JPH06163066A - Heat recovering device for high temperature type fuel cell - Google Patents

Heat recovering device for high temperature type fuel cell

Info

Publication number
JPH06163066A
JPH06163066A JP4316676A JP31667692A JPH06163066A JP H06163066 A JPH06163066 A JP H06163066A JP 4316676 A JP4316676 A JP 4316676A JP 31667692 A JP31667692 A JP 31667692A JP H06163066 A JPH06163066 A JP H06163066A
Authority
JP
Japan
Prior art keywords
heat
heat recovering
fuel cell
heat recovery
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4316676A
Other languages
Japanese (ja)
Inventor
Atsushi Tsunoda
淳 角田
Yoshiaki Omori
敬朗 大森
Hiroshi Seto
浩志 瀬戸
Toshihiko Yoshida
利彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KASSEIKA CENTER
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KASSEIKA CENTER
Petroleum Energy Center PEC
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KASSEIKA CENTER, Petroleum Energy Center PEC, Tonen Corp filed Critical SEKIYU SANGYO KASSEIKA CENTER
Priority to JP4316676A priority Critical patent/JPH06163066A/en
Publication of JPH06163066A publication Critical patent/JPH06163066A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To efficiently remove a heat and efficiently recover the removed heat by providing a heat recovering vessel having a heat recovering chamber formed in the inner part and a high temperature type fuel cell arranged in the heat recovering chamber, and passing a heat recovering medium into the heat recovering chamber. CONSTITUTION:A heat recovering vessel 12 is formed of a wall member 13 and a heat insulating material 14 arranged on the inside, and a heat recovering chamber 15 is formed in the inner part. In the chamber 15, a high temperature type fuel cell 11 is arranged. The heat recovering chamber 15 has a heat recovering medium feed pipe 16 and a heat recovering medium discharge pipe 17, so that a heat recovering medium can flow in the heat recovering chamber 15. The heat generated by the generation of the cell 11 is radiated from a housing 7, and efficiently recovered by the heat recovering medium flowing in the vessel 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融炭酸塩型(MCF
C)や固体電解質型(SOFC)等の高温型燃料電池の
熱回収装置に関する。
The present invention relates to a molten carbonate type (MCF
The present invention relates to a heat recovery device for high temperature fuel cells such as C) and solid oxide type (SOFC).

【0002】[0002]

【従来の技術】燃料電池は、水素、一酸化炭素、炭化水
素等の燃料ガスと空気等の酸化剤ガスの持つ化学エネル
ギーを電気化学的な反応によって直接電気エネルギーに
変換する装置であり、使用する電解質の種類によって、
アルカリ型、燐酸型、溶融炭酸塩型、固体電解質型に分
類される。このうち溶融炭酸塩型と固体電解質型は、作
動温度がそれぞれ約650℃、約1000℃と高く高温
型燃料電池といわれ、白金等の高価な触媒を必要とせ
ず、排熱をガスタービンや蒸気タービンに導くことによ
り、高いエネルギー利用効率を得ることができる。特
に、固体電解質型は、電解質が常態または作動条件下で
液状となるリン酸型や溶融炭酸塩型と異なり、電解質に
よる周辺材料の腐食、電解質自体の分解、蒸発等がなく
電池構造が簡素化でき、また、動作温度が約1000℃
と高いため、燃料として水素の他、メタンや天然ガスを
改質することなくそのまま使用することができるという
特徴を有している。
2. Description of the Related Art A fuel cell is a device that directly converts chemical energy of a fuel gas such as hydrogen, carbon monoxide, or hydrocarbon and an oxidant gas such as air into an electrical energy by an electrochemical reaction. Depending on the type of electrolyte used
It is classified into alkaline type, phosphoric acid type, molten carbonate type, and solid electrolyte type. Of these, the molten carbonate type and the solid electrolyte type have high operating temperatures of about 650 ° C. and about 1000 ° C., respectively, and are said to be high-temperature fuel cells. They do not require an expensive catalyst such as platinum and exhaust heat is exhausted from a gas turbine or steam By leading to the turbine, high energy utilization efficiency can be obtained. In particular, the solid electrolyte type is different from the phosphoric acid type and molten carbonate type, in which the electrolyte is liquid under normal or operating conditions, and the battery structure is simplified without corrosion of surrounding materials by the electrolyte, decomposition of the electrolyte itself, evaporation, etc. Also, the operating temperature is about 1000 ℃
Since it is high, methane or natural gas as a fuel can be used as it is without being reformed in addition to hydrogen.

【0003】以下に高温型燃料電池として固体電解質型
を例として説明する。固体電解質型は、製造方法および
構造の違いにより、円筒型、モノリシック型(またはハ
ニカム型)および平板型に大別され、このうち平板型
は、高出力密度、低コスト、コンパクト化の観点から注
目されている。
A solid electrolyte type high temperature fuel cell will be described below as an example. The solid electrolyte type is roughly classified into a cylindrical type, a monolithic type (or honeycomb type) and a flat plate type according to the difference in the manufacturing method and the structure. Among them, the flat plate type is noted from the viewpoint of high output density, low cost and compactness. Has been done.

【0004】図5は、平板型の固体電解質型燃料電池の
従来例を示し、電解質板1の両面には、多孔性電極材料
からなるアノードおよびカソードが形成されており、電
解質板1の両面にはガス通路と電気的接合体とを兼ねた
セパレータ2が配設され、最上部および最下部の電解質
板1には、上部端子板3および下部端子板4が配設され
ている。セパレータ2の両面には、酸化剤ガス通路5と
燃料ガス通路6が直交するように形成され、また、上部
端子板3および下部端子板4の片面には、それぞれ燃料
ガス通路6と酸化剤ガス通路5とが形成され、電解質板
1とこの電解質板1を挟む燃料ガス通路6と酸化剤ガス
通路5とにより燃料電池の単位セルが構成されている。
FIG. 5 shows a conventional example of a flat plate type solid oxide fuel cell. An anode and a cathode made of a porous electrode material are formed on both sides of the electrolyte plate 1, and both sides of the electrolyte plate 1 are formed. A separator 2 that also serves as a gas passage and an electrical joint is provided, and an upper terminal plate 3 and a lower terminal plate 4 are provided on the uppermost and lowermost electrolyte plates 1. An oxidant gas passage 5 and a fuel gas passage 6 are formed on both surfaces of the separator 2 so as to be orthogonal to each other, and the fuel gas passage 6 and the oxidant gas passage 6 are formed on one surface of the upper terminal plate 3 and the lower terminal plate 4, respectively. A passage 5 is formed, and the electrolyte plate 1, the fuel gas passage 6 sandwiching the electrolyte plate 1 and the oxidant gas passage 5 form a unit cell of the fuel cell.

【0005】そして、このような単位セルを多数積層し
て電池積層体10を構成し、電池積層体10の各燃料ガ
ス通路6に燃料ガスを供給し、各酸化剤ガス通路5に空
気を供給するために、電池積層体10は、円筒形のハウ
ジング7内に装着され、電池積層体10の4隅とハウジ
ング7の接触箇所は、封止剤によりガス封止される。こ
れにより、電池積層体10の4つの側面とハウジング7
の間で4つのガス通路が形成されることになり、ハウジ
ング7の下部には、燃料ガス供給管8a、燃料ガス戻り
管8b、酸化剤ガス供給管9a、酸化剤ガス戻り管9b
が接続される。
A large number of such unit cells are stacked to form a battery stack 10, a fuel gas is supplied to each fuel gas passage 6 of the battery stack 10, and an air is supplied to each oxidant gas passage 5. In order to do so, the battery stack 10 is mounted in a cylindrical housing 7, and the contact points between the four corners of the battery stack 10 and the housing 7 are gas-sealed with a sealant. As a result, the four side surfaces of the battery stack 10 and the housing 7
Four gas passages are formed between them, and the fuel gas supply pipe 8a, the fuel gas return pipe 8b, the oxidant gas supply pipe 9a, and the oxidant gas return pipe 9b are provided in the lower portion of the housing 7.
Are connected.

【0006】そして、各燃料ガス通路6に燃料ガスを供
給し、各酸化剤ガス通路5に空気を供給し、上部および
下部端子板3、4を図示しない外部回路に接続すると、
酸素は燃料ガスと反応しようとしてイオン化して電解質
板1を通して流れ、このとき、カソード側では酸素が電
子を取り込んで酸素イオンとなり、アノード側ではこの
酸素イオンと燃料ガスが反応して電子を放出するので、
外部回路にはカソードを正極、アノードを負極として下
部端子板4から上部端子板3へ電流が流れる。これを化
学式で示すと次のようになる。
When fuel gas is supplied to each fuel gas passage 6 and air is supplied to each oxidant gas passage 5, the upper and lower terminal plates 3 and 4 are connected to an external circuit (not shown).
Oxygen is ionized and flows through the electrolyte plate 1 in an attempt to react with the fuel gas. At this time, oxygen is taken into the electron on the cathode side to become oxygen ion, and on the anode side, the oxygen ion reacts with the fuel gas to release the electron. So
In the external circuit, a current flows from the lower terminal plate 4 to the upper terminal plate 3 with the cathode serving as a positive electrode and the anode serving as a negative electrode. The chemical formula for this is as follows.

【0007】カソード:1/2O2+2e-→O2− 燃料ガス中の水素は、 アノード:H+O2-→H2O+2e- 全体的な電極反応:1/2O2+H2→H2O 燃料ガス中の一酸化炭素は、 アノード:CO+O2-→CO2+2e- 全体的な電極反応:CO+1/2O2→CO2 [0007] The cathode: 1 / 2O 2 + 2e - → O hydrogen 2- fuel gas, the anode: H 2 + O 2- → H 2 O + 2e - overall electrode reaction: 1 / 2O 2 + H 2 → H 2 O Carbon monoxide in the fuel gas is anode: CO + O 2- → CO 2 + 2e - Overall electrode reaction: CO + 1 / 2O 2 → CO 2

【0008】[0008]

【発明が解決しようとする課題】上記高温型燃料電池に
おいては、化学反応で発生する熱エネルギーや、電極或
いは電解質の電気抵抗や、電極と集電体との接触抵抗
が、燃料電池の起電力の損失となり、燃料電池において
は熱の発生となってあらわれる。そのために、燃料電池
で発生する熱を除去して燃料電池の動作温度を保持しな
いと、装置の局部的過熱や温度分布のばらつき等の安定
運転に支障をきたす種々の不都合が生じるため、適切な
冷却による熱の効率的な除去が重要な課題であるととも
に、除去した熱を効率的に回収することがネルギー利用
効率を高めるために重要な課題である。
In the above high temperature fuel cell, the thermal energy generated by the chemical reaction, the electric resistance of the electrode or the electrolyte, and the contact resistance between the electrode and the current collector are caused by the electromotive force of the fuel cell. And the heat is generated in the fuel cell. Therefore, if the heat generated in the fuel cell is not removed and the operating temperature of the fuel cell is not maintained, various inconveniences such as local overheating of the device and variations in temperature distribution that hinder stable operation occur. Efficient removal of heat by cooling is an important issue, and efficient recovery of the removed heat is an important issue to enhance energy utilization efficiency.

【0009】しかしながら、図5で説明した従来の方式
においては、燃料電池の冷却はハウジング7の外周部か
ら放熱されるだけであるため、この熱を効率的に回収す
ることができず、また、燃料ガスおよび酸化剤ガスが電
極付電解質板の両面を通過する間に加熱され、電解質面
には入口から出口に向かって発電による発熱分の不均一
な温度分布が生じることになる。また、中央部に発生し
た熱が蓄積するため燃料電池の周辺部と内部との温度差
が大きくなり、安定運転に支障をきたすという問題を有
している。
However, in the conventional method described with reference to FIG. 5, since the cooling of the fuel cell is radiated from the outer peripheral portion of the housing 7, this heat cannot be efficiently recovered, and The fuel gas and the oxidant gas are heated while passing through both surfaces of the electrode-attached electrolyte plate, and a non-uniform temperature distribution of heat generated by power generation is generated on the electrolyte surface from the inlet to the outlet. In addition, since the heat generated in the central portion is accumulated, the temperature difference between the peripheral portion and the inner portion of the fuel cell becomes large, which causes a problem in stable operation.

【0010】これを解決するために、酸化剤ガス通路に
増量した酸化剤ガスを流すことによって冷却する方法も
検討されているが、この方法ではセルを通過する酸化剤
ガスの量が増大し圧力損失が大きくなり良好な電池性能
が得られないという問題を有している。さらに、燃料電
池の積層体中に別途冷却ガス通路を設ける方法も提案さ
れているが、構造が複雑になるとともにコストが増大す
るという問題を有している。
In order to solve this problem, a method of cooling by flowing an increased amount of the oxidant gas into the oxidant gas passage has been studied, but in this method, the amount of the oxidant gas passing through the cell increases and the pressure is increased. There is a problem that the loss becomes large and good battery performance cannot be obtained. Further, a method of separately providing a cooling gas passage in the stack of the fuel cell has been proposed, but it has a problem that the structure becomes complicated and the cost increases.

【0011】本発明は上記課題、問題を解決するもので
あって、高温型燃料電池における熱の効率的な除去を図
るとともに、除去した熱を効率的に回収することができ
る熱回収装置を提供することを目的とする。
The present invention solves the above problems and problems, and provides a heat recovery device capable of efficiently removing heat in a high temperature fuel cell and efficiently recovering the removed heat. The purpose is to do.

【0012】[0012]

【課題を解決するための手段】そのために本発明の高温
型燃料電池の熱回収装置は、断熱材14を介して内部に
熱回収室15が形成される熱回収容器12と、熱回収室
15内に配設される高温型燃料電池11とを備え、熱回
収室15内に熱回収用媒体を流通させることを特徴とす
る。なお、上記構成に付加した番号は、本発明の理解を
容易にするために図面と対比させるものであり、これに
より本発明の構成が何ら限定されるものではない。
To this end, the heat recovery device for a high temperature fuel cell according to the present invention includes a heat recovery container 12 in which a heat recovery chamber 15 is formed via a heat insulating material 14, and a heat recovery chamber 15. The heat recovery medium is provided inside the heat recovery chamber 15, and the heat recovery medium is circulated in the heat recovery chamber 15. It should be noted that the numbers added to the above-mentioned configurations are for comparison with the drawings in order to facilitate the understanding of the present invention, and the configurations of the present invention are not limited thereby.

【0013】[0013]

【作用】本発明においては、高温型燃料電池の発電によ
って生じた熱は、そのハウジングから放熱され、熱回収
容器内を流れる熱回収用媒体によって回収されるため、
燃料電池側では冷却による熱の効率的な除去が行われ、
かつ、除去した熱を効率的に回収することができる。
In the present invention, the heat generated by the power generation of the high temperature fuel cell is radiated from the housing and is recovered by the heat recovery medium flowing in the heat recovery container.
On the fuel cell side, the heat is efficiently removed by cooling,
Moreover, the removed heat can be efficiently recovered.

【0014】平板型の固体電解質型燃料電池の例で、水
素を燃料とした場合、10kWセル(30cm角60
段)で効率40%運転時(燃料利用率:70%、電圧:
0.7V/段、電流:240A)、燃料および空気が1
000℃でセルに送られるとすると、セルで消費される
水素量は、 240(A/段)×7(SCCM/A)×60(段)=100,800(SCC
M)=6,048(Sl/hr) となる。1000℃において H2+1/2O2+→H2O+249.5(KJ/mol) であるから、セルの発熱量は、 6,048(Sl/hr)/22.4(Sl/mol)×249.5(KJ/mo
l)−10(kW)×3,600(sec)=31,365(KJ/hr)=7,4
96(Kcal/hr) となる。例えば、熱回収用媒体として空気を送るとする
と、常温から500℃の空気のエンタルピー変化は1
5.21(KJ/mol)であるから、常温から500℃ま
で加熱され得る空気量は、 31,365(KJ/hr)/15.21(KJ/mol)=2,062(mol/h
r)=46,192(sl/hr) となる。発熱量のうち1/3程度は熱回収容器から外気
に放出されるとしても、30(m3/hr)程度の空気を
常温から500℃程度に加熱することができる。このよ
うにして加熱された空気を直接利用してもよいし、熱交
換器等の別な手段で回収するようにしてもよい。
In an example of a flat plate type solid oxide fuel cell, when hydrogen is used as a fuel, a 10 kW cell (30 cm square 60 cm)
Operation at 40% efficiency (fuel utilization: 70%, voltage:
0.7V / stage, current: 240A), fuel and air 1
If it is sent to the cell at 000 ° C, the amount of hydrogen consumed in the cell is 240 (A / stage) × 7 (SCCM / A) × 60 (stage) = 100,800 (SCC
M) = 6,048 (Sl / hr). Since H 2 + 1 / 2O 2 + → H 2 O + 249.5 (KJ / mol) at 1000 ° C., the calorific value of the cell is 6,048 (Sl / hr) /22.4 (Sl / mol) × 249.5 (KJ / mo).
l) -10 (kW) x 3,600 (sec) = 31,365 (KJ / hr) = 7,4
It becomes 96 (Kcal / hr). For example, if air is sent as a heat recovery medium, the enthalpy change of air from room temperature to 500 ° C. is 1
Since it is 5.21 (KJ / mol), the amount of air that can be heated from room temperature to 500 ° C is 31,365 (KJ / hr) /15.21 (KJ / mol) = 2,062 (mol / h)
r) = 46,192 (sl / hr). Even if about 1/3 of the calorific value is released from the heat recovery container to the outside air, about 30 (m 3 / hr) of air can be heated from room temperature to about 500 ° C. The air thus heated may be directly used or may be recovered by another means such as a heat exchanger.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。なお、以下の例では図5で説明した平板型の固
体電解質型燃料電池の例について説明するが、これに限
定されるものではなく、円筒型或いはモノリシック型の
固体電解質型燃料電池、さらには、溶融炭酸塩型燃料電
池等、要するに作動温度が高い全ての燃料電池に適用さ
れるものである。
Embodiments of the present invention will be described below with reference to the drawings. In the following example, an example of the flat plate type solid oxide fuel cell described in FIG. 5 will be described, but the present invention is not limited to this, and a cylindrical or monolithic solid oxide fuel cell, and further, In short, it is applied to all fuel cells having a high operating temperature, such as molten carbonate fuel cells.

【0016】図1は、本発明の高温型燃料電池の熱回収
装置の1実施例を示す断面図である。熱回収容器12
は、壁部材13と、その内側に配設される断熱材14と
からなり、内部に熱回収室15が形成されている。熱回
収室15内には、図5で説明した高温型燃料電池11が
配設され、そのハウジング7に接続される燃料ガス供給
管8a、燃料ガス戻り管8b、酸化剤ガス供給管9a、
酸化剤ガス戻り管9bが、熱回収容器12の外部に延設
されている。また、熱回収室15には、熱回収用媒体供
給管16と熱回収用媒体排出管17が設けられ、熱回収
室15内に熱回収用媒体を流通可能にしている。なお、
本実施例では熱回収室15内に一つの燃料電池11を配
設しているが、複数の燃料電池を配設してもよい。
FIG. 1 is a sectional view showing an embodiment of a heat recovery apparatus for a high temperature fuel cell according to the present invention. Heat recovery container 12
Is composed of a wall member 13 and a heat insulating material 14 arranged inside thereof, and a heat recovery chamber 15 is formed inside. Inside the heat recovery chamber 15, the high temperature fuel cell 11 described with reference to FIG. 5 is arranged and connected to the housing 7 of the fuel gas supply pipe 8a, the fuel gas return pipe 8b, the oxidant gas supply pipe 9a,
An oxidant gas return pipe 9b is provided outside the heat recovery container 12. A heat recovery medium supply pipe 16 and a heat recovery medium discharge pipe 17 are provided in the heat recovery chamber 15 so that the heat recovery medium can be circulated in the heat recovery chamber 15. In addition,
Although one fuel cell 11 is arranged in the heat recovery chamber 15 in this embodiment, a plurality of fuel cells may be arranged.

【0017】本発明においては、高温型燃料電池11の
発電によって生じた熱は、ハウジング7から放熱され、
熱回収容器12内を流れる熱回収用媒体によって効率よ
く回収されるため、燃料電池11側では冷却による熱の
効率的な除去が行われ、かつ、除去した熱を熱回収用媒
体により効率的に回収することができる。
In the present invention, the heat generated by the power generation of the high temperature fuel cell 11 is radiated from the housing 7,
Since the heat recovery medium flowing through the heat recovery container 12 efficiently recovers the heat, the heat is efficiently removed by cooling on the fuel cell 11 side, and the removed heat is efficiently transferred to the heat recovery medium. Can be collected.

【0018】熱回収用媒体としては、水素、炭化水素、
水蒸気等の発電用アノードガス、空気、酸素、不活性ガ
ス等の発電用カソードガスを用い、これらのガスの予熱
に利用したり、ガスタービンや蒸気タービン等の他の発
電システムに供給するプロセスガスを用いたり、或いは
発電システムの系外に供給する加熱用ガスを用いられ
る。
As the heat recovery medium, hydrogen, hydrocarbon,
A process gas that uses an anode gas for power generation such as water vapor and a cathode gas for power generation such as air, oxygen, and an inert gas to preheat these gases or to supply to other power generation systems such as gas turbines and steam turbines. Or a heating gas supplied to the outside of the power generation system is used.

【0019】図2、図3および図4は本発明の他の実施
例を示している。なお、図1の実施例と同一の構成につ
いては同一番号を付けて説明を省略する。
2, 3 and 4 show another embodiment of the present invention. The same components as those in the embodiment of FIG. 1 are designated by the same reference numerals and the description thereof will be omitted.

【0020】図2の実施例においては、熱回収室15内
に仕切壁18を設けることにより環状通路19を形成
し、この環状通路19内に熱回収用媒体を流すようにし
ている。また、図3の実施例においては、熱回収室15
内にコイル状の配管20を設け、この配管20内に熱回
収用媒体を流すようにしている。
In the embodiment of FIG. 2, a partition wall 18 is provided in the heat recovery chamber 15 to form an annular passage 19, and the heat recovery medium is allowed to flow in the annular passage 19. Further, in the embodiment of FIG. 3, the heat recovery chamber 15
A coil-shaped pipe 20 is provided inside, and a heat recovery medium is allowed to flow in the pipe 20.

【0021】図4の実施例は、燃料電池11の変形例を
示している。2つのハウジング7、7が間隔をもって配
設され、それぞれのハウジング7内に電池積層体10が
分割して装着されている。図で下側のハウジング7の下
部には、燃料ガス供給管8a、燃料ガス戻り管8b、酸
化剤ガス供給管9a、酸化剤ガス戻り管9bが接続さ
れ、また、上下のハウジング7間には、接続管22を接
続することにより、上下の電池積層体10に燃料ガスお
よび酸化剤ガスの供給および排出を可能にする。そし
て、上下の電池積層体10間を電気的に接続するための
導電部材23が設けられる。なお、図では間隔を離した
2つのハウジング7に電池積層体10を装着している
が、2つに限定されるものではなく、3つ以上でもよ
い。
The embodiment of FIG. 4 shows a modification of the fuel cell 11. The two housings 7, 7 are arranged at intervals, and the battery stack 10 is separately mounted in each of the housings 7. A fuel gas supply pipe 8a, a fuel gas return pipe 8b, an oxidant gas supply pipe 9a, and an oxidant gas return pipe 9b are connected to the lower portion of the lower housing 7 in the figure, and the upper and lower housings 7 are connected to each other. By connecting the connection pipes 22, it is possible to supply and discharge the fuel gas and the oxidant gas to the upper and lower cell stacks 10. Then, a conductive member 23 for electrically connecting the upper and lower battery stacks 10 is provided. Although the battery stacks 10 are mounted in the two housings 7 spaced apart in the drawing, the number of the battery stacks 10 is not limited to two, and may be three or more.

【0022】本実施例においては、電池積層体10を間
隔を離して配設される複数のハウジング7内に分割して
装着するので、発電によって生じた熱は、ハウジング7
の外周部から放熱されるでけではなく、隣接するハウジ
ング7間の隙間から放熱され、その熱は熱回収容器12
を流れる熱回収用媒体によって回収される。従って、前
記実施例と比較して各単電池内の温度分布および積層方
式の温度分布を最小にすることができ電流分布もより小
さくなる。また、部分的な加熱による劣化や封止の破壊
をなくすことができる。
In this embodiment, the battery stack 10 is divided and mounted in the plurality of housings 7 arranged at intervals, so that the heat generated by the power generation is applied to the housing 7.
The heat is not only radiated from the outer peripheral portion of the housing but also radiated from the gap between the adjacent housings 7, and the heat is collected.
It is recovered by the heat recovery medium flowing through. Therefore, the temperature distribution in each unit cell and the temperature distribution of the stacking method can be minimized and the current distribution can be made smaller as compared with the above-mentioned embodiment. In addition, deterioration due to partial heating and breakage of the seal can be eliminated.

【0023】[0023]

【発明の効果】以上の説明から明らかなように本発明に
よれば、高温型燃料電池における熱の効率的な除去を図
るとともに、除去した熱を効率的に回収することができ
る。
As is apparent from the above description, according to the present invention, it is possible to efficiently remove the heat in the high temperature fuel cell and to efficiently recover the removed heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高温型燃料電池の熱回収装置の1実施
例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a heat recovery device for a high temperature fuel cell according to the present invention.

【図2】本発明の高温型燃料電池の熱回収装置の他の実
施例を示す断面図である。
FIG. 2 is a cross-sectional view showing another embodiment of the heat recovery device of the high temperature fuel cell of the present invention.

【図3】本発明の高温型燃料電池の熱回収装置の他の実
施例を示す断面図である。
FIG. 3 is a cross-sectional view showing another embodiment of the heat recovery device of the high temperature fuel cell of the present invention.

【図4】本発明における燃料電池の変形例を示す斜視図
である。
FIG. 4 is a perspective view showing a modified example of the fuel cell according to the present invention.

【図5】高温型燃料電池の従来例を示す斜視図である。FIG. 5 is a perspective view showing a conventional example of a high temperature fuel cell.

【符号の説明】[Explanation of symbols]

7…ハウジング、8a…燃料ガス供給管、8b…燃料ガ
ス戻り管 9a…酸化剤ガス供給管、9b…酸化剤ガス戻り管、1
1…高温型燃料電池 12…熱回収容器、13…壁部材、14…断熱材、15
…熱回収室 16…熱回収用媒体供給管、17…熱回収用媒体排出管
7 ... Housing, 8a ... Fuel gas supply pipe, 8b ... Fuel gas return pipe 9a ... Oxidizing gas supply pipe, 9b ... Oxidizing gas return pipe, 1
DESCRIPTION OF SYMBOLS 1 ... High temperature fuel cell 12 ... Heat recovery container, 13 ... Wall member, 14 ... Insulating material, 15
... Heat recovery chamber 16 ... Heat recovery medium supply pipe, 17 ... Heat recovery medium discharge pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀬戸 浩志 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 (72)発明者 吉田 利彦 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroshi Seto Nishitsurugaoka 1-3-1, Oi-cho, Iruma-gun, Saitama Tonen Corporation Research Institute (72) Toshihiko Yoshida Nishitsurugaoka, Oi-cho, Saitama-ken 3-3-1 Tonen Co., Ltd. Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】断熱材を介して内部に熱回収室が形成され
る熱回収容器と、該熱回収室内に配設される高温型燃料
電池とを備え、前記熱回収室内に熱回収用媒体を流通さ
せることを特徴とする高温型燃料電池の熱回収装置。
1. A heat recovery container having a heat recovery chamber formed therein via a heat insulating material, and a high temperature fuel cell disposed in the heat recovery chamber, wherein the heat recovery medium is in the heat recovery chamber. A heat recovery device for a high temperature fuel cell, characterized in that
JP4316676A 1992-11-26 1992-11-26 Heat recovering device for high temperature type fuel cell Pending JPH06163066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4316676A JPH06163066A (en) 1992-11-26 1992-11-26 Heat recovering device for high temperature type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4316676A JPH06163066A (en) 1992-11-26 1992-11-26 Heat recovering device for high temperature type fuel cell

Publications (1)

Publication Number Publication Date
JPH06163066A true JPH06163066A (en) 1994-06-10

Family

ID=18079673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4316676A Pending JPH06163066A (en) 1992-11-26 1992-11-26 Heat recovering device for high temperature type fuel cell

Country Status (1)

Country Link
JP (1) JPH06163066A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085523A (en) * 2003-09-05 2005-03-31 Mitsubishi Materials Corp Solid oxide fuel cell
JP2006252982A (en) * 2005-03-11 2006-09-21 Central Res Inst Of Electric Power Ind Fuel cell equipped with heat shielding container
JP2008021636A (en) * 2006-06-12 2008-01-31 Mitsubishi Materials Corp Fuel cell
WO2009028169A1 (en) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation Fuel cell
JP2020087533A (en) * 2018-11-16 2020-06-04 株式会社Ihi Fuel cell system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005085523A (en) * 2003-09-05 2005-03-31 Mitsubishi Materials Corp Solid oxide fuel cell
JP2006252982A (en) * 2005-03-11 2006-09-21 Central Res Inst Of Electric Power Ind Fuel cell equipped with heat shielding container
JP2008021636A (en) * 2006-06-12 2008-01-31 Mitsubishi Materials Corp Fuel cell
WO2009028169A1 (en) * 2007-08-27 2009-03-05 Mitsubishi Materials Corporation Fuel cell
JPWO2009028169A1 (en) * 2007-08-27 2010-11-25 三菱マテリアル株式会社 Fuel cell
JP2020087533A (en) * 2018-11-16 2020-06-04 株式会社Ihi Fuel cell system

Similar Documents

Publication Publication Date Title
AU2002219941B2 (en) Multipurpose reversible electrochemical system
CA2276205C (en) Pressurized, integrated electrochemical converter energy system
JP4243592B2 (en) Fuel cell system
AU2002219941A1 (en) Multipurpose reversible electrochemical system
US5501781A (en) Electrochemical converter having internal thermal integration
US20030012997A1 (en) Pressurized, integrated electrochemical converter energy system
CA2400452C (en) A fuel cell stack and a method of supplying reactant gases to the fuel cell stack
JP5713698B2 (en) Separation and recovery system for CO2 from solid oxide fuel cell and method for operating the same
JP2555731B2 (en) Solid oxide fuel cell
JP4706190B2 (en) Solid oxide fuel cell
WO2004030136A1 (en) Solid oxide fuel cell stack assembly having tapered diffusion layers
JPH06163066A (en) Heat recovering device for high temperature type fuel cell
KR100418626B1 (en) Molten Carbonate Fuel Cell
JP2007005134A (en) Steam generator and fuel cell
JP4544055B2 (en) Fuel cell
JP2610255B2 (en) Molten carbonate fuel cell
JP4849201B2 (en) Solid oxide fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
JPH0722058A (en) Flat solid electrolyte fuel cell
CN110391441B (en) Solid oxide fuel cell stack and cell system
JP3584576B2 (en) Molten carbonate fuel cell
JP3365453B2 (en) Fuel cell
JPH11354145A (en) Solid polymer type fuel cell power generating set
JPH11500257A (en) Solid electrolyte high temperature fuel cell module and method of operating the same
JPH0412470A (en) High-temperature type fuel cell