JPH0961352A - Gas introducing device - Google Patents

Gas introducing device

Info

Publication number
JPH0961352A
JPH0961352A JP24065395A JP24065395A JPH0961352A JP H0961352 A JPH0961352 A JP H0961352A JP 24065395 A JP24065395 A JP 24065395A JP 24065395 A JP24065395 A JP 24065395A JP H0961352 A JPH0961352 A JP H0961352A
Authority
JP
Japan
Prior art keywords
gas
comparative
sample
moisture permeable
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24065395A
Other languages
Japanese (ja)
Inventor
Shigeyuki Akiyama
重之 秋山
Takuji Ikuta
卓司 生田
Fujio Koga
富士夫 古賀
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP24065395A priority Critical patent/JPH0961352A/en
Publication of JPH0961352A publication Critical patent/JPH0961352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas introducing device in which the moisture concentrations of a reference gas and a sample gas are equilibrated, and the responsiveness of a soluble gas (SO2 , NO2 or the like) can be significantly improved without generation of condensed water or drain. SOLUTION: This gas introducing device is formed out of a tubular moisture permeable film 3 for introducing a sample gas from a sample gas outflow line 7 to an analyzer 10, an outside case 2 covering the moisture permeable film 3 so as to form a fixed space with it and having a reference gas inlet port and a reference gas outflow port, a reference gas circulating line 9 having a reference gas introducing valve 6, a reference gas outflow valve 9, a circulating pump 11 and a flowmeter 12 arranged therein, and connected to the outside case 2, and a reference gas outflow line 15 connected to the reference gas outflow port to introduce the reference gas to the analyzer 10. A sample gas circulating line may be provided in both end parts of the moisture permeable film 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、例えば赤外線ガ
ス分析計で用いられる比較法によるガス分析計或いはク
ロスモジュレ−ション方式ガス分析計等において、比較
ガス流路及びサンプルガス流路の相異なる水分濃度を近
似させ水分干渉影響を低減させ応答速度を迅速にするこ
とのできるガス導入装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas analyzer according to a comparison method used in, for example, an infrared gas analyzer, a cross-modulation type gas analyzer, etc. The present invention relates to a gas introduction device capable of approximating the concentrations and reducing the influence of moisture interference and increasing the response speed.

【0002】[0002]

【従来の技術】煙道ガス等の燃焼排ガスを分析する場合
には比較法或いはクロスモジュレ−ション方式等の赤外
線ガス分析計が用いられる。このようなガス分析計で
は、水分による干渉影響を低減したり水分濃度を平衡さ
せる手段として、通常2系列電子冷却器が使用されるこ
とが多い。即ち、図3に示すように、比較ガス流路21
とサンプルガス流路23の2系統の管路を2系列電子冷
却器20を通過させ、分配器(切換弁)22を介して比
較ガスとサンプルガスを分析計方向へ導入する。該電子
冷却器20では比較ガス中の水分もサンプルガス中の水
分も共に凝縮されてトラップ24に滴下させるようにし
てある。この場合、比較ガス及びサンプルガスのいずれ
も水分濃度は電子冷却器20の除湿露点温度により決ま
る。
2. Description of the Related Art In the case of analyzing combustion exhaust gas such as flue gas, an infrared gas analyzer such as a comparison method or a cross modulation method is used. In such a gas analyzer, a two-series electronic cooler is often used as a means for reducing the interference effect due to moisture and for balancing the moisture concentration. That is, as shown in FIG.
Then, the two lines of the sample gas flow path 23 are passed through the two-line electronic cooler 20, and the comparison gas and the sample gas are introduced toward the analyzer through the distributor (switching valve) 22. In the electronic cooler 20, the water in the reference gas and the water in the sample gas are both condensed and dropped in the trap 24. In this case, the water concentration of both the comparison gas and the sample gas is determined by the dehumidifying dew point temperature of the electronic cooler 20.

【0003】[0003]

【発明が解決しようとする課題】上記する比較ガス流路
21或いはサンプルガス流路23の各ラインの入口露点
温度が該2系列電子冷却器20の除湿露点の設定温度以
下の場合は、従来は前段で加湿させる必要があった。ま
た、前記2系列電子冷却器20の冷却部においては凝縮
水が発生し、特に亜硫酸ガス(SO2 )等水溶性のガス
を測定する場合にはガス溶解による大きな応答遅れが発
生し、スパンガス校正時間が長い或いは指示値が低く出
る等の欠点があった。また、電子冷却器は一般に露点温
度が5°C程度でありサンプルガス中の水分を除去する
には限界がある。即ち、除湿露点温度を零度以下にする
と水分が氷結するとガスが流れにくくなるため除湿露点
温度は最低でも5°C程度とするが、水分による干渉影
響を押さえるため水の絶対量を減らすという意味では電
子冷却器による除湿には限界があった。
Conventionally, when the inlet dew point temperature of each line of the comparative gas flow path 21 or the sample gas flow path 23 is equal to or lower than the set temperature of the dehumidifying dew point of the two-series electronic cooler 20, It was necessary to humidify in the previous stage. Further, condensed water is generated in the cooling section of the two-series electronic cooler 20, and particularly when measuring a water-soluble gas such as sulfurous acid gas (SO 2 ), a large response delay occurs due to gas dissolution, and span gas calibration is performed. There were drawbacks such as long time or low indication value. Further, since the electronic cooler generally has a dew point temperature of about 5 ° C, there is a limit in removing water in the sample gas. That is, if the dehumidifying dew point temperature is below 0 ° C., it becomes difficult for gas to flow when the moisture freezes, so the dehumidifying dew point temperature is at least about 5 ° C. There was a limit to dehumidification with an electronic cooler.

【0004】この発明は上記する課題に着目してなされ
たものであり、氷点下以下の温度であっても比較側とサ
ンプル側ガスの水分濃度を平衡させ、凝縮水やドレンの
発生がなく溶解性ガス(SO2 、NO2 等)などの応答
性を大幅に改善することのできるガス導入装置を提供す
ることを目的とする。
The present invention has been made by paying attention to the above-mentioned problems, and even at temperatures below the freezing point, the water concentrations of the gas on the comparison side and the gas on the sample side are balanced so that condensed water and drainage are not generated and solubility is improved. An object of the present invention is to provide a gas introduction device capable of greatly improving the response of gas (SO 2 , NO 2, etc.).

【0005】[0005]

【課題を解決するための手段】即ち、この発明は上記す
る課題を解決するために、ガス導入装置が、水分透過
膜部と、該水分透過膜部との間に一定の空間が形成され
るように該水分透過膜部を覆い且つパ−ジガス導入口と
パ−ジガス流出口とを設けた外側ケ−スとより成る膜式
除湿器の該水分透過膜部に、サンプルガス導入管路とサ
ンプルガスを分析計へ導入するサンプルガス流出管路と
を接続し、前記外側ケ−スのパ−ジガス導入口とパ−ジ
ガス流出口に、途中に比較ガス導入用弁と比較ガス流出
用弁及び循環用手段を配置したパ−ジガス用循環管路を
接続し、更に、前記比較ガス流出口に分析計へ比較ガス
を導入する比較ガス流出管路を接続して成ることを特徴
とする。
That is, in order to solve the above problems, the present invention provides a gas introducing device in which a constant space is formed between a moisture permeable membrane portion and the moisture permeable membrane portion. As described above, in the moisture permeable membrane portion of the membrane type dehumidifier composed of an outer case which covers the moisture permeable membrane portion and is provided with a purge gas inlet and a purge gas outlet, a sample gas introduction pipe line and A sample gas outflow line for introducing the sample gas into the analyzer is connected, and a comparative gas introduction valve and a comparative gas outflow valve are provided on the way to the page gas inlet and the page gas outlet of the outer case. And a circulation gas passage for arranging circulation means, and a comparison gas outlet pipe for introducing the comparison gas into the analyzer is connected to the comparison gas outlet.

【0006】或いは、ガス導入装置が、水分透過膜部
と、該水分透過膜部との間に一定の空間が形成されるよ
うに該水分透過膜を覆い且つパ−ジガス導入口とパ−ジ
ガス流出口とを設けた外側ケ−スと、より成る膜式除湿
器の該水分透過膜部にサンプルガス導入管路とサンプル
ガスを分析計へ導入するサンプルガス流出管路とを接続
し、前記水分透過膜両端部に接続したサンプルガス流入
管路とサンプルガス流出管路に配置した三方弁に、循環
手段を配置したサンプルガス循環用管路の両端部を接続
し、前記外側ケ−スの比較ガス導入口と比較ガス流出口
に、途中に比較ガス導入用弁と比較ガス流出用弁及び循
環用手段を配置したパ−ジガス用循環管路を接続し、更
に、前記比較ガス流出口に分析計へ比較ガスを導入する
比較ガス流出管路を接続して成ることを特徴とする。
Alternatively, the gas introducing device covers the moisture permeable membrane so that a certain space is formed between the moisture permeable membrane and the moisture permeable membrane, and the purge gas introducing port and the purge gas are provided. An outer case provided with an outflow port, and a sample gas introduction pipe line and a sample gas outflow pipe line for introducing a sample gas into an analyzer are connected to the moisture permeable membrane portion of the membrane type dehumidifier, The sample gas inflow conduit connected to both ends of the moisture permeable membrane and the three-way valve arranged in the sample gas outflow conduit are connected to both ends of the sample gas circulation conduit in which a circulation means is arranged, and the outer case of the outer case is connected. A comparative gas inlet and a comparative gas outlet are connected to a comparative gas inlet valve, a comparative gas outflow valve, and a purge gas circulation pipe line in which a circulation means is arranged, and further to the comparative gas outlet. The comparative gas outflow line that introduces the comparative gas into the analyzer Characterized by comprising connection to.

【0007】[0007]

【発明の実施の形態】以下、この発明の具体的実施例に
ついて図面を参照しながら説明する。図1はこの発明の
ガス導入装置の第1の実施例の構成図である。この図に
おいて、1は膜式気相除湿器であって、中央部に配置さ
れたチュ−ブ形の水分透過膜(高分子膜)3との間に一
定の空間4が形成されるよう該水分透過膜3を外側ケ−
ス2で覆うようにして製作される。そして該水分透過膜
3の内部空間3aはサンプルガス導入管路5に接続され
ると共に導入されたサンプルガスはサンプルガス流出管
路7より分析計10へ導入されるようにしてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a first embodiment of a gas introduction device of the present invention. In this figure, reference numeral 1 is a membrane-type vapor dehumidifier, and a constant space 4 is formed between it and a tube-shaped moisture permeable membrane (polymer membrane) 3 arranged in the center. The moisture permeable membrane 3 is attached to the outer case.
It is manufactured so that it is covered with a sleeve 2. The internal space 3a of the moisture permeable membrane 3 is connected to the sample gas introduction pipe line 5 and the introduced sample gas is introduced into the analyzer 10 through the sample gas outflow pipe line 7.

【0008】前記外側ケ−ス2には比較ガス導入口2a
と比較ガス流出口2bが設けられると共にこれらの比較
ガス導入口2aと比較ガス流出口2bには比較ガス用循
環管路9が接続されている。更に、該比較ガス用循環管
路9の途中には比較ガス導入用弁6と比較ガス流出用弁
8が配置されると共に比較ガス循環用のポンプ11とフ
ロ−メ−タ12が配置されている。また、前記比較ガス
導入用弁6には比較ガス導入管路13が接続され、比較
ガス流出用弁8には比較ガス流出管路15が接続され、
比較ガス(流量qR )はこの比較ガス流出管路15より
分析計10へ導入される。こうして比較ガスは、前記水
分透過膜3と外側ケ−ス2との間に形成される空間4
と、比較ガス用循環管路9との間を循環するようになっ
ている。比較ガスとしては水分を含まないドライガスで
あって水分を除去した空気或いは窒素ガス等が用いられ
る。尚、前記膜式気相除湿器1におけるサンプルガス流
量(qS )に対する前記水分透過膜3と外側ケ−ス2と
の間に形成される空間(以下、パ−ジ側空間とする)4
の比較ガス流量(QC )比(QC /qS )は3〜10倍
程度とすることが望ましい。
A comparative gas inlet 2a is provided in the outer case 2.
A reference gas outlet 2b is provided, and a reference gas circulation pipe 9 is connected to the reference gas inlet 2a and the reference gas outlet 2b. Further, a comparative gas introduction valve 6 and a comparative gas outflow valve 8 are arranged in the middle of the comparative gas circulation pipe line 9, and a comparative gas circulation pump 11 and a flow meter 12 are arranged. There is. Further, the comparative gas introduction valve 13 is connected to the comparative gas introduction valve 6, and the comparative gas outflow conduit 15 is connected to the comparative gas outflow valve 8.
The comparative gas (flow rate q R ) is introduced into the analyzer 10 through the comparative gas outflow line 15. In this way, the comparative gas has a space 4 formed between the moisture permeable membrane 3 and the outer case 2.
And the comparative gas circulation pipe line 9. As the comparison gas, a dry gas containing no water and having removed water, such as air or nitrogen gas, is used. A space (hereinafter referred to as a page side space) 4 formed between the moisture permeable membrane 3 and the outer case 2 with respect to the sample gas flow rate (q S ) in the membrane vapor dehumidifier 1.
Reference gas flow rate (Q C) ratio (Q C / q S) is preferably set to about 3 to 10 times.

【0009】上記構成からなるこの発明のガス導入装置
において、水分透過膜3に導入されるサンプルガスの水
分蒸気圧をPWS(mmHg)、比較ガス用循環管路9を循環
する比較ガスの水分蒸気圧をPWR(mmHg)とし、更に、
WS>PWRとすれば、水分透過膜3をサンプルガス及び
比較ガスが通過するにつれて膜式気相除湿器1の出口近
くではこれら2つの流路における水分蒸気圧がほぼ等し
くなる気相平衡が成立し、該膜式気相除湿器1の出口近
傍での水分蒸気圧をPWS’(mmHg)とし、比較ガスの水
分蒸気圧をPWR’(mmHg)とすると、ほぼPWS’=
WR’となる。
In the gas introducing device of the present invention having the above structure, the moisture vapor pressure of the sample gas introduced into the moisture permeable membrane 3 is P WS (mmHg), and the moisture of the comparison gas circulating in the comparison gas circulation conduit 9 is Set the vapor pressure to P WR (mmHg), and
If P WS > P WR , the vapor phase equilibrium in which the water vapor pressures in these two flow paths become almost equal near the outlet of the membrane vapor phase dehumidifier 1 as the sample gas and the comparative gas pass through the water permeable membrane 3. And the moisture vapor pressure near the outlet of the membrane vapor dehumidifier 1 is P WS ′ (mmHg) and the moisture vapor pressure of the comparative gas is P WR ′ (mmHg), then P WS ′ =
It becomes P WR '.

【0010】前記膜式気相除湿器1は、水分透過膜3
の内外の水蒸気分圧の差ΔPW (ΔPW =PWS−PWR
が大きいこと、水分透過膜3の膜面積が大きいこと、
比較ガス用循環路9を流れる比較ガスの流量(パ−ジ
側流量)が大きいこと、を満足させると水分子の透過効
率が良くなる。比較ガスとしてはドライガスを使用して
いるため当然のことながらPWS>PWRであり、水蒸気分
圧の差ΔPW は大きいため水分子の透過効率は良い。
The membrane type vapor phase dehumidifier 1 comprises a moisture permeable membrane 3
Difference in water vapor partial pressure between inside and outside of ΔP W (ΔP W = P WS −P WR )
Is large, the membrane area of the moisture permeable membrane 3 is large,
If the flow rate (flow rate on the page side) of the comparative gas flowing through the comparative gas circulation path 9 is satisfied, the water molecule permeation efficiency is improved. Since dry gas is used as the reference gas, it is natural that P WS > P WR , and the difference ΔP W in water vapor partial pressure is large, so that the permeation efficiency of water molecules is good.

【0011】前記膜式気相除湿器1において水分透過膜
3を透過する水分子は、PWS>PWRの場合、サンプルガ
ス中の水分子が膜面に付着し高分子膜内を透過しパ−ジ
側空間4の水分透過膜表面に達する。該水分透過膜3の
表面に達した水分子は該パ−ジ側空間4のガス雰囲気内
に拡散しパ−ジ側空間4の水分蒸気圧を高めることにな
る。そして水分透過膜3を透過する水分子の移動速度
は、PWS>PWRであればあるほど、また、水分透過膜3
内のサンプルガス流量に比べてパ−ジ側空間4の比較ガ
ス流量が大きいほど大きくなる。
When P WS > P WR , the water molecules that permeate through the moisture permeable membrane 3 in the membrane gas phase dehumidifier 1 are water molecules in the sample gas that adhere to the membrane surface and permeate through the polymer membrane. It reaches the surface of the water permeable membrane in the space 4 on the page side. The water molecules that have reached the surface of the water permeable membrane 3 diffuse into the gas atmosphere of the page side space 4 and increase the water vapor pressure of the page side space 4. The moving speed of the water molecules passing through the water permeable membrane 3 is P WS > P WR.
It becomes larger as the comparative gas flow rate of the purge side space 4 becomes larger than the sample gas flow rate therein.

【0012】上記するように、この発明のガス導入装置
では、小型の膜式気相除湿器1を用いてパ−ジ側空間4
の比較ガスの流量を増大させることにより水分透過膜3
面における比較ガス流速を増大させ(即ち、比較ガスの
接触量を増大させ)、サンプルガスラインより透過して
きた水分子の吸着を防止すると共に拡散速度を増大させ
ることで出口近傍におけるサンプルガスの水分蒸気圧P
WS’と、パ−ジ側の水分蒸気圧PWR’とを近似させるも
のである。この場合、サンプルガスの温度は大気温度で
あり、比較ガスの温度は氷点下40°C〜30°C程度
であるが、前記膜式気相除湿器1の出口付近の温度は氷
点下20°C程度で気相平衡させることができる。以上
のような作用によりサンプルガスと比較ガスとの水分蒸
気圧がほぼ等しくなったらそれぞれサンプルガス流出管
路7及び比較ガス流出用管路15からサンプルガス(流
量qS )と比較ガス(流量qR )をそれぞれ流出させて
分析計10へ導入して計測する。
As described above, in the gas introducing apparatus of the present invention, the small space-type gas phase dehumidifier 1 is used and the space 4 on the page side is used.
By increasing the flow rate of the reference gas of
The water content of the sample gas near the outlet is increased by increasing the flow rate of the reference gas on the surface (that is, increasing the contact amount of the reference gas), preventing the adsorption of water molecules that have permeated from the sample gas line, and increasing the diffusion rate. Vapor pressure P
It is an approximation of WS 'and the moisture vapor pressure P WR ' on the page side. In this case, the temperature of the sample gas is the atmospheric temperature and the temperature of the reference gas is about 40 ° C to 30 ° C below the freezing point, but the temperature near the outlet of the membrane vapor phase dehumidifier 1 is about 20 ° C below the freezing point. Can be vapor-phase equilibrated with. When the moisture vapor pressures of the sample gas and the comparative gas become substantially equal by the above-described actions, the sample gas (flow rate q S ) and the comparative gas (flow rate q S ) are respectively supplied from the sample gas outflow conduit 7 and the comparative gas outflow conduit 15. R ) is made to flow out and introduced into the analyzer 10 for measurement.

【0013】図2はこの発明のガス導入装置の第2の実
施例の構成図である。この実施例においても中央部に配
置した水分透過膜(高分子膜)3の周囲にパ−ジ側空間
4を設けて外側ケ−ス2で覆うように構成した膜式気相
除湿器1が使用される。そして水分透過膜3の内部空間
3aはサンプルガス導入管路5に接続されると共に導入
されたサンプルガスはサンプルガス流出管路7より分析
計10へ導入される。
FIG. 2 is a block diagram of the second embodiment of the gas introducing device of the present invention. Also in this embodiment, the membrane-type vapor phase dehumidifier 1 is constructed such that the page side space 4 is provided around the moisture permeable membrane (polymer membrane) 3 arranged in the central portion and is covered with the outer case 2. used. The internal space 3a of the moisture permeable membrane 3 is connected to the sample gas introduction pipe line 5 and the introduced sample gas is introduced into the analyzer 10 through the sample gas outflow pipe line 7.

【0014】この実施例では更に、該水分透過膜3両端
部のサンプルガス流入管路5とサンプルガス流出管路7
にそれぞれ三方弁14、16を配置してサンプルガス循
環用管路17を配管すると共に該管路17にはポンプ1
9とフロ−メ−タ18が配置されている。即ち、この実
施例ではサンプルガスの流通路にも循環ラインを構成さ
せるものである。
Further, in this embodiment, the sample gas inflow conduit 5 and the sample gas outflow conduit 7 at both ends of the water permeable membrane 3 are further provided.
The three-way valves 14 and 16 are respectively arranged in the pipes to pipe a sample gas circulation pipe line 17, and the pump line 1 is connected to the pipe line 17.
9 and a flow meter 18 are arranged. That is, in this embodiment, a circulation line is also formed in the sample gas flow passage.

【0015】前記外側ケ−ス2には比較ガス導入口2a
と比較ガス流出口2bが設けられると共にこれらの比較
ガス導入口2aと比較ガス流出口2bには比較ガス用循
環管路9が接続されている。更に、該比較ガス用循環管
路9の途中には比較ガス導入用弁6と比較ガス流出用弁
8が配置されると共に比較ガス循環用のポンプ11とフ
ロ−メ−タ12が配置されている。また、前記比較ガス
導入用弁6には比較ガス導入管路13が接続され、比較
ガス流出用弁8には比較ガス流出管路15が接続され、
比較ガス(流量qR )はこの比較ガス流出管路15より
分析計10へ導入される。こうして比較ガスは、前記水
分透過膜3と外側ケ−ス2との間に形成されるパ−ジ側
空間4と、比較ガス用循環管路9との間を循環するよう
になっている。尚、循環用手段としてはポンプの出口側
又は入口側のいずれかに流量調整用のバルブや圧力調整
器等を用いたものも含まれる。
A comparative gas inlet 2a is provided in the outer case 2.
A reference gas outlet 2b is provided, and a reference gas circulation pipe 9 is connected to the reference gas inlet 2a and the reference gas outlet 2b. Further, a comparative gas introduction valve 6 and a comparative gas outflow valve 8 are arranged in the middle of the comparative gas circulation pipe line 9, and a comparative gas circulation pump 11 and a flow meter 12 are arranged. There is. Further, the comparative gas introduction valve 13 is connected to the comparative gas introduction valve 6, and the comparative gas outflow conduit 15 is connected to the comparative gas outflow valve 8.
The comparative gas (flow rate q R ) is introduced into the analyzer 10 through the comparative gas outflow line 15. In this way, the comparative gas circulates between the page side space 4 formed between the moisture permeable membrane 3 and the outer case 2 and the comparative gas circulation conduit 9. It should be noted that the circulation means also includes means using a valve for adjusting the flow rate, a pressure regulator or the like on either the outlet side or the inlet side of the pump.

【0016】上記するように、この発明のガス導入装置
の第2の実施例においては、比較ガスラインを循環ライ
ンとし、更にサンプルガスラインも循環ラインとするも
のである。こうしてサンプルガスライン中の水分子を水
分透過膜3における透過速度を大きくすることにより膜
式気相除湿器1の出口でのサンプルガスと比較ガスとの
気相平衡を実現し且つその効率を上げることができる。
但し、この場合サンプルガスの循環ラインにおける内容
積が大きくなる分だけ応答速度は遅くなることは避けら
れない。尚、サンプルガスの流路のみを循環ラインとし
ても本願発明の目的を達成することができる。いずれに
しても循環ラインの流速方向は比較ガスの循環流量が大
きくなればサンプルガスの流れる方向に対して順方向で
も逆方向でも効率は無関係となる。
As described above, in the second embodiment of the gas introducing apparatus of the present invention, the comparative gas line is a circulation line and the sample gas line is also a circulation line. In this way, by increasing the permeation rate of water molecules in the sample gas line through the moisture permeable membrane 3, the gas phase equilibrium between the sample gas and the reference gas at the outlet of the membrane gas phase dehumidifier 1 is realized and its efficiency is increased. be able to.
However, in this case, it is inevitable that the response speed becomes slower as the internal volume of the sample gas circulation line becomes larger. The object of the present invention can be achieved even if only the sample gas flow path is used as the circulation line. In any case, the efficiency becomes irrelevant in the flow direction of the circulation line, whether it is the forward direction or the reverse direction with respect to the flow direction of the sample gas, as the circulation flow rate of the reference gas increases.

【0017】[0017]

【発明の効果】以上詳述したようにこの発明のガス導入
装置によれば、ガス分析に際し比較ガスとサンプルガス
との2系列ガスラインの間に水分濃度に差があっても、
パ−ジガスラインの比較ガスの流量を多くして循環させ
るため、水分透過膜表面における水分子の透過拡散速度
を大きくして気相平衡させて分析計へ導入することがで
きる。特に、このガス導入装置によれば膜式気相除湿器
を使用するため凝縮水やドレンの発生が無く、溶解性ガ
ス(SO2 、NO2 等)等を分析する際の応答速度を大
幅に改善することができる。
As described in detail above, according to the gas introduction apparatus of the present invention, even if there is a difference in water concentration between the two series gas lines of the reference gas and the sample gas in the gas analysis,
Since the reference gas in the purge gas line is circulated at a high flow rate, it is possible to increase the permeation and diffusion rate of water molecules on the surface of the water permeable membrane so that gas phase equilibrium is introduced into the analyzer. In particular, according to this gas introduction device, since the membrane type gas phase dehumidifier is used, there is no generation of condensed water or drain, and the response speed when analyzing soluble gas (SO 2 , NO 2, etc.) is greatly increased. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明のガス導入装置の第1の実施例の構成
図である。
FIG. 1 is a configuration diagram of a first embodiment of a gas introduction device of the present invention.

【図2】この発明のガス導入装置の第2の実施例の構成
図である。
FIG. 2 is a configuration diagram of a second embodiment of the gas introduction device of the present invention.

【図3】従来のガス導入装置の構成例図である。FIG. 3 is a diagram showing a configuration example of a conventional gas introduction device.

【符号の説明】[Explanation of symbols]

1 膜式気相除湿器 2 外側ケ−ス 2a 比較ガス導入口 2b 比較ガス流出口 3 水分透過膜 3a 水分透過膜の内部空間 4 パ−ジ側空間 5 サンプルガス導入管路 7 サンプルガス流出管路 6 比較ガス導入用弁 8 比較ガス流出用弁 9 比較ガス用循環管路 10 分析計 11、17 ポンプ 12、18 フロ−メ−タ 13 比較ガス導入管路 15 比較ガス流出管路 14、16 三方弁 17 サンプルガス循環用管路 1 Membrane Type Gas Dehumidifier 2 Outer Case 2a Reference Gas Inlet 2b Reference Gas Outlet 3 Moisture Permeation Membrane 3a Moisture Permeation Membrane Internal Space 4 Page Space 5 Sample Gas Inlet Pipeline 7 Sample Gas Outlet Pipe Line 6 Comparative gas introduction valve 8 Comparative gas outflow valve 9 Comparative gas circulation line 10 Analyzer 11, 17 Pump 12, 18 Flow meter 13 Comparative gas introduction line 15 Comparative gas outflow line 14, 16 Three-way valve 17 Sample gas circulation line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 雅彦 京都府京都市南区吉祥院宮の東町2番地 株式会社堀場製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masahiko Fujiwara 2 Higashi-cho, Kichijoin-gu, Minami-ku, Kyoto, Kyoto Inside Horiba, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水分透過膜部と、該水分透過膜部との間
に一定の空間が形成されるように該水分透過膜部を覆い
且つパ−ジガス導入口とパ−ジガス流出口とを設けた外
側ケ−スとより成る膜式除湿器の該水分透過膜部に、サ
ンプルガス導入管路とサンプルガスを分析計へ導入する
サンプルガス流出管路とを接続し、前記外側ケ−スのパ
−ジガス導入口とパ−ジガス流出口に、途中に比較ガス
導入用弁と比較ガス流出用弁及び循環用手段を配置した
パ−ジガス用循環管路を接続し、更に、前記比較ガス流
出口に分析計へ比較ガスを導入する比較ガス流出管路を
接続して成ることを特徴とするガス導入装置。
1. A moisture permeable membrane part, which covers the moisture permeable membrane part so that a constant space is formed between the moisture permeable membrane part and a purge gas inlet and a purge gas outlet. A sample gas introduction conduit and a sample gas outflow conduit for introducing the sample gas into the analyzer are connected to the moisture permeable membrane part of the membrane type dehumidifier consisting of the outer case provided, and the outer case is connected. The purging gas inlet and the purging gas outlet are connected to a purging gas circulation pipe in which a comparative gas introducing valve, a comparative gas outflow valve, and a circulation means are disposed on the way, and further, the comparative gas A gas introducing device, characterized in that a comparative gas outflow conduit for introducing a comparative gas to the analyzer is connected to the outlet.
【請求項2】 水分透過膜部と、該水分透過膜部との間
に一定の空間が形成されるように該水分透過膜を覆い且
つパ−ジガス導入口とパ−ジガス流出口とを設けた外側
ケ−スと、より成る膜式除湿器の該水分透過膜部にサン
プルガス導入管路とサンプルガスを分析計へ導入するサ
ンプルガス流出管路とを接続し、前記水分透過膜両端部
に接続したサンプルガス流入管路とサンプルガス流出管
路に配置した三方弁に、循環手段を配置したサンプルガ
ス循環用管路の両端部を接続し、前記外側ケ−スの比較
ガス導入口と比較ガス流出口に、途中に比較ガス導入用
弁と比較ガス流出用弁及び循環用手段を配置したパ−ジ
ガス用循環管路を接続し、更に、前記比較ガス流出口に
分析計へ比較ガスを導入する比較ガス流出管路を接続し
て成ることを特徴とするガス導入装置。
2. A moisture gas permeable membrane portion and a purge gas inlet and a purge gas outlet are provided to cover the moisture moisture permeable film so that a constant space is formed between the moisture moisture permeable film portion and the moisture moisture permeable film portion. The outer case and the moisture permeable membrane of the membrane dehumidifier are connected to a sample gas introduction line and a sample gas outflow line for introducing the sample gas into the analyzer, and both ends of the moisture permeable membrane are connected. To the three-way valve arranged in the sample gas inflow line and the sample gas outflow line connected to the both ends of the sample gas circulation line in which the circulation means is arranged, and the reference gas introduction port of the outer case. The comparative gas outlet is connected to a purge gas circulation pipe in which a comparative gas introduction valve, a comparative gas outflow valve, and a circulation means are arranged on the way, and the comparative gas is connected to the analyzer at the comparative gas outlet. It is characterized in that a comparative gas outflow line for introducing Gas introduction device.
JP24065395A 1995-08-24 1995-08-24 Gas introducing device Pending JPH0961352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24065395A JPH0961352A (en) 1995-08-24 1995-08-24 Gas introducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24065395A JPH0961352A (en) 1995-08-24 1995-08-24 Gas introducing device

Publications (1)

Publication Number Publication Date
JPH0961352A true JPH0961352A (en) 1997-03-07

Family

ID=17062699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24065395A Pending JPH0961352A (en) 1995-08-24 1995-08-24 Gas introducing device

Country Status (1)

Country Link
JP (1) JPH0961352A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158368A (en) * 2014-02-21 2015-09-03 三菱電機株式会社 Gas analyzer and gas analysis method
CN112930472A (en) * 2018-10-31 2021-06-08 株式会社电装 PM sensor
US20220260540A1 (en) * 2019-07-25 2022-08-18 National Institute For Materials Science Measurement method and measurement device using gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158368A (en) * 2014-02-21 2015-09-03 三菱電機株式会社 Gas analyzer and gas analysis method
CN112930472A (en) * 2018-10-31 2021-06-08 株式会社电装 PM sensor
US20220260540A1 (en) * 2019-07-25 2022-08-18 National Institute For Materials Science Measurement method and measurement device using gas sensor

Similar Documents

Publication Publication Date Title
US4004882A (en) Gas analysis diluter
US20070256474A1 (en) Gas Chromatograph
JP4413160B2 (en) Exhaust gas component analyzer
KR960705205A (en) DIFFERENTIAL GAS SENSING IN-LINE MONITORING SYSTEM
US6346142B1 (en) System for removing water from a gaseous sample
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
US4098650A (en) Method and analyzer for determining moisture in a mixture of gases containing oxygen
Cha et al. Removal of water vapor and VOCs from nitrogen in a hydrophilic hollow fiber gel membrane permeator
JPH0961352A (en) Gas introducing device
CN106918475B (en) Ship tail gas particulate matter dilution sampling system
JP3166657B2 (en) Odor measurement device
JPH08101111A (en) Method and device for determining quantity of water vapor ingas
JPH07113605B2 (en) Gas analyzer
JP2000035382A (en) Gas-analyzing device
JPH0283015A (en) Gas dehumidification
JP7212337B2 (en) Measuring method and measuring device by gas sensor
JPH01253631A (en) Gas analyzer
JP2578032B2 (en) Check method of dehumidifier in gas analyzer
JPH08145886A (en) Apparatus and method for calibrating fluid-modulating type analyzer
JPS6231968B2 (en)
JP2001349812A (en) Method for reducing interference effect of gas analyser
JPS6339632Y2 (en)
JPH0339714Y2 (en)
JPH07120389A (en) Gas analyzer
JPH0452669Y2 (en)