JPH0959775A - Sputtering method - Google Patents

Sputtering method

Info

Publication number
JPH0959775A
JPH0959775A JP7213150A JP21315095A JPH0959775A JP H0959775 A JPH0959775 A JP H0959775A JP 7213150 A JP7213150 A JP 7213150A JP 21315095 A JP21315095 A JP 21315095A JP H0959775 A JPH0959775 A JP H0959775A
Authority
JP
Japan
Prior art keywords
substrate
temperature
film
sputtering method
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7213150A
Other languages
Japanese (ja)
Other versions
JP4074672B2 (en
Inventor
Shinji Fujikake
伸二 藤掛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21315095A priority Critical patent/JP4074672B2/en
Publication of JPH0959775A publication Critical patent/JPH0959775A/en
Application granted granted Critical
Publication of JP4074672B2 publication Critical patent/JP4074672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To prevent the temp. of a substrate from being changed under the effect of radiation as the time elapses and to form a uniform textured electrode face at the time of forming a film on the surface of a flexible substrate through sputtering by a roll-to-roll system. SOLUTION: The temp. of the substrate 10 with a linearly stretched film formed on the surface is measured by an IR thermometer 12 or a sheet thermocouple and fed back to the output of a discharge power source to control the substrate temp. Otherwise, the measured substrate temp. is fed back, the substrate is passed between the temp.-controlled rolls, and the substrate temp. is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薄膜太陽電池製造
などのために可とう性基板上に電極層を形成する場合等
に行うスパッタリング方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering method performed when an electrode layer is formed on a flexible substrate for manufacturing a thin film solar cell or the like.

【0002】[0002]

【従来の技術】厚さ数十ないし数百μm程度の高分子材
料フィルムやステンレス鋼箔を可とう性基板として用
い、光電変換層を非晶質シリンコ薄膜で形成する薄膜太
陽電池は、高い量産性が得られることから、低コスト太
陽電池として期待されている。この種の太陽電池は、通
常、高い変換効率を得るために反射率の高いAgやAl
の層が電極層として基板上に形成される。さらなる高効
率化技術として、テクスチャ化、すなわち、電極層表面
に高さ0.05〜0.5μm程度の凹凸を設け光を太陽
電池内部で散乱させることが考えられている。このテク
スチャ化の方法として特願平7−111141号明細書
に記載のようにAgを約300〜400℃で高温形成し
て凝集させる方法や特願平7−185315号明細書に
記載のようにAlを約250〜350℃で高温形成して
凝集させその上に200℃程度でAgを形成する方法が
あげられる。いずれの場合も、テクスチャ化には300
℃程度に最適値があり、温度が低すぎても高すぎても太
陽電池の特性を低下させることにつながる。特に、基板
としてポリイミドのような耐熱性プラスチックフィルム
を用いた場合、約300℃以上で急激な熱収縮が生じる
ことから、テクスチャ化電極形成時には300℃程度の
温度領域で±10℃程度の非常に精密な基板温度制御が
要求される。
2. Description of the Related Art A thin film solar cell in which a polymer material film or stainless steel foil having a thickness of several tens to several hundreds of μm is used as a flexible substrate and a photoelectric conversion layer is formed of an amorphous silinco thin film has high mass production. Therefore, it is expected to be a low-cost solar cell. This type of solar cell usually has high reflectance such as Ag or Al in order to obtain high conversion efficiency.
Is formed on the substrate as an electrode layer. As a technique for further improving efficiency, it has been considered that texturing, that is, providing unevenness having a height of about 0.05 to 0.5 μm on the surface of the electrode layer to scatter light inside the solar cell. As a method of this texturing, as described in Japanese Patent Application No. 7-111141, a method of forming Ag at a high temperature of about 300 to 400 ° C. to aggregate and as described in Japanese Patent Application No. 7-185315. There is a method in which Al is formed at a high temperature of about 250 to 350 ° C., aggregated, and Ag is formed thereon at about 200 ° C. In each case, 300 for texturing
There is an optimum value at about ° C, and if the temperature is too low or too high, the characteristics of the solar cell are deteriorated. In particular, when a heat-resistant plastic film such as polyimide is used as the substrate, a rapid thermal contraction occurs at about 300 ° C. or more, and therefore, when forming the textured electrode, the temperature range of about 300 ° C. is extremely high at ± 10 ° C. Precise substrate temperature control is required.

【0003】図2および図3は、フィルム基板上に金属
電極層を形成するために用いたロール方式スパッタリン
グ装置を示す。図2に示す装置は、送り室1、スパッタ
室2、巻き取り室3の三つの部分により構成されてい
る。送り室にはフィルムの巻き出しのための送りロール
4、巻き取り室には巻き取りロール5がそれぞれ設置さ
れ、さらに搬送ガイドロール6が双方の部屋に設置され
ている。スパッタ室2にはフィルム加熱用のヒータ9、
カソード7および環状のアノード8が設置されている。
カソード7はターゲット材料71、バッキングプレート
72およびマグネット73により構成され、直流あるい
は高周波の電圧を印加することによりマグネトロンスパ
ッタリングが行われ、送りロール4から巻き取りロール
5へ搬送されるフィルム基板10上に成膜される。図3
に示す装置は、送りロール4から巻き取りロール5へフ
ィルム基板10がキャンロール11の表面に接しながら
搬送される。そしてキャンロール11に対向するカソー
ド7およびアノード8の間の電圧印加によりスパッタが
行われる。
2 and 3 show a roll type sputtering apparatus used for forming a metal electrode layer on a film substrate. The apparatus shown in FIG. 2 comprises three parts: a feed chamber 1, a sputter chamber 2 and a winding chamber 3. A feed roll 4 for unwinding the film is installed in the feed chamber, a take-up roll 5 is installed in the take-up chamber, and a transport guide roll 6 is installed in both chambers. The sputtering chamber 2 has a heater 9 for heating the film,
A cathode 7 and an annular anode 8 are installed.
The cathode 7 is composed of a target material 71, a backing plate 72 and a magnet 73, and is magnetron sputtered by applying a DC or high frequency voltage, and is placed on the film substrate 10 conveyed from the feed roll 4 to the winding roll 5. It is formed into a film. FIG.
In the apparatus shown in (1), the film substrate 10 is conveyed from the feed roll 4 to the take-up roll 5 while being in contact with the surface of the can roll 11. Then, the sputtering is performed by applying a voltage between the cathode 7 and the anode 8 facing the can roll 11.

【0004】[0004]

【発明が解決しようとする課題】スパッタ時にはスパッ
タされた粒子やイオンの基板への衝突やプラズマ自身か
らの輻射によって基板が加熱される。フィルム基板は熱
容量が極めて小さいために、図2の装置を用いた場合、
瞬時に100〜200℃程度基板10の温度が上昇す
る。さらに、スパッタ室2の内部がスパッタ時にしだい
に加熱され、その二次的な輻射によって基板温度が上昇
する。通常、バッキングプレート72には冷却機構が設
けられているが、放電電源出力を一定に制御して長さ数
百メートルのフィルムに数時間で成膜する場合、上記の
二次的な輻射の効果で、成膜終了時は成膜開始時に比べ
て基板温度が50〜100℃程度上昇する。このため、
前述の±10℃程度の精密な温度制御を行うことは困難
であった。
During sputtering, the substrate is heated by collision of sputtered particles and ions with the substrate and radiation from the plasma itself. Since the film substrate has a very small heat capacity, when the device of FIG. 2 is used,
The temperature of the substrate 10 instantly rises by about 100 to 200 ° C. Furthermore, the inside of the sputtering chamber 2 is gradually heated during sputtering, and the substrate temperature rises due to the secondary radiation. Normally, the backing plate 72 is provided with a cooling mechanism. However, when a discharge power supply output is controlled to be constant and a film having a length of several hundred meters is formed in a few hours, the effect of the above secondary radiation is generated. At the end of film formation, the substrate temperature rises by about 50 to 100 ° C. as compared with the start of film formation. For this reason,
It was difficult to perform precise temperature control of about ± 10 ° C.

【0005】図3の装置を用いた場合は、フィルム10
が熱容量の大きなキャンロール11に接触しているた
め、温度上昇が抑えられ、キャンロール11自体の温度
を調整することによって精密な温度制御が可能になる。
しかしながら、装置が大型になり装置コストもアップす
る。さらにターゲット71交換等のメンテナンスが困
難、基板温度が一つのロール11で限定されるため異な
る成膜温度で多層膜を形成することができない等の問題
があった。
When the apparatus of FIG. 3 is used, the film 10
Is in contact with the can roll 11 having a large heat capacity, the temperature rise is suppressed, and precise temperature control becomes possible by adjusting the temperature of the can roll 11 itself.
However, the size of the device becomes large and the cost of the device also increases. Furthermore, maintenance such as replacement of the target 71 is difficult, and since the substrate temperature is limited by one roll 11, it is impossible to form a multilayer film at different film forming temperatures.

【0006】本発明の目的は、上述の問題を解決し、基
板温度を精密に制御して表面がテクスチャ化された金属
電極層の成膜を可能にするスパッタリング方法を提供す
ることにある。
An object of the present invention is to provide a sputtering method which solves the above-mentioned problems and enables the formation of a metal electrode layer having a textured surface by precisely controlling the substrate temperature.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、搬送される可とう性基板が直線状に張
られた個所の近傍で放電を発生させ、基板表面上にター
ゲット材からなる薄膜を形成するスパッタリング方法に
おいて、薄膜形成時の基板温度を測定し、測定した表面
温度に基づいて基板温度を制御するものとする。これに
より成膜開始後基板温度が変化しても、その変化に追随
して基板温度を狭い範囲内に抑えることができる。基板
温度を放電電源出力によって制御することも、温度調整
可能のロール間を基板を通過させることによって制御す
ることもよい。いずれも少ない時間遅れで基板温度を所
定の値にすることができる。二つの制御方法を組み合わ
せれば、同一基板上に成膜温度の異なる多層膜を連続し
て形成することも可能である。基板表面の温度を赤外線
温度計によって基板に接触しないで測定することがよ
い。基板に無接触に測定するので、基板温度が測定によ
って変わることがない。しかし、基板表面の温度をシー
ト状の熱電対を接触させて測定してもよい。熱電対がシ
ート状であるため熱容量が小さく、接触しても基板温度
はほとんど影響されない。スパッタ室および放電電極の
少なくともいずれかを水冷することもよい。これによ
り、放電電力の変化に基づいて基板表面上の膜厚が時間
とともに変化することが防止される。
In order to achieve the above-mentioned object, the present invention generates a discharge in the vicinity of a portion where a flexible substrate to be conveyed is stretched linearly, and a target is formed on the surface of the substrate. In a sputtering method for forming a thin film of a material, the substrate temperature during thin film formation is measured, and the substrate temperature is controlled based on the measured surface temperature. Accordingly, even if the substrate temperature changes after the start of film formation, the substrate temperature can be suppressed within a narrow range by following the change. The substrate temperature may be controlled by the output of the discharge power source or may be controlled by passing the substrate between rolls whose temperature can be adjusted. In either case, the substrate temperature can be set to a predetermined value with a small time delay. By combining the two control methods, it is possible to continuously form multi-layer films having different film forming temperatures on the same substrate. The temperature of the substrate surface may be measured by an infrared thermometer without contacting the substrate. Since the measurement is performed without contacting the substrate, the substrate temperature does not change due to the measurement. However, the temperature of the substrate surface may be measured by contacting a sheet-shaped thermocouple. Since the thermocouple is in the form of a sheet, it has a small heat capacity, and even if it contacts, the substrate temperature is hardly affected. At least one of the sputtering chamber and the discharge electrode may be water-cooled. This prevents the film thickness on the substrate surface from changing with time due to the change in discharge power.

【0008】[0008]

【発明の実施の形態】本発明の実施には、従来のロール
ツーロール方式のスパッタリング装置に、温度測定手段
として赤外線温度計、あるいは熱容量の十分小さいシー
ト状熱電対を設置し、測定温度を放電電源出力あるいは
温度調節ロールにフィートバックする機能をもたせれば
よい。同一可とう性基板上に連続して多層膜を積層する
場合、異なる温度制御方法を組み合わせてもよい。ま
た、本発明による温度制御方式の成膜と通常電力制御方
式の成膜とを組み合わせることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION In the practice of the present invention, an infrared thermometer as a temperature measuring means or a sheet-like thermocouple having a sufficiently small heat capacity is installed in a conventional roll-to-roll type sputtering apparatus, and the measured temperature is discharged. It suffices if the power output or the temperature control roll has a function of making a footback. When the multilayer films are successively laminated on the same flexible substrate, different temperature control methods may be combined. Further, the temperature control type film formation according to the present invention and the normal power control type film formation can be combined.

【0009】[0009]

【実施例】以下、図2と共通の部分に同一の符号を付し
た図を引用して本発明の実施例のスパッタリング方法に
ついて述べる。図1に示したスパッタリング装置は,本
発明の一実施例のスパッタリング方法に用いるもので、
図2のスパッタリング装置とほとんど同一であるが、ス
パッタ室2に非接触式の赤外線温度計12が設置され、
図示しない放電電源の制御装置に接続されている。本装
置を用いて厚さ50μmのポリイミドフィルム上に平均
膜厚約15nmのテクスチャ化Ag電極層を形成する場
合について説明する。フィルム基板10をセットした装
置内部はクライオポンプあるいはターボ分子ポンプ等に
より105 〜107 Torrに真空排気されている。ヒ
ータ9は予め250〜300℃に加熱されている。次に
Ar等の不活性ガスを導入し、その後、圧力コントロー
ラによって室内は103 〜102 Torrに圧力制御さ
れる。フィルム基板10を0.5〜2m/分の搬送速度
で送りながらカソード7に直流あるいは高周波の電圧を
印加してAg成膜が開始される。成膜時のフィルム基板
10の温度は赤外線温度計12により常時モニタリング
されており、測定された温度を放電電源にフィードバッ
クすることで温度一定に制御される。なお本装置は、モ
ード切り替えによって、通常の定電力制御や定電流制御
による成膜を行うことも可能である。図4にフィードバ
ックを行った定温度制御および通常の定電力制御の場合
の成膜時間と基板温度の関係を線41および42に示
す。双方の場合とも、放電開始初期に放電からの輻射に
よって温度が急激に上昇している。その後の温度変化を
みると、線42の定電力制御の場合、緩やかに温度が上
昇し続けている。これは、放電によってスパッタ室壁面
およびアノードがゆっくり加熱され、その二次的な輻射
によってフィルムが加熱されたものと考えられる。この
方法で成膜したものはテクスチャ形状が時間とともに変
化しており、成膜終了直前の部分ではフィルムに著しい
熱収縮がみられた。一方、温度制御を行った場合、テク
スチャ形状は時間によって変化しておらず、フィルムの
熱収縮もみられなかった。 本実施例では、放電電力が
時間とともに変化するため、膜厚も時間とともに変化す
るという問題がある。この現象を極力少なくするに、ス
パッタ室2の壁面およびアノード8に水冷を行った。図
5に水冷を行った場合および行わなかった場合の成膜時
間とAg膜厚の関係を線51および線52に示す。この
結果から、水冷によってスパッタ室内部の温度上昇が抑
えられ、膜厚の安定性が向上することがわかった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sputtering method according to an embodiment of the present invention will be described below with reference to the drawing in which the same parts as those in FIG. The sputtering apparatus shown in FIG. 1 is used in the sputtering method of one embodiment of the present invention.
Although it is almost the same as the sputtering apparatus of FIG. 2, a non-contact type infrared thermometer 12 is installed in the sputtering chamber 2.
It is connected to a control device for a discharge power supply (not shown). A case where a textured Ag electrode layer having an average film thickness of about 15 nm is formed on a polyimide film having a thickness of 50 μm using this apparatus will be described. The inside of the apparatus in which the film substrate 10 is set is evacuated to 10 5 to 10 7 Torr by a cryopump or a turbo molecular pump. The heater 9 is preheated to 250 to 300 ° C. Next, an inert gas such as Ar is introduced, and then the pressure inside the chamber is controlled to 10 3 to 10 2 Torr by the pressure controller. While feeding the film substrate 10 at a conveying speed of 0.5 to 2 m / min, a DC or high frequency voltage is applied to the cathode 7 to start Ag film formation. The temperature of the film substrate 10 during film formation is constantly monitored by the infrared thermometer 12, and the temperature is controlled to be constant by feeding back the measured temperature to the discharge power source. Note that this apparatus can also perform film formation by normal constant power control or constant current control by mode switching. In FIG. 4, lines 41 and 42 show the relationship between the film formation time and the substrate temperature in the case of constant temperature control with feedback and normal constant power control. In both cases, the temperature rises rapidly due to radiation from the discharge at the beginning of discharge. As for the temperature change thereafter, in the case of the constant power control of the line 42, the temperature gradually continues to rise. It is considered that this is because the wall surface of the sputtering chamber and the anode were slowly heated by the discharge, and the film was heated by the secondary radiation. In the film formed by this method, the texture shape changed with time, and significant heat shrinkage was observed in the film immediately before the film formation was completed. On the other hand, when the temperature was controlled, the texture shape did not change with time, and heat shrinkage of the film was not observed. In this embodiment, since the discharge power changes with time, there is a problem that the film thickness also changes with time. In order to minimize this phenomenon, the wall surface of the sputtering chamber 2 and the anode 8 were water-cooled. In FIG. 5, lines 51 and 52 show the relationship between the film formation time and the Ag film thickness with and without water cooling. From this result, it was found that the water cooling suppresses the temperature rise inside the sputtering chamber and improves the stability of the film thickness.

【0010】図6に本発明の他の実施例のスパッタリン
グ方法を示す。この装置は、二つのスパッタ室21、2
2を有する。基板10は、スパッタ室22の上流で二つ
の温度調節ロール13の間を通され、ここで、冷却およ
び加熱を行うことができる。この温度調節ロール13の
温度の調節は、例えば水や油,空気などの流体媒体によ
り行われる。本装置によれば、スパッタ室21および2
2で、成膜温度の異なる多層膜を連続形成することが可
能である。以下、本装置でAl/Ag膜を形成する場合
を例にとり説明する。前述の温度制御によりスパッタ室
21で平均膜厚100nmの表面がテクスチャ化された
Al膜を形成する。その際の成膜温度は300℃であ
る。その後、温度調節ロール13で瞬時に冷却されスパ
ッタ室22に搬送される。ここで、成膜温度200℃で
膜厚100nmのAg膜が形成され、その後、巻き取り
ロール5に巻き取られる。
FIG. 6 shows a sputtering method according to another embodiment of the present invention. This apparatus has two sputtering chambers 21, 2
2 The substrate 10 is passed between two temperature adjusting rolls 13 upstream of the sputtering chamber 22, where cooling and heating can be performed. The temperature of the temperature adjusting roll 13 is adjusted by a fluid medium such as water, oil or air. According to this apparatus, the sputtering chambers 21 and 2 are
In 2, it is possible to continuously form multilayer films having different film forming temperatures. Hereinafter, a case of forming an Al / Ag film with this apparatus will be described as an example. An Al film having an average film thickness of 100 nm and having a textured surface is formed in the sputtering chamber 21 by the above temperature control. The film forming temperature at that time is 300 ° C. Then, it is instantly cooled by the temperature control roll 13 and conveyed to the sputtering chamber 22. Here, an Ag film having a film thickness of 100 nm is formed at a film forming temperature of 200 ° C., and then wound on a winding roll 5.

【0011】[0011]

【発明の効果】本発明によれば、従来のスパッタリング
装置に基板表面温度の測定機能を測定温度のフィードバ
ック機能を備える比較的小型の装置で、可とう性基板上
に、ロールツーロール方式で極めて温度制御性の良好な
スパッタ成膜が可能になる。この方法を太陽電池用の電
極形成に用いることで非常に良好な形状のテクスチャ電
極を安定して形成できる。これによって低コストかつ高
性能の非晶質シリコン太陽電池を安定して生産すること
が可能になる。
According to the present invention, the conventional sputtering apparatus is provided with a function of measuring the substrate surface temperature and a feedback function of the measured temperature, which is a relatively small apparatus. Sputter deposition with good temperature controllability is possible. By using this method for forming an electrode for a solar cell, a textured electrode having a very good shape can be stably formed. This enables stable production of low-cost and high-performance amorphous silicon solar cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のスパッタリング方法に用い
る装置の縦断面図
FIG. 1 is a vertical sectional view of an apparatus used in a sputtering method according to an embodiment of the present invention.

【図2】従来のロール方式スパッタリング装置の一例の
縦断面図
FIG. 2 is a vertical sectional view of an example of a conventional roll-type sputtering apparatus.

【図3】従来のロール方式スパッタリング装置の別の例
の縦断面図
FIG. 3 is a vertical sectional view of another example of a conventional roll-type sputtering apparatus.

【図4】本発明による定温度制御と従来の定電力制御の
場合の基板温度の時間変化線図
FIG. 4 is a time-dependent diagram of substrate temperature in the case of constant temperature control according to the present invention and conventional constant power control

【図5】スパッタ室の壁面およびアノードを水冷した場
合と水冷しなかった場合のAg膜厚の時間変化線図
FIG. 5 is a diagram showing the change over time of the Ag film thickness with and without water cooling of the wall surface of the sputtering chamber and the anode.

【図6】本発明の別の実施例のスパッタリング方法に用
いる装置の縦断面図
FIG. 6 is a vertical sectional view of an apparatus used in a sputtering method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 送り室 2、21、22 スパッタ室 3 巻き取り室 4 送りロール 5 巻き取りロール 7 カソード 8 アノード 9 ヒータ 10 フィルム基板 12 赤外線温度計 13 温度調節ロール 1 Feed Chamber 2, 21, 22 Sputter Chamber 3 Winding Chamber 4 Feed Roll 5 Winding Roll 7 Cathode 8 Anode 9 Heater 10 Film Substrate 12 Infrared Thermometer 13 Temperature Control Roll

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 31/04 H01L 31/04 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 31/04 H01L 31/04 M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】搬送される可とう性基板が直線状に張られ
た個所の近傍で放電を発生させ、基板表面上にターゲッ
ト材からなる薄膜を形成するスパッタリング方法におい
て、薄膜形成時の基板表面を温度を測定し、測定した表
面温度に基づいて基板温度を制御することを特徴とする
スパッタリング方法。
1. A sputtering method for forming a thin film of a target material on a surface of a substrate by causing discharge in the vicinity of a linearly stretched portion of a flexible substrate to be conveyed, and the substrate surface during thin film formation. The temperature is measured, and the substrate temperature is controlled based on the measured surface temperature.
【請求項2】基板温度を放電電源出力によって制御する
請求項1記載のスパッタリング方法。
2. The sputtering method according to claim 1, wherein the substrate temperature is controlled by the discharge power output.
【請求項3】基板温度を温度調整可能のロールの間を基
板を通過させることによって制御する請求項1記載のス
パッタリング方法。
3. The sputtering method according to claim 1, wherein the substrate temperature is controlled by passing the substrate between rolls whose temperature can be adjusted.
【請求項4】基板表面の温度を赤外線温度計によって基
板に接触しないで測定する請求項1ないし3のいずれか
に記載のスパッタリング方法。
4. The sputtering method according to claim 1, wherein the temperature of the substrate surface is measured by an infrared thermometer without contacting the substrate.
【請求項5】基板表面の温度をシート状の熱電対を接触
させて測定する請求項1ないし3のいずれかに記載のス
パッタリング方法。
5. The sputtering method according to claim 1, wherein the temperature of the surface of the substrate is measured by bringing a sheet-shaped thermocouple into contact therewith.
【請求項6】スパッタ室壁面および放電電極の少なくと
もいずれかを水冷する請求項1ないし5のいずれかに記
載のスパッタリング方法。
6. The sputtering method according to claim 1, wherein at least one of the wall surface of the sputtering chamber and the discharge electrode is water-cooled.
JP21315095A 1995-08-22 1995-08-22 Sputtering method Expired - Fee Related JP4074672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21315095A JP4074672B2 (en) 1995-08-22 1995-08-22 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21315095A JP4074672B2 (en) 1995-08-22 1995-08-22 Sputtering method

Publications (2)

Publication Number Publication Date
JPH0959775A true JPH0959775A (en) 1997-03-04
JP4074672B2 JP4074672B2 (en) 2008-04-09

Family

ID=16634405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21315095A Expired - Fee Related JP4074672B2 (en) 1995-08-22 1995-08-22 Sputtering method

Country Status (1)

Country Link
JP (1) JP4074672B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058044A (en) * 2006-08-30 2008-03-13 Sumitomo Metal Mining Co Ltd Temperature measuring method of resin film, and heating film deposition device
JP2008285726A (en) * 2007-05-18 2008-11-27 Sumitomo Metal Mining Co Ltd Device for measuring film temperature, and winding-type vacuum film-forming apparatus provided with the same
JP2009049029A (en) * 2007-08-13 2009-03-05 Fuji Electric Systems Co Ltd Apparatus for manufacturing thin film solar cell
JP2011513992A (en) * 2008-03-05 2011-04-28 グローバル ソーラー エナジー インコーポレーテッド Heating for buffer layer deposition
JP2014109073A (en) * 2012-12-03 2014-06-12 Samsung Corning Precision Materials Co Ltd Roll-to-roll sputtering method
JP2015032605A (en) * 2013-07-31 2015-02-16 住友金属鉱山株式会社 Heat treatment method of resin film, and manufacturing method of plating laminate employing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058044A (en) * 2006-08-30 2008-03-13 Sumitomo Metal Mining Co Ltd Temperature measuring method of resin film, and heating film deposition device
JP2008285726A (en) * 2007-05-18 2008-11-27 Sumitomo Metal Mining Co Ltd Device for measuring film temperature, and winding-type vacuum film-forming apparatus provided with the same
JP2009049029A (en) * 2007-08-13 2009-03-05 Fuji Electric Systems Co Ltd Apparatus for manufacturing thin film solar cell
JP2011513992A (en) * 2008-03-05 2011-04-28 グローバル ソーラー エナジー インコーポレーテッド Heating for buffer layer deposition
JP2014109073A (en) * 2012-12-03 2014-06-12 Samsung Corning Precision Materials Co Ltd Roll-to-roll sputtering method
JP2015032605A (en) * 2013-07-31 2015-02-16 住友金属鉱山株式会社 Heat treatment method of resin film, and manufacturing method of plating laminate employing the same

Also Published As

Publication number Publication date
JP4074672B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR100269936B1 (en) Deposited-film forming process and deposited-film forming apparatus
US6602347B1 (en) Apparatus and method for processing a substrate
JP3990867B2 (en) Deposited film forming apparatus and deposited film forming method
JP2001223375A (en) Carrying apparatus for flexible substrate, and deposition apparatus
JP4074672B2 (en) Sputtering method
US6783640B2 (en) Sputtering method and sputtering apparatus
US4396640A (en) Apparatus and method for substrate temperature control
JPH11236669A (en) Formation of thin film and apparatus for forming thin film
US6740210B2 (en) Sputtering method for forming film and apparatus therefor
JP3787410B2 (en) Deposited film manufacturing method and photovoltaic device manufacturing method
JPH09176855A (en) Thin film forming device
JP3870014B2 (en) Vacuum processing apparatus and vacuum processing method
JP2865971B2 (en) Thin film manufacturing equipment
JP3754855B2 (en) Substrate processing apparatus and substrate processing method
JP2008032618A (en) Noncontact type surface resistance measuring device for conductive film, and manufacturing method of conductive film using same
JP2003213430A (en) Heater for substrate of film depositing apparatus
JP2801498B2 (en) Thin film manufacturing equipment
JP2002129325A (en) Apparatus and method for forming thin film
JPH0927459A (en) Processing equipment for semiconductor device
JP2002105636A (en) Sputtering method controlled by plasma emmision monitor
TWI836404B (en) Material deposition apparatus, method of depositing material on a substrate, and material deposition system
JP3080515B2 (en) Roll-to-roll type microwave plasma CVD equipment
JPS5922931A (en) Method for preparing thin film and apparatus therefor
JPH09181007A (en) Manufacture of semiconductor chip
JPS5922932A (en) Preparation of thin film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050517

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050617

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees