JP2006252982A - Fuel cell equipped with heat shielding container - Google Patents

Fuel cell equipped with heat shielding container Download PDF

Info

Publication number
JP2006252982A
JP2006252982A JP2005068586A JP2005068586A JP2006252982A JP 2006252982 A JP2006252982 A JP 2006252982A JP 2005068586 A JP2005068586 A JP 2005068586A JP 2005068586 A JP2005068586 A JP 2005068586A JP 2006252982 A JP2006252982 A JP 2006252982A
Authority
JP
Japan
Prior art keywords
heat shield
heat
fuel cell
shield container
metal wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005068586A
Other languages
Japanese (ja)
Other versions
JP4958080B2 (en
Inventor
Madoka Otaka
円 大高
Toshio Abe
俊夫 阿部
Noboru Hisamatsu
暢 久松
Yoshiyuki Etori
良幸 餌取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005068586A priority Critical patent/JP4958080B2/en
Publication of JP2006252982A publication Critical patent/JP2006252982A/en
Application granted granted Critical
Publication of JP4958080B2 publication Critical patent/JP4958080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To enable to handle safely a power generator by granting a heat exchange function to a container itself housing a power generating stack having an exothermic portion of a fuel cell, and by removing excess heat from the power generator, while maintaining the power generating equipment such as a stack in high temperature without deteriorating power generation efficiency. <P>SOLUTION: The stack 5 is mainly constructed of a heat shielding container 3 which is formed in lamination of an outer case material 23 made of a metallic wall 22 having ventilation holes 21 communicating between the outside and inside opened at a plurality of places in order to house a ceramic burner 6 and a ceramic heat exchanger 7 or the like and a porous material 24 having ventilation capacity arranged inside the metallic wall 22, and a heat exchange gap 25 at the surrounding of the stack 5. Cooling air is introduced from each ventilation hole 21 of the heat shield container 3 and the cooling air is circulated in the heat exchange gap 25, and the reaction heat generated in the stack 5 is heat exchanged. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池における発熱反応で生じる高温の熱についてスタック等を収容する容器自体で冷却する遮熱容器を備えた燃料電池に関するものである。   The present invention relates to a fuel cell including a heat shield container that cools high-temperature heat generated by an exothermic reaction in the fuel cell by a container itself that houses a stack or the like.

燃料電池は、水素の持つ化学エネルギーを直接電気エネルギーに変換する発電装置である。燃料電池には電解質の種類に応じて様々な種類がある。例えば、電解質として陽イオン交換膜を用いた固体高分子形燃料電池、電解質としてリン酸を用いたリン酸形燃料電池、電解質として炭酸リチウム、炭酸カリウムを用いた溶融炭酸塩形燃料電池、電解質として安定化ジルコニア等を用いた固体電解質形燃料電池(SOFC、Solid Oxide Fuel Cell)がある。   A fuel cell is a power generator that directly converts chemical energy of hydrogen into electrical energy. There are various types of fuel cells depending on the type of electrolyte. For example, a polymer electrolyte fuel cell using a cation exchange membrane as an electrolyte, a phosphoric acid fuel cell using phosphoric acid as an electrolyte, a molten carbonate fuel cell using lithium carbonate or potassium carbonate as an electrolyte, and an electrolyte There is a solid oxide fuel cell (SOFC, Solid Oxide Fuel Cell) using stabilized zirconia or the like.

例えば、実用化されているリン酸形燃料電池は、ビルなどに設置し、都市ガスを原料にして運転される発電装置である。この発電装置を床や地面に据え付け、原料となる都市ガスの配管を敷設し、発生する電気の配線と温水や蒸気等の熱の配管を敷設することで電気や温水、熱を供給することができる。   For example, a phosphoric acid fuel cell that has been put into practical use is a power generation device that is installed in a building or the like and is operated using city gas as a raw material. Electricity, hot water, and heat can be supplied by installing this power generation device on the floor or ground, laying piping for city gas as raw material, and laying generated electrical wiring and piping for heat such as hot water or steam. .

燃料電池発電装置は、水素と酸素から直流の電気を発生する燃料電池本体(スタック)、都市ガスを水素に改質する燃料改質装置、発電した直流の電気を交流にするインバーターと燃料改質装置やスタックから出た排熱を回収して、蒸気や温水に変える排熱回収装置等で構成されている。   The fuel cell power generator consists of a fuel cell body (stack) that generates DC electricity from hydrogen and oxygen, a fuel reformer that reforms city gas into hydrogen, an inverter that converts the generated DC electricity into AC, and fuel reforming It consists of an exhaust heat recovery device that recovers exhaust heat from the device and stack and converts it into steam and hot water.

このような燃料電池を家庭用の発電装置として利用する傾向にある。例えば、従来より固体高分子形燃料電池は家庭用、小型業務用として実用化されつつある。しかし、この固体高分子形燃料電池は発電出力が最大で50kW程度であった。また、発電効率(LHV)も35〜40%であった。そこで、小型かつ発電効率の高い固体電解質形燃料電池が着目されている。   Such fuel cells tend to be used as household power generators. For example, solid polymer fuel cells have been put into practical use for home use and small business use. However, this polymer electrolyte fuel cell has a maximum power generation output of about 50 kW. Moreover, the power generation efficiency (LHV) was 35 to 40%. Therefore, attention has been focused on a solid oxide fuel cell that is small and has high power generation efficiency.

この固体電解質形燃料電池は、その発電効率を高めるために、高温度において固体電解質の酸素イオン導電性を高くする必要がある。そこで、この固体電解質形燃料電池は発電作動温度を1000℃程度に維持する必要がある。一方で、スタックで発生する熱のうち過剰な熱は除去する必要がある。   In order to increase the power generation efficiency of this solid electrolyte fuel cell, it is necessary to increase the oxygen ion conductivity of the solid electrolyte at a high temperature. Therefore, it is necessary for this solid oxide fuel cell to maintain the power generation operating temperature at about 1000 ° C. On the other hand, it is necessary to remove excess heat from the heat generated in the stack.

このようなスタック等で発生する過剰な熱を除去する手段として、例えば特許文献1の特開平9−7624公報「固体電解質型燃料電池」のように、電池発熱反応に伴い生じる熱の除去を、スタックに供給する燃料ガス又は酸化剤(空気)ガスと熱交換して行う手段が提案されている。
特開平9−7624
As a means for removing excessive heat generated in such a stack or the like, for example, as in Japanese Patent Application Laid-Open No. 9-7624 (Patent Document 1) “Solid electrolyte fuel cell”, removal of heat generated due to a cell exothermic reaction, Means have been proposed for heat exchange with fuel gas or oxidant (air) gas supplied to the stack.
JP 9-7624 A

この特許文献1の燃料電池では、固体電解質を介して、高温で燃料ガスと酸化剤ガスを反応させることによって、直接発電を行う平板型若しくは一体積層型のスタックを備える固体電解質型燃料電池において、スタックを収容する発電室内に外壁と隣接して配置され、スタックで発生する反応熱を、スタックに供給する燃料ガス若しくは酸化剤ガスと熱交換して、冷却する放射型熱交換器を設けていた。   In the fuel cell of Patent Document 1, in a solid oxide fuel cell including a flat plate or an integrally stacked stack that directly generates power by reacting a fuel gas and an oxidant gas at a high temperature via a solid electrolyte, A radial heat exchanger was installed in the power generation chamber that accommodates the stack, adjacent to the outer wall, and cooled by exchanging heat of reaction generated in the stack with fuel gas or oxidant gas supplied to the stack. .

特に、燃料電池を家庭用の発電装置として利用する際には、コンパクトの状態のまま、人が手に触れても火傷しない程度の約40〜60℃までに温度を低下させる必要があった。しかし、従来の高熱を除去する手段では、元々業務用を目的としているので、冷却効果はあるが、人がこの燃料電池発電装置に手で触れることまで考慮してないので、安全性に問題を有していた。   In particular, when the fuel cell is used as a power generator for home use, it has been necessary to reduce the temperature to about 40 to 60 ° C. to a degree that does not cause a burn even if a person touches it with the hand in a compact state. However, the conventional means for removing high heat is originally intended for business use, so there is a cooling effect, but since it does not take into account even humans touching this fuel cell power generation device with hands, there is a problem with safety. Had.

一方、単に冷却するだけであれば、発電装置を大掛かりな構成にして、冷却装置(熱交換器)を組み込むことで容易に解決することができる。しかし、家庭用の発電装置としては、例えば従来のエアコンの室外機と同程度の容積(例えば、幅250〜290mm×長さ400〜500mm×高さ400〜500mm)内で嵩張らないようにすることが望ましいとされている。   On the other hand, if only cooling is required, this can be easily solved by incorporating a cooling device (heat exchanger) with a large-scale power generator. However, as a power generator for home use, for example, it should not be bulky within the same volume (for example, width 250 to 290 mm × length 400 to 500 mm × height 400 to 500 mm) as that of a conventional air conditioner outdoor unit. Is preferred.

そこで、発電装置をコンパクトにするためには、プレリフォーマ、アノード排ガス管寄せを、スタック等の部品を近接させて配置する必要がある。このような機器類が近接した状態で1000℃程度の高温状態で稼動し続けると高温機器間の熱膨張により熱変形差による機器の破損が生じやすくなるという問題を有していた。   Therefore, in order to make the power generation device compact, it is necessary to dispose the pre-reformer and the anode exhaust gas header close to parts such as a stack. When such devices continue to operate at a high temperature of about 1000 ° C. in a state where they are close to each other, there is a problem that the devices are likely to be damaged due to thermal deformation differences due to thermal expansion between the high temperature devices.

また、1000℃程度の高温状態で稼動し続けると.アノード排ガスから水分を容易に分離できず、下流の金属製の高温度熱交換器が腐食しやすくなるという問題を有していた。   In addition, if it keeps operating at a high temperature of about 1000 ° C. There was a problem that moisture could not be easily separated from the anode exhaust gas, and the downstream metal high temperature heat exchanger was easily corroded.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、燃料電池の発熱部分であるスタックを収容する容器自体に熱交換機能を付与することで、スタック等の発電機器を高温に維持させて発電効率を低下させることなく、発電装置からの過剰な熱を除去し、この発電装置を安全に取り扱うことができる遮熱容器を備えた燃料電池を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to provide a heat exchange function to the container itself that accommodates the stack, which is a heat generating portion of the fuel cell, without maintaining power generation equipment such as a stack at a high temperature and reducing power generation efficiency. An object of the present invention is to provide a fuel cell including a heat shield container that can remove excessive heat from the power generation device and can safely handle the power generation device.

本発明によれば、固体電解質で燃料ガス(4)を高温で反応させて発電するスタック(5)を備えた燃料電池(1)であって、前記スタック(5)を収容するために、外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内側に配置した通気性を有する多孔質素材(24)とで積層形成した遮熱容器(3)と、前記遮熱容器(3)内に、前記スタック(5)、セラミック燃焼器(6)及びセラミック熱交換器(7)の周囲に形成した熱交換用空隙(25)と、を備え、前記遮熱容器(3)周囲の各通気孔(21)から冷却用空気を取り込み、この冷却用空気を前記熱交換用空隙(25)に流動させながら、前記スタック(5)、セラミック燃焼器(6)及びセラミック熱交換器(7)で発生する反応熱を熱交換するように構成した、ことを特徴とする遮熱容器を備えた燃料電池が提供される。
前記燃料電池(1)は電解質として安定化ジルコニアを用いた固体電解質形燃料電池である。
前記遮熱容器(3)内に、前記スタック(5)と共にセラミック燃焼器(6)又はセラミック熱交換器(7)を収容することができる。
According to the present invention, there is provided a fuel cell (1) comprising a stack (5) for generating electric power by reacting a fuel gas (4) at a high temperature with a solid electrolyte, the outer surface for accommodating the stack (5). And an outer surface member (23) composed of a metal wall (22) having a plurality of vent holes (21) communicating with the inner surface thereof, and a porous material (24) having air permeability disposed inside the metal wall (22). ), And heat formed around the stack (5), the ceramic combustor (6), and the ceramic heat exchanger (7) in the heat shield container (3). An air gap for cooling (25), taking cooling air from each vent hole (21) around the heat shield container (3), and flowing the air for cooling into the air gap for heat exchange (25). The stack (5), the ceramic combustor (6) and the ceramic heat exchanger The heat of reaction generated by the vessel (7) is configured such that heat exchange is provided a fuel cell including thermal isolation vessel, characterized in that.
The fuel cell (1) is a solid electrolyte fuel cell using stabilized zirconia as an electrolyte.
A ceramic combustor (6) or a ceramic heat exchanger (7) can be accommodated in the heat shield container (3) together with the stack (5).

前記遮熱容器(3)内に、前記スタック(5)と共に、セラミック燃焼器(6)、セラミック熱交換器(7)、プレリフォーマ(8)及びアノード排ガス管寄せ(9)を収容した。
前記プレリフォーマ(8)及びアノード排ガス管寄せ(9)を、前記スタック(5)と同一の材料で形成した。
前記プレリフォーマ(8)及びアノード排ガス管寄せ(9)を、前記スタック(5)と類似する形状に形成した。
前記遮熱容器(3)内において、アノードガスとカソードガスの流れは平行かつ対向流となるように配置し、前記プレリフォーマ(8)をより高温域に設置し、前記スタック(5)の高温部分をカソードガスの入口(13)に設置した。
A ceramic combustor (6), a ceramic heat exchanger (7), a pre-reformer (8) and an anode exhaust gas header (9) were accommodated in the heat shield container (3) together with the stack (5).
The pre-reformer (8) and the anode exhaust gas header (9) were formed of the same material as the stack (5).
The pre-reformer (8) and the anode exhaust gas header (9) were formed in a shape similar to the stack (5).
In the heat shield container (3), the anode gas and the cathode gas are arranged so that the flows of the anode gas and the cathode gas are parallel and counterflow, the pre-reformer (8) is installed in a higher temperature region, and the high temperature of the stack (5) The part was placed at the cathode gas inlet (13).

前記遮熱容器(3)は、その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内面側に配置した通気性を有する多孔質素材(24)と、該多孔質素材(24)の内面側に配置した、通気孔(21)を有するセラミックタイル(26)と、から成る壁面で形成したものである。   The heat shield container (3) includes an outer surface member (23) including a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface thereof, and an inner surface side of the metal wall (22). Formed by a wall surface comprising a porous material (24) having air permeability disposed on the inner surface and a ceramic tile (26) having air holes (21) disposed on the inner surface side of the porous material (24). It is.

前記遮熱容器(3)は、その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内面側に配置した通気性を有する多孔質素材(24)と、前記金属壁(22)と前記多孔質素材(24)との間に配置した中間層となるガラス繊維体(27)又は金属メッシュと、から成る壁面で形成したものである。   The heat shield container (3) includes an outer surface member (23) including a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface thereof, and an inner surface side of the metal wall (22). A porous material (24) having air permeability disposed on the glass fiber body (27) or a metal mesh serving as an intermediate layer disposed between the metal wall (22) and the porous material (24), It is formed with the wall surface which consists of.

前記遮熱容器(3)の多孔質素材(24)は、セラミック多孔体である。
前記遮熱容器(3)の多孔質素材(24)の内面側に、通気孔(21)を有するセラミックタイル(26)を配置した。
The porous material (24) of the heat shield container (3) is a ceramic porous body.
A ceramic tile (26) having a vent hole (21) was disposed on the inner surface side of the porous material (24) of the heat shield container (3).

前記遮熱容器(3)は、その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内面側に配置した通気性を有するセラミックブランケット等の通気性断熱材(28)と、前記金属壁(22)と前記通気性断熱材(28)との間に配置した中間層となるガラス繊維体(27)又は金属メッシュと、から成る壁面で形成したものである。   The heat shield container (3) includes an outer surface member (23) including a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface thereof, and an inner surface side of the metal wall (22). A breathable heat insulating material (28) such as a ceramic blanket having air permeability, and a glass fiber body (27) serving as an intermediate layer disposed between the metal wall (22) and the breathable heat insulating material (28). ) Or a metal mesh.

前記遮熱容器(3)は、その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けた通気性が低い難通気性断熱材(30)と、前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となるガラス繊維体(27)又は金属メッシュと、から成る壁面で形成したものである。   The heat shield container (3) includes an outer surface member (23) including a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface thereof, and an inner surface side of the metal wall (22). The low-breathability heat-insulating material (30) provided with a plurality of through-cylinders (29) communicating with the outer surface and the inner surface disposed at a plurality of locations, the metal wall (22), and the non-breathable heat-insulating material (30 ) And a glass fiber body (27) or a metal mesh to be an intermediate layer.

前記遮熱容器(3)は、その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けると共に、複数のセラミック製中空バルーン(31)を形成した通気性が低い難通気性断熱材(30)と、前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となるガラス繊維体(27)又は金属メッシュと、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。   The heat shield container (3) includes an outer surface member (23) including a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface thereof, and an inner surface side of the metal wall (22). The low-breathable heat-insulating material (30) having a plurality of hollow cylinders (31) provided with a plurality of through-cylinders (29) communicating between the outer surface and the inner surface and formed with a plurality of ceramic hollow balloons (31), and the metal It is formed by the wall surface which consists of a glass fiber body (27) used as an intermediate | middle layer arrange | positioned between a wall (22) and the said non-breathable heat insulating material (30), or a metal mesh. A fuel cell comprising the heat shield container according to claim 1.

上述したように、本発明では、遮熱容器(3)の金属壁(22)の通気孔(21)から冷却用空気を取り込み、この冷却用空気をスタック(5)の周囲に形成した熱交換用空隙(25)に経由させてスタック(5)で発生する反応熱を熱交換することができる。このように、スタック(5)を収容する遮熱容器(3)自体に熱交換機能を付与したので、スタックを高温に維持させて発電効率を低下させることなく、発電装置からの放熱量を低減することができる。   As described above, in the present invention, the cooling air is taken in from the vent hole (21) of the metal wall (22) of the heat shield container (3), and this cooling air is formed around the stack (5). The reaction heat generated in the stack (5) can be exchanged through the air gap (25). As described above, since the heat shield container (3) itself that accommodates the stack (5) is provided with a heat exchange function, the heat radiation from the power generator is reduced without reducing the power generation efficiency by maintaining the stack at a high temperature. can do.

スタック(5)、プレリフォーマ(8)、アノード排ガス管寄せ(9)、セラミック燃焼器(6)及びセラミック熱交換器(7)などを遮熱容器(3)内に収容したので、高温機器からの放熱量を極限まで低減し、発電装置としてコンパクトに構成することができる。   Since the stack (5), the pre-reformer (8), the anode exhaust gas header (9), the ceramic combustor (6), the ceramic heat exchanger (7), etc. are accommodated in the heat shield container (3), The heat radiation amount can be reduced to the limit, and the power generator can be made compact.

プレリフォーマ(8)およびアノード排ガス管寄せ(9)を、スタック(5)と同材料かつ類似形状としたため、高温機器間の熱膨張が同一にでき、熱変形差による破損を防止することができる。また、アノード排ガスからの水分分離が可能になり、下流の金属製高温度熱交換器の腐食を防止できるとともに、発電装置への給水が不要になった。   Since the pre-reformer (8) and the anode exhaust gas header (9) are made of the same material and similar shape as the stack (5), the thermal expansion between the high-temperature devices can be made the same, and the damage due to the thermal deformation difference can be prevented. . In addition, moisture can be separated from the anode exhaust gas, corrosion of the downstream metal high-temperature heat exchanger can be prevented, and water supply to the power generator is no longer required.

更に、アノードガスとカソードガスに対して平行、対向流方式の採用が可能となり、プレリフォーマ(吸熱機器)をより高温域に設置し、スタックの高温部分をカソードガスの入口に設置することが可能になり、冷却がより容易になった。   In addition, it is possible to adopt a counter flow system parallel to the anode gas and the cathode gas, so that a pre-reformer (heat absorption device) can be installed in a higher temperature range, and the hot part of the stack can be installed at the cathode gas inlet. And cooling became easier.

遮熱容器(3)を形成する金属壁(22)と多孔質素材(24)それぞれに、外面と内面を連通する通気孔(21)と多数の通孔を形成してあるので、多数の通孔を通って冷却空気が熱交換用空隙(25)に均等に流れ、スタック(5)を始めプレリフォーマ(8)、アノード排ガス管寄せ(9)、セラミック燃焼器(6)及びセラミック熱交換器(7)を均一な温度場とすることができる。   Since the metal wall (22) and the porous material (24) forming the heat shield container (3) are each formed with a large number of through holes and a vent hole (21) communicating with the outer surface and the inner surface. Cooling air flows evenly through the holes into the heat exchange gap (25), the stack (5), the pre-reformer (8), the anode exhaust gas header (9), the ceramic combustor (6), and the ceramic heat exchanger. (7) can be a uniform temperature field.

本発明は、スタック等の発電機器について通気機能を有する遮熱容器内に収容し、この遮熱容器の壁面から取り込んだ冷却用空気をこのスタック等の発電機器の周囲に形成した熱交換用空隙に通過させて、このスタック等の発電機器を高温に維持させて発電効率を低下させることなく、発電装置からの過剰な熱を除去することができる遮熱容器を備えた燃料電池である。   The present invention relates to a heat exchange gap in which a cooling air taken in from a wall surface of the heat shielding container is housed in a heat shielding container having a ventilation function with respect to a power generating device such as a stack and is formed around the power generating device such as the stack. The fuel cell is provided with a heat shielding container that can remove excessive heat from the power generation device without reducing the power generation efficiency by maintaining the power generation equipment such as the stack at a high temperature.

以下、本発明の好ましい実施の形態を図面を参照して説明する。
図1は本発明の遮熱容器を備えた燃料電池の全体側断面図である。図2は遮熱容器を備えた燃料電池の全体平断面図である。
本発明の燃料電池発電装置は、電解質として安定化ジルコニアを用いた固体電解質形燃料電池(SOFC)1と高温メタル熱交換器2とから成るものである。この固体電解質型燃料電池1は、遮熱容器3内に、固体電解質で天然ガス等の燃料ガス4を高温で反応させて発電するスタック5と、セラミック燃焼器6、セラミック熱交換器7と、プレリフォーマ8と、アノード排ガス管寄せ9、安定化ジルコニアチューブ10を備えた燃料電池である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall sectional side view of a fuel cell provided with a heat shield container of the present invention. FIG. 2 is an overall plan sectional view of a fuel cell provided with a heat shield container.
The fuel cell power generator of the present invention comprises a solid electrolyte fuel cell (SOFC) 1 and a high-temperature metal heat exchanger 2 that use stabilized zirconia as an electrolyte. The solid oxide fuel cell 1 includes a stack 5 that generates electricity by reacting a fuel gas 4 such as natural gas with a solid electrolyte at a high temperature in a heat shielding container 3, a ceramic combustor 6, a ceramic heat exchanger 7, The fuel cell includes a pre-reformer 8, an anode exhaust gas header 9, and a stabilized zirconia tube 10.

このように構成した燃料電池1を起動する時は、先ず燃料ガス4の天然ガス(あるいは水素)をセラミック燃焼器6に供給して燃焼する。この1200〜1500℃程度の燃焼ガスを熱源としてセラミック熱交換器7を高温に維持する。   When starting the fuel cell 1 configured as described above, first, the natural gas (or hydrogen) of the fuel gas 4 is supplied to the ceramic combustor 6 and burned. The ceramic heat exchanger 7 is maintained at a high temperature using the combustion gas of about 1200 to 1500 ° C. as a heat source.

次に、スタック5の発電反応に使用する水は蒸気発生器11で水蒸気とし、燃料ガス4となる天然ガスは、熱交換器12で予熱する。この予熱した天然ガスと水蒸気を混合し、固体電解質型燃料電池1の下部に設けた燃料ガス入口13から導入し、燃料入口マニホールド14からプレリフォーマ8を構成する燃料極に開口させた燃料通路内に分岐して流入する。燃料通路を通過中に燃料極で反応しなかった未反応の燃料ガスは、アノード排ガスとしてスタック5の下流側のアノード排ガス管寄せ9を経て、
1109838374546_0
燃料出口マニホールド15から排出される。水素と水蒸気とからなるアノード排ガスは、上述したセラミック燃焼器6に送られる。
Next, the water used for the power generation reaction of the stack 5 is converted into water vapor by the steam generator 11, and the natural gas that becomes the fuel gas 4 is preheated by the heat exchanger 12. This preheated natural gas and water vapor are mixed and introduced from a fuel gas inlet 13 provided in the lower part of the solid oxide fuel cell 1, and the fuel passage manifold is opened from the fuel inlet manifold 14 to the fuel electrode constituting the pre-reformer 8. It branches into and flows in. Unreacted fuel gas that has not reacted at the fuel electrode while passing through the fuel passage passes through the anode exhaust gas header 9 on the downstream side of the stack 5 as anode exhaust gas,
1109838374546_0
The fuel is discharged from the fuel outlet manifold 15. The anode exhaust gas composed of hydrogen and water vapor is sent to the ceramic combustor 6 described above.

一方、スタック5の発電反応に使用される酸化剤としての空気Aは、高温メタル熱交換器2において、セラミック熱交換器7から排出される約900℃の燃焼ガスを熱源として約700℃に加熱され、更に、セラミック熱交換器7において、セラミック燃焼器6から排出される1200〜1500℃の燃焼ガスを熱源として約900℃に加熱され、スタック5に供給される。また、セラミック熱交換器7を経て高温メタル熱交換器2より排出される燃焼ガスは、熱交換器12を介して天然ガスの加熱に利用される。   On the other hand, air A as an oxidant used for the power generation reaction of the stack 5 is heated to about 700 ° C. in the high-temperature metal heat exchanger 2 by using about 900 ° C. combustion gas discharged from the ceramic heat exchanger 7 as a heat source. Further, in the ceramic heat exchanger 7, the combustion gas at 1200 to 1500 ° C. discharged from the ceramic combustor 6 is heated to about 900 ° C. and supplied to the stack 5. The combustion gas discharged from the high temperature metal heat exchanger 2 through the ceramic heat exchanger 7 is used for heating natural gas through the heat exchanger 12.

本発明の燃料電池1では、スタック5、セラミック燃焼器6及びセラミック熱交換器7を遮熱容器3内に収容している。実施例1の遮熱容器3は、外面と内面を連通する通気孔21を複数箇所に開けた金属壁22からなる外表材23と、金属壁22の内面側に配置した通気性を有する多孔質素材24とで形成した容器である。更に、遮熱容器3内に、スタック5、セラミック燃焼器6及びセラミック熱交換器7と共に、プレリフォーマ8、アノード排ガス管寄せ9を収容した。   In the fuel cell 1 of the present invention, the stack 5, the ceramic combustor 6, and the ceramic heat exchanger 7 are accommodated in the heat shield container 3. The heat shield container 3 according to the first embodiment includes an outer surface member 23 composed of a metal wall 22 having a plurality of ventilation holes 21 communicating with an outer surface and an inner surface, and a porous material having air permeability disposed on the inner surface side of the metal wall 22. A container formed of the material 24. Furthermore, the pre-reformer 8 and the anode exhaust gas header 9 were accommodated in the heat shield container 3 together with the stack 5, the ceramic combustor 6 and the ceramic heat exchanger 7.

図3は実施例1の遮熱容器の壁面の拡大断面図である。
実施例1の遮熱容器3は、通気孔21を複数箇所に開けた金属壁22からなる外表材23と、この金属壁22の内側に配置した通気性を有するセラミック製の多孔質素材24と、この多孔質素材24の内側に、通気孔21を複数箇所に開けたセラミックタイル26を配置したものである。
FIG. 3 is an enlarged cross-sectional view of the wall surface of the heat shield container of the first embodiment.
The heat shield container 3 according to the first embodiment includes an outer surface member 23 composed of a metal wall 22 having a plurality of vent holes 21 formed therein, and a porous ceramic material 24 having air permeability disposed inside the metal wall 22. Inside the porous material 24, ceramic tiles 26 having a plurality of vent holes 21 are disposed.

この遮熱容器3では、金属壁22の通気孔21から冷却用空気を取り込み、この冷却用空気とスタック5、セラミック燃焼器6及びセラミック熱交換器7で発生する熱を熱交換するように、スタック5及びセラミック熱交換器7の周囲に熱交換用空隙25を形成している。   In this heat shield container 3, cooling air is taken in from the air holes 21 of the metal wall 22, and heat generated by the cooling air and the stack 5, the ceramic combustor 6, and the ceramic heat exchanger 7 is heat-exchanged. A heat exchange gap 25 is formed around the stack 5 and the ceramic heat exchanger 7.

本発明では、遮熱容器3の金属壁22の通気孔21から冷却用空気を取り込み、この冷却用空気をスタック5の周囲に形成した熱交換用空隙25に経由させてスタック5で発生する反応熱を熱交換する。このように、スタック5を収容する遮熱容器3自体に熱交換機能を付与したので、スタック5を高温に維持させて発電効率を低下させることなく、発電装置からの過剰な熱を除去することができる。特に、遮熱容器3の周囲に多数の通気孔21を開けて、この遮熱容器3自体に熱交換機能を付与しているので、この内部に収容したスタック5等の発電機器を高温に維持させて発電効率を低下させることなく、発電装置からの放熱量を低減することができる。   In the present invention, the cooling air is taken in from the air holes 21 of the metal wall 22 of the heat shield container 3, and the reaction generated in the stack 5 through the heat exchange gap 25 formed around the stack 5. Exchange heat. Thus, since the heat-shielding container 3 itself that accommodates the stack 5 is provided with a heat exchange function, excessive heat from the power generation device can be removed without reducing the power generation efficiency by maintaining the stack 5 at a high temperature. Can do. In particular, since a large number of air holes 21 are formed around the heat shield container 3 and the heat shield container 3 itself is provided with a heat exchanging function, the power generation equipment such as the stack 5 accommodated therein is maintained at a high temperature. Thus, the amount of heat released from the power generation device can be reduced without reducing the power generation efficiency.

スタック5、プレリフォーマ8、アノード排ガス管寄せ9、セラミック燃焼器6及びセラミック熱交換器7などを遮熱容器3内に収容したので、高温機器からの放熱量を極限まで低減し、発電装置としてコンパクトに構成することができる。   Since the stack 5, the pre-reformer 8, the anode exhaust gas header 9, the ceramic combustor 6, the ceramic heat exchanger 7 and the like are accommodated in the heat shield container 3, the heat radiation from the high-temperature equipment is reduced to the limit, and the power generator It can be configured compactly.

図4は実施例2の燃料電池のスタック部分を示す拡大正面図である。
実施例2の燃料電池1では、プレリフォーマ8及びアノード排ガス管寄せ9を、スタック5と同一の材料で形成することで、高温機器間の熱膨張が同一になり、熱変形差による破損を防止することができる。
4 is an enlarged front view showing a stack portion of the fuel cell of Example 2. FIG.
In the fuel cell 1 of the second embodiment, the pre-reformer 8 and the anode exhaust gas header 9 are formed of the same material as that of the stack 5 so that the thermal expansion between the high-temperature devices is the same, and damage due to the thermal deformation difference is prevented. can do.

遮熱容器3内において、アノードガスとカソードガスの流れは並行かつ対向流となるように配置し、図1に示すように、スタック5の高温部分をカソードガスの入口13に設置することで、プレリフォーマ8がより高温域に設置されるために、この部分の冷却がより容易になった。   In the heat shield container 3, the anode gas and the cathode gas are arranged so that the flows of the anode gas and the cathode gas are parallel and counter flow, and as shown in FIG. 1, the high temperature portion of the stack 5 is installed at the inlet 13 of the cathode gas. Since the pre-reformer 8 is installed in a higher temperature range, this portion can be cooled more easily.

図5は実施例3の遮熱容器の壁面の拡大断面図である。
実施例3の遮熱容器3は、通気孔21を複数箇所に開けた金属壁22からなる外表材23と、この金属壁22の内面側に配置したセラミック多孔体24とから成る壁面で形成したものである。この実施例3の遮熱容器3では、形状保持性を有する多孔体を使用したので、実施例1のセラミックタイル26を省略することができる。
FIG. 5 is an enlarged cross-sectional view of the wall surface of the heat shield container of the third embodiment.
The heat shield container 3 of Example 3 was formed of a wall surface composed of an outer surface material 23 composed of a metal wall 22 having a plurality of air holes 21 formed therein, and a ceramic porous body 24 disposed on the inner surface side of the metal wall 22. Is. In the heat shield container 3 of Example 3, the ceramic tile 26 of Example 1 can be omitted because a porous body having shape retention is used.

図6は実施例4の遮熱容器の壁面の拡大断面図である。図7は実施例4の遮熱容器における温度変化を示す温度変化のグラフである。
実施例4の遮熱容器3は、その外面と内面を連通する通気孔21を複数箇所に開けた金属壁22からなる外表材23と、金属壁22の内面側に配置した通気性を有する多孔質素材24と、金属壁22と多孔質素材24との間に配置した中間層となるガラス繊維体27と、から成る壁面で形成したものである。このガラス繊維体27は低温部、流体拡散、遮熱層として機能する部分である。セラミック多孔体24は、高温部の遮熱層として機能する部分である。このように、中間層にガラス繊維体27を挟み込むことによって、図7のグラフに示すように、熱交換機能を高めることができる。この図7と図11のグラフは、上下方向に温度を、左から右に遮熱容器3の厚みを表している。
FIG. 6 is an enlarged cross-sectional view of the wall surface of the heat shield container of the fourth embodiment. FIG. 7 is a temperature change graph showing the temperature change in the heat shield container of Example 4.
The heat shield container 3 according to the fourth embodiment has an outer surface member 23 made of a metal wall 22 having a plurality of ventilation holes 21 communicating between the outer surface and the inner surface thereof, and a perforated porous material disposed on the inner surface side of the metal wall 22. It is formed by a wall surface made of a material 24 and a glass fiber body 27 serving as an intermediate layer disposed between the metal wall 22 and the porous material 24. This glass fiber body 27 is a part that functions as a low temperature part, fluid diffusion, and heat shield layer. The ceramic porous body 24 is a part that functions as a heat shield layer in a high temperature part. Thus, by sandwiching the glass fiber body 27 in the intermediate layer, the heat exchange function can be enhanced as shown in the graph of FIG. The graphs of FIGS. 7 and 11 represent the temperature in the vertical direction and the thickness of the heat shield container 3 from the left to the right.

実施例4の遮熱容器3は、中間層のガラス繊維体27に代えて金属メッシュを挟み込むことができる。この金属メッシュを中間層に挟み込んだ遮熱容器3でも高い熱交換機能を発揮することができる。   In the heat shield container 3 of the fourth embodiment, a metal mesh can be sandwiched instead of the glass fiber body 27 of the intermediate layer. A high heat exchange function can be exhibited even in the heat shield container 3 in which the metal mesh is sandwiched between the intermediate layers.

図8は実施例4の他の形態の遮熱容器の壁面の拡大断面図である。
実施例4の遮熱容器3では、その多孔質素材24の内面側に、セラミックタイル26を配置することも可能である。このセラミックタイル26にも複数箇所に通気孔21を開ける必要がある。
FIG. 8 is an enlarged cross-sectional view of a wall surface of a heat shield container according to another embodiment of the fourth embodiment.
In the heat shield container 3 of the fourth embodiment, the ceramic tile 26 can be arranged on the inner surface side of the porous material 24. The ceramic tile 26 also needs to have vent holes 21 at a plurality of locations.

図9は実施例5の遮熱容器の壁面の拡大断面図である。
実施例5の遮熱容器3は、その外面と内面を連通する通気孔21を複数箇所に開けた金属壁22からなる外表材23と、金属壁22の内面側に配置した通気性を有するセラミックブランケット等の通気性断熱材28と、金属壁22と通気性断熱材28との間に配置した中間層となるガラス繊維体27と、から成る壁面で形成したものである。
FIG. 9 is an enlarged cross-sectional view of the wall surface of the heat shield container of the fifth embodiment.
The heat shield container 3 according to the fifth embodiment includes an outer surface member 23 made of a metal wall 22 having a plurality of vent holes 21 communicating with the outer surface and the inner surface thereof, and a breathable ceramic disposed on the inner surface side of the metal wall 22. It is formed of a wall surface comprising a breathable heat insulating material 28 such as a blanket and a glass fiber body 27 serving as an intermediate layer disposed between the metal wall 22 and the breathable heat insulating material 28.

実施例5の遮熱容器3は、中間層のガラス繊維体27に代えて金属メッシュを挟み込むことができる。この金属メッシュを中間層に挟み込んだ遮熱容器3でも高い熱交換機能を発揮することができる。   In the heat shield container 3 of the fifth embodiment, a metal mesh can be sandwiched in place of the glass fiber body 27 of the intermediate layer. A high heat exchange function can be exhibited even in the heat shield container 3 in which the metal mesh is sandwiched between the intermediate layers.

図10は実施例6の遮熱容器の壁面の拡大断面図である。図11は実施例6の遮熱容器における温度変化を示す温度変化のグラフである。
実施例6の遮熱容器3は、その外面と内面を連通する通気孔21を複数箇所に開けた金属壁22からなる外表材23と、金属壁22の内面側に配置した、外面と内面を連通する通気筒29を複数箇所に設けた通気性が低い難通気性断熱材30と、金属壁22と難通気性断熱材30との間に配置した中間層となるガラス繊維体27と、から成る壁面で形成したものである。本発明の遮熱容器3は、上述したように金属壁22の内面側に多孔質素材24、通気性断熱材28を貼り付けるだけでなく、熱伝導率の低い難通気性断熱材30を用いることもできる。この難通気性断熱材30にも複数箇所に通気筒29を開けている。このように実施例6の遮熱容器3は、図11のグラフに示すように、熱交換機能を高めることができる。金属壁22と難通気性断熱材30との中間層のガラス繊維体27は、熱交換機能を高めるだけでなく、変形緩衝層としても機能する。
FIG. 10 is an enlarged cross-sectional view of the wall surface of the heat shield container of the sixth embodiment. FIG. 11 is a temperature change graph showing the temperature change in the heat shield container of Example 6.
The heat shielding container 3 of Example 6 has an outer surface 23 made of a metal wall 22 having a plurality of vent holes 21 communicating with the outer surface and the inner surface, and an outer surface and an inner surface arranged on the inner surface side of the metal wall 22. A low-breathing heat-insulating material 30 provided with a plurality of communicating cylinders 29 at a plurality of locations, and a glass fiber body 27 serving as an intermediate layer disposed between the metal wall 22 and the non-breathable heat-insulating material 30 It is formed with the wall surface. The heat shield container 3 according to the present invention uses not only the porous material 24 and the breathable heat insulating material 28 on the inner surface side of the metal wall 22 as described above, but also the use of the low breathable heat insulating material 30 having a low thermal conductivity. You can also. The non-breathable heat insulating material 30 also has through cylinders 29 at a plurality of locations. Thus, as shown in the graph of FIG. 11, the heat shield container 3 of Example 6 can enhance the heat exchange function. The glass fiber body 27 as an intermediate layer between the metal wall 22 and the hardly breathable heat insulating material 30 not only enhances the heat exchange function but also functions as a deformation buffer layer.

実施例6の遮熱容器3でも、中間層のガラス繊維体27に代えて金属メッシュを挟み込むことができる。この金属メッシュを中間層に挟み込んだ遮熱容器3でも高い熱交換機能を発揮することができる。   Also in the heat shield container 3 of the sixth embodiment, a metal mesh can be sandwiched in place of the glass fiber body 27 of the intermediate layer. A high heat exchange function can be exhibited even in the heat shield container 3 in which the metal mesh is sandwiched between the intermediate layers.

図12は実施例7の遮熱容器の壁面の拡大断面図である。
実施例7の遮熱容器3は、その外面と内面を連通する通気孔21を複数箇所に開けた金属壁22からなる外表材23と、金属壁22の内面側に配置した、外面と内面を連通する通気筒29を複数箇所に設けると共に、複数のセラミック製中空バルーン31を形成した通気性が低い難通気性断熱材30と、金属壁22と難通気性断熱材30との間に配置した中間層となるガラス繊維体27と、から成る壁面で形成したものである。この難通気性断熱材30にセラミック製中空バルーン31を設けることにより、熱伝導率を更に低くすることができる。この難通気性断熱材30にも複数箇所に通気筒29を開けている。金属壁22と難通気性断熱材30との中間層のガラス繊維体27は、熱交換機能を高めるだけでなく、変形緩衝層としても機能する。
FIG. 12 is an enlarged cross-sectional view of the wall surface of the heat shield container according to the seventh embodiment.
The heat shield container 3 of the seventh embodiment has an outer surface 23 made of a metal wall 22 having a plurality of vent holes 21 communicating with the outer surface and the inner surface, and an outer surface and an inner surface arranged on the inner surface side of the metal wall 22. The communicating cylinders 29 are provided at a plurality of locations, and disposed between the metal wall 22 and the non-breathable heat insulating material 30 with a low breathability formed with a plurality of ceramic hollow balloons 31. It is formed by a wall surface composed of a glass fiber body 27 serving as an intermediate layer. The thermal conductivity can be further lowered by providing a ceramic hollow balloon 31 on the breathable heat insulating material 30. The non-breathable heat insulating material 30 also has through cylinders 29 at a plurality of locations. The glass fiber body 27 as an intermediate layer between the metal wall 22 and the hardly breathable heat insulating material 30 not only enhances the heat exchange function but also functions as a deformation buffer layer.

実施例7の遮熱容器3は、中間層のガラス繊維体27に代えて金属メッシュを挟み込むことができる。この金属メッシュを中間層に挟み込んだ遮熱容器3でも高い熱交換機能を発揮することができる。   The heat shield container 3 of Example 7 can sandwich a metal mesh in place of the glass fiber body 27 of the intermediate layer. A high heat exchange function can be exhibited even in the heat shield container 3 in which the metal mesh is sandwiched between the intermediate layers.

なお、本発明は上述した発明の実施の形態に限定されず、燃料電池の発熱部分であるスタックを収容する容器自体に熱交換機能を付与し、スタック等のからの過剰な熱を除去することができる構成であれば、図示したような構成に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   The present invention is not limited to the embodiment of the invention described above, and a heat exchange function is imparted to the container itself that accommodates the stack, which is a heat generating part of the fuel cell, to remove excess heat from the stack or the like. Of course, the configuration is not limited to the configuration shown in the figure, and various modifications can be made without departing from the scope of the present invention.

本発明の遮熱容器を備えた燃料電池は、高温になる燃料電池のような発電装置に利用できるだけでなく、高温になる燃焼器等の高温になる機器類に利用することができる。   The fuel cell provided with the heat shield container of the present invention can be used not only for a power generator such as a fuel cell that becomes high temperature, but also for equipment that becomes high temperature such as a combustor that becomes high temperature.

本発明の遮熱容器を備えた燃料電池の全体側断面図である。It is a whole sectional side view of a fuel cell provided with the thermal insulation container of the present invention. 遮熱容器を備えた燃料電池の全体平断面図である。It is a whole plane sectional view of a fuel cell provided with a heat shield container. 実施例1の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of Example 1. 実施例2の燃料電池のスタック部分を示す拡大正面図である。6 is an enlarged front view showing a stack portion of a fuel cell of Example 2. FIG. 実施例3の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of Example 3. 実施例4の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the thermal insulation container of Example 4. 実施例4の遮熱容器における温度変化を示す温度変化のグラフである。It is a graph of the temperature change which shows the temperature change in the heat shield container of Example 4. 実施例4の他の形態の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of the other form of Example 4. 実施例5の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of Example 5. 実施例5の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of Example 5. 実施例6の遮熱容器における温度変化を示す温度変化のグラフである。It is a graph of the temperature change which shows the temperature change in the heat shield container of Example 6. 実施例7の遮熱容器の壁面の拡大断面図である。It is an expanded sectional view of the wall surface of the heat shield container of Example 7.

符号の説明Explanation of symbols

1 燃料電池
3 遮熱容器
4 燃料ガス
5 スタック
6 セラミック燃焼器
7 セラミック熱交換器
8 プレリフォーマ
9 アノード排ガス管寄せ
13 カソードガスの入口
21 通気孔
22 金属壁
23 外表材
24 多孔質素材(セラミック多孔体)
25 熱交換用空隙
26 セラミックタイル
27 ガラス繊維体
28 通気性断熱材(セラミックブランケット)
29 通気筒
30 難通気性断熱材
31 セラミック製中空バルーン
DESCRIPTION OF SYMBOLS 1 Fuel cell 3 Heat shield container 4 Fuel gas 5 Stack 6 Ceramic combustor 7 Ceramic heat exchanger 8 Pre-reformer 9 Anode exhaust gas header 13 Cathode gas inlet 21 Vent 22 Metal wall 23 Outer surface material 24 Porous material (ceramic porous body)
25 Air gap for heat exchange 26 Ceramic tile 27 Glass fiber body 28 Breathable insulation (ceramic blanket)
29 Cylinders 30 Non-breathable insulation 31 Ceramic hollow balloon

Claims (19)

固体電解質で燃料ガス(4)を高温で反応させて発電するスタック(5)を備えた燃料電池(1)であって、
前記スタック(5)を収容するために、外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、該金属壁(22)の内側に配置した通気性を有する多孔質素材(24)とで積層形成した遮熱容器(3)と、
前記遮熱容器(3)内に、前記スタック(5)、セラミック燃焼器(6)及びセラミック熱交換器(7)の周囲に形成した熱交換用空隙(25)と、を備え、
前記遮熱容器(3)周囲の各通気孔(21)から冷却用空気を取り込み、この冷却用空気を前記熱交換用空隙(25)に流動させながら、前記スタック(5)、セラミック燃焼器(6)及びセラミック熱交換器(7)で発生する反応熱を熱交換するように構成した、ことを特徴とする遮熱容器を備えた燃料電池。
A fuel cell (1) comprising a stack (5) for generating electricity by reacting a fuel gas (4) at a high temperature with a solid electrolyte,
In order to accommodate the stack (5), an outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface, and an inner side of the metal wall (22) A heat shield container (3) formed by lamination with a porous material (24) having air permeability arranged in
In the heat shield container (3), a heat exchange gap (25) formed around the stack (5), the ceramic combustor (6) and the ceramic heat exchanger (7),
Cooling air is taken in from the air holes (21) around the heat shield container (3), and the cooling air flows into the heat exchange gap (25) while the stack (5), ceramic combustor ( 6) A fuel cell comprising a heat shield vessel, wherein the heat of reaction generated in the ceramic heat exchanger (7) is exchanged.
前記燃料電池(1)は電解質として安定化ジルコニアを用いた固体電解質形燃料電池である、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。 The fuel cell (1) according to claim 1, wherein the fuel cell (1) is a solid electrolyte fuel cell using stabilized zirconia as an electrolyte. 前記遮熱容器(3)内に、前記スタック(5)と共にセラミック燃焼器(6)を収容した、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。 The fuel cell having a heat shield container according to claim 1, wherein a ceramic combustor (6) is housed in the heat shield container (3) together with the stack (5). 前記遮熱容器(3)内に、前記スタック(5)と共にセラミック熱交換器(7)を収容した、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。 The fuel cell with a heat shield container according to claim 1, wherein a ceramic heat exchanger (7) is housed in the heat shield container (3) together with the stack (5). 前記遮熱容器(3)内に、前記スタック(5)と共に、セラミック燃焼器(6)、セラミック熱交換器(7)、プレリフォーマ(8)及びアノード排ガス管寄せ(9)を収容した、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。 A ceramic combustor (6), a ceramic heat exchanger (7), a pre-reformer (8), and an anode exhaust gas header (9) are accommodated in the heat shield container (3) together with the stack (5). A fuel cell comprising the heat shield container according to claim 1. 前記プレリフォーマ(8)及びアノード排ガス管寄せ(9)を、前記スタック(5)と同一の材料で形成した、ことを特徴とする請求項5の遮熱容器を備えた燃料電池。 6. The fuel cell with a heat shield container according to claim 5, wherein the pre-reformer (8) and the anode exhaust gas header (9) are made of the same material as the stack (5). 前記プレリフォーマ(8)及びアノード排ガス管寄せ(9)を、前記スタック(5)と類似する形状に形成した、ことを特徴とする請求項5の遮熱容器を備えた燃料電池。 6. The fuel cell with a heat shield container according to claim 5, wherein the pre-reformer (8) and the anode exhaust gas header (9) are formed in a shape similar to the stack (5). 前記遮熱容器(3)内において、アノードガスとカソードガスの流れは平行かつ対向流となるように配置し、前記プレリフォーマ(8)をより高温域に設置し、前記スタック(5)の高温部分をカソードガスの入口(13)に設置した、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。 In the heat shield container (3), the anode gas and the cathode gas are arranged so that the flows of the anode gas and the cathode gas are parallel and counterflow, the pre-reformer (8) is installed in a higher temperature region, and the high temperature of the stack (5) 2. The fuel cell with a heat shield container according to claim 1, wherein the portion is installed at the cathode gas inlet (13). 前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した通気性を有する多孔質素材(24)と、
該多孔質素材(24)の内面側に配置した、通気孔(21)を有するセラミックタイル(26)と、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A porous material (24) having air permeability disposed on the inner surface side of the metal wall (22);
The heat shielding container according to claim 1, wherein the heat shielding container is formed of a wall surface comprising a ceramic tile (26) having a vent hole (21) disposed on the inner surface side of the porous material (24). A fuel cell.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した通気性を有する多孔質素材(24)と、
前記金属壁(22)と前記多孔質素材(24)との間に配置した中間層となるガラス繊維体(27)と、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A porous material (24) having air permeability disposed on the inner surface side of the metal wall (22);
2. A wall formed of a glass fiber body (27) serving as an intermediate layer disposed between the metal wall (22) and the porous material (24). A fuel cell equipped with a heat shield container.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した通気性を有する多孔質素材(24)と、
前記金属壁(22)と前記多孔質素材(24)との間に配置した中間層となる金属メッシュと、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A porous material (24) having air permeability disposed on the inner surface side of the metal wall (22);
The heat shield container according to claim 1, wherein the heat shield container is formed of a wall surface comprising a metal mesh as an intermediate layer disposed between the metal wall (22) and the porous material (24). A fuel cell.
前記遮熱容器(3)の多孔質素材(24)は、セラミック多孔体である、ことを特徴とする請求項9、10又は11の遮熱容器を備えた燃料電池。 12. The fuel cell with a heat shield container according to claim 9, wherein the porous material (24) of the heat shield container (3) is a ceramic porous body. 前記遮熱容器(3)の多孔質素材(24)の内面側に、通気孔(21)を有するセラミックタイル(26)を配置した、ことを特徴とする請求項10、11又は12の遮熱容器を備えた燃料電池。 The heat shield according to claim 10, 11 or 12, characterized in that a ceramic tile (26) having a vent (21) is arranged on the inner surface side of the porous material (24) of the heat shield container (3). A fuel cell with a container. 前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した通気性を有するセラミックブランケット等の通気性断熱材(28)と、
前記金属壁(22)と前記通気性断熱材(28)との間に配置した中間層となるガラス繊維体(27)と、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A breathable heat insulating material (28) such as a ceramic blanket having a breathability disposed on the inner surface side of the metal wall (22);
It is formed with the wall surface which consists of the glass fiber body (27) used as the intermediate | middle layer arrange | positioned between the said metal wall (22) and the said air permeable heat insulating material (28), It is characterized by the above-mentioned. A fuel cell comprising one heat shielding container.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した通気性を有するセラミックブランケット等の通気性断熱材(28)と、
前記金属壁(22)と前記通気性断熱材(28)との間に配置した中間層となる金属メッシュと、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A breathable heat insulating material (28) such as a ceramic blanket having a breathability disposed on the inner surface side of the metal wall (22);
The heat shield according to claim 1, wherein the heat shield is formed of a wall surface comprising a metal mesh as an intermediate layer disposed between the metal wall (22) and the breathable heat insulating material (28). A fuel cell with a container.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けた通気性が低い難通気性断熱材(30)と、
前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となるガラス繊維体(27)と、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A non-breathable heat-insulating material (30) having a low air permeability, provided at a plurality of locations, through which cylinders (29) communicating the outer surface and the inner surface are disposed on the inner surface side of the metal wall (22);
It is formed with the wall surface which consists of a glass fiber body (27) used as the intermediate | middle layer arrange | positioned between the said metal wall (22) and the said air-impermeable material (30). A fuel cell comprising the heat shield container according to Item 1.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けた通気性が低い難通気性断熱材(30)と、
前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となる金属メッシュと、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
A non-breathable heat-insulating material (30) having a low air permeability, provided at a plurality of locations, through which cylinders (29) communicating the outer surface and the inner surface are disposed on the inner surface side of the metal wall (22);
2. The barrier according to claim 1, wherein the barrier comprises a metal mesh that is an intermediate layer disposed between the metal wall (22) and the non-breathable heat insulating material (30). A fuel cell with a thermal vessel.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けると共に、複数のセラミック製中空バルーン(31)を形成した通気性が低い難通気性断熱材(30)と、
前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となるガラス繊維体(27)と、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
Low-breathability with low breathability, which is formed on the inner surface side of the metal wall (22) and is provided with a plurality of cylinders (29) communicating with the outer surface and the inner surface, and formed with a plurality of ceramic hollow balloons (31). Insulation (30);
It is formed with the wall surface which consists of a glass fiber body (27) used as the intermediate | middle layer arrange | positioned between the said metal wall (22) and the said air-impermeable material (30). A fuel cell comprising the heat shield container according to Item 1.
前記遮熱容器(3)は、
その外面と内面を連通する通気孔(21)を複数箇所に開けた金属壁(22)からなる外表材(23)と、
該金属壁(22)の内面側に配置した、外面と内面を連通する通気筒(29)を複数箇所に設けると共に、複数のセラミック製中空バルーン(31)を形成した通気性が低い難通気性断熱材(30)と、
前記金属壁(22)と前記難通気性断熱材(30)との間に配置した中間層となる金属メッシュと、から成る壁面で形成したものである、ことを特徴とする請求項1の遮熱容器を備えた燃料電池。
The heat shield container (3)
An outer surface material (23) comprising a metal wall (22) having a plurality of vent holes (21) communicating with the outer surface and the inner surface;
Low-breathability with low breathability, which is formed on the inner surface side of the metal wall (22) and is provided with a plurality of cylinders (29) communicating with the outer surface and the inner surface, and formed with a plurality of ceramic hollow balloons (31). Insulation (30);
2. The barrier according to claim 1, wherein the barrier comprises a metal mesh that is an intermediate layer disposed between the metal wall (22) and the non-breathable heat insulating material (30). A fuel cell with a thermal vessel.
JP2005068586A 2005-03-11 2005-03-11 Fuel cell with heat shield container Expired - Fee Related JP4958080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005068586A JP4958080B2 (en) 2005-03-11 2005-03-11 Fuel cell with heat shield container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005068586A JP4958080B2 (en) 2005-03-11 2005-03-11 Fuel cell with heat shield container

Publications (2)

Publication Number Publication Date
JP2006252982A true JP2006252982A (en) 2006-09-21
JP4958080B2 JP4958080B2 (en) 2012-06-20

Family

ID=37093237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005068586A Expired - Fee Related JP4958080B2 (en) 2005-03-11 2005-03-11 Fuel cell with heat shield container

Country Status (1)

Country Link
JP (1) JP4958080B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134215A (en) * 2005-11-11 2007-05-31 Fujitsu Ltd Fuel cell
WO2007116692A1 (en) * 2006-03-31 2007-10-18 Kabushiki Kaisha Toshiba Fuel cell container, container for electronic device having fuel cell mounted thereon and fuel cell provided with container
JP2008130563A (en) * 2006-11-24 2008-06-05 Gaz De France Energy production unit with burner and fuel cell unified
JP2008181731A (en) * 2007-01-24 2008-08-07 Casio Comput Co Ltd Fuel cell device and electronic device
JP2008243591A (en) * 2007-03-27 2008-10-09 Kyocera Corp Fuel cell device
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
JP2013168264A (en) * 2012-02-15 2013-08-29 Osaka Gas Co Ltd Solid oxide fuel cell
JP2015191747A (en) * 2014-03-28 2015-11-02 Toto株式会社 fuel cell device
US20180115008A1 (en) * 2016-10-21 2018-04-26 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676849A (en) * 1992-08-26 1994-03-18 Fuji Electric Co Ltd Solid electrolyte fuel cell power generating device
JPH06163066A (en) * 1992-11-26 1994-06-10 Sekiyu Sangyo Kasseika Center Heat recovering device for high temperature type fuel cell
JP2003115307A (en) * 2001-10-05 2003-04-18 Nippon Steel Corp Interior reformer of solid electrolyte-type fuel cell
JP2004087362A (en) * 2002-08-28 2004-03-18 Daikin Ind Ltd Fuel cell power generation system
JP2004119316A (en) * 2002-09-27 2004-04-15 Kyocera Corp Fuel cell and its operation method
JP2004179166A (en) * 2002-11-27 2004-06-24 General Electric Co <Ge> Fuel cell container cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676849A (en) * 1992-08-26 1994-03-18 Fuji Electric Co Ltd Solid electrolyte fuel cell power generating device
JPH06163066A (en) * 1992-11-26 1994-06-10 Sekiyu Sangyo Kasseika Center Heat recovering device for high temperature type fuel cell
JP2003115307A (en) * 2001-10-05 2003-04-18 Nippon Steel Corp Interior reformer of solid electrolyte-type fuel cell
JP2004087362A (en) * 2002-08-28 2004-03-18 Daikin Ind Ltd Fuel cell power generation system
JP2004119316A (en) * 2002-09-27 2004-04-15 Kyocera Corp Fuel cell and its operation method
JP2004179166A (en) * 2002-11-27 2004-06-24 General Electric Co <Ge> Fuel cell container cooling system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134215A (en) * 2005-11-11 2007-05-31 Fujitsu Ltd Fuel cell
WO2007116692A1 (en) * 2006-03-31 2007-10-18 Kabushiki Kaisha Toshiba Fuel cell container, container for electronic device having fuel cell mounted thereon and fuel cell provided with container
JP2008130563A (en) * 2006-11-24 2008-06-05 Gaz De France Energy production unit with burner and fuel cell unified
JP2008181731A (en) * 2007-01-24 2008-08-07 Casio Comput Co Ltd Fuel cell device and electronic device
JP4636028B2 (en) * 2007-01-24 2011-02-23 カシオ計算機株式会社 FUEL CELL DEVICE AND ELECTRONIC DEVICE
JP2008243591A (en) * 2007-03-27 2008-10-09 Kyocera Corp Fuel cell device
JP2012200840A (en) * 2011-03-28 2012-10-22 Ngk Insulators Ltd Heat conducting member
JP2013168264A (en) * 2012-02-15 2013-08-29 Osaka Gas Co Ltd Solid oxide fuel cell
JP2015191747A (en) * 2014-03-28 2015-11-02 Toto株式会社 fuel cell device
US20180115008A1 (en) * 2016-10-21 2018-04-26 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof
US10547079B2 (en) * 2016-10-21 2020-01-28 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Portable flame electric generation device, metal-supported solid oxide fuel cell and manufacturing methods thereof

Also Published As

Publication number Publication date
JP4958080B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4958080B2 (en) Fuel cell with heat shield container
US6485852B1 (en) Integrated fuel reformation and thermal management system for solid oxide fuel cell systems
JP5109253B2 (en) Fuel cell
JP5109252B2 (en) Fuel cell
JP2004531022A (en) Multifunctional energy system operable as a fuel cell, reformer or heat plant
JP5575535B2 (en) Fuel cell
WO2013046582A1 (en) High-temperature operation fuel cell module and high-temperature operation fuel cell system
JP6111904B2 (en) Fuel cell device
JP2007080760A (en) Fuel cell
JP5248829B2 (en) Fuel cell module
JP2008218277A (en) Fuel cell
JP2009193808A (en) Solid oxide fuel cell
JP2016207342A (en) Fuel cell module
JP2007026928A (en) Fuel cell
KR101398584B1 (en) Hot box apparatus of fuel cell&#39;s stack with ability for heat exchange
JP4986403B2 (en) Power generator
JP2008084646A (en) Fuel cell system
WO2014112018A1 (en) Fuel cell device
JP2004087362A (en) Fuel cell power generation system
US20030207163A1 (en) System for generating electricity
JP2002208427A (en) Reforming device for fuel cell
JP2010272506A (en) Fuel cell stack and fuel cell system equipped with it
JP7159659B2 (en) fuel cell system
JP5266635B2 (en) Fuel cell system
JP4656286B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120312

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120312

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees