JPH0283015A - Gas dehumidification - Google Patents

Gas dehumidification

Info

Publication number
JPH0283015A
JPH0283015A JP63233811A JP23381188A JPH0283015A JP H0283015 A JPH0283015 A JP H0283015A JP 63233811 A JP63233811 A JP 63233811A JP 23381188 A JP23381188 A JP 23381188A JP H0283015 A JPH0283015 A JP H0283015A
Authority
JP
Japan
Prior art keywords
gas
membrane
side stream
moisture
dehumidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63233811A
Other languages
Japanese (ja)
Inventor
Takuro Ushida
牛田 拓朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTANI KAKOKI KK
Original Assignee
MARUTANI KAKOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTANI KAKOKI KK filed Critical MARUTANI KAKOKI KK
Priority to JP63233811A priority Critical patent/JPH0283015A/en
Publication of JPH0283015A publication Critical patent/JPH0283015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out gas dehumidification economically in gas dehumidification method wherein humidity is diffused through a membrane by measuring humidity of a humid body taken out as a side stream and controlling the flow amount of the gas taken out as a side stream depending on the measurement results. CONSTITUTION:In dehumidification wherein a pressurized humid gas is flowed along to a thin membrane of tubular fibers (D) and the humidity is allowed to permeate the membrane, a part of a gas already dehumidified is taken out as a side stream from a side stream part (H), its pressure is reduced to more or less atmospheric pressure by a valve (I), and then the resulting gas is flowed along to a permeating side of the membrane so as to diffuse humidity through the membrane. At the time, a hygrometer (M) is installed between a side stream taking out part (K) of a dehumidifier (C) and a humid gas discharging part (L) and a controller (I') is operated depending on the indication of the hygrometer to control the open degree of the valve (I) and keep it constant so that an obtained dried gas discharged from a dried gas discharging part (G) could have a constant dew point. As a result, dehumidification is carried out economically and efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は湿気を含んだ気体から湿気を除去する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field] The present invention relates to a method for removing moisture from a humid gas.

〔従来の技術と解決しようとする課題〕乾燥気体を必要
とする産業分野は多い。特に多いのは自動調節用のバル
ブや遠隔制御用のバルブを駆動する圧縮空気は乾燥した
ものでなければならない。これは湿気を含んだ圧縮空気
を用いると、寒冷時に水分が装置内で凍結し、バルブの
作動が止まって、大事故が起こる恐れがあるからである
[Conventional technology and problems to be solved] There are many industrial fields that require dry gas. In particular, the compressed air that drives automatic regulating valves and remote control valves must be dry. This is because if compressed air containing moisture is used, the moisture may freeze inside the device in cold weather, stopping valve operation and causing a serious accident.

従って、この圧縮空気は何等かの方法で脱湿されなけれ
ばならない。
Therefore, this compressed air must be dehumidified in some way.

従来、含湿気体を脱湿する方法としては、■水分を吸着
する吸着剤を使用する方法■低温に冷却して露点に達せ
しめ、凝縮する水分を除いた後、加温して常温にする方
法 ■ジエチレングリコールで洗い、水分を吸収させる方法 などがあり、また最近は、 ■水分を選択的に透過させる高分子物質の薄膜の片面に
含湿気体を加圧下で流し、反対面を減圧するなどの方法
により水分のみを透過させる方法 が実用化されつつある。
Conventionally, methods for dehumidifying moisture-containing gas include: ■ Using an adsorbent that adsorbs moisture ■ Cooling to a low temperature to reach the dew point, removing condensed moisture, and then heating to room temperature There are methods such as washing with diethylene glycol and absorbing water, and recently there are methods such as: - flowing moisture-containing gas under pressure on one side of a thin film of polymeric material that selectively permeates water, and reducing the pressure on the other side. A method that allows only moisture to pass through is being put into practical use.

而して、上記の諸方法のうち、■の選択的に水分を透過
する機能を有する高分子物質の薄膜を使用する方法が熱
を必要としない上に装置に可動部分がなく、作業を連続
的に行えるところから、最も経済的であると考えられる
が、これを改良すれば、更に経済的に作業能率を向上さ
せ得ることが予測される。
Among the above methods, method (2), which uses a thin film of polymeric material that selectively permeates moisture, does not require heat, has no moving parts in the equipment, and can be used continuously. This method is considered to be the most economical since it can be done economically, but it is predicted that if this is improved, the work efficiency can be improved even more economically.

従って、本発明が解決しようとする課題は、上記■の方
法の改良である。
Therefore, the problem to be solved by the present invention is to improve the method (2) above.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上述のような従来技術を背景とし、選択的に水
分を透過する機能を有する高分子物質の薄膜を使用する
気体の脱湿法の改良を目的としてなされたもので、その
構成は、加圧された含湿気体を薄膜に沿って流し、湿分
を膜を透過させて除去するに際し、既に湿分を除かれた
気体の一部を側流として取り出し、大気圧前後進減圧し
て膜の透過側に沿って流すことにより、湿分を膜を通じ
て拡散させる気体の脱湿法において、側流として捨てら
れる湿気体の湿度を測定し、その測定結果により側流と
して取り出す気体の流量を調節することを特徴とするも
のである。
The present invention has been made against the background of the above-mentioned prior art, and has been made for the purpose of improving a gas dehumidification method using a thin film of a polymeric substance having a function of selectively permeating moisture. When pressurized moisture-containing gas flows along a thin membrane and the moisture is removed by passing through the membrane, a part of the gas from which moisture has already been removed is taken out as a side stream and is depressurized back and forth to atmospheric pressure. In a gas dehumidification method in which moisture is diffused through a membrane by flowing along the permeation side of the membrane, the humidity of the moisture discarded as a side stream is measured, and the flow rate of the gas taken out as a side stream is determined based on the measurement result. It is characterized by being adjustable.

〔実施例〕〔Example〕

次に本発明の実施例を図により説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

図は本発明の系統図で、Aは含湿圧縮気体供給部、Bは
バルブ、Cは内部に選択的に水分を透過する機能を有す
る高分子物質からなる管状繊維の束りを収容した脱湿器
で、図においては多数の繊維中の4本を概念的に示しで
ある。Eは脱湿器Cの含湿気体入口、Fは同じく乾燥気
体出口、Gは乾燥気体排出部、Hは前記F、G間の配管
2に設けた側流部、■はバルブ、■′はIの制御器、J
は脱湿器Cの乾燥気体出口F近くに設けた側流取入部、
Kは脱湿器Cの含湿気体入口Eの近くに設けた側流取出
部、Lは湿気体排出部、Mは湿度計で、含湿圧縮気体供
給部Aと脱湿器Cは配管1、脱湿器Cと乾燥気体排出部
Gは配管2、側流部Hと脱湿器Cの側流取入部Jは配管
3、脱湿器Cの側流取出部にと湿気体排出部りは配管4
でそれぞれ結ばれ、バルブBは配管1に、バルブIは配
管3に、湿度計Mは配管4にそれぞれ設置されており、
湿度計MとバルブIの制御器1′は信号線5により結ば
れている。
The figure is a system diagram of the present invention, in which A is a humid compressed gas supply section, B is a valve, and C is a ventilator containing a bundle of tubular fibers made of a polymeric material that has the function of selectively permeating moisture. In a humidifier, four fibers out of many are conceptually shown in the figure. E is the humid gas inlet of the dehumidifier C, F is the dry gas outlet, G is the dry gas discharge part, H is the side flow part provided in the pipe 2 between F and G, ■ is the valve, and ■' is the I controller, J
is a side flow intake section installed near the dry gas outlet F of the dehumidifier C,
K is a side flow extraction part provided near the humid gas inlet E of the dehumidifier C, L is a humid gas discharge part, M is a hygrometer, and the humid compressed gas supply part A and the dehumidifier C are connected to piping 1. , the dehumidifier C and the dry gas discharge part G are connected to piping 2, the side flow part H and the side flow intake part J of the dehumidifier C are connected to piping 3, and the side flow outlet part of the dehumidifier C is connected to the moisture gas discharge part. is piping 4
Valve B is installed in pipe 1, Valve I is installed in pipe 3, and Hygrometer M is installed in pipe 4.
The hygrometer M and the controller 1' of the valve I are connected by a signal line 5.

尚、上記において水分を選択的に透過させる高分子物質
の薄膜として繊維束を用いたのは、薄膜を繊維とすれば
内圧に耐え、かつ大面積が収容されやすいからである。
In the above, a fiber bundle was used as the thin film of a polymer substance that selectively transmits moisture because if the thin film is made of fibers, it can withstand internal pressure and easily accommodate a large area.

而して、5乃至10気圧程度に圧縮された含湿圧縮気体
供給部Aからの含湿圧縮気体はバルブBを経て入口Eか
ら脱湿器Cに導入され、管状繊維の束り間を通って、湿
分が繊維の外に拡散され、乾燥気体となって出口Fから
流出し、その大部分は排出部Gから所要の部に供給され
、一部は側流部Hにおいて側流として分岐され、配管3
を通ってバルブIにより減圧され、はぼ大気圧となって
、側流取入部Jから脱湿器C内に入り、繊維の束りの外
に沿って流れると、 ti維の内外の水分の分圧の差に
よって水分は繊維外に拡散し、側流気体に奪い取られて
側流取出部Kから流出し、湿気体排出部りから外部へ廃
棄される。この側流気体が多ければ、乾燥気体排出部G
から得られる乾燥気体の露点は低下するが、含湿気体供
給部Aから供給された圧縮気体の損失が多くなる。その
ため、従来は含湿圧縮気体供給部Aまたは乾燥気体排出
部Gにおける流量を測定し、その指示値によりバルブI
の開度を調整していたが、これではその作業が極めて煩
わしくなる。
The humid compressed gas from the humid compressed gas supply section A, which has been compressed to about 5 to 10 atmospheres, is introduced into the dehumidifier C from the inlet E through the valve B, and passes between the bundles of tubular fibers. Then, the moisture is diffused outside the fibers and becomes a dry gas that flows out from the outlet F. Most of it is supplied from the discharge part G to the required part, and a part is branched off as a side stream in the side flow part H. and piping 3
The pressure is reduced by the valve I, and the pressure becomes almost atmospheric, enters the dehumidifier C from the side flow intake part J, and flows along the outside of the fiber bundle, causing moisture inside and outside the Ti fibers to be removed. Due to the difference in partial pressure, the moisture diffuses out of the fibers, is taken away by the side flow gas, flows out from the side flow outlet K, and is disposed of outside through the moisture discharge section. If this side stream gas is large, dry gas discharge part G
Although the dew point of the dry gas obtained from the dry gas decreases, the loss of the compressed gas supplied from the humid gas supply section A increases. Therefore, conventionally, the flow rate in the moist compressed gas supply section A or the dry gas discharge section G is measured, and the indicated value is used to control the valve I.
The opening degree of the valve was adjusted, but this work became extremely troublesome.

そこで、本発明においては、脱湿器Cの側流取出部にと
湿気体排出部りの間に湿度計Mを備え、その指度により
制御器工′を作動させてバルブエの開度を調節し、これ
を一定にすることにより乾燥気体排出部Gから得られる
乾燥気体の露点が一定となるようにした。
Therefore, in the present invention, a hygrometer M is provided between the side flow outlet part of the dehumidifier C and the moisture discharge part, and the opening degree of the valve E is adjusted by operating the controller' according to the reading of the hygrometer M. However, by keeping this constant, the dew point of the dry gas obtained from the dry gas discharge section G is made constant.

この結果、含湿圧縮気体供給部Aから供給される圧縮気
体の流量が変化した場合、側流部Hで分岐される側流量
は、含湿圧縮気体供給部Aからの供給量に比例して流出
されることになるので、従来の、含湿圧縮気体供給部A
または乾燥気体排出部Gで流量を測定し、その指示値に
よりバルブ■の開度を調整するという煩わしさを省略出
来る。
As a result, when the flow rate of the compressed gas supplied from the humid compressed gas supply section A changes, the side flow rate branched at the side flow section H is proportional to the supply amount from the humid compressed gas supply section A. Therefore, the conventional moist compressed gas supply section A
Alternatively, it is possible to omit the trouble of measuring the flow rate at the dry gas discharge section G and adjusting the opening degree of the valve (2) based on the indicated value.

この方法によれば、適当な条件下において、大気から7
気圧で操作し、露点−60℃の乾燥空気を得ることは困
難ではない。
According to this method, under appropriate conditions, 7
It is not difficult to operate at atmospheric pressure and obtain dry air with a dew point of -60°C.

実際に、長さ約50口、直径的4■の脱湿器を用い、含
湿圧縮空気について本発明方法を実施したところ、次の
ような結果が得られた。
When the method of the present invention was actually carried out on moist compressed air using a dehumidifier with a length of about 50 ports and a diameter of 4 cm, the following results were obtained.

湿度測定箇所(図に示す)   (I)  (n)  
(III)  (IV)空気流量(1/分)     
   288 240  48  48空気圧力(kg
/dG)      6,65 6.15  0  0
露点(大気圧下・’C)       −6−40−4
018相対湿度(圧力、温度下・%)  100 3.
37 0.48 82.9水蒸気分圧(mmHg)  
   19.820.6680.096 15.52水
蒸気体積(1/分)      1.011 0,03
0,006 0.98上記の実施例では、含湿圧縮気体
供給部Aより供給された空気の16.67%を側流部H
からの側流に分岐した。前記供給部Aから供給された露
点−6°Cの圧縮空気は、管状繊維の束り中を通って露
点−40℃となり、その約16.7%が側流部Hから分
岐され、繊維の外側を流れる間に露点18°Cとなって
排出される。この露点18℃は相対湿度82.9%に相
当し、かなり飽和に近い。
Humidity measurement points (shown in the figure) (I) (n)
(III) (IV) Air flow rate (1/min)
288 240 48 48 Air pressure (kg
/dG) 6,65 6.15 0 0
Dew point (atmospheric pressure/'C) -6-40-4
018 Relative humidity (pressure, temperature/%) 100 3.
37 0.48 82.9 Water vapor partial pressure (mmHg)
19.820.6680.096 15.52 Water vapor volume (1/min) 1.011 0.03
0,006 0.98 In the above example, 16.67% of the air supplied from the humid compressed gas supply section A is transferred to the side flow section H.
branched into a side stream from The compressed air with a dew point of -6°C supplied from the supply section A passes through the bundle of tubular fibers and has a dew point of -40°C, and approximately 16.7% of the air is branched from the side flow section H, and the compressed air has a dew point of -6°C. While flowing outside, it reaches a dew point of 18°C and is discharged. This dew point of 18° C. corresponds to a relative humidity of 82.9%, which is quite close to saturation.

本発明は、これを採用した装置の性能を問題にするので
はなく、装置の容量変化に対する対応を良好ならしめる
ためのものである。
The present invention is not concerned with the performance of a device that employs the same, but with the purpose of improving the ability of the device to respond to changes in capacitance.

いま、上記装置の供給空気量を例えば50%に低下させ
ることが要求された場合、経済性から側流部Hの側流も
それに応じて低下させるべきである。
Now, if it is required to reduce the amount of air supplied to the above device to, for example, 50%, the side flow in the side flow section H should be reduced accordingly from economical considerations.

その調節はバルブエによるが、これを自動化する場合、
乾燥気体排出部Gにおける露点を予め設定し、これが一
定になるようにバルブ■を操作するのが最も合理的であ
るが、低い露点を遅滞なく指示することは極めて困戴で
ある。
The adjustment is done by Valve, but if you want to automate this,
It is most rational to set the dew point in the dry gas discharge section G in advance and operate the valve (2) so that the dew point becomes constant, but it is extremely difficult to specify a low dew point without delay.

然し乍ら、本発明はバルブ■の作動を側流の湿気体排出
部にの湿度によって行うようにしたものであり、前記表
に示したように、この排気の相対湿度は80%を超える
のであるから、安価な、例えば毛髪湿度計のような高湿
度センサーにより容易に遅滞なく測定することが出来る
However, in the present invention, valve (2) is activated by the humidity in the side stream moisture discharge section, and as shown in the table above, the relative humidity of this exhaust exceeds 80%. can be easily measured without delay using an inexpensive high humidity sensor such as a hair hygrometer.

〔発明の効果〕〔Effect of the invention〕

本発明は上述の通りであるから、水分を選択的に透過さ
せる高分子物質の薄膜の片面に含湿気体を加圧下で流し
、反対面を減圧するなどの方法により水分のみを透過さ
せて除湿する方法に採用すれば、極めて経済的に且つ有
効に除湿することができるから、乾燥気体を必要とする
産業分野において極めて有用される。
Since the present invention is as described above, moisture-containing gas is flowed under pressure on one side of a thin film of a polymer material that selectively allows water to permeate, and the other side is depressurized to allow only water to permeate and dehumidify. If this method is adopted, dehumidification can be performed extremely economically and effectively, and therefore it is extremely useful in industrial fields that require dry gas.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施の一例を示す系統図である。 The figure is a system diagram showing an example of implementation of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 加圧された含湿気体を薄膜に沿って流し、湿分を膜を透
過させて除去するに際し、既に湿分を除かれた気体の一
部を側流として取り出し、大気圧前後迄減圧して膜の透
過側に沿って流すことにより、湿分を膜を通じて拡散さ
せる気体の脱湿法において、側流として捨てられる湿気
体の湿度を測定し、その測定結果により側流として取り
出す気体の流量を調節することを特徴とする気体の脱湿
法。
When pressurized moisture-containing gas flows along a thin membrane and the moisture is removed by passing through the membrane, a portion of the gas from which moisture has already been removed is taken out as a side stream and depressurized to around atmospheric pressure. In a gas dehumidification method in which moisture is diffused through a membrane by flowing along the permeation side of the membrane, the humidity of the moisture discarded as a side stream is measured, and the flow rate of the gas taken out as a side stream is determined based on the measurement result. A method of dehumidification of gases characterized by regulating.
JP63233811A 1988-09-20 1988-09-20 Gas dehumidification Pending JPH0283015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233811A JPH0283015A (en) 1988-09-20 1988-09-20 Gas dehumidification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233811A JPH0283015A (en) 1988-09-20 1988-09-20 Gas dehumidification

Publications (1)

Publication Number Publication Date
JPH0283015A true JPH0283015A (en) 1990-03-23

Family

ID=16960953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233811A Pending JPH0283015A (en) 1988-09-20 1988-09-20 Gas dehumidification

Country Status (1)

Country Link
JP (1) JPH0283015A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108464A (en) * 1989-09-19 1992-04-28 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5160514A (en) * 1991-12-12 1992-11-03 Bend Research, Inc. Sweep valve for dehydration valve
EP0669158A1 (en) * 1994-02-25 1995-08-30 Praxair Technology, Inc. Fluid separation assembly having an integral purge control valve
US5525143A (en) * 1994-10-17 1996-06-11 Air Products And Chemicals, Inc. Hollow fiber membrane dryer with internal sweep
US6540818B2 (en) * 2000-03-01 2003-04-01 Nabco, Ltd Hollow fiber membrane dehumidification device
US6540817B1 (en) * 2000-02-18 2003-04-01 Nabco, Ltd Hollow fiber membrane dehumidification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119834A (en) * 1986-11-07 1988-05-24 Kuraray Co Ltd Air dehumidifying apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63119834A (en) * 1986-11-07 1988-05-24 Kuraray Co Ltd Air dehumidifying apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108464A (en) * 1989-09-19 1992-04-28 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5160514A (en) * 1991-12-12 1992-11-03 Bend Research, Inc. Sweep valve for dehydration valve
EP0669158A1 (en) * 1994-02-25 1995-08-30 Praxair Technology, Inc. Fluid separation assembly having an integral purge control valve
US5525143A (en) * 1994-10-17 1996-06-11 Air Products And Chemicals, Inc. Hollow fiber membrane dryer with internal sweep
US6540817B1 (en) * 2000-02-18 2003-04-01 Nabco, Ltd Hollow fiber membrane dehumidification device
US6540818B2 (en) * 2000-03-01 2003-04-01 Nabco, Ltd Hollow fiber membrane dehumidification device

Similar Documents

Publication Publication Date Title
AU749819B2 (en) Membrane air dryer with scheme to reduce air lost as sweep air
US6004383A (en) Membrane dryer for drying moist air with valved scavenger duct
US5681368A (en) Dehumidifier system using membrane cartridge
US4783432A (en) Dryer regeneration through heat of compression and pressure swing desorption
JPH03127609A (en) Gas supply apparatus and gas dehumidification method
CA2234776A1 (en) Combination main reservoir and air system
JPH06134244A (en) Membrane gas drier
EP0860194A1 (en) A process for drying compressed air
JPH0283015A (en) Gas dehumidification
JP5837277B2 (en) Apparatus and method for humidifying a gas stream flowing to a fuel cell
CN108376001A (en) A kind of particulate matter humidity quick control device and its control method
JP2010503144A5 (en)
JPS63111923A (en) Dehumidifier for air
JPH11226345A (en) Dehumidifier
JP3721279B2 (en) Air system
JP3511565B2 (en) Compressed air dehumidifier for instrumentation
JPS55158535A (en) Gas analyzing system
JPS6125621A (en) Dehumidifier
JPH10128036A (en) Hollow yarn membrane type dehumidifier
JPH03242530A (en) Humidistat
JPH08178356A (en) Air conditioner
RU2133513C1 (en) Plant for holding telephone cables under gage pressure
JPS55158536A (en) Gas analyzing system
EP0811414A2 (en) Process and plant using an ejector for utilizing the expansion energy of the purge gas
JP3012433U (en) Dehumidifier