JP2865971B2 - Thin film manufacturing equipment - Google Patents

Thin film manufacturing equipment

Info

Publication number
JP2865971B2
JP2865971B2 JP11463093A JP11463093A JP2865971B2 JP 2865971 B2 JP2865971 B2 JP 2865971B2 JP 11463093 A JP11463093 A JP 11463093A JP 11463093 A JP11463093 A JP 11463093A JP 2865971 B2 JP2865971 B2 JP 2865971B2
Authority
JP
Japan
Prior art keywords
thin film
film substrate
heating drum
film
flexible film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11463093A
Other languages
Japanese (ja)
Other versions
JPH06330317A (en
Inventor
健司 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP11463093A priority Critical patent/JP2865971B2/en
Publication of JPH06330317A publication Critical patent/JPH06330317A/en
Application granted granted Critical
Publication of JP2865971B2 publication Critical patent/JP2865971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空中で回転する加熱
ドラムに可撓性フィルム基板を巻きかけて搬送しつつ、
可撓性フィルム基板上に薄膜を連続して堆積する薄膜製
造装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for transporting a flexible film substrate by winding it around a heating drum rotating in a vacuum.
The present invention relates to a thin film manufacturing apparatus for continuously depositing a thin film on a flexible film substrate.

【0002】[0002]

【従来技術】真空中で回転する加熱ドラムに可撓性フィ
ルム基板を巻きかけて搬送しつつ、可撓性フィルム基板
上に薄膜を連続して堆積する薄膜製造装置は、高分子フ
ィルム上へのスパッタリング装置等ですでに産業上で広
く使用されている。
2. Description of the Related Art A thin film manufacturing apparatus for continuously depositing a thin film on a flexible film substrate while wrapping and transporting the flexible film substrate around a heating drum rotating in a vacuum is known as a thin film manufacturing apparatus. It is already widely used in industry in sputtering equipment and the like.

【0003】そうした従来のスパッタリング装置には、
可撓性フィルム基板を加熱する加熱ドラムを備えてい
る。そして基板フィルムの巻き出しから、薄膜の堆積、
フィルムの巻き取り迄の工程上で、フィルム裏面は回転
する加熱ドラムに接触するが、薄膜が堆積される被膜面
は他のローラー等に接触することが無い構造となってい
る。
[0003] Such conventional sputtering apparatuses include:
A heating drum for heating the flexible film substrate is provided. And from the unwinding of the substrate film, the deposition of the thin film,
In the process up to the winding of the film, the back surface of the film comes into contact with the rotating heating drum, but the film surface on which the thin film is deposited does not come into contact with other rollers or the like.

【0004】さらに最近は、フィルム基板上へ堆積され
る薄膜も単層膜ではなく、多層膜となり、堆積領域が複
数化している。その結果、複数の加熱ドラムを使用し、
その間をフィルムが走行する構造が取られている。
More recently, a thin film deposited on a film substrate is not a single-layer film but a multilayer film, and the number of deposition regions is increasing. As a result, using multiple heating drums,
A structure in which the film travels between them is adopted.

【0005】そうした際に、限られた空間内でフィルム
の走行方向を制御するために、加熱ドラムから引き出さ
れた可撓性フィルム基板の搬送方向を制御するタッチロ
ールを備え、タッチロールが加熱回転ドラムから引き出
されたフィルムの被膜面に接触するように設けられてい
る。
In such a case, in order to control the running direction of the film in the limited space, a touch roll for controlling the transport direction of the flexible film substrate drawn from the heating drum is provided. It is provided so as to come into contact with the coating surface of the film drawn from the drum.

【0006】[0006]

【発明が解決しようとする課題】この様な薄膜製造装置
では、被膜面に極微少な傷が発生することが多く、多層
膜の接合構造で電気的機能を発現する薄膜、例えば非晶
質シリコン太陽電池などでは短絡現象が生じ、十分な機
能を持った膜が形成できないと言う課題があった。
In such a thin film manufacturing apparatus, very small scratches often occur on the coating surface, and a thin film, such as an amorphous silicon solar cell, which exhibits an electrical function in a bonding structure of a multilayer film. In a battery or the like, there is a problem that a short circuit phenomenon occurs and a film having a sufficient function cannot be formed.

【0007】本発明はかかる課題を解決して、堆積され
た被膜表面に傷の発生のない薄膜製造装置を得ることを
目的とする。
An object of the present invention is to solve the above problems and to obtain a thin film manufacturing apparatus in which the surface of a deposited film has no scratch.

【0008】[0008]

【課題を解決するための手段】本発明の薄膜製造装置
は、可撓性フィルム基板を加熱する加熱ドラムと、加熱
ドラムから引き出された可撓性フィルム基板の搬送方向
を制御するタッチロールを備え、薄膜堆積を行う反応室
内で回転する加熱ドラムに可撓性フィルム基板を巻きか
けて搬送しつつ、可撓性フィルム基板上に薄膜を連続し
て堆積する薄膜製造装置において、反応室内の真空度を
圧力1.33kPa以下にするとともに、加熱ドラムの表面温
度Td(℃)に対して、加熱ドラム直後のタッチロール
の表面温度Tt(℃)を、Td−100 <Tt<Tdの範
囲に温度制御することを特徴としている。
The thin film manufacturing apparatus of the present invention includes a heating drum for heating a flexible film substrate, and a touch roll for controlling a direction of transport of the flexible film substrate drawn from the heating drum. In a thin film manufacturing apparatus for continuously depositing a thin film on a flexible film substrate while winding and transporting the flexible film substrate around a heating drum rotating in a reaction chamber where the thin film is deposited, the degree of vacuum in the reaction chamber is reduced. Is controlled to 1.33 kPa or less, and the surface temperature Tt (° C.) of the touch roll immediately after the heating drum is controlled with respect to the surface temperature Td (° C.) of the heating drum within a range of Td−100 <Tt <Td. It is characterized by:

【0009】すなわち本発明者による鋭意検討の結果、
被膜面における微細な傷は次ぎのようにして生じること
が明かとなった。
That is, as a result of earnest study by the present inventors,
It became clear that fine scratches on the coating surface were generated as follows.

【0010】まず、加熱ドラムで加熱され薄膜を堆積さ
れた可撓性フィルム基板は、加熱ドラムとの接触がなく
なっても、周囲が真空中であるために熱放出が少なく急
速には冷却されない。特にプラズマCVD、スパッタリ
ング等に適した圧力1.33kPa以下のの真空中では、常圧
時に比較して残留気体による熱伝導率が急速に低下する
ために、その影響が大きい。
First, even if the flexible film substrate heated by the heating drum and deposited on the thin film loses contact with the heating drum, the surroundings are in a vacuum so that heat is released little and it is not cooled rapidly. In particular, in a vacuum at a pressure of 1.33 kPa or less, which is suitable for plasma CVD, sputtering, and the like, the thermal conductivity due to the residual gas is rapidly reduced as compared with that at normal pressure, so that the influence is large.

【0011】一方温度制御のされていない従来のタッチ
ロールの温度は、室温に近いものになっている。このた
め可撓性フィルム基板は、加熱ドラムから離れてタッチ
ロールに接触したときに急冷される。その際に可撓性フ
ィルム基板は、タッチロール上で収縮し、タッチロール
表面によってフィルムの幅方向に擦傷を発生する。そし
てこの傷の発生の程度は、加熱ドラムの加熱温度とタッ
チロールの温度差、ドラムとロール間の距離、フィルム
の搬送速度、真空の度合によって影響を受ける。
On the other hand, the temperature of a conventional touch roll without temperature control is close to room temperature. For this reason, the flexible film substrate is rapidly cooled when it separates from the heating drum and comes into contact with the touch roll. At that time, the flexible film substrate contracts on the touch roll, and abrasion occurs in the width direction of the film by the surface of the touch roll. The degree of the generation of the flaw is affected by the difference between the heating temperature of the heating drum and the temperature of the touch roll, the distance between the drum and the roll, the transport speed of the film, and the degree of vacuum.

【0012】ここで、薄膜製造装置はできるだけコンパ
クトに設計した方がコスト的にも真空の維持にも好適で
あり、加熱ドラムとタッチロール間の距離を長くとるこ
とは好ましくない。また真空度を、プラズマCVDやス
パッタリング等に適した圧力範囲である圧力1.33kPaよ
りも高くすることは好ましくない。あるいはフィルム基
板の搬送速度を遅くすることは、生産性の点で好ましく
ない。
Here, it is preferable that the thin film manufacturing apparatus is designed as compact as possible in terms of cost and maintenance of vacuum, and it is not preferable to increase the distance between the heating drum and the touch roll. Further, it is not preferable to set the degree of vacuum higher than 1.33 kPa, which is a pressure range suitable for plasma CVD, sputtering, or the like. Alternatively, reducing the transport speed of the film substrate is not preferable in terms of productivity.

【0013】このため本発明における課題を解決する手
段としては、可撓性フィルム基板が急冷されないよう
に、タッチロールの表面温度を制御することが必要とな
る。その際タッチロールの表面温度は、フィルム基板表
面に堆積される被膜の表面硬度、タッチロールとの滑り
性等によって選択されるが、加熱ドラムの表面温度Td
(℃)に対して、加熱ドラム直後のタッチロールの表面
温度Tt(℃)を、Td−100 <Tt<Tdの範囲に温
度制御する必要がある。
Therefore, as means for solving the problems in the present invention, it is necessary to control the surface temperature of the touch roll so that the flexible film substrate is not rapidly cooled. At this time, the surface temperature of the touch roll is selected depending on the surface hardness of the film deposited on the film substrate surface, the slipperiness with the touch roll, and the like.
In contrast to (° C.), it is necessary to control the surface temperature Tt (° C.) of the touch roll immediately after the heating drum in a range of Td−100 <Tt <Td.

【0014】また課題とされる傷の発生は、加熱ドラム
表面上あるいはタッチロール表面上での可撓性フィルム
基板の変形量、すなわち熱膨張量に影響される。このた
め0.00001 /℃以上の線膨張係数を有する可撓性フィル
ム基板上に薄膜を形成する際には、本発明による薄膜製
造装置を用いることがより好ましい。
Further, the generation of the flaw, which is a problem, is affected by the amount of deformation of the flexible film substrate on the surface of the heating drum or the surface of the touch roll, that is, the amount of thermal expansion. Therefore, when forming a thin film on a flexible film substrate having a linear expansion coefficient of 0.00001 / ° C. or more, it is more preferable to use the thin film manufacturing apparatus according to the present invention.

【0015】あるいはプラズマCVD法で多層膜の接合
構造で電気的機能を発現する非晶質シリコンの薄膜を形
成する際に、本発明による薄膜製造装置を用いると、被
膜面に発生する極微少な傷による短絡現象を防ぐことが
できるので、より好ましい。
Alternatively, when forming an amorphous silicon thin film exhibiting an electrical function by a bonding structure of a multi-layer film by a plasma CVD method, the use of the thin film manufacturing apparatus according to the present invention makes it possible to produce very small scratches on the film surface. This is more preferable because a short circuit phenomenon due to the above can be prevented.

【0016】こうしたタッチロールの加熱方法としては
ヒーターの埋め込み型、熱媒の循環型、ランプ加熱型な
どの方法を用いることができる。
As a method for heating the touch roll, a method such as a heater embedded type, a heating medium circulation type, and a lamp heating type can be used.

【0017】[0017]

【実施例および比較例】図1は、本発明の一実施例を示
す薄膜製造装置である。すなわち、可撓性フィルム基板
上に、非晶質シリコン薄膜の太陽電池を形成するための
3室分離ロールツーロールプラズマCVD装置の概略構
成である。
FIG. 1 shows an apparatus for manufacturing a thin film according to an embodiment of the present invention. That is, this is a schematic configuration of a three-chamber roll-to-roll plasma CVD apparatus for forming an amorphous silicon thin film solar cell on a flexible film substrate.

【0018】図中、10はフィルム巻き出し室、20は太陽
電池のn層を堆積するn層反応室、30は太陽電池のi層
を堆積するi層反応室、40は太陽電池のp層を堆積する
p層反応室、50はフィルム巻き取り室である。また11は
フィルム巻き出しロール、51はフィルム巻き取りロール
である。そして21と31と41は、各反応室における加熱ド
ラムである。さらに12、22、32、42、および52は、温度
制御を行わないタッチロールである。その一方で23、3
3、および43は、温度制御を行うタッチロールであり、
内部にはそのためのヒータが埋め込まれている。また2
4、34、および44は、プラズマCVD用の電極である。
そして60は、長尺の可撓性フィルム基板である。なお各
加熱ドラムとタッチロールとの間隔は、5 cmとしてあ
る。また本装置を設置した室内温度は、30℃である。
In the figure, 10 is a film unwinding chamber, 20 is an n-layer reaction chamber for depositing an n-layer of a solar cell, 30 is an i-layer reaction chamber for depositing an i-layer of a solar cell, and 40 is a p-layer of a solar cell. Is a p-layer reaction chamber for depositing, and 50 is a film winding chamber. 11 is a film unwinding roll, and 51 is a film unwinding roll. 21, 31 and 41 are heating drums in each reaction chamber. Further, 12, 22, 32, 42, and 52 are touch rolls that do not perform temperature control. Meanwhile, 23, 3
3, and 43 are touch rolls that perform temperature control,
A heater for that purpose is embedded inside. Also 2
Reference numerals 4, 34, and 44 are electrodes for plasma CVD.
Reference numeral 60 denotes a long flexible film substrate. The distance between each heating drum and the touch roll is 5 cm. The room temperature at which this device was installed was 30 ° C.

【0019】可撓性フィルム基板60としては、厚み75μ
mのポリエチレンナフタレートフィルム(線膨張係数=
0.000013/℃)の表面に、下部電極としてAl/ステンレ
ス薄膜をスパッタリング法で0.4 μm/4 nmの厚さに
堆積した可撓性太陽電池用基板を用いた。
The flexible film substrate 60 has a thickness of 75 μm.
m of polyethylene naphthalate film (linear expansion coefficient =
A substrate for a flexible solar cell, in which an Al / stainless thin film was deposited to a thickness of 0.4 μm / 4 nm as a lower electrode by a sputtering method on a surface of 0.000013 / ° C.).

【0020】この可撓性フィルム基板60は、巻き出しロ
ール11に装着され、n層、i層、p層用の各反応室20、
30、40を経由して、巻き取りロール51へと巻き取られ
る。ここで可撓性フィルム基板60の搬送速度は、3 cm
/分とした。
The flexible film substrate 60 is mounted on an unwinding roll 11, and each of the reaction chambers 20 for n-layer, i-layer and p-layer,
It is wound up on a winding roll 51 via 30, 40. Here, the transport speed of the flexible film substrate 60 is 3 cm
/ Min.

【0021】各反応室内で、可撓性フィルム基板60は各
加熱ドラムに接触しながら搬送されつつ、薄膜が堆積さ
れる。そのために各反応室での反応圧力と薄膜堆積時の
RF放電パワーは、n層反応室20およびp層反応室40で
は266Pa と200 W、i層反応室30では133Pa と40Wとし
た。そして本実施例では、n層/i層/p層をそれぞれ
50nm/550 nm/8 nmの厚さに堆積した。
In each reaction chamber, a thin film is deposited while the flexible film substrate 60 is conveyed while being in contact with each heating drum. Therefore, the reaction pressure in each reaction chamber and the RF discharge power during deposition of the thin film were set to 266 Pa and 200 W in the n-layer reaction chamber 20 and the p-layer reaction chamber 40, and 133 Pa and 40 W in the i-layer reaction chamber 30. In this embodiment, the n-layer / i-layer / p-layer are respectively
Deposited to a thickness of 50 nm / 550 nm / 8 nm.

【0022】その際に、加熱ドラム21と41の表面温度は
120 ℃に、そして加熱ドラム31の表面温度は200 ℃に制
御している。これに対してタッチロール22と32と42の温
度は、ほぼ室温の30℃と同じになっている。一方タッチ
ロール23と43の表面温度は100 ℃に制御している。そし
て本発明の実施例および比較例としてタッチロール33の
表面温度は、160 ℃(実施例1)、120 ℃(実施例
2)、80℃(比較例1)、40℃(比較例2)、温度制御
無し(比較例3)とした。
At this time, the surface temperature of the heating drums 21 and 41 is
The temperature of the heating drum 31 is controlled at 200 ° C., and the temperature of the heating drum 31 is controlled at 200 ° C. On the other hand, the temperatures of the touch rolls 22, 32 and 42 are almost the same as the room temperature of 30 ° C. On the other hand, the surface temperature of the touch rolls 23 and 43 is controlled to 100 ° C. As examples and comparative examples of the present invention, the surface temperature of the touch roll 33 is 160 ° C. (Example 1), 120 ° C. (Example 2), 80 ° C. (Comparative Example 1), 40 ° C. (Comparative Example 2), There was no temperature control (Comparative Example 3).

【0023】こうして製造した非晶質シリコン膜を10
0倍の顕微鏡で観察し、2cm四方に何個の傷が発生す
るかを数えた。またさらに、非晶質シリコン膜上に別の
電子ビーム蒸着装置で透明電極としてITO膜を膜厚60
nm堆積し、太陽電池を構成した。この太陽電池の出力
を、照度200lx 蛍光灯下で測定した。
The amorphous silicon film thus manufactured is
Observation was performed with a microscope of 0 magnification, and the number of scratches generated in a square of 2 cm was counted. Furthermore, an ITO film having a thickness of 60 was formed on the amorphous silicon film as a transparent electrode by another electron beam evaporation apparatus.
nm to form a solar cell. The output of the solar cell was measured under an illumination of 200 lx fluorescent light.

【0024】この測定の結果、傷による短絡で発生した
リーク電流の影響で、太陽電池出力に違いがみられた。
すなわち実施例1では、傷の数が0 個で太陽電池出力が
3.0μW/平方cm。実施例2では、傷の数が1 個で太
陽電池出力が3.0 μW/平方cm。比較例1では、傷の
数が8 個で太陽電池出力が1.8 μW/平方cm。比較例
2では、傷の数が12個で太陽電池出力が1.0 μW/平方
cm。比較例3では、傷の数が12個で太陽電池出力が0.
8 μW/平方cm。この結果から明らかなように、タッ
チロール33の表面温度が120℃以上では、傷の発生が
ほとんど認められず、太陽電池性能も低下していない。
As a result of the measurement, a difference was observed in the output of the solar cell due to the influence of the leak current generated by the short circuit due to the scratch.
That is, in Example 1, the number of scratches was 0 and the solar cell output was
3.0 μW / cm 2. In Example 2, the number of scratches was 1 and the solar cell output was 3.0 μW / cm 2. In Comparative Example 1, the number of scratches was 8, and the solar cell output was 1.8 μW / cm 2. In Comparative Example 2, the number of scratches was 12, and the solar cell output was 1.0 μW / cm 2. In Comparative Example 3, the number of scratches was 12 and the solar cell output was 0.
8 μW / square cm. As is clear from these results, when the surface temperature of the touch roll 33 is 120 ° C. or higher, scarring is hardly observed, and the solar cell performance does not decrease.

【0025】[0025]

【発明の効果】以上詳述したとうり本発明によって、堆
積された被膜表面に傷の発生のない薄膜製造装置を得る
ことができる。
As described above in detail, according to the present invention, it is possible to obtain an apparatus for producing a thin film having no flaws on the surface of the deposited film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】3室分離ロールツーロールプラズマCVD装置
の概略構成
FIG. 1 is a schematic configuration of a three-chamber separation roll-to-roll plasma CVD apparatus.

【符号の説明】[Explanation of symbols]

10 フィルム巻き出し室 11 フィルム巻き出しロール 12 温度制御を行わないタッチロール 20 太陽電池のn層を堆積するn層反応室 21 加熱ドラム 22 温度制御を行わないタッチロール 23 温度制御を行うタッチロール 24 プラズマCVD用の電極 30 太陽電池のi層を堆積するi層反応室 31 加熱ドラム 32 温度制御を行わないタッチロール 33 温度制御を行うタッチロール 34 プラズマCVD用の電極 40 太陽電池のp層を堆積するp層反応室 41 加熱ドラム 42 温度制御を行わないタッチロール 43 温度制御を行うタッチロール 44 プラズマCVD用の電極 50 フィルム巻き取り室 51 フィルム巻き取りロール 52 温度制御を行わないタッチロール 60 可撓性フィルム基板 10 Film unwinding chamber 11 Film unwinding roll 12 Touch roll without temperature control 20 n-layer reaction chamber for depositing n-layer of solar cell 21 Heating drum 22 Touch roll without temperature control 23 Touch roll with temperature control 24 Electrode for plasma CVD 30 i-layer reaction chamber for depositing i-layer of solar cell 31 heating drum 32 touch roll without temperature control 33 touch roll for temperature control 34 electrode for plasma CVD 40 deposit p-layer of solar cell P-layer reaction chamber 41 heating drum 42 touch roll without temperature control 43 touch roll with temperature control 44 electrode for plasma CVD 50 film winding chamber 51 film winding roll 52 touch roll without temperature control 60 flexible Film substrate

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 14/56 C23C 14/54 C23C 16/54──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23C 14/56 C23C 14/54 C23C 16/54

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可撓性フィルム基板を加熱する加熱ドラム
と、加熱ドラムから引き出された可撓性フィルム基板の
搬送方向を制御するタッチロールを備え、薄膜堆積を行
う反応室内で回転する加熱ドラムに可撓性フィルム基板
を巻きかけて搬送しつつ、可撓性フィルム基板上に薄膜
を連続して堆積する薄膜製造装置において、反応室内の
真空度を圧力1.33kPa以下にするとともに、加熱ドラム
の表面温度Td(℃)に対して、加熱ドラム直後のタッ
チロールの表面温度Tt(℃)を、Td−100 <Tt<
Tdの範囲に温度制御することを特徴とする薄膜製造装
置。
A heating drum for heating a flexible film substrate; a touch drum for controlling a transport direction of the flexible film substrate drawn from the heating drum; and a heating drum rotating in a reaction chamber for depositing a thin film. In a thin film production apparatus for continuously depositing a thin film on a flexible film substrate while winding and transporting the flexible film substrate over the flexible film substrate, the degree of vacuum in the reaction chamber is reduced to 1.33 kPa or less, and the heating drum For the surface temperature Td (° C.), the surface temperature Tt (° C.) of the touch roll immediately after the heating drum is represented by Td-100 <Tt <.
An apparatus for manufacturing a thin film, wherein the temperature is controlled within a range of Td.
【請求項2】可撓性フィルム基板の線膨張係数が、0.00
001 /℃以上であることを特徴とする請求項1記載の薄
膜製造装置。
2. A flexible film substrate having a linear expansion coefficient of 0.00
2. The thin film manufacturing apparatus according to claim 1, wherein the temperature is 001 / ° C. or higher.
【請求項3】可撓性フィルム基板上へは、プラズマCV
D法によって非晶質シリコンの薄膜を堆積することを特
徴とする請求項1〜2のいずれかに記載の薄膜製造装置
3. A plasma CV on a flexible film substrate.
3. A thin film manufacturing apparatus according to claim 1, wherein an amorphous silicon thin film is deposited by a method D.
JP11463093A 1993-05-17 1993-05-17 Thin film manufacturing equipment Expired - Fee Related JP2865971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11463093A JP2865971B2 (en) 1993-05-17 1993-05-17 Thin film manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11463093A JP2865971B2 (en) 1993-05-17 1993-05-17 Thin film manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH06330317A JPH06330317A (en) 1994-11-29
JP2865971B2 true JP2865971B2 (en) 1999-03-08

Family

ID=14642655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11463093A Expired - Fee Related JP2865971B2 (en) 1993-05-17 1993-05-17 Thin film manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2865971B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295531A (en) * 1992-04-21 1993-11-09 Toshiba Corp Ti-w based sputtering target and its production
JP5100071B2 (en) * 2005-09-27 2012-12-19 株式会社半導体エネルギー研究所 Film forming apparatus, film forming method, and method for manufacturing photoelectric conversion apparatus
US7666766B2 (en) 2005-09-27 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus, method for forming film, and method for manufacturing photoelectric conversion device
JP5736857B2 (en) * 2011-03-09 2015-06-17 凸版印刷株式会社 Deposition equipment
KR20140061808A (en) * 2012-11-14 2014-05-22 삼성디스플레이 주식회사 Apparatus for depositing organic material

Also Published As

Publication number Publication date
JPH06330317A (en) 1994-11-29

Similar Documents

Publication Publication Date Title
JP7117332B2 (en) Deposition apparatus for coating flexible substrates and method of coating flexible substrates
US6833155B2 (en) Apparatus and method for processing a substrate
JPH04299823A (en) Continuous manufacturing device for semiconductor element and manufacture of semiconductor element using the same
JP2016514197A5 (en)
JP2016514197A (en) Gas separation with adjustable separation wall
WO2014156888A1 (en) Laminate and gas barrier film
JP2016514196A (en) Common deposition platform, processing station, and method of operation thereof
JP2011202248A (en) Film deposition apparatus and film deposition method
US6413794B1 (en) Method of forming photovoltaic element
EP0659905B1 (en) Plasma chemical vapor deposition device capable of suppressing generation of polysilane powder
JP2865971B2 (en) Thin film manufacturing equipment
JP3659512B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JP5144393B2 (en) Plasma CVD film forming method and plasma CVD apparatus
TW201934780A (en) Deposition apparatus, method of coating a flexible substrate and flexible substrate having a coating
JP2801498B2 (en) Thin film manufacturing equipment
JP3093504B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JPH11350117A (en) Vacuum deposition apparatus
JPH0959775A (en) Sputtering method
JP4257586B2 (en) Substrate processing method
JP5169068B2 (en) Thin film solar cell manufacturing equipment
JP3297487B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JP2004026364A (en) Conveying method for long plastic film and surface treatment method for long plastic film using it
JP3222245B2 (en) Apparatus and method for continuously forming semiconductor laminated film for photovoltaic element
JP3093502B2 (en) Photovoltaic element, method for forming the same, and apparatus for forming the same
JPH0693447A (en) Device for producing vapor deposited film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees