JP3186133U - Fuel cell device - Google Patents

Fuel cell device Download PDF

Info

Publication number
JP3186133U
JP3186133U JP2013003930U JP2013003930U JP3186133U JP 3186133 U JP3186133 U JP 3186133U JP 2013003930 U JP2013003930 U JP 2013003930U JP 2013003930 U JP2013003930 U JP 2013003930U JP 3186133 U JP3186133 U JP 3186133U
Authority
JP
Japan
Prior art keywords
fuel cell
heat insulating
holding member
cell device
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013003930U
Other languages
Japanese (ja)
Inventor
正天 門脇
暁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2013003930U priority Critical patent/JP3186133U/en
Application granted granted Critical
Publication of JP3186133U publication Critical patent/JP3186133U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】所望の耐熱性を得ることができ、かつ加工に要する手間やコストを軽減することが可能な断熱構造を有する燃料電池装置を提供する。
【解決手段】燃料電池装置100は、燃料電池本体と、燃料電池本体を収容する容器と、燃料電池本体と容器との間の少なくとも一部に設けられる断熱材とを有する。断熱材と燃料電池本体との間に配置され、断熱材を保持する保持部材71〜75をさらに有し、断熱材と保持部材とは異なる材料から形成されている。
【選択図】図1
To provide a fuel cell device having a heat insulating structure capable of obtaining desired heat resistance and reducing labor and cost required for processing.
A fuel cell device includes a fuel cell main body, a container that accommodates the fuel cell main body, and a heat insulating material provided at least at a part between the fuel cell main body and the container. The heat insulating material and the fuel cell main body are disposed between the heat insulating material and the holding member 71 to 75 for holding the heat insulating material, and the heat insulating material and the holding member are made of different materials.
[Selection] Figure 1

Description

本考案は、燃料電池装置に関する。   The present invention relates to a fuel cell device.

燃料電池の発電方式にはいくつかの種類が知られているが、近年では、高い発電効率の達成が可能な固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)が注目されている。   Several types of power generation systems for fuel cells are known, but in recent years, solid oxide fuel cells (SOFC) capable of achieving high power generation efficiency have attracted attention.

固体酸化物形燃料電池セルは、アノード極、電解質、カソード極を備えている。電解質は、高温下で酸化物イオンを伝導する。アノード極は、酸化物イオンと燃料中の水素とを反応させて電子及び水を発生させる。カソード極では、下記(1)式の電極反応、アノード極では下記(2)の電極反応がそれぞれ起こり、発電がなされる。
カソード極: 1/2O+2e→O2−(電解質) ・・・(1)
アノード極: O2−(電解質)+H→HO+2e ・・・(2)
燃料電池装置には、上記のような燃料電池セルが多数備えられ、これらは電気的に直列(および並列)に接続されて、燃料電池セルの集合体であるセルスタック(燃料電池スタック)を構成している。
The solid oxide fuel cell includes an anode electrode, an electrolyte, and a cathode electrode. The electrolyte conducts oxide ions at high temperatures. The anode electrode generates electrons and water by reacting oxide ions with hydrogen in the fuel. The electrode reaction of the following formula (1) occurs at the cathode electrode, and the electrode reaction of the following (2) occurs at the anode electrode to generate power.
Cathode electrode: 1 / 2O 2 + 2e → O 2− (electrolyte) (1)
Anode electrode: O 2− (electrolyte) + H 2 → H 2 O + 2e (2)
The fuel cell apparatus includes a large number of fuel cells as described above, and these are electrically connected in series (and in parallel) to form a cell stack (fuel cell stack) that is an assembly of fuel cells. doing.

燃料電池セルにおいて行われる上記の発電は、燃料電池セルの温度が上昇するほど電圧が上昇することが知られている。燃料電池セルの温度上昇は、主に発電により生じるジュール熱と、燃料電池セルにおける電気化学的反応で用いられなかった水素リッチガス及び酸化剤を燃焼させることによって生じる熱に起因する。   It is known that the power generation performed in the fuel cell increases in voltage as the temperature of the fuel cell increases. The temperature rise of the fuel cell is mainly caused by Joule heat generated by power generation and heat generated by burning a hydrogen rich gas and an oxidant that are not used in an electrochemical reaction in the fuel cell.

また、アノード極に供給される水素富化ガス(水素リッチガス)は、一般に、改質触媒が充填された改質部に炭化水素系燃料を供給し、炭化水素系燃料改質反応によってこれを得る構成が知られている。改質部に供給された炭化水素系燃料は、下記反応式に従って反応して水素富化ガスを生じる。
CmHn+mHO → mCO+((n/2)+m)H
この反応は吸熱反応であるため、高温において反応効率が向上する。
The hydrogen-enriched gas (hydrogen-rich gas) supplied to the anode is generally obtained by supplying a hydrocarbon-based fuel to a reforming section filled with a reforming catalyst and performing a hydrocarbon-based fuel reforming reaction. The configuration is known. The hydrocarbon fuel supplied to the reforming section reacts according to the following reaction formula to generate a hydrogen-enriched gas.
CmHn + mH 2 O → mCO + ((n / 2) + m) H 2
Since this reaction is an endothermic reaction, the reaction efficiency is improved at high temperatures.

燃料電池装置において発電効率を高めるためには、このように生じた熱により、燃料電池セルまたは改質器を適切な温度に保持することが望ましい。そのために、例えば燃料電池装置内においてセルスタックを囲むように断熱材を設ける構造が知られている(特許文献1、2)。   In order to increase the power generation efficiency in the fuel cell device, it is desirable to maintain the fuel cell or the reformer at an appropriate temperature by the heat thus generated. Therefore, for example, a structure in which a heat insulating material is provided so as to surround a cell stack in a fuel cell device is known (Patent Documents 1 and 2).

特開2011−129489号公報Japanese Unexamined Patent Publication No. 2011-129489 国際公開第2009/016857号International Publication No. 2009/016857

しかしながら、断熱材を燃料電池装置内に適切に配置するためには断熱材を所望の形状・寸法に加工するとともに燃料電池装置内の所定位置に保持する必要がある。しかし、断熱性に優れる断熱材は加工性に劣る、または、断熱性および加工性が共に優れる断熱材はコストが高いなど、断熱性、加工性、およびコスト性が両立する断熱材を選択することは容易ではない。   However, in order to properly arrange the heat insulating material in the fuel cell device, it is necessary to process the heat insulating material into a desired shape and size and hold it in a predetermined position in the fuel cell device. However, select a heat insulating material that has both heat insulating properties, workability, and cost performance, such as heat insulating materials with excellent heat insulating properties, which are inferior in workability, or heat insulating materials that have both high heat insulating properties and workability are expensive. Is not easy.

そこで、本考案は、上記の課題を解決することを目的とし、所望の耐熱性を得ることができ、かつ加工に要する手間やコストを軽減することが可能な断熱構造を有する燃料電池装置を提供することを目的とする。   Therefore, the present invention aims to solve the above-described problems, and provides a fuel cell device having a heat insulating structure that can obtain desired heat resistance and can reduce labor and cost required for processing. The purpose is to do.

本考案の態様に従えば、
燃料電池本体と、
前記燃料電池本体を収容する容器と、
前記燃料電池本体と前記容器との間の少なくとも一部に設けられる断熱体とを有する燃料電池装置であって、
前記断熱体と前記燃料電池本体との間に配置され、前記断熱体を保持する保持部材をさらに有し、
前記断熱体と前記保持部材とは異なる材料から形成されている燃料電池装置が提供される。
According to an aspect of the present invention,
A fuel cell body;
A container for housing the fuel cell body;
A fuel cell device having a heat insulator provided at least in part between the fuel cell main body and the container,
A holding member that is disposed between the heat insulator and the fuel cell main body and holds the heat insulator;
A fuel cell device is provided in which the heat insulator and the holding member are formed of different materials.

本考案の燃料電池装置では、燃料電池本体と容器との間の少なくとも一部に保持部材を設けることで、断熱体を容器内の所定位置に、特に燃料電池本体に対して配置、保持している。したがって、断熱体の加工の手間及びコストを軽減して、所望の断熱性能を有する最適な断熱構造を得ることができる。   In the fuel cell device according to the present invention, the heat insulator is arranged and held at a predetermined position in the container, particularly with respect to the fuel cell main body, by providing a holding member at least at a part between the fuel cell main body and the container. Yes. Therefore, it is possible to reduce the labor and cost of processing the heat insulator and obtain an optimum heat insulating structure having desired heat insulating performance.

本考案の燃料電池装置において、前記保持部材の前記断熱体と対向する面は平坦であってよく、前記断熱体は平板状であってよい。このような形状とすることで、前記保持部材と前記断熱体との接触を緊密とすることができ、無用な対流を防止するとともに断熱性能を向上することができる。また、前記断熱体を平板状とすることで、断熱体の市場からの入手が容易となり、断熱体の加工に要する手間やコストを削減することができる。   In the fuel cell device of the present invention, a surface of the holding member facing the heat insulator may be flat, and the heat insulator may be flat. By setting it as such a shape, the contact of the said holding member and the said heat insulating body can be close | tightened, and while preventing unnecessary convection, heat insulation performance can be improved. Moreover, by making the said heat insulating body into flat form, the acquisition from the market of a heat insulating body becomes easy, and the effort and cost which are required for the process of a heat insulating body can be reduced.

本考案の燃料電池装置において、前記断熱体は粉状または粒状であってよい。粉状または粒状の断熱体を用いることで、断熱体の成型加工に要する手間やコストをより削減することができる。   In the fuel cell device of the present invention, the heat insulator may be powdery or granular. By using a powdery or granular heat insulator, it is possible to further reduce labor and cost required for molding the heat insulator.

本考案の燃料電池装置において、前記平板状の断熱体、粉状または粒状断熱体は耐熱クロスで覆われていてもよい。耐熱クロスで覆うことで、断熱材料の前記容器内への飛散を抑制することができる。   In the fuel cell device of the present invention, the flat plate-like heat insulator, powdery or granular heat insulator may be covered with a heat resistant cloth. By covering with a heat resistant cloth, scattering of the heat insulating material into the container can be suppressed.

本考案の燃料電池装置において、前記燃料電池本体が燃料電池セルスタックを有するとともに、前記保持部材が前記燃料電池セルスタックに対向する面に凸部を有し、前記凸部により前記燃料電池セルスタック内の酸化剤の流れを整えてもよい。前記保持部材に凸部を設けることで、断熱体に凸部を設ける場合に比べて加工に要する手間及びコストを軽減することができる。   In the fuel cell device of the present invention, the fuel cell main body has a fuel cell stack, and the holding member has a convex portion on a surface facing the fuel cell stack, and the fuel cell stack is formed by the convex portion. The flow of the oxidant inside may be adjusted. By providing the holding member with the convex portion, it is possible to reduce labor and cost required for processing as compared with the case where the heat insulating member is provided with the convex portion.

本考案の燃料電池装置において、前記保持部材は絶縁材料からなっていてもよい。前記保持部材を絶縁材料とすることで、前記保持部材を前記燃料電池セルスタックに接触させることが可能となり、酸化剤の流れを整えることができる。   In the fuel cell device of the present invention, the holding member may be made of an insulating material. By using the holding member as an insulating material, the holding member can be brought into contact with the fuel cell stack, and the flow of the oxidizing agent can be adjusted.

本考案の燃料電池装置において、前記断熱体の熱伝導率が、前記保持部材の熱伝導率よりも低くてもよい。   In the fuel cell device of the present invention, the thermal conductivity of the heat insulator may be lower than the thermal conductivity of the holding member.

本考案の燃料電池装置において、前記断熱体は、静止空気の熱伝導率よりも低い熱伝導率を有していてもよい。これにより、より高い断熱性能を得ることができる。   In the fuel cell device of the present invention, the heat insulator may have a thermal conductivity lower than that of still air. Thereby, higher heat insulation performance can be obtained.

本考案の燃料電池装置において、前記保持部材は、静止空気の熱伝導率よりも高い熱伝導率を有する断熱材料であってもよい。支持部材に断熱性能を有する部材を用いることによって、より高い断熱性能を得ることができる。   In the fuel cell device of the present invention, the holding member may be a heat insulating material having a thermal conductivity higher than that of still air. By using a member having heat insulation performance as the support member, higher heat insulation performance can be obtained.

本考案の燃料電池装置によれば、加工に要する手間やコストを低減しつつ、所望の断熱効果を得ることができる。   According to the fuel cell device of the present invention, it is possible to obtain a desired heat insulating effect while reducing labor and cost required for processing.

図1(a)〜(c)は、本考案の実施形態に係る燃料電池装置の内部の断熱構造体の配置を示す断面図である。FIGS. 1A to 1C are cross-sectional views showing the arrangement of heat insulation structures inside a fuel cell device according to an embodiment of the present invention. 図2(a)〜(c)は、本考案の変形例に係る燃料電池装置の内部の断熱構造体の配置を示す断面図である。FIGS. 2A to 2C are cross-sectional views showing the arrangement of the heat insulation structure inside the fuel cell device according to the modification of the present invention. 図3は、本考案の他の実施形態に係る燃料電池装置の内部の断熱構造体の配置を示す断面図である。FIG. 3 is a cross-sectional view showing an arrangement of a heat insulating structure inside a fuel cell device according to another embodiment of the present invention. 図4は、本考案の第1の組立形態に係る燃料電池装置の組み立ての様子を示す概略図である。FIG. 4 is a schematic view showing a state of assembly of the fuel cell device according to the first assembly form of the present invention. 図5は、本考案の第2の組立形態に係る燃料電池装置の組み立ての様子を示す概略図である。FIG. 5 is a schematic view showing a state of assembly of the fuel cell device according to the second assembly form of the present invention. 図6は、本考案の第3の組立形態に係る燃料電池装置の組み立ての様子を示す概略図である。FIG. 6 is a schematic view showing a state of assembly of the fuel cell device according to the third assembly form of the present invention.

[第1の組立形態]
図4に、本発明の第1の組立形態に係る燃料電池装置100の分解斜視図を示す。燃料電池装置100は、発電部1、改質部4、少なくとも発電部1を内包する排ガス隔壁30、発電部1を内包した排ガス隔壁30および改質部4を内包する内殻40、内殻40を内包する外殻50を備える。燃料電池装置100、排ガス隔壁30、内殻40、外殻50についての方向の定義は、図4の右下部に示す通りである。
[First assembly form]
FIG. 4 is an exploded perspective view of the fuel cell device 100 according to the first assembly form of the present invention. The fuel cell apparatus 100 includes a power generation unit 1, a reforming unit 4, an exhaust gas partition wall 30 including at least the power generation unit 1, an exhaust gas partition wall 30 including the power generation unit 1, and an inner shell 40 and an inner shell 40 including the reforming unit 4. The outer shell 50 is included. Definitions of directions of the fuel cell device 100, the exhaust gas partition wall 30, the inner shell 40, and the outer shell 50 are as shown in the lower right part of FIG.

発電部1は、複数の燃料電池セル(不図示)を集合し電気的に直列(および並列)に接続してなるセルスタック2と、セルスタック2が立設される台座3を含んで構成される。発電部1には燃料電池セルが多数備えられ、これらは電気的に直列(および並列)に接続されて、燃料電池セルの集合体であるセルスタック2を構成している。燃料電池セルの形状および配列は任意に選択することができるため、図4中のセルスタック2は、個々の燃料電池セルの図示を省略してセルスタック2のみを概略的に示したものである。なお、セルスタック2への水素富化燃料の供給は、燃料分配機能を有する台座3からなされる。水素富化燃料は、改質部4から供給される。また、セルスタック2への酸化剤の供給は、酸化剤供給部材12(図1(b)(c))を介してなされる。   The power generation unit 1 includes a cell stack 2 in which a plurality of fuel cells (not shown) are assembled and electrically connected in series (and in parallel), and a pedestal 3 on which the cell stack 2 is erected. The The power generation unit 1 includes a large number of fuel cells, and these are electrically connected in series (and in parallel) to form a cell stack 2 that is an assembly of fuel cells. Since the shape and arrangement of the fuel cells can be arbitrarily selected, the cell stack 2 in FIG. 4 schematically shows only the cell stack 2 while omitting the illustration of the individual fuel cells. . Note that the supply of the hydrogen-enriched fuel to the cell stack 2 is performed from the pedestal 3 having a fuel distribution function. The hydrogen-enriched fuel is supplied from the reforming unit 4. Further, the oxidant is supplied to the cell stack 2 via the oxidant supply member 12 (FIGS. 1B and 1C).

改質部4には、改質触媒が充填されており、原燃料導入部5から水素含有燃料(原燃料)が改質部4に供給される。改質部4は、改質触媒を用いた改質反応により、水素含有燃料を改質して、水素富化燃料(改質ガス)を生成する。水素含有燃料(原燃料)としては、一般に炭化水素系燃料が用いられる。ここでいう炭化水素系燃料とは、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物をいう。例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられる。具体的には、炭化水素系燃料として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。   The reforming unit 4 is filled with a reforming catalyst, and hydrogen-containing fuel (raw fuel) is supplied from the raw fuel introduction unit 5 to the reforming unit 4. The reforming unit 4 reforms the hydrogen-containing fuel by a reforming reaction using the reforming catalyst to generate a hydrogen-enriched fuel (reformed gas). As the hydrogen-containing fuel (raw fuel), a hydrocarbon-based fuel is generally used. The term “hydrocarbon fuel” as used herein refers to a compound containing carbon and hydrogen in a molecule (may contain other elements such as oxygen) or a mixture thereof. Examples include hydrocarbons, alcohols, ethers, and biofuels. Specifically, examples of the hydrocarbon fuel include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.

改質部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の公知の改質方式を採用できる。本実施形態の改質部4としては、水蒸気改質反応を用いる改質部4を例示する。水蒸気改質を用いる場合は、改質部4の入口側に水気化部(不図示)を設け、外殻50の外部から供給される水を気化して、水蒸気を生成する。または、改質部4の外部で気化された水蒸気を改質部4に供給してもよい。改質部4の出口側(前方の下側)には、生成された改質ガスを発電部1に供給するための改質ガス供給部6が接続され、改質ガス供給部6は発電部1の台座3に接続されている。なお、改質部4は発電部1の上方に配置されている。発電部1と改質部4との間に画成されるオフガス燃焼エリア9で、発電に用いられなかったアノードオフガスおよびカソードオフガスとが燃焼し、改質部4を加熱するように構成されている。   The reforming method in the reforming unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other known reforming methods can be employed. As the reforming unit 4 of this embodiment, the reforming unit 4 using a steam reforming reaction is illustrated. When steam reforming is used, a water vaporization unit (not shown) is provided on the inlet side of the reforming unit 4, and water supplied from the outside of the outer shell 50 is vaporized to generate steam. Alternatively, steam vaporized outside the reforming unit 4 may be supplied to the reforming unit 4. A reformed gas supply unit 6 for supplying the generated reformed gas to the power generation unit 1 is connected to the outlet side (lower front side) of the reforming unit 4, and the reformed gas supply unit 6 is connected to the power generation unit. 1 pedestal 3 is connected. The reforming unit 4 is disposed above the power generation unit 1. In the off-gas combustion area 9 defined between the power generation unit 1 and the reforming unit 4, anode off-gas and cathode off-gas that have not been used for power generation burn, and the reforming unit 4 is heated. Yes.

排ガス隔壁30は、上部開放のチャンネル状又は上部開放のU溝状に形成されている。発電部1は、排ガス隔壁30の左側面31および右側面32と底面35に囲まれた空間に内包される。   The exhaust gas partition 30 is formed in a channel shape with an open top or a U groove shape with an open top. The power generation unit 1 is included in a space surrounded by the left side surface 31, the right side surface 32, and the bottom surface 35 of the exhaust gas partition wall 30.

発電部1を収容した排ガス隔壁30、および改質部4は、直方体状の内殻40に収納される。本実施形態では、内殻40の前側面43および後側面44が取り外し可能に構成される。内殻40の前側面43および後側面44を取り外した状態で、発電部1を収容した排ガス隔壁30が収納され、内殻40の前側面43および後側面44が取り付けられる。排ガス隔壁30の左側面31と内殻40の左側面41との間、排ガス隔壁30の右側面32と内殻40の右側面42との間、および、排ガス隔壁30の底面35と内殻40の底面45との間には空間が画成され、当該空間が排ガスが流通する排ガス流路21(図1(a)(c))となる。オフガス燃焼エリア9で発生し、排ガス隔壁30の左側面31と内殻40の左側面41との間の空間、及び排ガス隔壁30の右側面32と内殻40の右側面42との間の空間を通過して排ガス隔壁30の底面35と内殻40の底面45との間の空間に到達した排ガスは、排ガス出口22(図1(b)(c))から燃料電池装置100の外部に導出される。   The exhaust gas partition wall 30 containing the power generation unit 1 and the reforming unit 4 are housed in a rectangular parallelepiped inner shell 40. In the present embodiment, the front side surface 43 and the rear side surface 44 of the inner shell 40 are configured to be removable. With the front side 43 and the rear side 44 of the inner shell 40 removed, the exhaust gas partition wall 30 containing the power generation unit 1 is stored, and the front side 43 and the rear side 44 of the inner shell 40 are attached. Between the left side surface 31 of the exhaust gas partition wall 30 and the left side surface 41 of the inner shell 40, between the right side surface 32 of the exhaust gas partition wall 30 and the right side surface 42 of the inner shell 40, and between the bottom surface 35 and the inner shell 40 of the exhaust gas partition wall 30. A space is defined between the bottom surface 45 and the exhaust gas passage 21 (FIGS. 1A and 1C) through which the exhaust gas flows. Space generated between the left side surface 31 of the exhaust gas partition 30 and the left side surface 41 of the inner shell 40 and the space between the right side surface 32 of the exhaust gas partition 30 and the right side surface 42 of the inner shell 40 that is generated in the off-gas combustion area 9. The exhaust gas that has passed through and reaches the space between the bottom surface 35 of the exhaust gas partition wall 30 and the bottom surface 45 of the inner shell 40 is led out of the fuel cell device 100 from the exhaust gas outlet 22 (FIGS. 1B and 1C). Is done.

排ガス隔壁30、および改質部4を収容した内殻40は、直方体状の外殻50に収納される。本実施形態では、外殻50の前側面53および後側面54が取り外し可能に構成される。前側面53および後側面54を取り外した状態で、発電部1、排ガス隔壁30を収容した内殻40が収納され、前側面53および後側面54が取り付けられる。内殻40の左側面41と外殻50の左側面51との間、内殻40の右側面42と外殻50の右側面52との間、内殻40の底面45と外殻50の底面55との間、および、内殻40の上面46と外殻50の上面56との間には空間が画成される。外殻50の底面55に酸化剤入口(図示せず)が形成され、内殻40と外殻50との間に酸化剤が導入される。内殻40の底面45と外殻50の底面55との間の空間、内殻40の左側面41と外殻50の左側面51との間の空間、内殻40の右側面42と外殻50の右側面52との間の空間、内殻40の上面46と外殻50の上面56との間の空間に向かって酸化剤が流通する。内殻40の上面46と外殻50の上面56との間の空間に到達した空気は、酸化剤供給部材12(図1(c))を介してセルスタック2に供給される。   The inner shell 40 that houses the exhaust gas partition wall 30 and the reforming unit 4 is housed in a rectangular parallelepiped outer shell 50. In the present embodiment, the front side surface 53 and the rear side surface 54 of the outer shell 50 are configured to be removable. With the front side 53 and the rear side 54 removed, the inner shell 40 containing the power generation unit 1 and the exhaust gas partition wall 30 is stored, and the front side 53 and the rear side 54 are attached. Between the left side surface 41 of the inner shell 40 and the left side surface 51 of the outer shell 50, between the right side surface 42 of the inner shell 40 and the right side surface 52 of the outer shell 50, the bottom surface 45 of the inner shell 40 and the bottom surface of the outer shell 50. A space is defined between the upper surface 46 of the inner shell 40 and the upper surface 56 of the outer shell 50. An oxidant inlet (not shown) is formed on the bottom surface 55 of the outer shell 50, and the oxidant is introduced between the inner shell 40 and the outer shell 50. The space between the bottom surface 45 of the inner shell 40 and the bottom surface 55 of the outer shell 50, the space between the left side surface 41 of the inner shell 40 and the left side surface 51 of the outer shell 50, the right side surface 42 of the inner shell 40 and the outer shell The oxidant flows toward the space between the right side surface 52 of 50 and the space between the upper surface 46 of the inner shell 40 and the upper surface 56 of the outer shell 50. The air that has reached the space between the upper surface 46 of the inner shell 40 and the upper surface 56 of the outer shell 50 is supplied to the cell stack 2 via the oxidant supply member 12 (FIG. 1C).

[第2の組立形態]
図5に、本発明の第2の組立形態に係る燃料電池装置100の分解斜視図を示す。図5では、発電部1は図示を省略しているが、発電部1は図4と同様に排ガス隔壁30に内包される。本実施形態では、外殻50の上面56が取り外し可能に構成される。外殻50の上面56を取り外した状態で発電部1、排ガス隔壁30を収容した内殻40が収納され、外殻50の上面56が取り付けられる。
[Second assembly form]
FIG. 5 shows an exploded perspective view of the fuel cell device 100 according to the second assembly form of the present invention. In FIG. 5, the power generation unit 1 is not shown, but the power generation unit 1 is included in the exhaust gas partition wall 30 as in FIG. 4. In the present embodiment, the upper surface 56 of the outer shell 50 is configured to be removable. With the upper surface 56 of the outer shell 50 removed, the inner shell 40 containing the power generation unit 1 and the exhaust gas partition wall 30 is accommodated, and the upper surface 56 of the outer shell 50 is attached.

[第3の組立形態]
図6に、本発明の第3の組立実施形態に係る燃料電池装置100の分解斜視図を示す。図6では、発電部1は図示を省略しているが、発電部1は図4と同様に排ガス隔壁30に内包される。本実施形態では、内殻40は、第1組立形態の底面45(図4)に相当する中空の箱形状を成す内殻ベース47を備え、内殻ベース47の上面における左右方向の端部近傍に設けられた、排ガスが流通するための一対のスリット48を備える。外殻50は、第1組立形態の底面55(図4)に相当する中空の箱形状を成す外殻ベース57を備え、外殻ベース57の上面における左右方向の端部近傍に設けられた、酸化剤が流通するための一対のスリット58を備える。
[Third assembly form]
FIG. 6 is an exploded perspective view of the fuel cell device 100 according to the third assembly embodiment of the present invention. In FIG. 6, the power generation unit 1 is not shown, but the power generation unit 1 is included in the exhaust gas partition wall 30 as in FIG. 4. In the present embodiment, the inner shell 40 includes an inner shell base 47 having a hollow box shape corresponding to the bottom surface 45 (FIG. 4) of the first assembly form, and in the vicinity of the left and right end portions on the upper surface of the inner shell base 47. Provided with a pair of slits 48 through which exhaust gas flows. The outer shell 50 includes an outer shell base 57 having a hollow box shape corresponding to the bottom surface 55 (FIG. 4) of the first assembly form, and is provided in the vicinity of the left and right end portions on the upper surface of the outer shell base 57. A pair of slits 58 are provided to allow the oxidant to flow.

排ガス隔壁30は、内殻ベース47の上面側に形成された一対のスリット48の左右方向の間に配置される。内殻40は、排ガス隔壁30、改質部4、内殻ベース47の上面の一対のスリット48を内包するように、内殻40の左側面41、右側面42、前側面43、後側面44、内殻40の上面46、および内殻ベース47を直方体状に組み立てて構成される。   The exhaust gas partition wall 30 is disposed between the pair of slits 48 formed on the upper surface side of the inner shell base 47 in the left-right direction. The inner shell 40 includes a left side surface 41, a right side surface 42, a front side surface 43, and a rear side surface 44 of the inner shell 40 so as to include a pair of slits 48 on the upper surface of the exhaust gas partition wall 30, the reforming unit 4, and the inner shell base 47. The upper surface 46 of the inner shell 40 and the inner shell base 47 are assembled in a rectangular parallelepiped shape.

内殻40は、外殻ベース57の上面に形成された一対のスリット58の左右方向の間に配置される。外殻50は、内殻40および外殻ベース57の上面の一対のスリット58を内包するように、外殻50の左側面51、右側面52、前側面53、後側面54、外殻50の上面56、および外殻ベース57を直方体状に組み立てて構成される。   The inner shell 40 is disposed between the pair of slits 58 formed on the upper surface of the outer shell base 57 in the left-right direction. The outer shell 50 includes a left side surface 51, a right side surface 52, a front side surface 53, a rear side surface 54, and an outer shell 50 so as to include a pair of slits 58 on the upper surface of the inner shell 40 and the outer shell base 57. The upper surface 56 and the outer shell base 57 are assembled in a rectangular parallelepiped shape.

次に、本発明の燃料電池装置100の構造及び動作について説明する。   Next, the structure and operation of the fuel cell device 100 of the present invention will be described.

[第1実施形態]
図1(a)、(b)、(c)は、上述の第1〜第3の組立形態に基づいて得られる第1実施形態の燃料電池装置100の部分的な概略断面図を示す。図1(a)は、燃料電池装置100を、改質部4の上方で水平に切断し、上側から見た概略断面図である。図1(b)は、燃料電池装置100を左右方向の中心部で切断し、左側から見た概略断面図である。図1(c)は、燃料電池装置100を前後方向の中心部で切断し、前側から見た概略断面図である。なお、第1〜第3の組立形態に例示される方法により組み立てられた燃料電池装置100は、それぞれ組立手順は異なっているが、本考案を適用するための主要な構造が共通に画成されている。
[First Embodiment]
FIGS. 1A, 1B, and 1C show partial schematic cross-sectional views of the fuel cell device 100 of the first embodiment obtained based on the first to third assembly modes described above. FIG. 1A is a schematic cross-sectional view of the fuel cell device 100 cut horizontally above the reforming unit 4 and viewed from above. FIG. 1B is a schematic cross-sectional view of the fuel cell device 100 cut from the center in the left-right direction and viewed from the left side. FIG. 1C is a schematic cross-sectional view of the fuel cell device 100 cut from the center in the front-rear direction and viewed from the front side. The fuel cell devices 100 assembled by the methods exemplified in the first to third assembly modes have different assembly procedures, but the main structures for applying the present invention are commonly defined. ing.

燃料電池装置100が発電を行う際には、原燃料導入部5から改質部4へと都市ガス、灯油、LPG等の水素含有燃料および水蒸気が供給される。改質部4に供給された水素含有燃料および水蒸気は、改質部4の内部に備えられた触媒およびオフガスの燃焼熱の作用などによって反応を生じ、水素富化ガスが生成される。改質部4で生成された水素富化ガスは、改質ガス供給部6および台座3を経て、セルスタック2のアノード極(不図示)に供給される。   When the fuel cell device 100 generates power, a hydrogen-containing fuel such as city gas, kerosene, LPG, and water vapor are supplied from the raw fuel introduction unit 5 to the reforming unit 4. The hydrogen-containing fuel and water vapor supplied to the reforming unit 4 are reacted by the action of the catalyst provided in the reforming unit 4 and the combustion heat of the offgas, and hydrogen-enriched gas is generated. The hydrogen-enriched gas generated in the reforming unit 4 is supplied to the anode electrode (not shown) of the cell stack 2 through the reformed gas supply unit 6 and the pedestal 3.

酸化剤は、酸化剤入口(図示せず)から外殻50の内部に取り込まれ、外殻50と内殻40との間の空間を流通し、内殻40の上面46から発電部1の方向に向かって配置された酸化剤供給部材12を経て排ガス隔壁30の内部に拡散される。酸化剤供給部材12は、内部が空洞の扁平な直方体形状であり、改質部4を貫通、または、改質部4を避けて、下方に延在している。内殻40と外殻50との間の酸化剤流路(不図示)を流通する酸化剤は、酸化剤供給部材12の上端に設けられた酸化剤供給入口13からその内部に導入され、酸化剤供給部材12の下端に設けられた酸化剤供給出口14から排ガス隔壁30の内部へ放出される。排ガス隔壁30の内部へ放出された酸化剤は、燃料電池セル(不図示)のカソード極(不図示)に供給される。   The oxidant is taken into the outer shell 50 from the oxidant inlet (not shown), flows through the space between the outer shell 50 and the inner shell 40, and extends from the upper surface 46 of the inner shell 40 to the power generation unit 1. It diffuses into the exhaust gas partition wall 30 through the oxidant supply member 12 arranged toward the front. The oxidant supply member 12 has a flat rectangular parallelepiped shape with a hollow inside, and extends downward through the reforming section 4 or avoiding the reforming section 4. An oxidant flowing through an oxidant flow path (not shown) between the inner shell 40 and the outer shell 50 is introduced into the oxidant supply inlet 13 provided at the upper end of the oxidant supply member 12 and oxidized. It is discharged into the exhaust gas partition 30 from an oxidant supply outlet 14 provided at the lower end of the agent supply member 12. The oxidant released into the exhaust gas partition wall 30 is supplied to the cathode electrode (not shown) of the fuel cell (not shown).

発電部1は、改質ガス供給部6から燃料電池セルのアノード極に供給される改質ガスと、酸化剤供給部材12から燃料電池セルのカソード極に供給される酸化剤とを利用して発電を行う。発電に利用されなかった余剰の燃料(アノードオフガス)および余剰の酸化剤(カソードオフガス)は、発電部1と改質部4の間のオフガス燃焼エリア9で燃焼される。このときの燃焼熱は改質部4の加熱に利用される。   The power generation unit 1 utilizes the reformed gas supplied from the reformed gas supply unit 6 to the anode electrode of the fuel cell and the oxidant supplied from the oxidant supply member 12 to the cathode electrode of the fuel cell. Generate electricity. Excess fuel (anode offgas) and excess oxidant (cathode offgas) that have not been used for power generation are combusted in an offgas combustion area 9 between the power generation unit 1 and the reforming unit 4. The combustion heat at this time is used for heating the reforming section 4.

発電部1の発電のために排ガス隔壁30の内側で生じた排ガスは、排ガス隔壁30と内殻40との間に形成された空間である排ガス流路21を流通して、排ガス出口22から燃料電池装置100の外部に排出される。   The exhaust gas generated inside the exhaust gas partition wall 30 for power generation of the power generation unit 1 flows through the exhaust gas channel 21 which is a space formed between the exhaust gas partition wall 30 and the inner shell 40, and is supplied from the exhaust gas outlet 22 to the fuel. It is discharged outside the battery device 100.

以上の動作において、セルスタック2においてはジュール熱が、オフガス燃焼エリア9においては水素富化ガスと酸化剤の燃焼による熱が発生する。燃料電池装置100が高い発電効率を達成するためには、これらの熱の必要量を適切に燃料電池装置100内に維持することが好ましいが、発生した熱の一部は、燃料電池装置100の外部方向に向かって伝導する。その放熱量を抑制するために、燃料電池装置100の内部には、各所に断熱材が配置されている。   In the above operation, Joule heat is generated in the cell stack 2, and heat due to combustion of the hydrogen-enriched gas and the oxidant is generated in the off-gas combustion area 9. In order for the fuel cell device 100 to achieve high power generation efficiency, it is preferable to appropriately maintain the required amount of heat in the fuel cell device 100. However, a part of the generated heat is generated by the fuel cell device 100. Conducted outward. In order to suppress the heat dissipation amount, heat insulating materials are arranged in various places inside the fuel cell device 100.

図1(a)〜(c)に示されるように、発電部1は内殻40の中央に配置されており、発電部1の周囲には、断熱構造体61〜65が配置されている。発電部1と排ガス隔壁30の左側面31との間には、排ガス隔壁30の左側面31に接するように断熱構造体61が配置されている。同様に、発電部1と排ガス隔壁30の右側面32との間には、排ガス隔壁30の右側面32に接するように断熱構造体62が配置されている。また、発電部1と内殻40の前側面43との間には、内殻40の前側面43に接するように断熱材構造体63が配置されている。同様に、発電部1と内殻40の後側面44との間には、内殻40の後側面44に接するように断熱構造体64が配置されている。さらに、発電部1の下方であって、発電部1と排ガス隔壁30の底面35との間には、断熱構造体65が配置されている。   As shown in FIGS. 1A to 1C, the power generation unit 1 is disposed at the center of the inner shell 40, and heat insulating structures 61 to 65 are disposed around the power generation unit 1. A heat insulating structure 61 is disposed between the power generation unit 1 and the left side surface 31 of the exhaust gas partition wall 30 so as to be in contact with the left side surface 31 of the exhaust gas partition wall 30. Similarly, a heat insulating structure 62 is disposed between the power generation unit 1 and the right side surface 32 of the exhaust gas partition wall 30 so as to be in contact with the right side surface 32 of the exhaust gas partition wall 30. Further, a heat insulating material structure 63 is disposed between the power generation unit 1 and the front side surface 43 of the inner shell 40 so as to be in contact with the front side surface 43 of the inner shell 40. Similarly, a heat insulating structure 64 is disposed between the power generation unit 1 and the rear side surface 44 of the inner shell 40 so as to be in contact with the rear side surface 44 of the inner shell 40. Furthermore, a heat insulating structure 65 is disposed below the power generation unit 1 and between the power generation unit 1 and the bottom surface 35 of the exhaust gas partition wall 30.

断熱構造体61〜65は、それぞれ保持部材71〜75、および、断熱材81〜85を含む複数層構造を有する。保持部材71〜75と断熱材81〜85とは、それぞれ異なる材料から成る。保持部材71〜75は、断熱材81〜85を排ガス隔壁30の内部の所望位置に配置および保持する。   The heat insulating structures 61 to 65 have a multi-layer structure including holding members 71 to 75 and heat insulating materials 81 to 85, respectively. The holding members 71 to 75 and the heat insulating materials 81 to 85 are made of different materials. The holding members 71 to 75 arrange and hold the heat insulating materials 81 to 85 at desired positions inside the exhaust gas partition wall 30.

保持部材73、74は、下側端部73e、74e(図1(b))において、排ガス隔壁30の底面35に接触している。保持部材73は、発電部1と所定の間隔を隔て、かつ、内殻40の前側面43と所定の間隔を隔てて、左右方向に延在している。内殻40の前側面43と保持部材73との間には断熱材83が介装されている。保持部材74は、発電部1と所定の間隔を隔て、かつ、内殻40の後側面44と所定の間隔を隔てて、左右方向に延在している。内殻40の後側面44と保持部材74との間には断熱材84が介装されている。   The holding members 73 and 74 are in contact with the bottom surface 35 of the exhaust gas partition wall 30 at the lower end portions 73e and 74e (FIG. 1B). The holding member 73 extends in the left-right direction at a predetermined interval from the power generation unit 1 and at a predetermined interval from the front side surface 43 of the inner shell 40. A heat insulating material 83 is interposed between the front side surface 43 of the inner shell 40 and the holding member 73. The holding member 74 extends in the left-right direction at a predetermined interval from the power generation unit 1 and at a predetermined interval from the rear side surface 44 of the inner shell 40. A heat insulating material 84 is interposed between the rear side surface 44 of the inner shell 40 and the holding member 74.

保持部材71、72は、下側端部71e、72e(図1(c))において、排ガス隔壁30の底面35(図1(c))に接触している。保持部材71は、発電部1と所定の間隔を隔て、かつ、排ガス隔壁30の左側面31と所定の間隔を隔てて、前後方向に延在している。排ガス隔壁30の左側面31と保持部材71との間には、断熱材81が介装されている。保持部材72は、発電部1と所定の間隔を隔て、かつ、排ガス隔壁30の右側面32と所定の間隔を隔てて、前後方向に延在している。排ガス隔壁30の右側面32と保持部材72との間には、断熱材82が介装されている。   The holding members 71 and 72 are in contact with the bottom surface 35 (FIG. 1C) of the exhaust gas partition wall 30 at the lower end portions 71e and 72e (FIG. 1C). The holding member 71 extends in the front-rear direction at a predetermined interval from the power generation unit 1 and at a predetermined interval from the left side surface 31 of the exhaust gas partition wall 30. A heat insulating material 81 is interposed between the left side surface 31 of the exhaust gas partition wall 30 and the holding member 71. The holding member 72 extends in the front-rear direction at a predetermined interval from the power generation unit 1 and at a predetermined interval from the right side surface 32 of the exhaust gas partition wall 30. A heat insulating material 82 is interposed between the right side surface 32 of the exhaust gas partition wall 30 and the holding member 72.

保持部材71の前側端部71cは、内殻40の前側面43側に配置される断熱構造体63の保持部材73に接触し、後側端部71dは、内殻40の後側面44側に配置される断熱構造体64の保持部材74に接触している。同様に、保持部材72の前側端部72cは、内殻40の前側面43側に配置される断熱構造体63の保持部材73に接触し、後側端部72dは、内殻40の後側面44側に配置される断熱構造体64の保持部材74に接触している。   The front end 71c of the holding member 71 contacts the holding member 73 of the heat insulating structure 63 disposed on the front side 43 side of the inner shell 40, and the rear end 71d is on the rear side 44 side of the inner shell 40. It contacts the holding member 74 of the heat insulating structure 64 to be arranged. Similarly, the front end 72c of the holding member 72 is in contact with the holding member 73 of the heat insulating structure 63 disposed on the front side 43 side of the inner shell 40, and the rear end 72d is the rear side of the inner shell 40. It contacts the holding member 74 of the heat insulating structure 64 disposed on the 44 side.

保持部材71、72は、内向き面(発電部1に対向する面)に、前後方向に帯状に延びる凸部71g、72gをそれぞれ備える。凸部71g、72gとセルスタック2との間には、3mm〜7mm程度の隙間が存在している。燃料電池装置100は、発電のために酸化剤供給部材12を介して排ガス隔壁30の内部に取り込んだ酸化剤がセルスタック2の下方から上方に流動していく過程において、酸化剤を効果的にカソード極に接触させることが求められる。これに対処すべく、これらの凸部71g、72gを備えることにより、酸化剤をカソード極近傍に集約させることができる。なお、凸部71g、72gの凸形状は、排ガス隔壁30内における酸化剤の拡散特性に応じて定めることができる。断熱材81、82を加工して、酸化剤をカソード極近傍に集約させるための凸部を設けることも考え得るが、この場合は断熱材81、82の材料として、成型加工や切削加工が可能であり、同時に断熱性能が所望の条件を満たす材料を選択する必要があるため、選択し得る断熱材の種類が限定される。つまり、保持部材71、72に凸部71g、72gを形成することで、断熱材81、82を加工して、酸化剤をカソード極近傍に集約させるための凸部を設ける場合に比較して、加工に要する時間やコストを軽減することができる。なお、保持部材71、72は、凸部71g、72gを備えていなくてもよい。   The holding members 71 and 72 are each provided with convex portions 71g and 72g extending in a strip shape in the front-rear direction on the inward surface (the surface facing the power generation unit 1). Between the convex parts 71g and 72g and the cell stack 2, a gap of about 3 mm to 7 mm exists. In the process in which the oxidant taken into the exhaust gas partition wall 30 through the oxidant supply member 12 for power generation flows from the lower side to the upper side of the cell stack 2, the fuel cell device 100 effectively uses the oxidant. It is required to contact the cathode electrode. In order to cope with this, by providing these convex portions 71g and 72g, the oxidant can be concentrated in the vicinity of the cathode electrode. The convex shapes of the convex portions 71g and 72g can be determined according to the diffusion characteristics of the oxidizing agent in the exhaust gas partition wall 30. Although it is possible to process the heat insulating materials 81 and 82 to provide a convex portion for concentrating the oxidant in the vicinity of the cathode electrode, in this case, the material of the heat insulating materials 81 and 82 can be molded or cut. At the same time, since it is necessary to select a material that satisfies the desired heat insulation performance, the types of heat insulating materials that can be selected are limited. In other words, by forming the convex portions 71g and 72g on the holding members 71 and 72, as compared with the case where the heat insulating materials 81 and 82 are processed to provide the convex portions for concentrating the oxidant in the vicinity of the cathode pole, Processing time and cost can be reduced. Note that the holding members 71 and 72 may not include the convex portions 71g and 72g.

保持部材73の左側端部73aは、排ガス隔壁30の左側面31に接触し、保持部材73の右側端部73bは、排ガス隔壁30の右側面32に接触している。同様に、保持部材74の左側端部74aは、排ガス隔壁30の左側面31に接触し、保持部材74の右側端部74bは、排ガス隔壁30の右側面32に接触している。   The left end portion 73 a of the holding member 73 is in contact with the left side surface 31 of the exhaust gas partition wall 30, and the right end portion 73 b of the holding member 73 is in contact with the right side surface 32 of the exhaust gas partition wall 30. Similarly, the left end 74 a of the holding member 74 is in contact with the left side 31 of the exhaust gas partition 30, and the right end 74 b of the holding member 74 is in contact with the right side 32 of the exhaust gas partition 30.

保持部材75は、排ガス隔壁30の底面35と所定の間隔を隔てて、水平方向に延在している。排ガス隔壁30の底面35と保持部材75との間には、断熱材85が介装されている。   The holding member 75 extends in the horizontal direction at a predetermined interval from the bottom surface 35 of the exhaust gas partition wall 30. A heat insulating material 85 is interposed between the bottom surface 35 of the exhaust gas partition wall 30 and the holding member 75.

保持部材75の左側端部75a(図1(c))は、排ガス隔壁30の左側面31側に配置される断熱構造体61の保持部材71に接触し、保持部材75の右側端部75bは、排ガス隔壁30の右側面32側に配置される断熱構造体62保持部材72に接触している。また、保持部材75の前側端部75cは、内殻40の前側面43側に配置される断熱構造体63の保持部材73に接触し、後側端部75dは、内殻40の後側面44側に配置される断熱構造体64の保持部材74に接触している。   The left end 75a (FIG. 1C) of the holding member 75 contacts the holding member 71 of the heat insulating structure 61 disposed on the left side 31 side of the exhaust gas partition wall 30, and the right end 75b of the holding member 75 is The heat insulating structure 62 holding member 72 disposed on the right side surface 32 side of the exhaust gas partition wall 30 is in contact with the exhaust gas partition wall 30. Further, the front end 75 c of the holding member 75 contacts the holding member 73 of the heat insulating structure 63 disposed on the front side 43 side of the inner shell 40, and the rear end 75 d is the rear side 44 of the inner shell 40. It contacts the holding member 74 of the heat insulating structure 64 disposed on the side.

保持部材71〜75の外向き面(発電部1に対向する面の反対側の面)は、平坦な面として形成されている。このように平坦な面とすることで、保持部材71〜75と断熱材81〜85の接触がより緊密となり、不要なガス対流が抑制されるため、断熱性能を向上させることができる。また、市場において比較的容易に入手可能な断熱材は両面が平坦であるボード状であることが多い。保持部材71〜75の、断熱材81〜85と対向する面が平坦でない場合に、これら両面が平坦な断熱材を介装すると、保持部材71〜75と、断熱材81〜85との間に隙間が生じる。断熱性を向上させるためには、これらの隙間は可能な限り低減することが望ましい。したがって、保持部材71〜75の、断熱材81〜85と対向する面を平坦にすることにより、断熱材81〜85の加工の手間を軽減し、断熱材を緊密に介装することができる。なお、断熱材の介装は、第1〜第3の組立形態として例示した、燃料電池装置100の組立構造に応じて、組み立て中の適切な段階において介装することができる。   The outward surfaces of the holding members 71 to 75 (surfaces opposite to the surfaces facing the power generation unit 1) are formed as flat surfaces. By making the surface flat in this manner, the contact between the holding members 71 to 75 and the heat insulating materials 81 to 85 becomes closer, and unnecessary gas convection is suppressed, so that the heat insulating performance can be improved. Further, the heat insulating material that is relatively easily available in the market is often in the form of a board having both sides flat. When the surfaces of the holding members 71 to 75 facing the heat insulating materials 81 to 85 are not flat, if the heat insulating materials having flat surfaces are interposed, the holding members 71 to 75 and the heat insulating materials 81 to 85 are interposed. A gap is created. In order to improve heat insulation, it is desirable to reduce these gaps as much as possible. Therefore, by flattening the surfaces of the holding members 71 to 75 that face the heat insulating materials 81 to 85, labor for processing the heat insulating materials 81 to 85 can be reduced and the heat insulating materials can be interposed closely. The heat insulating material can be interposed at an appropriate stage during assembly according to the assembly structure of the fuel cell device 100 exemplified as the first to third assembly modes.

本発明においては、断熱材81〜85は、任意の断熱材料から形成することができる。一般に、低熱伝導率の材料ほど断熱性に優れる。特に熱伝導率が静止空気よりも低い材料は高い断熱性能を発揮することから、断熱材81〜85の材料として、静止空気より低い熱伝導率を有する断熱材を用いることが好ましい。なお保護熱板法による静止空気の熱伝導率は、400℃において、0.04kcal/(m・h・℃)=0.0464W(m・K)、600℃において、0.05kcal/(m・h・℃)=0.058W/(m・K)である。   In this invention, the heat insulating materials 81-85 can be formed from arbitrary heat insulating materials. In general, the lower the thermal conductivity, the better the heat insulation. In particular, since a material whose thermal conductivity is lower than that of still air exhibits high heat insulating performance, it is preferable to use a heat insulating material having a thermal conductivity lower than that of still air as the material of the heat insulating materials 81 to 85. The thermal conductivity of still air by the protective hot plate method is 0.04 kcal / (m · h · ° C.) = 0.0464 W (m · K) at 400 ° C., and 0.05 kcal / (m · h · ° C.) = 0.058 W / (m · K).

静止空気より低い熱伝導率を有する断熱材としてマイクロポーラス断熱材(ナノサイズのヒュームドシリカ粒子の成形体)が入手可能である。具体的には、ボード状(平板状)のマイクロポーラス断熱材を使用することができる。   As a heat insulating material having a lower thermal conductivity than still air, a microporous heat insulating material (a molded body of nano-sized fumed silica particles) is available. Specifically, a board-like (flat plate-like) microporous heat insulating material can be used.

なお、ボード状断熱材を耐熱クロス(耐熱布)で覆ったものを使用してもよい。このようにすることで、断熱材81〜85を介装する際に、排ガス隔壁30または内殻40と断熱材81〜85との擦れ合いによる断熱材81〜85の粉化を抑制することができ、組立性が向上する。また、上記擦れ合いの他、燃料電池装置100の運搬時や運転時に粉化した断熱材81〜85が、燃料電池装置100内に飛散することによる当該粉のセルスタック2への付着や、酸化剤供給部材12の開口部(酸化剤供給入口13、酸化剤供給出口14)付近に当該粉が堆積することによる開口部(酸化剤供給入口13、酸化剤供給出口14)の閉塞を抑制することができる。これによって、より長期にわたって発電性能を維持することができる。また、耐熱クロスの編み方は任意であるが、なるべく強度の高い編み方が好ましい。例えば、耐熱クロスとして、ステンレスクロスを用いることができる。また、耐熱クロスにアルミシートを貼り付け、または蒸着してもよい。これにより、水分を含むガスが流通する燃料電池装置1内での使用において、耐水性を向上することができる。   In addition, you may use what covered the board-shaped heat insulating material with the heat resistant cloth (heat resistant cloth). By doing in this way, when interposing the heat insulating materials 81-85, it can suppress the powdering of the heat insulating materials 81-85 by the friction between the exhaust gas partition 30 or the inner shell 40 and the heat insulating materials 81-85. This can improve assembly. In addition to the rubbing, the heat insulating materials 81 to 85 that are pulverized during transportation or operation of the fuel cell device 100 are scattered in the fuel cell device 100, and the powder adheres to the cell stack 2 or is oxidized. Suppressing clogging of the openings (oxidant supply inlet 13, oxidant supply outlet 14) due to the accumulation of the powder near the openings (oxidant supply inlet 13, oxidant supply outlet 14) of the oxidant supply member 12. Can do. As a result, the power generation performance can be maintained over a longer period. Moreover, although the method of knitting the heat resistant cloth is arbitrary, a method of knitting with as high a strength as possible is preferable. For example, a stainless steel cloth can be used as the heat resistant cloth. Further, an aluminum sheet may be attached to the heat resistant cloth or may be vapor-deposited. Thereby, water resistance can be improved in use in the fuel cell device 1 in which a gas containing moisture flows.

また、断熱材を耐熱クロスで覆ったものを使用する場合、断熱材の種類として、例えば粉状または粒状の断熱材を選択することもできる。断熱材81〜85は、保持部材71〜75と排ガス隔壁30または内殻40との間で挟持されるため、断熱材81〜85自体で形状を保持する必要がないからである。これにより、断熱材の種類の選択性が向上する。また、粉状または粒状の断熱材の充填量や熱伝導率を任意に選択することにより、燃料電池装置100の寸法選択性を高めることができる。   Moreover, when using what covered the heat insulating material with the heat resistant cloth, a powdery or granular heat insulating material can also be selected as a kind of heat insulating material, for example. This is because the heat insulating materials 81 to 85 are sandwiched between the holding members 71 to 75 and the exhaust gas partition wall 30 or the inner shell 40, so that it is not necessary to hold the shape with the heat insulating materials 81 to 85 themselves. Thereby, the selectivity of the kind of heat insulating material improves. Moreover, the dimensional selectivity of the fuel cell device 100 can be improved by arbitrarily selecting the filling amount and thermal conductivity of the powdery or granular heat insulating material.

また、排ガス隔壁30および内殻40の内部において、セルスタック2が配置される空間と断熱材81〜85が配置される空間との連通を、保持部材71〜75で完全に遮断する構造とした場合は、粉状または粒状の断熱材を、耐熱クロスで覆わずに使用することができる。これにより、耐熱クロスで覆われた断熱材を用いる場合と同等の効果を得ることができる。   Further, in the exhaust gas partition wall 30 and the inner shell 40, the holding members 71 to 75 completely block communication between the space in which the cell stack 2 is disposed and the space in which the heat insulating materials 81 to 85 are disposed. In this case, a powdery or granular heat insulating material can be used without being covered with a heat resistant cloth. Thereby, the effect equivalent to the case where the heat insulating material covered with the heat resistant cloth can be obtained.

排ガス隔壁30の内部は、発電部1の発電中には750℃程度の高温に達する。したがって、保持部材71〜75の材料としては、この高温に耐えられる程度の耐熱性を有する材料であれば、セラミックス、金属などの任意の材料を用いることができる。例えば、シリカ、アルミナ系の材料を使用することができる。特に、セルスタック2の近傍に配置される断熱構造体61〜64の保持部材71〜74は、絶縁性の材料を用いてもよい。保持部材を絶縁性の材料とすることで、前記保持部材を前記燃料電池セルスタックに接触させることが可能となり、酸化剤の流れをより好適に整えることができ、酸化剤をカソード極近傍により好適に集約することが可能となる。   The inside of the exhaust gas partition 30 reaches a high temperature of about 750 ° C. during power generation by the power generation unit 1. Therefore, any material such as ceramics or metal can be used as the material of the holding members 71 to 75 as long as the material has heat resistance enough to withstand this high temperature. For example, a silica or alumina material can be used. In particular, an insulating material may be used for the holding members 71 to 74 of the heat insulating structures 61 to 64 disposed in the vicinity of the cell stack 2. By using an insulating material for the holding member, the holding member can be brought into contact with the fuel cell stack, and the flow of the oxidant can be adjusted more appropriately. The oxidant is more suitable in the vicinity of the cathode. It is possible to aggregate them.

或いは、保持部材71〜75の材料として、断熱材81〜85として用いる断熱材より加工に要するコストや手間が少ない、あるいは、粉化しにくい断熱材料を用いてもよい。断熱性能を備えない材料から成る保持部材71〜75と断熱材81〜85の組み合わせと、断熱性能を備える材料から成る保持部材71〜75と断熱材81〜85の組み合わせを比較すると、後者の方が、断熱材81〜85の条件(断熱材の厚さや熱伝導率)を緩和することができる。例えば、断熱材81〜85として熱伝導率の低い材料を用い、保持部材71〜75として、断熱材81〜85より熱伝導率が高いものの比較的加工性が高い断熱材料を用いることができる。具体例としては、保持部材としてイソウール(登録商標)を用い、断熱部材としてボード状のロスリム(登録商標)ボードを用いることができる。イソウールの熱伝導率は600℃において0.09W/(m・K)、ロスリムボードの熱伝導率は600℃において0.035W/(m・K)である。このような材料選択を行うことで、比較的高価である低熱伝導率の断熱材料の使用量を削減することができる。また、断熱材81〜85として、粉化しやすいが熱伝導率が低い材料を用い、保持部材として熱伝導率は低いが粉化しにくい、あるいは、熱伝導率が低くかつ粉化しにくいが高価である材料を用いることもできる。、このような材料選択を行うことで、断熱構造体全体のコストを低減することができ、または加工の手間を低減することができる。   Alternatively, as the material of the holding members 71 to 75, a heat insulating material that requires less cost and labor for processing than the heat insulating material used as the heat insulating materials 81 to 85 or that is difficult to be pulverized may be used. When the combination of the holding members 71 to 75 and the heat insulating materials 81 to 85 made of a material not having heat insulating performance is compared with the combination of the holding members 71 to 75 made of a material having heat insulating performance and the heat insulating materials 81 to 85, the latter However, the conditions (thickness and thermal conductivity of the heat insulating material) of the heat insulating materials 81 to 85 can be relaxed. For example, a material having a low thermal conductivity can be used as the heat insulating materials 81 to 85, and a heat insulating material having a higher workability than the heat insulating materials 81 to 85 can be used as the holding members 71 to 75. As a specific example, Isowool (registered trademark) can be used as the holding member, and a board-shaped Roslim (registered trademark) board can be used as the heat insulating member. The thermal conductivity of Isowool is 0.09 W / (m · K) at 600 ° C., and the thermal conductivity of Roslim board is 0.035 W / (m · K) at 600 ° C. By performing such material selection, it is possible to reduce the amount of heat insulating material with low thermal conductivity, which is relatively expensive. Further, as the heat insulating materials 81 to 85, a material that is easily pulverized but has a low thermal conductivity is used, and the holding member has a low thermal conductivity but is difficult to pulverize, or has a low thermal conductivity and is difficult to pulverize, but is expensive. Materials can also be used. By performing such material selection, the cost of the entire heat insulating structure can be reduced, or the labor of processing can be reduced.

[第1実施形態の変形例]
図2(a)〜(c)に、上述の第1〜第3の組立形態に基づいて得られる第1実施形態の燃料電池装置100の変形例の部分的な概略断面図を示す。本変形例においては、断熱構造体61〜65の配置が、上記の第1実施形態とは異なる。以下の説明において、第1実施形態と同じ構成については、その説明を省略する。図2(a)は、燃料電池装置100を、改質部4の上方で水平に切断し、上側から見た概略断面図である。図2(b)は、燃料電池装置100を左右方向の中心部で切断し、左側から見た概略断面図である。図2(c)は、燃料電池装置100を前後方向の中心部で切断し、前側から見た概略断面図である。なお、第1〜第3組立形態に例示される方法により組み立てられた燃料電池発電装置100は、それぞれ組立手順は異なっているが、構成品の配置は共通である。
[Modification of First Embodiment]
FIGS. 2A to 2C are partial schematic cross-sectional views of modifications of the fuel cell device 100 of the first embodiment obtained based on the first to third assembly modes described above. In the present modification, the arrangement of the heat insulating structures 61 to 65 is different from that of the first embodiment. In the following description, the description of the same configuration as that of the first embodiment is omitted. FIG. 2A is a schematic cross-sectional view of the fuel cell device 100 cut horizontally above the reforming unit 4 and viewed from above. FIG. 2B is a schematic cross-sectional view of the fuel cell device 100 cut from the center in the left-right direction and viewed from the left side. FIG. 2C is a schematic cross-sectional view of the fuel cell device 100 cut from the center in the front-rear direction and viewed from the front side. The fuel cell power generation devices 100 assembled by the methods exemplified in the first to third assembly modes have different assembly procedures, but the arrangement of components is common.

保持部材75は、排ガス隔壁30の底面35と所定の間隔を隔てて、水平方向に延在している。保持部材75の左側端部75aは、排ガス隔壁30の左側面31に接触し、保持部材75の右側端部75bは、排ガス隔壁30の右側面32に接触している。保持部材75の前側端部75cは、内殻40の前側面43側に接触し、後側端部75dは、内殻40の後側面44に接触している。排ガス隔壁30の底面35と保持部材75との間には、断熱材85が介装されている。   The holding member 75 extends in the horizontal direction at a predetermined interval from the bottom surface 35 of the exhaust gas partition wall 30. The left end portion 75 a of the holding member 75 is in contact with the left side surface 31 of the exhaust gas partition wall 30, and the right end portion 75 b of the holding member 75 is in contact with the right side surface 32 of the exhaust gas partition wall 30. The front end 75 c of the holding member 75 is in contact with the front side 43 of the inner shell 40, and the rear end 75 d is in contact with the rear side 44 of the inner shell 40. A heat insulating material 85 is interposed between the bottom surface 35 of the exhaust gas partition wall 30 and the holding member 75.

保持部材71、72は、下側端部71e、72eにおいて、保持部材75に接触している。保持部材71および72は、発電部1と所定の間隔を隔て、かつ、排ガス隔壁30の左右側面31、32とそれぞれ所定の間隔を隔てて、それぞれ前後方向に延在している。排ガス隔壁30の左側面31と保持部材71との間には断熱材81が、排ガス隔壁30の右側面32と保持部材72との間には断熱材82が介装されている。   The holding members 71 and 72 are in contact with the holding member 75 at the lower end portions 71e and 72e. The holding members 71 and 72 extend in the front-rear direction at a predetermined interval from the power generation unit 1 and from the left and right side surfaces 31 and 32 of the exhaust gas partition wall 30 at a predetermined interval, respectively. A heat insulating material 81 is interposed between the left side surface 31 of the exhaust gas partition wall 30 and the holding member 71, and a heat insulating material 82 is interposed between the right side surface 32 of the exhaust gas partition wall 30 and the holding member 72.

保持部材73、74は、下側端部73e、74eにおいて、保持部材75に接触している。保持部材73、74は、発電部1と所定の間隔を隔て、かつ、内殻40の前後側面43、44と所定の間隔を隔てて、それぞれ左右方向に延在している。内殻40の前側面43と保持部材73との間には断熱材83が、内殻40の後側面44と保持部材74との間には断熱材84が介装されている。   The holding members 73 and 74 are in contact with the holding member 75 at the lower end portions 73e and 74e. The holding members 73 and 74 extend in the left-right direction at a predetermined interval from the power generation unit 1 and at a predetermined interval from the front and rear side surfaces 43 and 44 of the inner shell 40. A heat insulating material 83 is interposed between the front side surface 43 of the inner shell 40 and the holding member 73, and a heat insulating material 84 is interposed between the rear side surface 44 of the inner shell 40 and the holding member 74.

保持部材73の左側端部73aは、断熱構造体61の保持部材71に接触し、保持部材73の右側端部73bは、断熱構造体62の保持部材72に接触している。同様に、保持部材74の左側端部74aは、断熱構造体61の保持部材71に接触し、保持部材74の右側端部74bは、断熱構造体62の保持部材72に接触している。   The left end 73 a of the holding member 73 is in contact with the holding member 71 of the heat insulating structure 61, and the right end 73 b of the holding member 73 is in contact with the holding member 72 of the heat insulating structure 62. Similarly, the left end 74 a of the holding member 74 is in contact with the holding member 71 of the heat insulating structure 61, and the right end 74 b of the holding member 74 is in contact with the holding member 72 of the heat insulating structure 62.

このように断熱構造体を配置しても、第1実施形態と同様の効果を得ることができる。   Thus, even if it arrange | positions a heat insulation structure, the effect similar to 1st Embodiment can be acquired.

[第2実施形態]
図3は、第2実施形態の燃料電池装置200を前後方向の中心部で切断し、前側から見た概略断面図である。以下の説明において、第1実施形態と同じ構成については、その説明を省略する。第2実施形態の燃料電池装置200は、第1実施形態の燃料電池装置100と異なり、排ガス隔壁30を備えない。断熱構造体61は内殻40の左側面41に、断熱構造体62は内殻40の右側面42に、断熱構造体65は内殻40の底面45に、それぞれ接触している。発電のために発生した排ガスは、内殻40の上面46に形成された排ガス出口22から燃料電池装置200の外部へと排出される。
[Second Embodiment]
FIG. 3 is a schematic cross-sectional view of the fuel cell device 200 according to the second embodiment cut from the center in the front-rear direction and viewed from the front side. In the following description, the description of the same configuration as that of the first embodiment is omitted. Unlike the fuel cell device 100 of the first embodiment, the fuel cell device 200 of the second embodiment does not include the exhaust gas partition wall 30. The heat insulation structure 61 is in contact with the left side surface 41 of the inner shell 40, the heat insulation structure 62 is in contact with the right side surface 42 of the inner shell 40, and the heat insulation structure 65 is in contact with the bottom surface 45 of the inner shell 40. The exhaust gas generated for power generation is discharged from the exhaust gas outlet 22 formed on the upper surface 46 of the inner shell 40 to the outside of the fuel cell device 200.

また、第1実施形態の説明では、燃料電池装置100の内部には、断熱構造体61〜65の全てが配置されるものとしたが、図6に示す第2実施形態の燃料電池装置200は、発電部1の下部に断熱構造体65の保持部材75を有さず、断熱材85が配置されるのみである。この場合、例えば、保持部材71および72のセルスタック2と対向する面に凹部71h、72hを設ける。そして、当該凹部71h、72hで台座3を挟持することにより、発電部1を支持することができる。ここで、断熱材85を省略してもよく、または、凹部71h、72hにより、台座3ではなく保持部材75を挟持して、断熱材85を省略してもよい。   In the description of the first embodiment, all of the heat insulating structures 61 to 65 are disposed inside the fuel cell device 100. However, the fuel cell device 200 of the second embodiment shown in FIG. In addition, the heat insulating member 85 is merely disposed without the holding member 75 of the heat insulating structure 65 in the lower part of the power generation unit 1. In this case, for example, recesses 71h and 72h are provided on the surfaces of the holding members 71 and 72 facing the cell stack 2. And the electric power generation part 1 can be supported by pinching the base 3 by the said recessed parts 71h and 72h. Here, the heat insulating material 85 may be omitted, or the holding member 75 may be sandwiched by the recesses 71h and 72h, and the heat insulating material 85 may be omitted.

また、断熱構造体65の省略に代えて、またはこれに加えて、発電部1の前後左右側面に位置する断熱構造体61〜64のいずれかを省略してもよい。要求される断熱性能や断熱材の加工性を考慮して、任意の箇所に本考案を適用することができる。   Further, instead of or in addition to the omission of the heat insulating structure 65, any of the heat insulating structures 61 to 64 positioned on the front, rear, left and right side surfaces of the power generation unit 1 may be omitted. In consideration of the required heat insulation performance and workability of the heat insulating material, the present invention can be applied to any location.

以上、本考案の図1〜図3の断熱構造を有する燃料電池装置100、200を実施形態として説明してきたが、本考案はこれらの具体例に限定されず、本考案の範囲内で改変することができる。例えば、保持部材71〜75は、それらの位置決めまたは自立のために、嵌合部、フック等の係合部、脚部等を適宜備えていてもよい。また、断熱材81〜85が、配置されるべき位置からずれることを抑制するために、保持部材71〜75または断熱材81〜85は、係止部を適宜備えていてもよい。図1〜図3においては、断熱構造体61〜65同士、断熱構造体61〜65と排ガス隔壁部30、または断熱構造体61〜65と内殻40が接触するように配置しているが、上記のような位置決め構造または係止部を備える場合には、接触していなくてもよい。   As mentioned above, although fuel cell device 100, 200 which has the heat insulation structure of FIGS. 1-3 of this invention was demonstrated as embodiment, this invention is not limited to these specific examples, It modifies within the scope of this invention. be able to. For example, the holding members 71 to 75 may appropriately include engaging portions such as fitting portions and hooks, leg portions, and the like for positioning or self-supporting thereof. Moreover, in order to suppress that the heat insulating materials 81-85 shift | deviate from the position which should be arrange | positioned, the holding members 71-75 or the heat insulating materials 81-85 may be provided with the latching | locking part suitably. 1 to 3, the heat insulating structures 61 to 65, the heat insulating structures 61 to 65 and the exhaust gas partition wall 30, or the heat insulating structures 61 to 65 and the inner shell 40 are in contact with each other, When the positioning structure or the locking portion as described above is provided, it may not be in contact.

また、上記実施形態においては、第1〜第3の組立形態として、酸化剤が、内殻40の底面45と外殻50の底面55との空間、内殻40の左右側面41、42と外殻50の左右側面51、52との空間、内殻40の上面46と外殻50の上面56との空間の順に流通するものとして説明したが、本考案を実施するうえで、酸化剤および排ガスの流路構造はこれらに限定されない。例えば、内殻40の左右側面41、42と外殻50の左右側面51、52に代えて、または追加して、内殻40の前後側面43、44と外殻50の前後側面53、54との間の空間に酸化剤を流通させてもよい。または、酸化剤入口を外殻50の上面56に形成し、内殻40の上面46と外殻50の上面56との間の空間にのみ酸化剤を流通させてもよい。あるいは、外殻50を省略して、配管等により酸化剤供給部材12に酸化剤を供給する構造にしてもよい。   In the above embodiment, as the first to third assembly forms, the oxidant is a space between the bottom surface 45 of the inner shell 40 and the bottom surface 55 of the outer shell 50, the left and right side surfaces 41, 42 of the inner shell 40 and the outer surface. Although it has been described that the space flows between the left and right side surfaces 51 and 52 of the shell 50 and the space between the upper surface 46 of the inner shell 40 and the upper surface 56 of the outer shell 50, the oxidizing agent and the exhaust gas are used in carrying out the present invention. The flow path structure is not limited to these. For example, instead of or in addition to the left and right side surfaces 41 and 42 of the inner shell 40 and the left and right side surfaces 51 and 52 of the outer shell 50, the front and rear side surfaces 43 and 44 of the inner shell 40 and the front and rear side surfaces 53 and 54 of the outer shell 50 An oxidizing agent may be circulated in the space between the two. Alternatively, the oxidant inlet may be formed on the upper surface 56 of the outer shell 50, and the oxidant may be circulated only in the space between the upper surface 46 of the inner shell 40 and the upper surface 56 of the outer shell 50. Alternatively, the outer shell 50 may be omitted, and the oxidizing agent may be supplied to the oxidizing agent supply member 12 by piping or the like.

また、上記実施形態においては、水素富化ガスが台座3を経てアノード極に供給され、酸化剤が酸化剤供給部材12により排ガス隔壁30内部に放出されてカソード極に到達する発電部1を例示したが、これに限定されない。例えば、アノード極が燃料電池セルの表面側に、カソード極が燃料電池セルの内側に形成される形態のセルスタック2を用いる場合は、台座3に対して酸化剤を供給し、排ガス隔壁30内部に水素富化ガスを供給することができる。また、水素富化ガスおよび酸化剤ガスを、それぞれセパレータを用いてアノード極およびカソード極に供給するプレート積層形状のセルスタック2を用いる場合は、水素富化ガスまたは酸化剤のいずれも排ガス隔壁30内に充満する構造である必要はない。   Further, in the above embodiment, the power generation unit 1 in which the hydrogen-enriched gas is supplied to the anode electrode through the pedestal 3 and the oxidant is discharged into the exhaust gas partition wall 30 by the oxidant supply member 12 and reaches the cathode electrode is illustrated. However, it is not limited to this. For example, when the cell stack 2 is used in which the anode electrode is formed on the surface side of the fuel cell and the cathode electrode is formed on the inside of the fuel cell, an oxidant is supplied to the pedestal 3 to Hydrogen enriched gas can be supplied to In addition, when using the cell stack 2 having a plate stack shape that supplies the hydrogen-enriched gas and the oxidant gas to the anode electrode and the cathode electrode, respectively, using a separator, either the hydrogen-enriched gas or the oxidant is the exhaust gas partition 30. The structure does not need to be filled inside.

また、上記実施形態においては、原料導入部5から水素含有燃料および水蒸気を供給するものとしたが、原料導入部5とは別に水蒸気を供給するための導入部を設け、水素含有燃料と水蒸気を異なる導入部から改質部4に導入する構成としてもよい。   In the above embodiment, the hydrogen-containing fuel and water vapor are supplied from the raw material introduction unit 5. However, an introduction unit for supplying water vapor is provided separately from the raw material introduction unit 5, and the hydrogen-containing fuel and water vapor are supplied. It is good also as a structure introduced into the modification | reformation part 4 from a different introduction part.

また、上記実施形態においては、改質部4として直方体形状のものを例示したが、様々な形状のものを用いることが可能である。例えば、円筒形状のものを用いることができる。また、改質部4に代えて、脱水素反応部を備えてもよい。この場合、水素含有燃料として、有機ハイドライドを脱水素反応部に導入する。オフガス燃焼熱を利用して脱水素反応を行い、分離された水素をセルスタック2に供給する。更に、水素含有燃料として、水素富化ガスまたは純水素を用いる場合は、改質部4自体を省略して水素富化ガスまたは純水素を直接セルスタック2に供給することができる。   Moreover, in the said embodiment, although the rectangular parallelepiped shape was illustrated as the modification part 4, the thing of various shapes can be used. For example, a cylindrical shape can be used. Further, instead of the reforming unit 4, a dehydrogenation reaction unit may be provided. In this case, organic hydride is introduced into the dehydrogenation reaction section as a hydrogen-containing fuel. A dehydrogenation reaction is performed using off-gas combustion heat, and the separated hydrogen is supplied to the cell stack 2. Further, when hydrogen-enriched gas or pure hydrogen is used as the hydrogen-containing fuel, the hydrogen enriched gas or pure hydrogen can be directly supplied to the cell stack 2 without the reforming unit 4 itself.

本発明の燃料電池装置は、断熱材を保持する保持部材を用いることで、断熱材の加工の手間およびコストを軽減するとともに、断熱材の種類の選択性を向上させることができる断熱構造を備えている。それゆえ、本考案を用いることで、所望の断熱性能を有する燃料電池装置の製造コストの低減、または設計自由度の向上を実現することができる。   The fuel cell device of the present invention includes a heat insulating structure that can reduce the labor and cost of processing the heat insulating material and improve the selectivity of the type of heat insulating material by using a holding member that holds the heat insulating material. ing. Therefore, by using the present invention, it is possible to realize a reduction in manufacturing cost or an improvement in design freedom of a fuel cell device having a desired heat insulation performance.

1 発電部
2 セルスタック
3 台座
4 改質部
5 原燃料導入部
6 改質ガス供給部
9 オフガス燃焼エリア
12 酸化剤供給部材
13 酸化剤供給入口
14 酸化剤供給出口
21 排ガス流路
22 排ガス出口
30 排ガス隔壁
40 内殻
50 外殻
61〜65 断熱構造体
71〜75 保持部材
81〜85 断熱材
100、200 燃料電池装置
DESCRIPTION OF SYMBOLS 1 Power generation part 2 Cell stack 3 Base 4 Reforming part 5 Raw fuel introduction part 6 Reformed gas supply part 9 Off gas combustion area 12 Oxidant supply member 13 Oxidant supply inlet 14 Oxidant supply outlet 21 Exhaust gas flow path 22 Exhaust gas outlet 30 Exhaust gas partition wall 40 Inner shell 50 Outer shell 61-65 Thermal insulation structure 71-75 Holding member 81-85 Thermal insulation material 100, 200 Fuel cell device

Claims (10)

燃料電池本体と、
前記燃料電池本体を収容する容器と、
前記燃料電池本体と前記容器との間の少なくとも一部に設けられる断熱体とを有する燃料電池装置であって、
前記断熱体と前記燃料電池本体との間に配置され、前記断熱体を保持する保持部材をさらに有し、
前記断熱体と前記保持部材とは異なる材料から形成されている燃料電池装置。
A fuel cell body;
A container for housing the fuel cell body;
A fuel cell device having a heat insulator provided at least in part between the fuel cell main body and the container,
A holding member that is disposed between the heat insulator and the fuel cell main body and holds the heat insulator;
A fuel cell device in which the heat insulator and the holding member are formed of different materials.
前記保持部材の、前記断熱体と対向する面は平坦面である請求項1に記載の燃料電池装置。   The fuel cell device according to claim 1, wherein a surface of the holding member facing the heat insulator is a flat surface. 前記断熱体は、平板状である請求項1又は2に記載の燃料電池装置。   The fuel cell device according to claim 1, wherein the heat insulator has a flat plate shape. 前記断熱体は、粉状または粒状の断熱体である請求項1又は2に記載の燃料電池装置。   The fuel cell device according to claim 1, wherein the heat insulator is a powdery or granular heat insulator. 前記断熱体は耐熱クロスで覆われている請求項1〜4のいずれか一項に記載の燃料電池装置。   The fuel cell device according to any one of claims 1 to 4, wherein the heat insulator is covered with a heat resistant cloth. 前記燃料電池本体は、燃料電池セルスタックを有し、
前記保持部材は、前記燃料電池セルスタックに対向する面に凸部を有し、前記凸部により前記燃料電池セルスタック内の酸化剤の流れを整える請求項1〜5のいずれか一項に記載の燃料電池装置。
The fuel cell body has a fuel cell stack,
The said holding member has a convex part in the surface facing the said fuel cell stack, and adjusts the flow of the oxidizing agent in the said fuel cell stack by the said convex part. Fuel cell device.
前記保持部材は絶縁材料からなる請求項1〜6のいずれか一項に記載の燃料電池装置。   The fuel cell device according to any one of claims 1 to 6, wherein the holding member is made of an insulating material. 前記断熱体の熱伝導率が、前記保持部材の熱伝導率よりも低い請求項1〜7のいずれか一項に記載の燃料電池装置。   The fuel cell device according to any one of claims 1 to 7, wherein a thermal conductivity of the heat insulator is lower than a thermal conductivity of the holding member. 前記断熱体は、静止空気の熱伝導率よりも低い熱伝導率を有する請求項1〜8のいずれか一項に記載の燃料電池装置。   The fuel cell device according to any one of claims 1 to 8, wherein the heat insulator has a thermal conductivity lower than that of still air. 前記保持部材は、静止空気の熱伝導率よりも高い熱伝導率を有する断熱材料である請求項1〜9のいずれか一項に記載の燃料電池装置。

The fuel cell device according to any one of claims 1 to 9, wherein the holding member is a heat insulating material having a thermal conductivity higher than that of still air.

JP2013003930U 2013-07-08 2013-07-08 Fuel cell device Expired - Fee Related JP3186133U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013003930U JP3186133U (en) 2013-07-08 2013-07-08 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013003930U JP3186133U (en) 2013-07-08 2013-07-08 Fuel cell device

Publications (1)

Publication Number Publication Date
JP3186133U true JP3186133U (en) 2013-09-19

Family

ID=50429823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013003930U Expired - Fee Related JP3186133U (en) 2013-07-08 2013-07-08 Fuel cell device

Country Status (1)

Country Link
JP (1) JP3186133U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122552A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Fuel battery hot module
JP2016157626A (en) * 2015-02-25 2016-09-01 Toto株式会社 Solid oxide type fuel battery device
JP2016201293A (en) * 2015-04-13 2016-12-01 東京瓦斯株式会社 Thermal insulation container, fuel processing device, and fuel cell module
JP2017183255A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Heat insulated structure of fuel cell module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122552A (en) * 2014-12-25 2016-07-07 日本特殊陶業株式会社 Fuel battery hot module
JP2016157626A (en) * 2015-02-25 2016-09-01 Toto株式会社 Solid oxide type fuel battery device
JP2016201293A (en) * 2015-04-13 2016-12-01 東京瓦斯株式会社 Thermal insulation container, fuel processing device, and fuel cell module
JP2017183255A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Heat insulated structure of fuel cell module

Similar Documents

Publication Publication Date Title
JP6030547B2 (en) Fuel cell module
JP3186133U (en) Fuel cell device
JP4956946B2 (en) Fuel cell
JP2016001524A (en) Fuel cell module
JP6280470B2 (en) Fuel cell module
WO2012137934A1 (en) Fuel cell module
JP2015207510A (en) fuel cell module
JP2011222136A (en) Fuel cell module
JP6092681B2 (en) Fuel cell device and fuel cell system
JP6140497B2 (en) Fuel cell device and fuel cell system
JP2015144091A (en) fuel cell device
WO2012091029A1 (en) Fuel cell system
JP5936967B2 (en) Fuel cell device
JP2008235109A (en) Fuel cell system
JP5434035B2 (en) Fuel cell stack structure
JP6419479B2 (en) Fuel cell module
JP6189605B2 (en) Fuel cell device
KR101316042B1 (en) Integrated Reformer System for a Fuel Cell
JP2007073358A (en) Fuel heat exchanger and fuel cell
JP6183777B2 (en) Solid oxide fuel cell device
JP2008235094A (en) Fuel cell system
JP5007077B2 (en) Reformer and indirect internal reforming type solid oxide fuel cell
JP2007200809A (en) Fuel-cell power generation system and power generation method
JP5431800B2 (en) Raw material supply device for fuel cells
JP2011014495A (en) Fuel battery module

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3186133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R323533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees