2019-04-10 京セラ株式会社 Reaction gas introduction member, fuel cell module, and fuel cell device

Similar Documents

Publication Publication Date Title
US10170776B2 (en) Fuel cell module
US10320016B2 (en) High-temperature fuel cell system
WO2012137931A1 (en) Fuel cell module
WO2012137934A1 (en) Fuel cell module
JP6092681B2 (en) Fuel cell device and fuel cell system
JP6140497B2 (en) Fuel cell device and fuel cell system
KR102515471B1 (en) Air and fuel supplying module and fuel cell system having the air and fuel supplying module
US20140023950A1 (en) Fuel cell module
JP2015138580A (en) fuel cell device
JP2016051574A (en) Fuel cell module
EP3787082A1 (en) Fuel cell system
JP2015185280A (en) Fuel battery device
JP5643711B2 (en) Fuel cell module
JP2015144091A (en) fuel cell device
JP3186133U (en) Fuel cell device
JP5936967B2 (en) Fuel cell device
WO2014156212A1 (en) Fuel cell device and fuel cell system
JP6189605B2 (en) Fuel cell device
JP2016051573A (en) Fuel cell module
JP2007073358A (en) Fuel heat exchanger and fuel cell
JP2015189610A (en) Fuel reformer and fuel cell system
JP5368057B2 (en) Reformer and power generator
JP2011014495A (en) Fuel battery module
JP2015144090A (en) fuel cell device
JP6650812B2 (en) Starting combustor and fuel cell system using the starting combustor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14773992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14773992

Country of ref document: EP

Kind code of ref document: A1