JPS5922932A - Preparation of thin film - Google Patents

Preparation of thin film

Info

Publication number
JPS5922932A
JPS5922932A JP13215782A JP13215782A JPS5922932A JP S5922932 A JPS5922932 A JP S5922932A JP 13215782 A JP13215782 A JP 13215782A JP 13215782 A JP13215782 A JP 13215782A JP S5922932 A JPS5922932 A JP S5922932A
Authority
JP
Japan
Prior art keywords
flexible film
film
thin film
flexible
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13215782A
Other languages
Japanese (ja)
Inventor
Toshio Motoki
元木 敏雄
Akio Kusuhara
楠原 章男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP13215782A priority Critical patent/JPS5922932A/en
Publication of JPS5922932A publication Critical patent/JPS5922932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a thin film of high quality having a flexible film as a substrate at a low cost, by adhering a flexible film closely to a beltlike member, winding up the resultant laminated member, forming a thin film on the surface of the flexible film under reduced pressure while transferring them. CONSTITUTION:A flexible film 1 is closely adhered to a beltlike member 2 consisting of a metal or plastic, etc., and the resultant laminated member 3 is then wound into a roll 4. The laminated member 3 is then withdrawn and introduced into a vessel 7 having a means for forming a thin film, e.g. the sputtering or vapor depositing method, etc., and a material, e.g. Co, Fe or Si, capable of exhibiting the function is deposited on one side of the flexible film 1 while sliding the laminated member 3 on a hot plate 9 at a controlled temperature under reduced pressure to form the aimed thin film. EFFECT:The temperature control of the film can be carried out with certainty without applying an excess tension to the flexible film 1.

Description

【発明の詳細な説明】 本発明はスパッタリング法、X9蒸着法、イオンプレー
ディング法等の如く真空下での薄膜製造に関し、更に詳
しくは連続的に移動するプラスチックフィルム等の可撓
性フィルム上K 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of thin films under vacuum such as sputtering, X9 evaporation, ion plating, etc. .

Co * Fe + N1等の磁性薄膜を形成して磁気
記録媒体を製造したり、St等の蒸着薄膜を形成して太
陽電池を製造したり、あるいはInへ等の透明導電性薄
膜を形成して透明導電性フィルムを製造する等に適した
薄膜の製造方法岳俄妻妻に関する。 5真空下で上側の
如き特定の機能を有する薄膜換言すれば機能性薄膜を作
成する技術は近年半導体産業でめざましい進歩をとげ、
装置も大型化会高速化しているが、それらの技術はシリ
コン板、ガラス板あるいはステンレス鋼板の如き高い剛
性をもった基板でかつ基板寸法が比較的小さい分野に限
られたものである。安価にかつ大忙に機能性薄膜を提供
しうる基板としてプラスチックフィルムが注目されてい
るが、この様なフィルムは平面剛性が低い、即ち可撓性
があり、上述の如き剛性の高い、即ち硬質基板の薄膜作
成技術をそのまへ適用することは以下に述べる様に種々
の問題を生じる。
Magnetic thin films such as Co * Fe + N1 are formed to manufacture magnetic recording media, vapor deposited thin films such as St are formed to manufacture solar cells, or transparent conductive thin films such as In are formed. This invention relates to a method for producing a thin film suitable for producing transparent conductive films, etc. 5 Thin films with specific functions such as the upper side under vacuum The technology for creating functional thin films, in other words, has made remarkable progress in the semiconductor industry in recent years.
Devices are also becoming larger and faster, but these techniques are limited to applications where substrates have high rigidity, such as silicon plates, glass plates, or stainless steel plates, and the substrate dimensions are relatively small. Plastic films are attracting attention as substrates that can be used to provide functional thin films at low cost, but such films have low planar rigidity, that is, they are flexible, and cannot be used as substrates with high rigidity, that is, hard substrates, as described above. Applying the thin film production technique of 2008 directly causes various problems as described below.

まず第1K硬質基板忙於ては一般に基板寸法が小さい為
基板の移動には基板をそれとは別の搬送手段に取りつけ
た状態で行なわれ、基板Kかかる荷重は実質的に零でか
つ別途の搬送手段を用いるため移動も間歇的な場合が多
い。ところが可撓性フィルムを基板とする場合にはフィ
ルムそのもσ)が搬送手段となり必然的妊フィルム自体
に張力を付与する方法がとられるのが通常であり、更に
は自gKよる6隆力がフィルレム自体VC発生する。張
力を付与しオぼると可撓性フィルムには皺が発生し、ま
たあまり、に張力が低すぎると可撓性フィルムを支持す
る部材との密着性が悪くなり後述の温間ムラの問題等が
発生する、 ぎン またフィルムの弾性車は一般的に低く膜形成際すなわち
機能性薄の構成素材換言すれば機能発揮素材を堆積させ
る際の張力を大きくとると、該素材に結果的忙圧縮応力
を付与することとなり、機能発揮素材の機能を有効に発
揮させ得ない場合も多々ある。
First, in the case of the 1st K hard substrate, since the substrate size is generally small, the substrate is moved with the substrate attached to a separate conveyance means, and the load applied to the substrate K is virtually zero, and the substrate is moved by a separate conveyance means. Movement is often intermittent due to the use of However, when a flexible film is used as a substrate, the film itself (σ) serves as a conveying means, and a method is usually adopted in which tension is applied to the film itself, and furthermore, the 6 ridges due to self-gK are Fillem itself generates VC. If the tension is applied too much, wrinkles will appear in the flexible film, and if the tension is too low, the adhesion of the flexible film to the supporting member will deteriorate, leading to problems such as warm unevenness, which will be discussed later. However, the elasticity of the film is generally low, and if a large tension is applied during film formation, in other words, when depositing a functional thin material, the material will be compressed as a result. There are many cases in which stress is applied and the function of the functional material cannot be effectively demonstrated.

第2に可撓性フィルムは一般的に耐熱性が低くかつ熱伝
導性も悪いため、支持板からの熱伝導による加熱・冷却
の不均一が増巾されて可撓性フィルムの温度分布は不均
一になりやすく、更に耐熱性の欠如から高温での強度が
極端に低下し局所的な幅度ムラがあれば簡単に可撓性フ
ィルムの溶融・熱収縮の問題が生じる。硬質基板に於て
はかNる問題は全くなく、可撓1生フィルムを基板とす
る薄膜形成技術に特有の問題である。
Second, flexible films generally have low heat resistance and poor thermal conductivity, so uneven heating and cooling due to heat conduction from the support plate is exacerbated, resulting in uneven temperature distribution of the flexible film. It tends to become uniform, and furthermore, the strength at high temperatures is extremely reduced due to lack of heat resistance, and local unevenness in width easily causes problems of melting and heat shrinkage of the flexible film. There is no such problem with hard substrates, and this is a problem specific to thin film forming techniques using flexible raw films as substrates.

第3に可撓性フィルムは一般に数μm〜数100μmと
非常に薄く、フィルムを支える円筒状支持体あるいけ平
面状支持体の有する表面凹凸あるいはその表面に付着す
る異物フィルム面yc直接転写され異常発生の原因とな
りやすく、特に可撓性フィルムと支持板が密層して相対
速度が無い場合に顕著である。
Thirdly, flexible films are generally very thin, ranging from several μm to several 100 μm, and abnormalities may be caused by the surface irregularities of the cylindrical support or planar support that supports the film, or by direct transfer of foreign matter adhering to the surface of the film. This is likely to occur, especially when the flexible film and support plate are closely layered and there is no relative speed.

史に可撓性フィルムを基板に用いる工業的利点はその搬
送の連続性、基板の薄さによる面積当りの軽策性・低容
積性さらUは大面積化拳長尺化の容易さによるJt嵌性
にあるが、これを裏返せばフィルムへの微かの汚染も大
きな歩留り低TVCつながり、機能発揮素材堆積時のみ
ならずその前後産おける汚染防止に多大の注意を要する
こととなる。
Historically, the industrial advantages of using a flexible film as a substrate include the continuity of its conveyance, the thinness of the substrate, which makes it easy to handle per area, and the volume is low. The problem lies in the fit, but even the slightest contamination of the film can lead to a large yield and low TVC, and great care must be taken to prevent contamination not only during the deposition of the functional material but also before and after the deposition.

以上の点を考慮し【可撓性フィルム上に機能性薄膜を形
成する手段として、従来より円筒形支持体上に可撓性フ
ィルムを券きつけて、円筒形支持体と可撓性フィルムを
密着固定し相対釣上りを発生させない方法がとられ、蒸
着・マグネトロンスパッタ等では一応の成果を収めてい
る。然しなから円筒形支持体を採用する場合円筒形支持
体をフィルム走行速? rc一致させて回転させる必要
性から島す密な回転支承部材あるいは高級な軸シール部
材を要し、必然的に装置は大型化・複雑化し高価なもの
となってくる。更にフィルムと円筒形支持体が密層し相
対上りが無いため1機能発揮素材堆積部に局部的熱収縮
が発生してもフィルムと円筒形支持体表面は高真空下で
あるためかなりの粘着性があり全体として収縮出来ず結
果的に過大な張力下で堆積させていることとなる欠点が
あり、微妙な張力制御を要する際には不適である。又一
般的に円筒形支持体σ)はy全周VCJfiってフィル
ムが巻きつけられており、円筒形支持体に入るあるいは
出る時のフィルへの張力は堆積部位のフィルムの張力と
相当異なっている。ちなみに円筒形支持体表面とフィル
ムの静摩擦係数をμ、接触角θ(rad) +  人出
の張力を夫々T+ 、 Tt (Tl> Tt )とす
れば、局部的な熱収縮あるいは粘着が無い時T% =T
、 e ”θと表わされ、/7=0.2.  θ= w
 〜1,5rT+ / Tt = 1゜9〜2.6と相
当大きな張力変化が円筒形支持体の同上で起っている。
Considering the above points, [as a means of forming a functional thin film on a flexible film, a flexible film is traditionally stamped on a cylindrical support and the cylindrical support and flexible film are closely attached. A method of fixing the material so as not to cause a relative rise has been used, and has achieved some success in vapor deposition, magnetron sputtering, etc. However, when using a cylindrical support, what is the film running speed of the cylindrical support? Because of the need to rotate the rc in unison, a dense rotary support member or a high-grade shaft seal member is required, and the device inevitably becomes larger, more complicated, and more expensive. Furthermore, because the film and cylindrical support are closely layered and there is no relative rise, even if local heat shrinkage occurs in the area where the material exhibiting one function is deposited, the film and cylindrical support surfaces are under high vacuum, so there is considerable adhesion. However, it has the disadvantage that it cannot be shrunk as a whole and is deposited under excessive tension, making it unsuitable when delicate tension control is required. Generally, a cylindrical support σ) is wrapped with a film around the entire circumference, and the tension on the film when entering or exiting the cylindrical support is considerably different from the tension on the film at the deposition site. There is. By the way, if the coefficient of static friction between the surface of the cylindrical support and the film is μ, the contact angle θ (rad) + the tension of the crowd is T+ and Tt (Tl>Tt), respectively, then T when there is no local thermal contraction or adhesion. %=T
, e "θ, /7=0.2. θ= w
A fairly large tension change of ~1,5rT+/Tt=1°9-2.6 occurs on the same side of the cylindrical support.

局部的な熱収縮があり粘着により相対的にフィルムが移
動しない場合もでけ熱収縮による張力なT、とすれば、
TI=T6e 〃0’ 、 T2 =To6’θ2(θ
1+θ、=0)と方向が逆の張力変化が見られる場合す
らある。
Even when there is local heat shrinkage and the film does not move relative to each other due to adhesion, the tension caused by heat shrinkage is T.
TI=T6e〃0', T2=To6'θ2(θ
1+θ,=0), there are even cases where a tension change in the opposite direction is observed.

蒸着・マグネトロンスパッタ等では精密な張力制御を要
せず又1幾能性薄膜を可撓性フィルム上に堆積させる温
度も一般的に可撓性フィルムの融点あるいは軟化点より
低いので、上述の如き円筒形支持板の有する欠点が顕在
化していないが、より温度の機能あるいは形成速度の高
速化・安定化が要求される場合、可撓性フィルム上に機
能発揮素材を堆積させる際に最も重要なことは、 (1)  可撓性フィルムに張力、熱収縮等による皺を
発生させないこと (21フィルムに@来する原子の運動エネルギー。
Vapor deposition, magnetron sputtering, etc. do not require precise tension control, and the temperature at which a geometric thin film is deposited on a flexible film is generally lower than the melting point or softening point of the flexible film, so Although the drawbacks of the cylindrical support plate have not become apparent, when higher temperature function or faster and more stable formation speed is required, the most important method when depositing a functional material on a flexible film is (1) The flexible film should not wrinkle due to tension, thermal contraction, etc. (21 Kinetic energy of atoms coming to the film).

プラズマの輻射エネルギを克服して可撓性フィルムの温
度が目標とする範囲内〈制御され局部的な熱収縮、溶融
あるいは破断が生じないこと、 (3)  機能発揮素材堆積後可撓性フィルムおよび表
面上の堆積物に過大な残留歪を付与せず、もって機能発
揮素材の機能を有効に発揮させること であり、本発明者らは前述の如き円筒形支持体の欠点を
も考慮し、接触角に由来する張力変化を小さくすること
により、フィルムに過大な張力を付与することなく又フ
ィルムの温度制御が確実に実施できる方策を鋭意検討し
た結果本発明に到達したもので、本発明は、真空下で連
続的に移動する可撓性フィルム上に機能性薄膜を形成さ
せるに際し、可撓性フィルムと帯状部材が交互に層状に
巻き上げられたロールより可撓性フィルムと帯状部材と
を同時に巻き出し、前記可撓性フィルムと前記帯状部材
とを実質的に密着させて同一速度で走行させつつ、膜形
成することを特徴とするもので、その目的とする所は安
価に高品質な可撓性フィルムを基板とする機能性薄膜を
提供することにある。
Overcoming the radiant energy of the plasma, the temperature of the flexible film is within the target range (controlled and no local thermal shrinkage, melting, or breakage occurs); (3) The flexible film and the The purpose of this invention is to prevent deposits on the surface from imparting excessive residual strain, thereby allowing the functional material to effectively perform its functions. The present invention was arrived at as a result of intensive research into ways to reliably control the temperature of the film without imparting excessive tension to the film by reducing tension changes originating from the corners. When forming a functional thin film on a flexible film that moves continuously under vacuum, the flexible film and the band-like member are simultaneously wound using a roll in which the flexible film and the band-like member are wound up in alternating layers. The method is characterized in that the flexible film and the band-shaped member are brought into substantially close contact with each other and are run at the same speed to form a film. The purpose of the present invention is to provide a functional thin film using a functional film as a substrate.

可撓性フィルムと帯状部材が実質的に密着した状態とは
、可撓性フィルムと帯状部材との間に有効な熱移動が実
現できるよう状態を意味し、より具体的には次の如き構
成が喝げられる。
The state in which the flexible film and the strip member are in substantially close contact with each other means a state in which effective heat transfer can be achieved between the flexible film and the strip member, and more specifically, the following configuration is used. is cheered.

(11可撓性フィルムと帯状部材とが粘着剤、接着剤等
により粘着又は接着されて積層状態となっている。
(11 The flexible film and the band-shaped member are adhered or adhered to each other with an adhesive, an adhesive, etc., and are in a laminated state.

(21可撓性フィルムと帯状部材とが抑圧ローラ等で押
圧され、互いに密着して積層状態になっている。
(21 The flexible film and the band-shaped member are pressed by a pressing roller or the like, and are brought into close contact with each other in a laminated state.

(3)  可撓性フィルムと帯状部材との間忙働らく面
圧力(kQf/rrl)がo、o x kyf/m’以
上となっている。
(3) The surface pressure (kQf/rrl) between the flexible film and the strip member is equal to or greater than o, ox kyf/m'.

場合等である。特1/C@3番目の例は、可撓性フィル
ムの厚さが非常圧小さい時、帯状部材の上に可撓性フィ
ルムが載せられた場合可撓性フィルムの自重のみでは十
分な面圧力が得られず、又鉛直下方に向って帯状部材、
可撓性フィルムの+[に配置された時各部材が自重で下
方に垂れ下がり回帰性フィルムの厚さが大きい程垂れ下
がり縫が大きくなるので、かよる場合には別途面圧付与
手段を設置する必要がある。該面圧付与手段の具体例は
後述する。
Cases etc. Special 1/C@3rd example is that when the thickness of the flexible film is extremely small, when the flexible film is placed on the strip member, the surface pressure of the flexible film alone is insufficient. was not obtained, and the band-shaped member vertically downward,
When the flexible film is placed in the + There is. A specific example of the surface pressure applying means will be described later.

本発明に使用される帯状部材は、可撓性フィルムの巾と
同じ又はそれ以上の巾を有し、材質としては金属、プラ
スキック、ゴム(強化繊維入を含む)が好適で、厚みは
可撓性フィルム取扱い上支障をきたさない程度であれば
目的に応じ1モ意に選択し5るが、好i4には金属の場
合10〜300μ票、プラスチックの場合!θ〜100
0μm、ゴムの場合0.5〜2nである。又帯状部材は
単一の材質のみばかりでなく、上述の素材の組合せをと
ってもよいことは勿論であり、この場合容素材の厚みは
上述の好適値よりTIK薄くするのがよい。
The strip member used in the present invention has a width equal to or greater than the width of the flexible film, and is preferably made of metal, plastic kick, or rubber (including reinforcing fibers), and has a thickness of any size. The flexible film can be selected depending on the purpose as long as it does not cause any trouble in handling, but the preferred range is 10 to 300μ for metal, and 10 to 300μ for plastic. θ~100
In the case of rubber, it is 0.5 to 2n. It goes without saying that the band-shaped member may be made of not only a single material, but also a combination of the above-mentioned materials, and in this case, the thickness of the band-like material is preferably TIK thinner than the above-mentioned preferred value.

以下本発明を図面を参考にしながら更に詳しく説明する
が、図面は本発明の構成をより具体的に示すにすぎず本
発明を限定するものではない。
The present invention will be described in more detail below with reference to the drawings, but the drawings merely show the configuration of the invention more specifically and do not limit the invention.

第1図は対向ターゲット・スパッタ法により可撓性フィ
ルム上に機能性薄膜を形成するに本発明を用いた装置の
概略を示し、第2図は第1図の機能発揮素材堆積部を可
撓性フィルム及び帯状部材の厚手方向に拡大した模式図
である。
Fig. 1 shows an outline of an apparatus using the present invention for forming a functional thin film on a flexible film by facing target sputtering method, and Fig. 2 shows an outline of an apparatus using the present invention to form a functional thin film on a flexible film by the facing target sputtering method. FIG. 2 is a schematic diagram enlarged in the thickness direction of a plastic film and a strip-shaped member.

第2図に示すように、可撓性フィルム1及び帯状部材2
は押圧ローラにより押圧されて互いに密着状態となった
積層部材3として、ボビンに巻きとられロール4に形成
され巻出し室5に設置される6第1図において積層部材
3は巻出し室5から送り出しロール6を経て、容器7内
に設置されてその表面8が一定温度圧制御されティる熱
板9の上をすべりながら移動し、巻取リロール10を静
て巻取り室11に置かれた巻取りポビン32Vc巻取ら
れる。容器70巻出し室5及び巻取り室11それぞれに
排気系13゜14および15が接続され、これにより積
層部材3が通過する部分全体を高真空に維持しりる。
As shown in FIG. 2, a flexible film 1 and a strip member 2
The laminated members 3 are pressed by a pressure roller and brought into close contact with each other, and then wound onto a bobbin to form a roll 4 and installed in an unwinding chamber 5. In FIG. After passing through the delivery roll 6, the roll was placed in a container 7 and slid on a hot plate 9 whose surface 8 was controlled at a constant temperature and pressure, and the take-up re-roll 10 was quietly placed in the take-up chamber 11. Winding pobbin 32Vc is wound. Exhaust systems 13, 14 and 15 are connected to the unwinding chamber 5 and winding chamber 11 of the container 70, respectively, thereby maintaining the entire area through which the laminated member 3 passes under a high vacuum.

容器7内では可撓性フィルム1@に相対してターゲット
16a、16bが設置され、該ターゲラ)16a、16
bicは磁石(図示せず)が設けられ、ターゲット間に
磁場が発生する構造の対向ターゲット式スパッタ装置と
なされている。従って。
In the container 7, targets 16a, 16b are installed facing the flexible film 1@, and the targets 16a, 16
The BIC is a facing target type sputtering device that is equipped with a magnet (not shown) and has a structure in which a magnetic field is generated between the targets. Therefore.

「応用物理J@4s巻第6号P557〜pli64゜特
開昭57−100627号公報等で公知のよ5に容器7
に通じるガス導入手段17な介して雰囲気ガス(例えば
アルゴンガス)が容器7内に導入され、前記ターゲラ)
16a、I&bと容器7間に過当な電源18が接続され
ると、ターゲット1fla、  16b間にグロー放電
が生じ、雰囲気ガスがt#状態となりプラズマとなる。
"Applied Physics J @ 4s Vol. 6 P557-pli64゜ 5. Container 7.
Atmospheric gas (e.g. argon gas) is introduced into the container 7 through the gas introduction means 17 leading to the
If an excessive power source 18 is connected between the targets 1fla and 16b and the container 7, a glow discharge occurs between the targets 1fla and 16b, and the atmospheric gas enters the t# state and becomes plasma.

この際イオン化した雰囲気ガスがターゲラ)K衝突し、
ターゲット表面にある原子がはじき出され(スパッタ現
象)、スパッタされた原子はある運動エネルギをもって
側方を移動している可撓性フィルムlK到達しフィルム
上に順次堆積して、薄膜な形成する。積層部材3はボビ
ン4に連結する駆動@NK設けられたトルク調整装置(
図示せず)Kより張力を制御されながら、巻取りボビン
12に連結する駆動装置に設けられた速度調整装置(図
示せず)Kより一定速度で巻取りボビンj21c順次巻
増られる。
At this time, the ionized atmospheric gas collides with Targera),
Atoms on the target surface are ejected (sputtering phenomenon), and the sputtered atoms reach the flexible film IK moving laterally with a certain kinetic energy and are sequentially deposited on the film to form a thin film. The laminated member 3 is connected to the bobbin 4 with a torque adjustment device (
The winding bobbin j21c is sequentially wound at a constant speed by a speed adjusting device (not shown) K provided in a drive device connected to the winding bobbin 12 while the tension is controlled by a winding bobbin j21c (not shown).

熱板9は加熱冷却装ff119と導管20.21を介し
て連通し、表面8の温度が一定となる様に制御されてい
る。加熱のみの場合は熱板9内に電気ヒータを埋めこむ
と簡便である。
The hot plate 9 communicates with a heating/cooling device ff119 via conduits 20.21, and is controlled so that the temperature of the surface 8 is constant. In the case of only heating, it is convenient to embed an electric heater in the hot plate 9.

ところで積層部材3.最終的には可撓性フィルム1の温
度は、帯状部材2と熱板9の表面8との微視的な接触面
を介して行なわれる熱伝達量で左右され、この接触面の
大きさ即ち接触面積は接触面での面圧力0表面粗度およ
び表面硬度(一般的には弾性率で代表できる)で決定さ
れるが、特に血圧力の影響が大きい。従って第2図の如
く可撓性フィルム1が熱板9の上方に位Vする、即ち機
能発揮素材σ)堆積方向が上向きである場合と、第3図
の如く可撓性フィルム1が熱板9の下方に位置する、即
ち機能発揮素材の堆積方向が下向きである場合とでは積
層部材3の自重の血圧力に及ぼす方向が逆であり、第2
図の場合熱板9の表面8が平面であるとき積層部材3に
作用する張力σ)大鎗さt、でか瓦わりなく、帯状部材
2と表面80面圧力は最低眼内重分保証されるが、第3
図の場合積層部材3の自重により熱板90表面8から帯
状部材2が離れる可能性が生じ、このため熱板90表面
8の状態が平面ではいくら張力を上げても表面8と帯状
部材2の密着性は保証されず、密着性を保証するよめに
は図に示されるように熱板90衷面8に曲率をもたせる
必要があり、その曲率半径Rは次式で求められるRm以
下とする必要がある。
By the way, the laminated member 3. Ultimately, the temperature of the flexible film 1 depends on the amount of heat transfer that takes place through the microscopic contact surface between the strip member 2 and the surface 8 of the hot plate 9, and the size of this contact surface, i.e. The contact area is determined by the zero surface pressure on the contact surface, surface roughness and surface hardness (generally represented by elastic modulus), and is particularly influenced by blood pressure. Therefore, as shown in FIG. 2, the flexible film 1 is positioned above the hot plate 9, that is, the functional material σ) is deposited in the upward direction, and as shown in FIG. 9, that is, when the stacking direction of the functional material is downward, the direction of the effect of the own weight of the laminated member 3 on the blood pressure force is opposite, and the second
In the case shown in the figure, when the surface 8 of the hot plate 9 is flat, the tension σ) acting on the laminated member 3 is σ), regardless of its size, the surface pressure between the strip member 2 and the surface 80 is guaranteed to be the lowest intraocular weight. But the third
In the case shown in the figure, there is a possibility that the strip member 2 will separate from the surface 8 of the hot plate 90 due to the weight of the laminated member 3. Therefore, if the surface 8 of the hot plate 90 is flat, no matter how much tension is raised, the distance between the surface 8 and the strip member 2 will increase. Adhesion is not guaranteed, and in order to guarantee adhesion, it is necessary to give the inner surface 8 of the hot plate 90 a curvature as shown in the figure, and the radius of curvature R needs to be less than or equal to Rm determined by the following formula. There is.

Rm = T6 / r こへに、Rmは熱板9の最大許容曲率半径(cm)rは
可撓性フィルムlの上に機能発揮素材が堆積した状態で
の積層部材30単位面積当りの重t(kgf/crI)
、Toは積層部材3の熱板9上での単位中当りの最低張
力(ktif /ext )である。
Rm = T6 / r Here, Rm is the maximum allowable radius of curvature (cm) of the hot plate 9, and r is the weight t per unit area of the laminated member 30 when the functional material is deposited on the flexible film l. (kgf/crI)
, To is the minimum tension (ktif/ext) of the laminated member 3 on the hot plate 9 per unit.

第3図の如く下向きの堆積方向は可撓性フィルムl上の
汚染が少なくより好ましい形態であるが、上述のRmf
fけ特に注意を要する。
The downward deposition direction as shown in FIG. 3 is a more preferable form with less contamination on the flexible film l, but
Particular attention is required.

本発明は可撓性フィルム1と帯状部材2との間に相対す
べりが無(かつ互いに密着状態とする構成をとっている
ため、以下に述べる種々の利点を有する。
The present invention has a structure in which there is no relative slip between the flexible film 1 and the strip-like member 2 (and they are in close contact with each other), so it has various advantages described below.

まず第1&C帯状部材2のみが熱板9等の固定部材に接
触し可撓性フィルムl自体は何ら固定部材と接触するこ
とが無いため、当然のことなから可撓性フィルム]の裏
gI4(即ち帯状部材2との接触面)における引っかき
疵、筋等の所謂スクラッチを皆無にしうろことにあり、
一連の処理が終った後帯状部材2を取り除いて可撓性フ
ィルムlを巻き上げて置くだけでスクラッチの無い商品
価値の高い薄膜材料が得られる。史に、機能発揮素材堆
積@に再度帯状部材2を密着させて裏側部分にも機能発
揮素材を堆積させることにより可撓性フィルムの両面に
スクラッチの無い高付加価値の機能性薄膜が容易に得ら
れる。又熱板9等の固定部材に対して相対速度を有して
いるので、熱板90表面異常あるいは見物が可撓性フィ
ルムIK転写されない利点がある。
First of all, since only the first & C strip member 2 contacts the fixing member such as the hot plate 9 and the flexible film l itself does not come into contact with any fixing member, it is natural that the back gI4 of the flexible film In other words, it is possible to completely eliminate so-called scratches such as scratches and streaks on the contact surface with the strip member 2.
After a series of treatments are completed, simply by removing the strip member 2 and rolling up the flexible film 1, a scratch-free thin film material with high commercial value can be obtained. Historically, it has been possible to easily obtain a high value-added functional thin film with no scratches on both sides of the flexible film by bringing the strip member 2 into close contact with the functional material deposited again and depositing the functional material on the back side. It will be done. Further, since it has a relative speed with respect to a fixed member such as the hot plate 9, there is an advantage that abnormalities or sights on the surface of the hot plate 90 are not transferred to the flexible film IK.

第2に可撓性フィルム1の材質・性状am係fx <帯
状部材20利質あるいは表面粗度を適宜選択でき熱板9
等の固定部材上をすべりやすく摩擦力を小さくでき、積
層部材3の処理中での張力変化を小さくできる。更に帯
状部材2の厚みを任意にとり5るので、帯状部材2の厚
みを大きくとれば可撓性フィルム1の負担する張力を小
さくし得る、あるいは可撓性フィルム1の張力を同じと
する場合巻取り張力を大きくとり得て装置の制御精度な
あまくしうる利点がある。
Second, the material/property of the flexible film 1 (am) fx <the strip member 20, the quality or surface roughness of which can be selected as appropriate;
It is possible to easily slide on fixed members such as the like, thereby reducing frictional force, and reducing changes in tension during processing of the laminated member 3. Furthermore, since the thickness of the band-shaped member 2 is arbitrarily set, the tension borne by the flexible film 1 can be reduced by increasing the thickness of the band-shaped member 2, or if the tension of the flexible film 1 is the same, the winding It has the advantage of being able to take a large tension and improving the control accuracy of the device.

第3に帯状部材2に金属を用いた場合、金属の熱伝導性
が良いため、熱板9等からの熱移動限の増大が企れると
とも忙帯状部材2内での熱勾配が小さくなり結果的に可
撓性フィルム1の温度均一性も向上する。
Thirdly, when metal is used for the band member 2, the thermal conductivity of the metal is good, so the heat transfer limit from the hot plate 9 etc. is increased, and the thermal gradient within the band member 2 is reduced. As a result, the temperature uniformity of the flexible film 1 is also improved.

更に円筒形支持体の場合の様に、機能発揮素利堆積部が
回転しないので≠置自体が安価に?A達しうるのみ1.
rらず、帯状部材2忙ある桿変の剛性をもたせて松くこ
とにより熱板9にたとえ異物付着あるいは表面凹凸があ
ってもこれらが可撓性フィルムIIl?:転写されない
利点がある。
Furthermore, unlike in the case of a cylindrical support, the function-producing element stack does not rotate, making the installation itself inexpensive. A can only be achieved 1.
However, by making the strip member 2 stiff and rigid, even if foreign matter adheres to the hot plate 9 or the surface is uneven, these will remain flexible films. : It has the advantage of not being transferred.

第4図は帯状部開側より輻射による冷却あるいは加熱を
する場合の実施例で、真空に保たれる容器0巻出し室1
巻取り室、排気系、プラズマ発生用電源等第1図と同じ
部分は図示されていない。
Figure 4 shows an example in which cooling or heating is performed by radiation from the open side of the strip, in which the container 0 is kept in a vacuum, the unwinding chamber 1 is
The same parts as in FIG. 1, such as the winding chamber, exhaust system, and plasma generation power source, are not shown.

図において積層部材3は送出ロール40及び巻取りロー
ル43により空間的位置決めがなされ、冷却板41と距
離dl+加熱手段42a 、  42bと距離d、をも
って走行している。機能発揮素材は対向y−ゲット44
からスパッタされ積層部材80可惰性フイルム1上に堆
積するが、可撓性フィルムlから帯状部材2側への熱移
動量は帯状部材2と冷却板41との距離d、及び冷却板
41の温度で決まり、従って該熱移Jt′Af可撓性フ
ィルム1への入熱量とバランスさせるよう上述の値な適
宜4択することにより可撓性フィルム1の温度が制御さ
れる。機能発揮素材堆積後に設けられた加熱手段42a
 、  42b及び距1l11 dtで構成される加熱
1へは機能性薄膜の付いた可撓性フィルム1の熱処理の
ためにある。か〜る場合熱の移動は帯状部材2の放射率
あるいは吸収率により大きく左右されるが、本発明にか
へれば帯状部材の表面加工あるいは材質を望ましい放射
率あるいは吸収率をもつよ5に選択出来る利点をもつ。
In the figure, the laminated member 3 is spatially positioned by a delivery roll 40 and a take-up roll 43, and is traveling at a distance dl from the cooling plate 41 + a distance d from the heating means 42a and 42b. Functional material is opposing Y-Get 44
The laminated member 80 is sputtered and deposited on the flexible film 1, but the amount of heat transferred from the flexible film l to the strip member 2 side depends on the distance d between the strip member 2 and the cooling plate 41, and the temperature of the cooling plate 41. Therefore, the temperature of the flexible film 1 is controlled by appropriately selecting the above-mentioned values so as to balance the heat transfer Jt'Af with the amount of heat input to the flexible film 1. Heating means 42a provided after the functional material is deposited
, 42b and the distance 1l11 dt are provided for heat treatment of the flexible film 1 with the functional thin film. In such cases, heat transfer is greatly influenced by the emissivity or absorption rate of the strip member 2, but according to the present invention, the surface treatment or material of the strip member 2 can be adjusted to have a desired emissivity or absorption rate. It has the advantage of being selective.

帯状部材2が金属の場合は熱伝導率がよいため可撓性フ
ィルムlの温度の均一性が更によくなるとともに、巻き
取り張力を上げ5る利点もある。
When the band-shaped member 2 is made of metal, it has good thermal conductivity, which improves the uniformity of the temperature of the flexible film 1, and also has the advantage of increasing the winding tension.

以上の例では、可撓性フィルムlと帯状部材2が一体的
に巻き取られる構成が示され【いるが、帯状部材2を別
途巻きとった形にし、機能性薄膜の形成された可撓性フ
ィルム1のみを巻きとる方法もとり5る。又g1図では
巻出し室。
In the above example, a configuration is shown in which the flexible film l and the strip member 2 are wound together. A method of winding only film 1 is also available. Also, in figure g1, it is the unwinding chamber.

巻取り室ともに真空下に保たれた構成をとっているが、
大気・真空間の傭断に公知の手段を用いれば巻出し室9
巻取り室を大気下においてもよい事は勿論である。更に
薄膜形成手段として対向ターゲットスパッタを例に説明
したが、他のスパッタ法、1XX薫蒸法、イオンイレー
テイング法更には他の機能発揮素材堆積あるいはエツチ
ング、手段に適用しうろことは勿論であり、これらな組
合せた薄膜形成手段にも適用出来る。
Although both the winding chambers are kept under vacuum,
If known means are used to disconnect between the atmosphere and vacuum, the unwinding chamber 9
Of course, the winding chamber may be placed in the atmosphere. Furthermore, while the thin film forming method has been explained using opposed target sputtering as an example, it is of course possible to apply it to other sputtering methods, 1XX fumigation method, ion erasure method, and other methods of depositing or etching a functional material. , it can also be applied to thin film forming means combining these methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を対向ターゲットスパッタ法に用いた装
置の実施例の全体構成図、第2.3図は本発明に係る可
撓性フィルム、帯状部材の配置例σl1(5i明図、第
4図は本発明を用いた輻射による加熱、冷却を行な5機
能性薄膜形成装置の要部概略図を示す。 J:可撓性フィルム、  2:帯状部材。 4:ロール、  9:熱 板 16g 、 16b 、 44a 、 44b :ター
ゲット21図 才Z図
Fig. 1 is an overall configuration diagram of an embodiment of an apparatus using the present invention for facing target sputtering, and Figs. Figure 4 shows a schematic diagram of the main parts of a device for forming a five-functional thin film using radiation heating and cooling using the present invention. J: Flexible film, 2: Strip-like member. 4: Roll, 9: Hot plate. 16g, 16b, 44a, 44b: Target 21 figure Z figure

Claims (1)

【特許請求の範囲】[Claims] (1)  真空下で連続的に移動する可撓性フィルム上
に薄膜を形成させるに際し、可撓性フィルムと帯状部材
が交互に層状に巻き上げられたロールより可撓性フィル
ムと帯状部材とを同時に巻き出し、前記可撓性フィルム
と前記帯状部材とを実質的に密着させて同一速度で走行
させつつ、膜形成することを特命とする機能性薄膜の製
造方法。
(1) When forming a thin film on a flexible film that moves continuously under vacuum, the flexible film and the strip-shaped member are simultaneously rolled up by a roll in which the flexible film and the strip-shaped member are wound up in alternating layers. A method for producing a functional thin film, the special mission of which is to unwind the flexible film and the band-shaped member and run them at the same speed while bringing them into substantially close contact with each other to form the film.
JP13215782A 1982-07-30 1982-07-30 Preparation of thin film Pending JPS5922932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13215782A JPS5922932A (en) 1982-07-30 1982-07-30 Preparation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13215782A JPS5922932A (en) 1982-07-30 1982-07-30 Preparation of thin film

Publications (1)

Publication Number Publication Date
JPS5922932A true JPS5922932A (en) 1984-02-06

Family

ID=15074692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13215782A Pending JPS5922932A (en) 1982-07-30 1982-07-30 Preparation of thin film

Country Status (1)

Country Link
JP (1) JPS5922932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336029A (en) * 2005-05-31 2006-12-14 Fts Corporation:Kk Continuous sputtering apparatus and continuous sputtering method
KR20180033595A (en) * 2012-09-14 2018-04-03 가부시키가이샤 니콘 Substrate processing device and device manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336029A (en) * 2005-05-31 2006-12-14 Fts Corporation:Kk Continuous sputtering apparatus and continuous sputtering method
KR20180033595A (en) * 2012-09-14 2018-04-03 가부시키가이샤 니콘 Substrate processing device and device manufacturing method

Similar Documents

Publication Publication Date Title
JP7117332B2 (en) Deposition apparatus for coating flexible substrates and method of coating flexible substrates
US5181556A (en) System for substrate cooling in an evacuated environment
JP6360882B2 (en) Deposition platform for flexible substrates and method of operation thereof
US8597765B2 (en) Functional film
EP2113310A1 (en) Film depositing apparatus
EP2423351A1 (en) Apparatus for forming thin film and method for forming thin film
JPS5922932A (en) Preparation of thin film
JP2015520092A (en) Continuous reel-to-reel device
JPS5922931A (en) Method for preparing thin film and apparatus therefor
EP2096190A1 (en) Coating apparatus for coating a web
JP4074672B2 (en) Sputtering method
US20100236920A1 (en) Deposition apparatus with high temperature rotatable target and method of operating thereof
JPH0711170Y2 (en) Thin film forming equipment
JPS58191725A (en) Manufacture of functional thin film
JPH10130815A (en) Thin film deposition system
JPS61163272A (en) Production of thin film and device used therein
JPH01149223A (en) Device for correcting curling of magnetic recording medium
JP2004059990A (en) Film deposition apparatus
WO2010106432A2 (en) Deposition apparatus with high temperature rotatable target and method of operating thereof
JPS61278032A (en) Method and device for manufacturing magnetic recording medium
JP3365207B2 (en) Vacuum deposition equipment
JPS6192431A (en) Manufacture of magnetic recording medium
JP3361456B2 (en) Vibrating membrane for electroacoustic transducer, method and apparatus for manufacturing the same
JPS61289533A (en) Manufacture of magnetic recording medium and its device
JP2004339546A (en) Apparatus and method for vacuum treatment