JPS63111923A - Dehumidifier for air - Google Patents

Dehumidifier for air

Info

Publication number
JPS63111923A
JPS63111923A JP61257178A JP25717886A JPS63111923A JP S63111923 A JPS63111923 A JP S63111923A JP 61257178 A JP61257178 A JP 61257178A JP 25717886 A JP25717886 A JP 25717886A JP S63111923 A JPS63111923 A JP S63111923A
Authority
JP
Japan
Prior art keywords
chamber
air
reducing valve
pressure
feed path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61257178A
Other languages
Japanese (ja)
Inventor
Shozo Makino
正三 牧野
Seiichi Nakahara
清一 中原
Akio Omori
大森 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP61257178A priority Critical patent/JPS63111923A/en
Publication of JPS63111923A publication Critical patent/JPS63111923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To miniaturize the titled apparatus and to decrease the installation cost and the operation cost by providing a feed path wherein one part of dehumidified air fed from one chamber of a module consisting of two chambers is fed to the other chamber therethrough and also interposing a reducing valve to the feed path. CONSTITUTION:A feed path 4 wherein one part of dehumidified air fed from one chamber is fed to the other chamber therethrough is provided. A reducing valve 6 is provided to this feed path 4 in order that both one chamber A of a module 2 and the other chamber B thereof are prevented from being made to pressure equalization by communicating one chamber A with the other chamber B therethrough. The pressure difference between the chamber A and the other chamber B in a vessel can always be kept at constant value by means of this reducing valve 6. Further a flow rate control valve 5 for controlling the moisture content of dehumidified air by controlling the amount of dehumidified air fed to the other chamber B may be provided to the feed path 4. This flow rate control valve 5 may be provided to either side of the upstream or downstream sides of the reducing valve 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は透湿膜を用いた空気の除湿装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an air dehumidifying device using a moisture permeable membrane.

(従来技術) 従来より空気の除湿方法として、空気をシリカゲル、生
石灰等の吸湿性の固体や濃硫識、塩化リチウム等の吸湿
性の液体と接触させる方法が一般に行われている0しか
しながら上記方法では使用する固体や液体の吸湿性その
ものに限界があり、連続的に除湿を行うことは不可能で
ある。
(Prior Art) As a conventional method for dehumidifying air, a method has generally been used in which air is brought into contact with a hygroscopic solid such as silica gel or quicklime, or a hygroscopic liquid such as concentrated sulfur, lithium chloride, etc. However, the above method However, there is a limit to the hygroscopicity of the solids and liquids used, making it impossible to dehumidify continuously.

最近、従来技術の上記問題を解消した省エネルギープロ
セスとして膜分離による除湿装置が提案された(特開昭
53−97246号、同53−129440号、同53
−145343号、同54−6345号、同54−13
653号、同54−15349号、同54−15267
9号など)。これらの除湿装置は透湿膜を収容したモジ
ュールの、膜で分離された一方の室に加圧空気を供給す
るか、または他方の室を減圧にして、あるいはこの両者
を組み合せて両室間での水蒸気分圧差を大きくするよう
に操作される。また膜を透過した湿分を系外に放出する
ための掃引空気を流通させて濃度勾配を生じさせている
Recently, a dehumidifying device using membrane separation has been proposed as an energy-saving process that solves the above-mentioned problems of the conventional technology (Japanese Patent Laid-Open Nos. 53-97246, 53-129440, 53
-145343, 54-6345, 54-13
No. 653, No. 54-15349, No. 54-15267
No. 9 etc.). These dehumidifiers supply pressurized air to one chamber of a module containing a permeable membrane, which is separated by a membrane, or reduce the pressure in the other chamber, or a combination of both. is operated to increase the water vapor partial pressure difference. In addition, sweep air is circulated to release the moisture that has passed through the membrane to the outside of the system, thereby creating a concentration gradient.

(発明が解決しようとする問題点) しかしながら従来の膜秀離による除湿装置では膜間にお
ける水蒸気分圧差を大きくするために一方の室を高加圧
にするか、他方の室を高減圧にする必要があって加圧装
置や減圧装置の大型化、それに伴なう設備費及び運転費
の上昇を招くものである。
(Problem to be solved by the invention) However, in conventional dehumidification devices using membrane separation, one chamber is pressurized to a high degree or the other chamber is pressurized to a high degree in order to increase the water vapor partial pressure difference between the membranes. This is necessary, leading to an increase in the size of the pressurizing device and depressurizing device, and an accompanying increase in equipment costs and operating costs.

したがって本発明の目的は従来装置の上記問題点を解消
した除湿装置を提供することである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a dehumidifying device that eliminates the above-mentioned problems of conventional devices.

(問題点を解決するための手段) 本発明装置は、透湿膜で2つの室に仕切られたモジュー
ルの一方の室に空気を供給し、他方の室を減圧にするこ
とにより画室の間での水蒸気分圧差で空気中の水分を透
湿膜を通して他方の室へ移行させて空気を除湿する装置
であって、該一方の室からの除湿空気の一部を該他方の
室に供給する供給路を設け、かつ該供給路に流量調節弁
と減圧弁を介在させたことを特徴とする空気の除湿装置
である。
(Means for Solving the Problems) The device of the present invention supplies air to one chamber of a module partitioned into two chambers by a moisture-permeable membrane, and reduces the pressure in the other chamber, thereby allowing air to flow between the compartments. A device that dehumidifies air by transferring moisture in the air to another chamber through a moisture permeable membrane using a water vapor partial pressure difference of , and supplies a portion of the dehumidified air from one chamber to the other chamber This is an air dehumidifying device characterized in that a flow rate regulating valve and a pressure reducing valve are interposed in the supply passage.

(作用) 本発明は他方の室に対して、一方の室からの除湿空気で
あって、しかも減圧弁を介して減圧された、蒸気分圧が
非常に小さい空気を供給して一方の室へ供給された空気
を除湿するから、両字間の水蒸気分圧差を小さくして、
空気の水蒸気分圧を十分小さくすることができる。
(Function) The present invention supplies dehumidified air from one chamber to the other chamber, which is depressurized through a pressure reducing valve and has a very low steam partial pressure. Since the supplied air is dehumidified, the water vapor partial pressure difference between the two characters is reduced,
The water vapor partial pressure of air can be made sufficiently small.

(実施例) 次に本発明装置の一実施例を図面にて説明する。(Example) Next, one embodiment of the device of the present invention will be described with reference to the drawings.

本発明装置は1s1図に示すように透湿膜1で2つの室
(A)、(B)に仕切られ之モジュール2と、該モジュ
ールの透過例の室(B)を減圧にする真空ポンプ3及び
一方の室(A)からの除湿空気の一部を他方の室(B)
に供給する減圧弁6を介在させた供給路4で構成されて
いる。
As shown in Figure 1s1, the device of the present invention includes a module 2 that is partitioned into two chambers (A) and (B) by a moisture permeable membrane 1, and a vacuum pump 3 that reduces the pressure in the permeation chamber (B) of the module. and part of the dehumidified air from one chamber (A) to the other chamber (B).
It is composed of a supply path 4 with a pressure reducing valve 6 interposed therebetween.

モジュール2内に収容される透湿膜としては、水蒸気透
過係数(PH20)が空気透過係数(Pair)よシ大
きい除湿性能を有するポリマーを選択分離層として有す
る膜が使用できる。またPH20とPa1rO比である
分離係数α(=PHzO/Pa1r )は5以上、好ま
しくは100以上である。透湿膜間で得られる水蒸気分
圧差は空気(窒素と酸素の混合物とみなす。)分圧差よ
シ小さいため、αが大きくないと除湿効率が良くない。
As the moisture-permeable membrane housed in the module 2, a membrane having a selective separation layer made of a polymer having dehumidifying performance whose water vapor permeability coefficient (PH20) is larger than the air permeability coefficient (Pair) can be used. Further, the separation coefficient α (=PHzO/Pa1r), which is the ratio of PH20 to Pa1rO, is 5 or more, preferably 100 or more. Since the water vapor partial pressure difference obtained between the moisture permeable membranes is smaller than the partial pressure difference of air (regarded as a mixture of nitrogen and oxygen), the dehumidification efficiency will not be good unless α is large.

このようなポリマーとしてはある程度の親水性を有する
ポリマーが好ましく、例えばセルロース、酢酸セルロー
ス、エチルセルロース、カルボキシメチルセルロース、
ヒドロキシセルロース、エチルヒドロキシエチルセルロ
ース等のセルロース系や1部分ケン化または完全ケン化
ポリビニルアルコール、エチレン−ビニルアルコールコ
ポリマー、無水マレイン酸やイタコン酸等のカルボン酸
基を有するモノマーとビニルアルコールのコポリマー等
のポリビニルアルコール系やポリ(メタ)アクリル酸、
ポリアクリルアミド、ポリアクリルニトリル、スルホン
酸基を有するモノマーとアクリル系モノマーとのコポリ
マー等のアクリル系等のポリマーを選択分離層とするこ
とが好ましい。
As such a polymer, a polymer having a certain degree of hydrophilicity is preferable, such as cellulose, cellulose acetate, ethyl cellulose, carboxymethyl cellulose,
Cellulose-based products such as hydroxycellulose and ethylhydroxyethylcellulose, partially saponified or fully saponified polyvinyl alcohols, ethylene-vinyl alcohol copolymers, and polyvinyl copolymers of vinyl alcohol and monomers having carboxylic acid groups such as maleic anhydride and itaconic acid. Alcohol-based and poly(meth)acrylic acid,
It is preferable to use an acrylic polymer such as polyacrylamide, polyacrylonitrile, or a copolymer of a monomer having a sulfonic acid group and an acrylic monomer as the selective separation layer.

膜構造は透析膜のような均一緻密構造を有するものでも
よいが、通常表面にのみ緻密層を有する非対称構造の膜
が選択分離層の厚みを薄くしうるので好ましく用いられ
る。さらに選択分離層とこれを支持補強するサポート層
とが異なるポリマーよりなる複合膜構造が、より好適な
ポリマーを選択分離層とし、かつ該分離I・チを薄くし
うるのでより好ましく用いられる。この場合通常ポリス
ルホン、ポリイミド、ポリエチレン、ポリプロピレン、
ポリフェニレンサルフィドなどのポリマー多孔質膜や、
セラミックなどの無機多孔質膜の表面に、。
The membrane structure may be one having a uniform dense structure such as a dialysis membrane, but a membrane with an asymmetric structure having a dense layer only on the surface is usually preferably used because it can reduce the thickness of the selective separation layer. Furthermore, a composite membrane structure in which the selective separation layer and the support layer supporting and reinforcing the selective separation layer are made of different polymers is more preferably used because a more suitable polymer can be used as the selective separation layer and the separation I/Q can be made thinner. In this case, polysulfone, polyimide, polyethylene, polypropylene,
Polymer porous membranes such as polyphenylene sulfide,
On the surface of inorganic porous membranes such as ceramics.

上記除湿性能を有するポリマーの極薄膜が形成される。An ultra-thin film of polymer having the above dehumidifying performance is formed.

極薄膜は5μm以下、通常1μm以下である。The ultrathin film is 5 μm or less, usually 1 μm or less.

また膜の形状は中空糸状、平膜状のいずれでもよいが、
膜充填密度及び耐圧強度の面から中空糸形状が好ましく
用いられる。
The shape of the membrane may be either hollow fiber or flat membrane.
A hollow fiber shape is preferably used from the viewpoint of membrane packing density and pressure resistance.

中空糸内に空気を供給する場合、中空糸径は圧損を考慮
すればO,1〜2.0gが好ブしい。一方、中空糸長さ
は有効長0.3m以上を確保する事が所定の除湿性能を
確保するのに適している。
When supplying air into the hollow fibers, the diameter of the hollow fibers is preferably 0.1 to 2.0 g in consideration of pressure loss. On the other hand, it is suitable to ensure the effective length of the hollow fibers to be 0.3 m or more in order to ensure a predetermined dehumidification performance.

真空ポンプ3は真空度30〜30 Q torrの汎用
の水封式真空ポンプが使用できる。
As the vacuum pump 3, a general-purpose water ring type vacuum pump with a vacuum degree of 30 to 30 Q torr can be used.

除湿すべき空気は加圧状態でも、また常圧状態でもよい
が5通常常圧空気が用いられる。
The air to be dehumidified may be in a pressurized state or in a normal pressure state, but normal pressure air is usually used.

本発明では一方の室からの除湿空気の一部を他方の室へ
供給する供給路4が設けられる。この供給路には、該供
給路を通じてモジュールの一方の室(A)と他方の室(
B)が連通1−1て均圧になることを防止するため減圧
弁6を設けることが絶対に必要である。該減圧弁により
容器内の一方の室(A)と他方の室(B)の圧力差を常
に一定に保つことが゛できるotfc上記供給路4には
他方の室(B)へ供給される除湿空気量を調節すること
により除湿空気の湿分を調節するための流量調節弁5を
設けてもよい。該流量調節弁は減圧弁の上流、下流のど
ちらに設けても構わない。通常減圧弁の下流に設けると
流量の調節が容易で好ましい。
In the present invention, a supply path 4 is provided for supplying part of the dehumidified air from one chamber to the other chamber. This supply path connects one chamber (A) and the other chamber (A) of the module through the supply path.
It is absolutely necessary to provide a pressure reducing valve 6 in order to prevent B) from reaching an equal pressure in the communication 1-1. The pressure reducing valve can always keep the pressure difference between one chamber (A) and the other chamber (B) constant in the container. A flow control valve 5 may be provided to adjust the moisture content of the dehumidified air by adjusting the amount of air. The flow control valve may be provided either upstream or downstream of the pressure reducing valve. Usually, it is preferable to provide it downstream of the pressure reducing valve because it makes it easy to adjust the flow rate.

実施例1 ポリスルホン多孔質中空糸(外径/内径=1500μm
/1000μm)の内面にポリビニルアルコールの1重
量%水溶液を流した後、液切りし100℃で熱風乾燥し
た。得られた中空糸複合膜(ポリビニルアルコールの膜
厚0.27μm)の透Q−it率1t6x10 ’ N
od −cm/d −5eC−(zHf/であった。
Example 1 Polysulfone porous hollow fiber (outer diameter/inner diameter = 1500 μm
After pouring a 1% by weight aqueous solution of polyvinyl alcohol onto the inner surface of the film (/1000 μm), the liquid was drained and the film was dried with hot air at 100°C. The permeability Q-it rate of the obtained hollow fiber composite membrane (polyvinyl alcohol film thickness 0.27 μm) was 1t6x10'N
od -cm/d -5eC- (zHf/).

該ポリスルホン中空糸複合膜を用いて0.2−の膜面積
を有する中空糸複合膜モジュールを製造し。
A hollow fiber composite membrane module having a membrane area of 0.2- was manufactured using the polysulfone hollow fiber composite membrane.

た0 該モジュールを用い、第1図に示す系統図に従って除湿
テストを行なった。除湿すべき空気1ONd/Hを中空
糸膜の内側に供給し、出口から出てきた除湿され九窒気
のうちlNd/Hを減圧弁で減圧して、容器の他方の室
(B)に供給し、中空糸膜の外を流し7た。該室(B)
は真空ポンプでの真空度を35 torrに保持した。
Using this module, a dehumidification test was conducted according to the system diagram shown in FIG. Supply 1ONd/H of air to be dehumidified to the inside of the hollow fiber membrane, reduce the pressure of 1Nd/H of the dehumidified nitrogen gas that comes out from the outlet with a pressure reducing valve, and supply it to the other chamber (B) of the container. Then, the outside of the hollow fiber membrane was washed away. The room (B)
The vacuum level was maintained at 35 torr using a vacuum pump.

定常状態になった時点で装置の空気入口部と除湿突気出
口部の温度、湿度を測定したところ、入口部温度30℃
、相対湿度70%、圧力大気圧、出口部温度30℃、相
対温度30%、圧力大気圧であった。
When the steady state was reached, we measured the temperature and humidity at the air inlet and dehumidifying air outlet of the device, and found that the temperature at the inlet was 30°C.
, relative humidity 70%, pressure atmospheric pressure, outlet temperature 30°C, relative temperature 30%, pressure atmospheric pressure.

比較例1 実施例1と同様のテストを加圧空気を使用して行なった
。除湿すべき空気30 N、f/Hを中空糸膜内に供給
し、出口から出てきた除湿空気のうちINd/Hを減圧
弁で減圧してモジュールの他方の室(B)に供給した。
Comparative Example 1 A test similar to Example 1 was conducted using pressurized air. 30 N, f/H of air to be dehumidified was supplied into the hollow fiber membrane, and INd/H of the dehumidified air coming out of the outlet was reduced in pressure with a pressure reducing valve and supplied to the other chamber (B) of the module.

該室(B)は真空ポンプで真空度を35 torrに保
持した。定常状態になった時点で空気の入口部。
The chamber (B) was maintained at a vacuum level of 35 torr using a vacuum pump. Air inlet section when steady state is reached.

除湿空気の出口部の温度、湿度、圧力を測定したところ
、入口部温度30°C1相対湿度100%。
When we measured the temperature, humidity, and pressure at the outlet of the dehumidified air, we found that the inlet temperature was 30°C and the relative humidity was 100%.

圧力5 kg/ciG、出口部温度30℃、大気互換X
露点−46℃、圧力5にり/、IGであった。
Pressure 5 kg/ciG, outlet temperature 30°C, atmospheric compatibility
The dew point was -46°C and the pressure was 5°C/IG.

次に室(B)への除湿空気の供給を止めて、X空ポンプ
のみを運転して、同一量の空気をモジュール内に供給し
た所、X空ポンプで室(B)をl torrに維持して
も、除湿空気の大気圧換算露点Fi−30℃にしかなら
なかった。更に、真空ポンプを停止して室(B)へ除湿
空気を流して、同一量の空気をモジュール内に供給した
所、室(B)へ除湿空気を6N+1//H供給(7て初
めて除湿空気の大気圧換算露点は一40℃となったが、
この場合膜モジュールを4ヶ直列に並べなければならな
かった。
Next, the supply of dehumidified air to chamber (B) was stopped and only the X empty pump was operated to supply the same amount of air into the module, and the X empty pump maintained chamber (B) at l torr. However, the atmospheric pressure equivalent dew point of the dehumidified air was only Fi-30°C. Furthermore, when the vacuum pump was stopped and dehumidified air was supplied to chamber (B) and the same amount of air was supplied into the module, 6N+1//H of dehumidified air was supplied to chamber (B) (dehumidified air was not supplied for the first time in 7 The dew point converted to atmospheric pressure was -40℃,
In this case, four membrane modules had to be arranged in series.

さらに供給路に介在させた減圧弁を取シ外した状態で実
施例1と同様なテストを行なった。この場合室(B) 
K供給された除湿空気によりモジュール内の室(A)と
室(B)の水蒸気分圧差が小さくなり除湿ができなかっ
た。
Furthermore, the same test as in Example 1 was conducted with the pressure reducing valve interposed in the supply path removed. In this case chamber (B)
Due to the dehumidified air supplied with K, the water vapor partial pressure difference between chambers (A) and (B) in the module became small, and dehumidification could not be performed.

(発明の効果) 以上のように本発明装置i11’2気を十分に除湿でき
、しかも装置の小型化と設備費及び運転費の低下を達成
でき実用上極めて有用な装置である。
(Effects of the Invention) As described above, the device of the present invention can sufficiently dehumidify i11'2 air, and furthermore, it is a device that is extremely useful in practice, as it achieves miniaturization and reductions in equipment and operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の構成を示すフロー図である。 FIG. 1 is a flow diagram showing the configuration of the apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 透湿膜で2つの室に仕切られたモジュールの一方の室に
空気を供給し、他方の室を減圧にすることにより両室の
間での水蒸気分圧差で空気中の水分を透湿膜を通して他
方の室へ移行させて、空気を除湿する装置であつて、該
一方の室からの除湿空気の一部を該他方の室に供給する
供給路を設け、かつ該供給路に減圧弁を介在させたこと
を特徴とする空気の除湿装置。
By supplying air to one chamber of the module, which is divided into two chambers by a moisture permeable membrane, and reducing the pressure in the other chamber, moisture in the air is drawn through the moisture permeable membrane due to the water vapor partial pressure difference between the two chambers. A device for dehumidifying air by moving it to another chamber, which is provided with a supply path for supplying a portion of the dehumidified air from one chamber to the other chamber, and a pressure reducing valve is interposed in the supply path. An air dehumidifier characterized by:
JP61257178A 1986-10-28 1986-10-28 Dehumidifier for air Pending JPS63111923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61257178A JPS63111923A (en) 1986-10-28 1986-10-28 Dehumidifier for air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61257178A JPS63111923A (en) 1986-10-28 1986-10-28 Dehumidifier for air

Publications (1)

Publication Number Publication Date
JPS63111923A true JPS63111923A (en) 1988-05-17

Family

ID=17302764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61257178A Pending JPS63111923A (en) 1986-10-28 1986-10-28 Dehumidifier for air

Country Status (1)

Country Link
JP (1) JPS63111923A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370724U (en) * 1989-11-08 1991-07-16
US5108464A (en) * 1989-09-19 1992-04-28 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
US5205842A (en) * 1992-02-13 1993-04-27 Praxair Technology, Inc. Two stage membrane dryer
US5226932A (en) * 1991-10-07 1993-07-13 Praxair Technology, Inc. Enhanced meambrane gas separations
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
JP2002136830A (en) * 2000-08-22 2002-05-14 Nok Corp Dehumidifying system
JP2014024025A (en) * 2012-07-27 2014-02-06 Ube Ind Ltd Dehumidification system and method of producing dry air
JP2018144025A (en) * 2017-03-02 2018-09-20 Jr東日本コンサルタンツ株式会社 Moisture movement machine and moisture movement unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108464A (en) * 1989-09-19 1992-04-28 Bend Research, Inc. Countercurrent dehydration by hollow fibers
US5118327A (en) * 1989-10-05 1992-06-02 Andrew Corporation Dehumidifier for supplying gas having controlled dew point
JPH0370724U (en) * 1989-11-08 1991-07-16
US5226932A (en) * 1991-10-07 1993-07-13 Praxair Technology, Inc. Enhanced meambrane gas separations
US5205842A (en) * 1992-02-13 1993-04-27 Praxair Technology, Inc. Two stage membrane dryer
US5681368A (en) * 1995-07-05 1997-10-28 Andrew Corporation Dehumidifier system using membrane cartridge
JP2002136830A (en) * 2000-08-22 2002-05-14 Nok Corp Dehumidifying system
JP2014024025A (en) * 2012-07-27 2014-02-06 Ube Ind Ltd Dehumidification system and method of producing dry air
JP2018144025A (en) * 2017-03-02 2018-09-20 Jr東日本コンサルタンツ株式会社 Moisture movement machine and moisture movement unit

Similar Documents

Publication Publication Date Title
US5108464A (en) Countercurrent dehydration by hollow fibers
JP2607527Y2 (en) Moisture removal module
US6635104B2 (en) Gas separation device
US4243701A (en) Preparation of gas separation membranes
CA2400677A1 (en) Membrane exchange humidifier
JPS63111923A (en) Dehumidifier for air
KR100638322B1 (en) Hollow fiber membrane for dehumidifying module
US6180168B1 (en) Process for the manufacture of a membrane device with internal sweep
JPS62241527A (en) Dehumidifying method for air
JP4022341B2 (en) Dehumidification method and apparatus
JPS60238120A (en) Air dehumidification apparatus
JPS62273028A (en) Gas dehumidifier
JPH0822365B2 (en) Dehumidifier
KR101126995B1 (en) Humidifying device and oxygen concentrating apparatus
JPH11226345A (en) Dehumidifier
JPS63119834A (en) Air dehumidifying apparatus
JP2005337640A (en) Gas humidifying device
JPH0283015A (en) Gas dehumidification
KR20020013036A (en) Gas separation membraines for dehumidifying module
JPH03143523A (en) Method for dehumidifying steam-containing gas
JPH01249123A (en) Dehumidifying method
JP2878297B2 (en) Method for producing nitrogen-enriched air
JPH01224029A (en) Method for dehumidifying gas
JP2009095829A (en) Water separating hollow fiber and water separating filter
CN212006139U (en) Humidity adjusting device