JPH095441A - Radiodiagnosis and radiodiagnostic device - Google Patents
Radiodiagnosis and radiodiagnostic deviceInfo
- Publication number
- JPH095441A JPH095441A JP7157793A JP15779395A JPH095441A JP H095441 A JPH095441 A JP H095441A JP 7157793 A JP7157793 A JP 7157793A JP 15779395 A JP15779395 A JP 15779395A JP H095441 A JPH095441 A JP H095441A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- image
- subject
- gamma camera
- camera device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 claims description 34
- 238000012545 processing Methods 0.000 claims description 18
- 230000033001 locomotion Effects 0.000 claims description 17
- 229940121896 radiopharmaceutical Drugs 0.000 claims description 17
- 239000012217 radiopharmaceutical Substances 0.000 claims description 17
- 230000002799 radiopharmaceutical effect Effects 0.000 claims description 17
- 238000002405 diagnostic procedure Methods 0.000 claims description 16
- 238000012937 correction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 230000005251 gamma ray Effects 0.000 claims description 10
- 230000001360 synchronised effect Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 9
- 230000000877 morphologic effect Effects 0.000 claims description 8
- 238000009206 nuclear medicine Methods 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 7
- 238000002591 computed tomography Methods 0.000 claims description 5
- 230000000737 periodic effect Effects 0.000 claims description 5
- 238000003384 imaging method Methods 0.000 claims description 3
- 230000002194 synthesizing effect Effects 0.000 claims description 3
- 238000002603 single-photon emission computed tomography Methods 0.000 abstract description 48
- 230000000007 visual effect Effects 0.000 abstract description 14
- 238000007689 inspection Methods 0.000 abstract description 10
- 210000000056 organ Anatomy 0.000 abstract description 9
- 239000002131 composite material Substances 0.000 abstract 1
- 230000000241 respiratory effect Effects 0.000 description 19
- 238000003745 diagnosis Methods 0.000 description 15
- 230000007246 mechanism Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 10
- 230000029058 respiratory gaseous exchange Effects 0.000 description 9
- 230000036387 respiratory rate Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 210000003734 kidney Anatomy 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 3
- 238000013480 data collection Methods 0.000 description 3
- 230000002107 myocardial effect Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004660 morphological change Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000032170 Congenital Abnormalities Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000013170 computed tomography imaging Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000008558 metabolic pathway by substance Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Nuclear Medicine (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は放射線診断方法及び放射
線診断装置に係り、特に、X線CT装置とシングル・フ
ォトン・エミッション・コンピューテッド・トモグラフ
ィ(以下、SPECTと省略する)装置とを協同させ
て、短時間に正確な診断を行うことができる放射線診断
方法及び放射線診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation diagnostic method and a radiation diagnostic apparatus, and more particularly to an X-ray CT apparatus and a single photon emission computed tomography (hereinafter abbreviated as SPECT) apparatus. TECHNICAL FIELD The present invention relates to a radiation diagnostic method and a radiation diagnostic apparatus capable of performing accurate diagnosis in a short time in cooperation with each other.
【0002】[0002]
【従来の技術】一般に、臨床診断には形態的診断と機能
的診断とがある。臨床診断において重要なことは、疾病
によってその組織や臓器が正常に機能しているか否かで
ある。先天性異常や外傷等を除いて、多くの疾病では機
能の異常が進行していくと組織の解剖学的な形態変化が
生じる。X線診断装置やX線CT装置はこの形態的診断
の機器であり、従って形態変化を起こす以前の機能異常
の早期発見は困難である。2. Description of the Related Art Generally, clinical diagnosis includes morphological diagnosis and functional diagnosis. What is important in clinical diagnosis is whether or not the tissue or organ is functioning normally due to disease. With the exception of congenital abnormalities and trauma, in many diseases, anatomical morphological changes in tissues occur as functional abnormalities progress. The X-ray diagnostic apparatus and the X-ray CT apparatus are devices for this morphological diagnosis, and therefore, it is difficult to detect a functional abnormality before the morphological change at an early stage.
【0003】X線診断装置やX線CT装置は、体外から
X線を照射し、組織や臓器によるX線透過率の差を直接
フィルム上に画像化したり、検出器によって測定した値
から断層像を再構成するものである。An X-ray diagnostic apparatus and an X-ray CT apparatus irradiate X-rays from outside the body to directly image the difference in X-ray transmittance due to tissues or organs on a film or tomographic image from the value measured by a detector. Is to be reconstructed.
【0004】これに対し、放射性同位体(以下、RIと
省略する)またはその標識化合物が生体内の特定の組織
や臓器に選択的に取り込まれる性質を利用し、そのRI
から放射されるγ線を体外から測定し、RIの線量分布
を画像化して診断する方法があり、核医学診断法と呼ば
れている。On the other hand, the radioisotope (hereinafter abbreviated as RI) or a labeled compound thereof is utilized by utilizing the property of being selectively taken up by a specific tissue or organ in the living body.
There is a method of measuring γ-rays emitted from the outside of the body and imaging the dose distribution of RI to make a diagnosis, which is called a nuclear medicine diagnosis method.
【0005】核医学診断法は、特定の組織や臓器に標識
物質が集積されるという原理そのものが、組織や臓器の
生理学的な機能及び生化学的物質代謝機能と結び付いて
いるため、形態学的診断のみならず、病変の初期段階の
機能診断が可能であり、この点は他の診断法にはない大
きな特徴である。In the nuclear medicine diagnostic method, the principle itself that a labeling substance is accumulated in a specific tissue or organ is associated with the physiological function of a tissue or organ and the biochemical substance metabolism function. Not only diagnosis, but also functional diagnosis of lesions at an early stage is possible, which is a major feature that other diagnostic methods do not have.
【0006】この核医学診断法には、シンチスキャナや
ガンマカメラ装置を使用して2次元の分布画像を得るシ
ンチグラムや、ガンマカメラを被検体の回りに回転させ
て得られる情報を再構成してRI濃度分布の断層像を得
るSPECTがある。In this nuclear medicine diagnostic method, a scintigram for obtaining a two-dimensional distribution image using a scintillation scanner or a gamma camera device and information obtained by rotating the gamma camera around the subject are reconstructed. There is a SPECT that obtains a tomographic image of the RI concentration distribution.
【0007】従来SPECTによる正確な断層像を得る
ためには、γ線発生点からガンマカメラに入射するまで
の断層面内の減衰係数分布を用いて減衰補正(吸収補正
とも呼ばれる)する必要があり、このために外部線源と
してRIを用いたトランスミッションCT(以下、TC
Tと省略する)により減衰分布を求めていた。Conventionally, in order to obtain an accurate tomographic image by SPECT, it is necessary to perform attenuation correction (also referred to as absorption correction) using the attenuation coefficient distribution in the tomographic plane from the point of γ-ray generation to the incidence on the gamma camera. For this purpose, a transmission CT (hereinafter TC) using RI as an external radiation source is used.
The attenuating distribution is obtained by (T is omitted).
【0008】[0008]
【発明が解決しようとする課題】しかしながら、形態と
機能とを関連づけて診断することが必要な場合、従来の
X線CT装置及びガンマカメラ装置はそれぞれ独立した
診断装置として、被検体を別々に撮影していたため、そ
れぞれの診断装置で被検体の姿勢が変わったり、同一の
スライス位置を撮影することができないという問題点が
あった。However, when it is necessary to make a diagnosis by associating the form and the function with each other, the conventional X-ray CT apparatus and gamma camera apparatus are independent diagnostic apparatuses, and the subject is imaged separately. Therefore, there is a problem that the posture of the subject is changed or the same slice position cannot be imaged in each diagnostic device.
【0009】また、TCTのデータ収集とSPECTの
データ収集とは、被検体に一定の姿勢を長時間強いるた
め、被検体の苦痛が大きいという問題点があった。Further, the TCT data collection and the SPECT data collection have a problem that the subject suffers a great deal of pain because the subject is forced to have a fixed posture for a long time.
【0010】また、RIを用いたTCTでは解像度が低
く良好な減衰補正が行えないという問題点があった。Further, the TCT using RI has a problem that the resolution is low and good attenuation correction cannot be performed.
【0011】また、検査データ収集に長時間を要するた
め、検査のスループットが低いという問題点があった。Further, since it takes a long time to collect the inspection data, there is a problem that the inspection throughput is low.
【0012】以上の問題点に鑑み、本発明の目的は、被
検体の姿勢を一定に保ちつつ検査情報を収集すると同時
に被検体の位置を測定し、X線CT装置により収集され
たX線断層像とガンマカメラ装置により収集されたSP
ECT像等とを位置合わせして、組織や臓器のどの部位
にRIが集中または欠落しているかを正確に解剖学的に
同定することができる放射線診断方法及び放射線診断装
置を提供することである。In view of the above problems, an object of the present invention is to collect examination information while keeping the posture of the subject constant, and at the same time measure the position of the subject, and to collect the X-ray tomography by the X-ray CT apparatus. SP collected by image and gamma camera device
It is an object of the present invention to provide a radiation diagnostic method and a radiation diagnostic apparatus capable of accurately anatomically identifying in which region of a tissue or an organ the RI is concentrated or missing by aligning it with an ECT image or the like. .
【0013】また、本発明の他の目的は、RIを用いた
TCTより短時間にしかも高解像度の減衰係数分布像を
得て、より正確な減衰補正を実現しRI分布の定量を行
うことができる放射線診断方法及び放射線診断装置を提
供することである。Another object of the present invention is to obtain an attenuation coefficient distribution image of high resolution in a shorter time than TCT using RI, realize more accurate attenuation correction, and quantify the RI distribution. It is to provide a radiation diagnostic method and a radiation diagnostic apparatus capable of performing the same.
【0014】また、本発明の他の目的は、被検体の拘束
時間を短縮しその苦痛を低減することのできる放射線診
断方法及び放射線診断装置を提供することである。Another object of the present invention is to provide a radiation diagnostic method and a radiation diagnostic apparatus capable of shortening the restraining time of a subject and reducing the pain.
【0015】さらに、本発明の他の目的は、検査時間を
短縮して検査のスループットを向上させた放射線診断方
法及び放射線診断装置を提供することである。Further, another object of the present invention is to provide a radiation diagnostic method and a radiation diagnostic apparatus which shorten the examination time and improve the examination throughput.
【0016】[0016]
【課題を解決するための手段】上記目的を達成するた
め、本発明は次の構成を有する。すなわち、請求項1記
載の放射線診断方法は、位置情報を伴って被検体の姿勢
を変えることなくX線断層像及び核医学画像を収集する
段階と、被検体の同一位置に関するX線断層像及び核医
学画像から形態計測及び機能計測を行う段階と、を備え
ることを特徴とする。To achieve the above object, the present invention has the following constitution. That is, the radiation diagnostic method according to claim 1 includes a step of collecting an X-ray tomographic image and a nuclear medicine image without changing the posture of the subject along with position information, and an X-ray tomographic image of the same position of the subject. And a step of performing morphological measurement and functional measurement from a nuclear medicine image.
【0017】また、請求項2記載の放射線診断方法は、
予め既知の標準試料を用いてγ線の減衰係数とCT値と
の対応関係を求める段階と、放射性医薬品から放射され
るγ線のエネルギーに対する被検体の減衰係数分布像を
X線断層像と前記対応関係とに基づいて算出する段階
と、減衰係数分布像を用いてシングルフォトンエミッシ
ョンCTの再構成における減衰補正を行う段階と、を備
えたことを特徴とする。The radiation diagnosis method according to claim 2 is
The step of obtaining the correspondence between the attenuation coefficient of γ-rays and the CT value using a known standard sample in advance, and the attenuation coefficient distribution image of the subject with respect to the energy of γ-rays emitted from the radiopharmaceutical are shown as X-ray tomographic images and It is characterized by including a step of calculating based on the correspondence relationship and a step of performing attenuation correction in reconstruction of the single photon emission CT using the attenuation coefficient distribution image.
【0018】また、請求項3記載の放射線診断方法は、
予め既知の標準試料を用いてγ線の減衰係数とCT値と
の対応関係を求める段階と、放射性医薬品から放射され
るγ線のエネルギーに対する被検体の減衰係数分布像を
X線断層像と前記対応関係とに基づいて算出する段階
と、X線断層像から被検体の関心領域の深さ情報を算出
する段階と、減衰係数分布像と関心領域の深さ情報を用
いて、ガンマカメラ装置から得られた2次元分布画像か
ら比放射能を求めるための減衰補正を行う段階と、を備
えたことを特徴とする。Further, the radiation diagnostic method according to claim 3 is
The step of obtaining the correspondence between the attenuation coefficient of γ-rays and the CT value using a known standard sample in advance, and the attenuation coefficient distribution image of the subject with respect to the energy of γ-rays emitted from the radiopharmaceutical are shown as X-ray tomographic images and From the gamma camera device, a step of calculating based on the correspondence relationship, a step of calculating depth information of the region of interest of the subject from the X-ray tomographic image, and a step of calculating the attenuation coefficient distribution image and the depth information of the region of interest. A step of performing attenuation correction for obtaining a specific activity from the obtained two-dimensional distribution image.
【0019】また、請求項4記載の放射線診断装置は、
被検体を載置する天板部を有する寝台装置と、被検体に
投与された放射性医薬品から放射されるγ線を検出して
放射性医薬品の2次元分布画像又は3次元分布画像を得
るガンマカメラ装置と、被検体のX線断層像を撮影する
X線CT装置と、ガンマカメラ装置又はX線CT装置の
有効視野中に被検体の関心領域が包含されるようにガン
マカメラ装置及び/又はX線CT装置と天板部とを相対
運動させる移動手段と、ガンマカメラ装置と天板部との
相対位置及びX線CT装置と天板部との相対位置を測定
し位置情報を得る位置測定手段と、位置測定手段により
得られた位置情報に基づいてガンマカメラ装置により得
られた画像とX線CT装置により得られた画像とを位置
合わせ又は合成して表示するデータ処理装置と、を備え
たことを特徴とする。The radiation diagnostic apparatus according to claim 4 is
A couch device having a tabletop on which a subject is placed, and a gamma camera device for detecting a γ-ray emitted from a radiopharmaceutical administered to the subject to obtain a two-dimensional distribution image or a three-dimensional distribution image of the radiopharmaceutical And an X-ray CT apparatus for taking an X-ray tomographic image of the subject, and a gamma camera apparatus and / or X-ray so that the region of interest of the subject is included in the effective field of view of the gamma camera apparatus or the X-ray CT apparatus. Moving means for relatively moving the CT device and the top plate portion; and position measuring means for measuring relative position between the gamma camera device and the top plate portion and relative position between the X-ray CT device and the top plate portion to obtain position information. A data processing device for aligning or synthesizing the image obtained by the gamma camera device and the image obtained by the X-ray CT device based on the position information obtained by the position measuring means and displaying the image. Characterized by .
【0020】また、請求項5記載の放射線診断装置は、
被検体に投与された放射性医薬品から放射されるγ線を
検出して放射性医薬品の2次元分布画像又は3次元分布
画像を得るガンマカメラ装置と、被検体のX線断層像を
撮影するX線CT装置と、被検体の周期的な体動の時相
を測定して時相情報を得る時相測定手段と、前記時相情
報に基づいてX線CT装置に時相同期CTスキャンを行
わせるとともにガンマカメラ装置に時相同期分布画像を
収集させて、時相同期CTスキャンにより得られたX線
断層像とガンマカメラ装置により得られた時相同期分布
画像とを時相合わせして表示又は情報処理するデータ処
理装置と、を備えたことを特徴とする。Further, the radiation diagnostic apparatus according to claim 5 is
A gamma camera device that obtains a two-dimensional distribution image or a three-dimensional distribution image of a radiopharmaceutical by detecting γ-rays emitted from the radiopharmaceutical administered to the subject, and an X-ray CT that captures an X-ray tomographic image of the subject An apparatus, a time phase measuring means for measuring time phase of periodic body movement of a subject to obtain time phase information, and an X-ray CT apparatus performing time phase synchronous CT scan based on the time phase information. The gamma camera device is made to collect the time-phase synchronous distribution image, and the X-ray tomographic image obtained by the time-phase synchronous CT scan and the time-phase synchronous distribution image obtained by the gamma camera device are time-phased and displayed or information. And a data processing device for processing.
【0021】[0021]
【作用】請求項1記載の放射線診断方法は、同一姿勢で
収集された被検体の同一位置に関するX線断層像及び核
医学画像から、姿勢及びスライス位置の一致した形態計
測及び機能計測を行うことができる。According to the radiation diagnosis method of the first aspect, the morphological measurement and the functional measurement in which the posture and the slice position coincide with each other are performed from the X-ray tomographic image and the nuclear medicine image of the same position of the subject collected in the same posture. You can
【0022】請求項2記載の放射線診断方法は、予め既
知の標準試料(ファントムとも呼ばれる)を用いてCT
値とγ線の減衰係数との対応関係を求め、被検体のX線
断層像をこの対応関係に従って、被検体の減衰係数分布
像に変換する。この変換に際し、標準試料にないCT値
は適当な補間法により補間する。そして、この減衰係数
分布像を用いてシングルフォトンエミッションCTの再
構成における減衰補正を行う。これにより、従来外部線
源としてRIを用いたTCTによる減衰分布像より分解
度の高いX線断層像を変換した減衰分布像を減衰補正に
用いるので、より高い精度の減衰補正を行うことができ
るとともに、TCTによる減衰分布像の収集が不要とな
り検査時間を大幅に短縮することができる。The radiation diagnostic method according to claim 2 uses a standard sample (also called a phantom) which is known in advance to perform CT.
The correspondence between the value and the attenuation coefficient of γ-ray is obtained, and the X-ray tomographic image of the subject is converted into the attenuation coefficient distribution image of the subject according to this correspondence. At the time of this conversion, the CT value that does not exist in the standard sample is interpolated by an appropriate interpolation method. Then, the attenuation correction in the reconstruction of the single photon emission CT is performed using this attenuation coefficient distribution image. Thereby, since the attenuation distribution image obtained by converting the X-ray tomographic image having a higher resolution than the attenuation distribution image by the TCT using RI as the external source is used for the attenuation correction, it is possible to perform the attenuation correction with higher accuracy. At the same time, it is not necessary to collect the attenuation distribution image by TCT, and the inspection time can be greatly reduced.
【0023】請求項3記載の放射線診断方法は、予め既
知の標準試料を用いてγ線の減衰係数とCT値との対応
関係を求め、例えば対応テーブルという形式で記憶させ
ておく。そして、被検体のX線断層像を収集し、X線断
層像の所定の画素単位にCT値を対応テーブルで変換す
ることにより、放射性医薬品から放射されるγ線のエネ
ルギーに対する被検体の減衰係数分布像を求め、またX
線断層像から被検体の関心領域の深さ情報を算出する。
そして、減衰係数分布像と関心領域の深さ情報を用い
て、ガンマカメラ装置から得られた2次元分布画像(プ
レーナ像)の減衰補正を行うことにより、3次元分布画
像を収集することなく放射性医薬品の正確な比放射能
(Bq/ml)を短時間で求めることができる。In the radiation diagnosis method according to the third aspect, the correspondence between the attenuation coefficient of γ-rays and the CT value is obtained in advance using a known standard sample, and is stored in the form of a correspondence table, for example. Then, the X-ray tomographic image of the subject is collected, and the CT value is converted into a predetermined pixel unit of the X-ray tomographic image in the correspondence table, so that the attenuation coefficient of the subject with respect to the energy of the γ-rays emitted from the radiopharmaceutical. Obtain the distribution image, X
The depth information of the region of interest of the subject is calculated from the line tomographic image.
Then, by using the attenuation coefficient distribution image and the depth information of the region of interest, the attenuation correction of the two-dimensional distribution image (planar image) obtained from the gamma camera device is performed, so that the three-dimensional distribution image is not collected and radioactive The exact specific activity (Bq / ml) of a drug can be determined in a short time.
【0024】請求項4記載の放射線診断装置は、寝台天
板に載置された被検体をその姿勢を変えることなく、X
線CT装置の有効視野中に入れたり、ガンマカメラ装置
の有効視野中に入れたりすることができるので、被検体
の同一姿勢のX線断層像及び放射性医薬品の2次元分布
画像又は3次元分布画像を得ることができる。According to a fourth aspect of the radiation diagnostic apparatus, the object placed on the bed top is X-rayed without changing its posture.
The X-ray tomographic image of the same posture of the subject and the two-dimensional distribution image or three-dimensional distribution image of the radiopharmaceutical can be placed in the effective field of view of the X-ray CT apparatus or the gamma camera apparatus. Can be obtained.
【0025】さらに、位置測定手段によりガンマカメラ
装置及びX線CT装置と天板部との相対位置を測定し、
この位置情報を利用してガンマカメラ装置により得られ
た画像とX線CT装置により得られた画像とを位置合わ
せ又は合成することにより、同一断層面における形態的
情報と機能的情報とを重ね合わせて観察したり、一方の
画像を用いて他方の画像の補正を行うことができる。Further, the relative position between the gamma camera device, the X-ray CT device and the top plate portion is measured by the position measuring means,
By using this position information, the image obtained by the gamma camera device and the image obtained by the X-ray CT device are aligned or combined to superimpose the morphological information and the functional information on the same tomographic plane. It is possible to observe the image and to use one image to correct the other image.
【0026】請求項5記載の放射線診断装置は、被検体
の周期的な体動の時相に同期したX線断層像と時相同期
分布画像とを得ることができ、周期的な体動の1周期内
の各時相における形態的情報と機能的情報とを重ね合わ
せて観察したり、一方の画像を用いて他方の画像の補正
を行うことができる。The radiation diagnostic apparatus according to claim 5 can obtain an X-ray tomographic image and a time-phase synchronous distribution image synchronized with the time phase of periodic body movements of the subject, and It is possible to observe the morphological information and the functional information in each time phase in one cycle in an overlapping manner and to use one image to correct the other image.
【0027】[0027]
【実施例】次に図面を参照して、本発明の実施例を詳細
に説明する。図1は、本発明に係る放射線診断装置の第
1実施例の機構部の構成を示す正面図である。同図にお
いて、放射線診断装置1は、ガンマカメラ装置としての
SPECT装置2、X線CT装置3、寝台装置4及びデ
ータ処理装置5を備えて構成される。SPECT装置2
とX線CT装置3とは、それぞれの有効視野中心(回転
中心)が共通の有効視野中心線6に揃えて配置されてい
る。Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a front view showing the configuration of the mechanical portion of the first embodiment of the radiation diagnostic apparatus according to the present invention. In the figure, the radiation diagnostic apparatus 1 is configured to include a SPECT apparatus 2 as a gamma camera apparatus, an X-ray CT apparatus 3, a bed apparatus 4, and a data processing apparatus 5. SPECT device 2
The X-ray CT apparatus 3 and the X-ray CT apparatus 3 are arranged such that their effective visual field centers (rotation centers) are aligned with the common effective visual field center line 6.
【0028】SPECT装置2は、有効視野中心線6を
挟んで対向する2つのγ線検出器であるガンマカメラ2
1a、21bと、ガンマカメラ21a、21bをそれぞ
れ回転の半径方向に移動可能なように支持する半径動支
持部22a、22bと、半径動支持部22a、22bを
支持する検出器回転支持部23と、検出器回転支持部2
3を有効視野中心線6の回りに回転させる回転機構部2
4と、図示されないガンマカメラ機構制御部(25)
と、同じく図示されないγ線データ収集部(26)とを
備えて構成されている。SPECT装置2は、被検体に
取り込まれた放射性医薬品の2次元分布画像および3次
元分布画像を収集することができる。The SPECT device 2 is a gamma camera 2 which is two γ-ray detectors facing each other with the effective visual field center line 6 interposed therebetween.
1a and 21b, radial movement support portions 22a and 22b that support the gamma cameras 21a and 21b so as to be movable in the radial direction of rotation, and a detector rotation support portion 23 that supports the radial movement support portions 22a and 22b. , Detector rotation support 2
Rotation mechanism part 2 for rotating 3 around the effective visual field center line 6
4 and a gamma camera mechanism controller (25) not shown
And a γ-ray data acquisition unit (26) (not shown). The SPECT device 2 can collect a two-dimensional distribution image and a three-dimensional distribution image of the radiopharmaceutical taken in the subject.
【0029】X線CT装置3は、X線発生管球31と、
X線検出器32と、管球/検出器回転支持部33と、管
球/検出器回転支持部33を有効視野中心線6の回りに
回転させる回転機構部34と、図示されないCT機構制
御部(35)、同じく図示されないCTデータ収集部
(36)と、同CT画像再構成部(37)とを備えて構
成されている。X線CT装置3は、下記に説明される寝
台装置4と協同して、例えば、特公平2−60332号
公報により開示されているヘリカルスキャン法によりデ
ータ収集を行うことができる。The X-ray CT apparatus 3 includes an X-ray generating tube 31 and
X-ray detector 32, tube / detector rotation support 33, rotation mechanism 34 that rotates tube / detector rotation support 33 around effective visual field centerline 6, and CT mechanism controller not shown (35) is also provided with a CT data acquisition unit (36) and a CT image reconstruction unit (37) which are also not shown. The X-ray CT apparatus 3 can perform data acquisition in cooperation with the bed apparatus 4 described below, for example, by the helical scan method disclosed in Japanese Patent Publication No. 60332/1990.
【0030】寝台装置4は、図示されない被検体を載置
する寝台天板41と、その基底部が床に固定されると共
に寝台天板41を上下動させる寝台上下動機構42と、
寝台天板41をX線CT装置3のスライス方向有効視野
13及びSPECT装置2のスライス方向有効視野12
に水平移動可能な天板移動機構43と、天板移動位置を
検出する天板位置検出部44とを備えて構成されてい
る。天板位置検出部44は、例えば寝台天板部41に固
定されたラックと寝台基底部に設けられたピニオンによ
り、寝台天板の直線移動距離をピニオンの回転角度に変
換し、ピニオン軸に配設されたロータリーエンコーダに
より、移動距離に応じたパルスを発生しカウンタで計数
する方法を利用してもよい。The couch device 4 includes a couch top 41 on which a subject (not shown) is placed, a couch up-and-down moving mechanism 42 for fixing the base of the couch top 41 to the floor, and vertically moving the couch top 41.
The bed top plate 41 is used for the slice direction effective visual field 13 of the X-ray CT apparatus 3 and the slice direction effective visual field 12 of the SPECT apparatus 2.
In addition, a top moving mechanism 43 that can move horizontally and a top position detecting unit 44 that detects a top moving position are provided. The couchtop position detecting unit 44 converts the linear movement distance of the couchtop into a rotation angle of the pinion by, for example, a rack fixed to the couchtop 41 and a pinion provided on the couch base, and the pinion axis is arranged. A method may be used in which a pulse is generated according to the moving distance by a provided rotary encoder and is counted by a counter.
【0031】データ処理装置5にはカラー画像表示装置
を備えたワークステーションが用いられていて、放射線
診断装置1のシステム全体の制御とともに画像表示、画
像処理を行うことができる。A workstation equipped with a color image display device is used as the data processing device 5, and image display and image processing can be performed together with control of the entire system of the radiation diagnostic apparatus 1.
【0032】次に図2を参照して、本実施例による検査
手順例を示す。本検査手順では、被検体の頭部を関心領
域として図示するが、関心領域はこれに限定されること
はない。Next, referring to FIG. 2, an example of an inspection procedure according to this embodiment will be shown. In the inspection procedure, the head of the subject is illustrated as the region of interest, but the region of interest is not limited to this.
【0033】まず、被検体の関心領域の組織または臓器
に選択的に取り込まれる放射性医薬品であるRIまたは
その標識化合物が投与される。このRIまたはその標識
化合物は、所望の検査内容に応じて適切な生理活性を有
するものを選択してもよい。次いで、被検体が寝台に乗
り易いように、寝台上下動機構42により寝台天板41
が下降し、被検体は、寝台天板41の上に仰臥する。次
いで、寝台天板41が上昇し、被検体の体軸中心と有効
視野中心線6とが一致する高さで上昇が止められる。こ
の位置が被検体の初期位置71である。次いで被検体を
載置した寝台天板41は、左方向へ水平移動され、被検
体の位置は、初期位置71から順次、CT撮影位置7
2、SPECT装置への移動中間位置73を通過して、
SPECT撮影位置74に達する。First, RI, which is a radiopharmaceutical that is selectively taken up by a tissue or an organ in a region of interest of a subject, or a labeled compound thereof is administered. As the RI or its labeled compound, one having an appropriate physiological activity may be selected depending on the desired test content. Then, the bed top and bottom plate 41 is moved by the bed up-and-down moving mechanism 42 so that the subject can easily get on the bed.
Is lowered, and the subject lies on the bed top 41. Then, the bed top 41 is raised, and the elevation is stopped at a height at which the body axis center of the subject and the effective visual field center line 6 coincide with each other. This position is the initial position 71 of the subject. Next, the bed top 41 on which the subject is placed is horizontally moved to the left, and the positions of the subject are sequentially changed from the initial position 71 to the CT imaging position 7.
2, passing through the intermediate position 73 to the SPECT device,
The SPECT photographing position 74 is reached.
【0034】被検体を載置した寝台天板41がCTスラ
イス方向有効視野13を通過する際に、X線CT装置3
によりヘリカルスキャンと呼ばれる連続的なX線投影デ
ータが収集される。このときの寝台天板の移動速度は、
所望のX線断層像のスライスピッチが実現されるように
回転機構部34の回転速度と同調する速度となるように
制御される。When the bed top plate 41 on which the subject is placed passes through the effective field of view 13 in the CT slice direction, the X-ray CT apparatus 3
Collects continuous X-ray projection data called a helical scan. The moving speed of the bed top at this time is
The speed is controlled so as to synchronize with the rotation speed of the rotation mechanism unit 34 so that a desired slice pitch of the X-ray tomographic image is realized.
【0035】被検体を載置した寝台天板41がSPEC
T撮影位置74に達すると停止し、SPECT装置2に
よりSPECT投影データの収集が行われる。SPEC
T投影データの収集が終了すると、寝台天板41は右方
向に初期位置まで移動され、被検体の位置も初期位置7
1に復帰する。The bed top 41 on which the subject is placed is a SPEC
When it reaches the T imaging position 74, it stops and the SPECT apparatus 2 collects SPECT projection data. SPEC
When the collection of the T projection data is completed, the bed top plate 41 is moved rightward to the initial position, and the position of the subject is also set to the initial position 7.
Return to 1.
【0036】次に図3を参照して、本実施例におけるデ
ータの流れを説明する。図3中のデータの流れに関係す
る各構成要素について、図1の構成図に示された構成要
素と同じ構成要素には、同じ符号が付与されている。Next, the data flow in this embodiment will be described with reference to FIG. Regarding each component related to the data flow in FIG. 3, the same component as the component shown in the configuration diagram of FIG. 1 is assigned the same reference numeral.
【0037】図3において、まず、被検体が仰臥した寝
台天板41が上昇して、被検体の体軸中心と有効視野中
心線6とが一致する高さである被検体の初期位置71
(図2)に停止する。次いで、CT機構制御部35から
天板移動機構43に対して天板を左へ移動させる移動指
示信号101が出され、被検体を載置した寝台天板41
はX線CT装置3の方向に移動し、CTスライス方向有
効視野13の範囲内に入る。被検体がCTスライス方向
有効視野13に入ると、データ処理装置5からCT画像
再構成部37に対して制御信号線106を介して、投影
データの収集開始、CT画像の再構成の開始を指示す
る。このとき寝台天板41の位置情報102は、天板位
置検出部44により検出され、CTデータ収集部36に
より収集される投影データ103、104とともにCT
画像再構成部37に取り込まれ、連続CT画像が再構成
され、その断層位置情報105とともにデータ処理装置
5へ送られる。In FIG. 3, first, the couch top 41, on which the subject lies on its back, rises, and the initial position 71 of the subject is at a height at which the body axis center of the subject and the effective visual field center line 6 coincide.
Stop at (Fig. 2). Next, the CT mechanism control unit 35 issues a movement instruction signal 101 for moving the tabletop to the left to the tabletop moving mechanism 43, and the bed tabletop 41 on which the subject is placed.
Moves in the direction of the X-ray CT apparatus 3 and enters the range of the CT slice direction effective visual field 13. When the subject enters the CT slice direction effective visual field 13, the data processing device 5 instructs the CT image reconstruction unit 37 via the control signal line 106 to start projection data acquisition and start CT image reconstruction. To do. At this time, the position information 102 of the bed top 41 is detected by the top position detection unit 44 and the CT data together with the projection data 103 and 104 collected by the CT data collection unit 36.
The continuous CT images are reconstructed by the image reconstructing unit 37 and are sent to the data processing device 5 together with the tomographic position information 105.
【0038】次いで、被検者が図2のSPECT装置へ
移動中間位置73を経由して、SPECT撮影位置74
に達すると、天板位置検出部44からの位置情報10
2、105をデータ処理装置5が判定して、被検体の関
心領域が完全にSPECTスライス方向有効視野12に
入ったところで、天板移動機構43に天板の移動を停止
させる。そして、被検体のCT連続画像の位置とこれか
ら引き続き収集されるSPECT画像の相対位置情報1
02、105がデータ処理装置5により一連のCT像と
SPECT像の付帯情報として記憶される。Next, the subject moves to the SPECT apparatus of FIG.
Position information from the top position detecting unit 44,
When the data processing device 5 determines 2, 105 and the region of interest of the subject is completely within the SPECT slice direction effective visual field 12, the top moving mechanism 43 stops the movement of the top. Then, the position of the CT continuous image of the subject and the relative position information 1 of the SPECT images continuously collected from now on
02 and 105 are stored by the data processing device 5 as supplementary information of a series of CT images and SPECT images.
【0039】次いで、データ処理装置によりSPECT
収集開始の信号110がガンマカメラ機構制御部25と
ガンマカメラ収集部26とに送られる。これにより、ガ
ンマカメラ機構制御部25から回転制御信号111が回
転機構部24に送られ、ガンマカメラ21a,21bか
ら得られたSPECT画像投影データ112、113が
ガンマカメラ収集部26に収集され、SPECT画像再
構成のためにデータ処理部5に送られる(114)。Then, the data processing device performs SPECT.
A collection start signal 110 is sent to the gamma camera mechanism control unit 25 and the gamma camera collection unit 26. As a result, the rotation control signal 111 is sent from the gamma camera mechanism control unit 25 to the rotation mechanism unit 24, and the SPECT image projection data 112 and 113 obtained from the gamma cameras 21a and 21b are collected by the gamma camera collection unit 26, and SPECT. It is sent to the data processor 5 for image reconstruction (114).
【0040】図4は、CT値と特定のエネルギーのγ線
(例えば、 99mTc)に対する減衰係数の換算テーブル
を作成するためのファントムの外形図(a)、及びこの
ファントムから得られる換算テーブルをグラフ(b)と
して示したものである。このファントムは、全体の直径
L=20〜30cm,厚さ10cmの容器に、それぞれ
直径3cmの肺から骨までの等価な減衰係数の物質P2
〜P8が配置され、その他の部分は水P1で満たされて
いる。FIG. 4 shows an external view (a) of a phantom for creating a conversion table of a CT value and an attenuation coefficient for γ rays of a specific energy (for example, 99m Tc), and a conversion table obtained from this phantom. It is shown as a graph (b). This phantom has a container with an overall diameter L of 20 to 30 cm and a thickness of 10 cm, and a substance P2 having an equivalent attenuation coefficient from a lung to a bone having a diameter of 3 cm.
~ P8 are arranged, and the other part is filled with water P1.
【0041】このファントムのX線CT像を撮影し、そ
のCT値と減衰係数との換算関係または換算テーブルを
作成する。この換算関係をグラフで示すと、例えば図4
(b)となり、中間のCT値については、例えば線形補
間を行う。An X-ray CT image of this phantom is taken, and a conversion relationship or conversion table between the CT value and the attenuation coefficient is created. A graph showing this conversion relationship is shown in FIG.
In the case of (b), an intermediate CT value is linearly interpolated, for example.
【0042】次に、CT像とSPECT像の処理例を説
明する。図5(a)は、連続CT像により被検体から得
られたスライス像の位置関係を示すものである。スライ
ス位置S1からS5は、心臓部のCTと心筋SPECT
の組み合わせの例である。Next, an example of processing the CT image and the SPECT image will be described. FIG. 5A shows the positional relationship of slice images obtained from the subject by the continuous CT images. Slice positions S1 to S5 are the CT of the heart and the myocardial SPECT.
It is an example of a combination of.
【0043】図5(b)はスライス位置S3におけるX
線CT像であり、肺野、脊椎、筋肉等の組織の画素毎の
CT値が図4(b)に示すような換算関係を使用してS
PECTの検出γ線のエネルギーの減衰係数に換算さ
れ、減衰係数分布像が求められる。FIG. 5B shows X at slice position S3.
FIG. 4B is a line CT image, in which CT values for each pixel of tissues such as lung fields, spines, and muscles are converted into S values using a conversion relationship as shown in FIG.
The attenuation coefficient of the energy of γ-rays detected by PECT is converted to obtain an attenuation coefficient distribution image.
【0044】次いで、図5(c)に示すスライス位置S
3のSPECT画像(心筋像)が減衰係数分布像を用い
て減衰補正される。この減衰補正されたSPECT像
は、注目する放射性医薬品を標識した放射性同位体の比
放射能(Bq/ml)に換算される。この画像は、また
同一位置のCT画像と重ねて図5(d)に示すように表
示することもできる。Next, the slice position S shown in FIG.
The 3rd SPECT image (myocardial image) is attenuation-corrected using the attenuation coefficient distribution image. The attenuation-corrected SPECT image is converted into the specific activity (Bq / ml) of the radioisotope labeled with the radiopharmaceutical of interest. This image can also be displayed as shown in FIG. 5D by superimposing it on the CT image at the same position.
【0045】次にCT像とシンチグラム(プレナー)像
の処理例を図5(a)と図6を用いて説明する。図5
(a)のスライス位置S14で腎臓を横切るCT画像を
図6(a)に示す。このCT画像から、プレナー像の計
数方向の体表から腎臓までの深さd1及び腎臓自体の深
さd2(奥行き方向の長さ)を計測することができる。
図6(b)は、被検体の背面から撮影した腎臓のシンチ
グラム像である。図6(b)のシンチグラム像における
腎臓の計数値は、CT像から得られた深さとガンマカメ
ラによりシンチグラム像に計数される経路L上の減衰係
数値から減衰補正され、比放射能に換算される。Next, an example of processing the CT image and the scintigram (planar) image will be described with reference to FIGS. FIG.
A CT image crossing the kidney at the slice position S14 in (a) is shown in FIG. 6 (a). From this CT image, the depth d1 from the body surface to the kidney in the counting direction of the planar image and the depth d2 (length in the depth direction) of the kidney itself can be measured.
FIG. 6B is a scintigram image of the kidney taken from the back surface of the subject. The count value of the kidney in the scintigram image of FIG. 6 (b) is attenuation-corrected from the depth obtained from the CT image and the attenuation coefficient value on the path L counted in the scintigram image by the gamma camera to obtain the specific activity. Converted.
【0046】次に、図7及び図8を参照して、被検体の
周期的な体動の時相を測定し、時相情報とともにX線C
Tデータ及び放射線分布画像を収集する実施例を説明す
る。周期的な体動には、心臓の鼓動による体動や呼吸に
よる体動などがあり、前者は心電計や心音計を用いる心
拍同期、後者は胸囲を測定する呼吸量センサによる呼吸
同期が知られている。まず、本実施例では図7に示すよ
うに、被検体7に呼吸量センサ装置9のセンサ9−1を
装着し、呼吸量センサ装置9とデータ処理装置5とを接
続する。その他の構成は、図1と同様である。Next, referring to FIGS. 7 and 8, the time phase of the periodic body movement of the subject is measured, and the X-ray C along with the time phase information is measured.
An example of collecting the T data and the radiation distribution image will be described. Periodic body movements include body movements caused by the heartbeat and breathing.The former is known as heartbeat synchronization using an electrocardiograph or phonocardiograph, and the latter is known as respiratory synchronization using a respiratory volume sensor that measures chest circumference. Has been. First, in this embodiment, as shown in FIG. 7, the sensor 9-1 of the respiratory rate sensor device 9 is attached to the subject 7, and the respiratory rate sensor device 9 and the data processing device 5 are connected. Other configurations are the same as those in FIG.
【0047】次いで、被検体7に呼吸させながら、低速
度で被検体を載置した寝台天板をCTスライス方向有効
視野を通過させてヘリカルCTスキャンを行い、呼吸量
情報とともにX線投影データを収集する(図8)。次い
で、投影データを再構成してスライス画像を作成する。
そして、例えば、B1,B2,…,Bnというように、
呼吸量を幾つかに区分し、同一区分、例えばB1に属す
るほぼ等しい呼吸量を持つ画像を集めて、補間すること
により、その呼吸量B1に対応する3次元X線CT画像
を構成し、同じことを各呼吸量の区分について行う。こ
うして、各呼吸量B1,B2,…,Bn毎の3次元X線
CT画像を構成する。Next, while the subject 7 is breathing, a helical CT scan is performed by passing the bed top plate on which the subject is placed at a low speed through the effective field of view in the CT slice direction, and X-ray projection data is obtained together with respiratory volume information. Collect (Figure 8). Then, the projection data is reconstructed to create a slice image.
Then, for example, B1, B2, ..., Bn,
Breathing volume is divided into several sections, and images having almost the same breathing volume belonging to the same section, for example, B1 are collected and interpolated to construct a three-dimensional X-ray CT image corresponding to the breathing volume B1. Do this for each respiratory volume category. In this way, a three-dimensional X-ray CT image for each respiratory volume B1, B2, ..., Bn is constructed.
【0048】X線CTと同様に、SPECT画像の収集
の際にも呼吸量を計測する。そして、ほぼ等しい呼吸量
B1を持つガンマカメラの投影データを集めて、呼吸量
B1のSPECT画像を再構成する。同様に、呼吸量B
2,B3,…,Bnについても呼吸量毎にガンマカメラ
の投影データを集めて再構成することにより、各呼吸量
B1,B2,…,Bn毎の3次元SPECT画像を構成
する。Similar to the X-ray CT, the respiration rate is measured when the SPECT image is acquired. Then, the projection data of the gamma camera having the substantially equal respiratory rate B1 is collected to reconstruct the SPECT image of the respiratory rate B1. Similarly, respiratory volume B
, Bn, the projection data of the gamma camera is collected and reconstructed for each respiratory amount to form a three-dimensional SPECT image for each respiratory amount B1, B2, ..., Bn.
【0049】こうして、呼吸体動による臓器や組織の変
形の影響が除去されたCT画像とSPECT画像が得ら
る。そして、これを使用して各呼吸量B1,B2,…,
Bnについての正確な減衰補正を行うことができる。In this way, a CT image and a SPECT image in which the influence of the deformation of the organ or tissue due to the respiratory motion is removed are obtained. Then, using this, each respiratory volume B1, B2, ...,
Accurate attenuation correction for Bn can be performed.
【0050】次に、呼吸量センサを使用して呼吸体動の
影響を除去する他の実施例を説明する。図7と同様に、
被検体に呼吸量センサを装着し、ある所定の呼吸量Bf
のときに被検体に息を止める指示を送る。これには、呼
吸量センサからの信号をオペレータが認識しやすい形で
表示し、オペレータがマイクで被検体に呼び掛けてもよ
いし、呼吸量センサからの信号と設定値とを比較器で比
較し、比較結果信号により音声発生器またはディスプレ
イ装置で被検体に指示してもよい。そして呼吸量Bfの
ヘリカルCTスキャンを行って、データを収集しCT像
を再構成する。Next, another embodiment will be described in which the effect of respiratory motion is eliminated by using a respiratory volume sensor. As in FIG.
A respiratory rate sensor is attached to the subject, and a predetermined respiratory rate Bf
At that time, the subject is instructed to hold his breath. For this, the signal from the respiratory rate sensor may be displayed in a form that the operator can easily recognize, and the operator may call the subject with a microphone, or the signal from the respiratory rate sensor and the set value may be compared by a comparator. Alternatively, the subject may be instructed by the sound generator or the display device by the comparison result signal. Then, a helical CT scan of the respiratory volume Bf is performed to collect data and reconstruct a CT image.
【0051】次いで、被検体に呼吸をさせながら、呼吸
量の測定とSPECTの投影データの収集とを並行して
行う。そして投影データの中から呼吸量Bfに近い呼吸
量のときの投影データだけ集めてSPECT画像の再構
成を行う。こうして、呼吸量Bfというある一定の呼吸
量に対するX線CT画像とSPECT画像とが得られ
る。その後の処理は先に説明した実施例と同様である。Next, while the subject is breathing, measurement of the respiratory volume and collection of SPECT projection data are performed in parallel. Then, from the projection data, only the projection data when the respiratory volume is close to the respiratory volume Bf is collected to reconstruct the SPECT image. In this way, an X-ray CT image and a SPECT image for a certain respiration rate of the respiration rate Bf are obtained. The subsequent processing is the same as that of the above-described embodiment.
【0052】次に、寝台上の被検体を固定し、SPEC
T装置及びX線CT装置を被検体に対して移動させるこ
とにより、相対運動させる実施例を説明する。図9は、
寝台4−1を両持ち型の固定寝台とし、この寝台4−1
に対してSPECT装置2−1及びX線CT装置3−1
を移動可能とした構成を示す正面図である。この構成に
おいては、検査室の床面に軌条10を敷設し、その上を
SPECT装置2−1及びX線CT装置3−1がそれぞ
れ図に示す移動可能範囲を移動するための図示されない
駆動装置を設ける。また、寝台4−1に対する移動量を
検出するために、SPECT装置2−1及びX線CT装
置3−1にそれぞれ図示されない位置検出手段を備え
る。Next, the subject on the bed is fixed and the SPEC
An embodiment will be described in which the T apparatus and the X-ray CT apparatus are moved relative to the subject to perform relative movement. FIG.
The bed 4-1 is a double-sided fixed bed, and this bed 4-1 is used.
On the other hand, the SPECT apparatus 2-1 and the X-ray CT apparatus 3-1
It is a front view which shows the structure which was made movable. In this configuration, the rail 10 is laid on the floor surface of the examination room, and the SPECT apparatus 2-1 and the X-ray CT apparatus 3-1 move on the rails 10 within the movable range shown in the drawing, respectively, and are not shown as drive units. To provide. Further, in order to detect the amount of movement with respect to the bed 4-1, the SPECT apparatus 2-1 and the X-ray CT apparatus 3-1 are each provided with a position detecting means (not shown).
【0053】図10は、固定された寝台に対してSPE
CT装置及びX線CT装置を移動可能とした変形例の構
成を示す平面図である。図10において、SPECT装
置2−2及びX線CT装置3−2がそれぞれ軌条10上
を寝台装置4−2に対して移動可能となっている構成は
図9と同様であるが、軌条10と直交するX線CT装置
分離用軌条10−1及びX線CT専用寝台装置4−3が
追加されている。さらに寝台装置4−2の寝台天板41
−1は、例えば固定ネジ46を用いて寝台基底部に着脱
可能なように固定されている。FIG. 10 shows an SPE for a fixed bed.
It is a top view which shows the structure of the modification which made the CT apparatus and the X-ray CT apparatus movable. In FIG. 10, the SPECT apparatus 2-2 and the X-ray CT apparatus 3-2 are movable on the rail 10 with respect to the bed apparatus 4-2, respectively. An orthogonal X-ray CT device separation rail 10-1 and an X-ray CT dedicated bed device 4-3 are added. Further, the bed top plate 41 of the bed device 4-2.
-1 is detachably fixed to the bed base using, for example, a fixing screw 46.
【0054】これにより本発明の放射線診断方法を行わ
ない場合には、X線CT装置3−2は、X線CT装置分
離用軌条10−1上をX線CT装置単独使用位置3−3
へ移動されてSPECT装置2−2と分離することがで
きる。そして、天板移動機能を有するX線CT専用寝台
装置4−3と組み合わせてX線CT装置3−2の単独使
用が可能となり、またSPECT装置2−2の単独使用
の際にも同時にX線CT装置を移動させる必要がなくな
り、検査設備の稼働効率を高めることができる。なお、
以上の各実施例の構成において、SPECT装置とX線
CT装置との配置が互いに入れ替わっても本発明の目的
を達成できることは明らかである。Thus, when the radiation diagnostic method of the present invention is not performed, the X-ray CT apparatus 3-2 is placed on the X-ray CT apparatus separating rail 10-1 and the X-ray CT apparatus single-use position 3-3.
Can be moved to and separated from the SPECT apparatus 2-2. Then, the X-ray CT apparatus 3-2 can be used alone in combination with the X-ray CT dedicated bed apparatus 4-3 having a tabletop moving function, and when the SPECT apparatus 2-2 is used alone, the X-rays are simultaneously used. It is not necessary to move the CT device, and the operating efficiency of the inspection equipment can be improved. In addition,
It is apparent that the objects of the present invention can be achieved even if the arrangements of the SPECT apparatus and the X-ray CT apparatus are interchanged with each other in the configurations of the above respective embodiments.
【0055】[0055]
【発明の効果】以上説明したように本発明によれば、被
検体に関する検査情報の収集と同時にその位置情報を測
定し、X線CT装置により収集されたX線断層像とガン
マカメラ装置により収集されたSPECT像とを位置情
報に基づいて位置合わせすることができ、形態的診断と
機能的診断とを統合した正確な診断が行えるという効果
がある。As described above, according to the present invention, the position information is measured at the same time as the inspection information about the subject is collected, and the X-ray tomographic image collected by the X-ray CT apparatus and the gamma camera apparatus are collected. The obtained SPECT image can be aligned based on the positional information, and the morphological diagnosis and the functional diagnosis can be accurately integrated for the accurate diagnosis.
【0056】また本発明によれば、短時間に高解像度の
減衰係数分布像を得て、より正確なSPECTの減衰補
正を行うことができるという効果がある。Further, according to the present invention, there is an effect that a high-resolution attenuation coefficient distribution image can be obtained in a short time and more accurate SPECT attenuation correction can be performed.
【0057】また本発明によれば、被検体の拘束時間を
短縮しその苦痛を低減するという効果がある。Further, according to the present invention, there is an effect that the restraint time of the subject is shortened and the pain is reduced.
【0058】さらに本発明によれば、検査時間を短縮し
て検査のスループットを向上させることができるという
効果がある。Further, according to the present invention, there is an effect that the inspection time can be shortened and the inspection throughput can be improved.
【図1】本発明に係る放射線診断装置の実施例を示すシ
ステム構成図である。FIG. 1 is a system configuration diagram showing an embodiment of a radiation diagnostic apparatus according to the present invention.
【図2】実施例におけるSPECT装置及びX線CT装
置に対する被検体の移動を示す説明図である。FIG. 2 is an explanatory diagram showing movement of a subject with respect to a SPECT apparatus and an X-ray CT apparatus according to an embodiment.
【図3】実施例のデータ及び制御信号の流れを説明する
ブロック図である。FIG. 3 is a block diagram illustrating the flow of data and control signals according to the embodiment.
【図4】(a)CT値から減衰係数を求めるファントム
の形状説明図、及び(b)CT値−減衰係数の対応関係
を示すグラフである。4A is a shape explanatory diagram of a phantom for which an attenuation coefficient is obtained from a CT value, and FIG. 4B is a graph showing a correspondence relationship between the CT value and the attenuation coefficient.
【図5】X線CT像とSPECT心筋像との合成を説明
する図である。FIG. 5 is a diagram illustrating composition of an X-ray CT image and a SPECT myocardial image.
【図6】CT像から得られる情報を用いてシンチグラム
像(プレナー像)を減衰補正する方法を説明する図であ
る。FIG. 6 is a diagram illustrating a method of performing attenuation correction of a scintigram image (planar image) using information obtained from a CT image.
【図7】呼吸量センサ装置を用いて体動の影響を除去し
たX線CT像とSPECT像との合成を行うシステム構
成図である。FIG. 7 is a system configuration diagram for synthesizing an X-ray CT image and a SPECT image from which the influence of body movement is removed by using a respiratory volume sensor device.
【図8】呼吸量とX線CT画像収集のタイミングを説明
する図である。FIG. 8 is a diagram for explaining the respiratory volume and the timing of X-ray CT image acquisition.
【図9】寝台装置を固定しSPECT装置及びX線CT
装置を移動可能とした他の実施例を示すシステム構成図
(正面図)である。FIG. 9: SPECT apparatus and X-ray CT with the bed apparatus fixed
It is a system block diagram (front view) which shows another Example which made the apparatus movable.
【図10】寝台装置を固定しSPECT装置及びX線C
T装置を移動可能とした他の実施例の変形例を示すシス
テム構成図(平面図)である。FIG. 10: SPECT apparatus and X-ray C with the bed apparatus fixed
It is a system block diagram (plan view) which shows the modification of the other Example which made the T apparatus movable.
1 放射線診断装置 2 SPECT装置 3 X
線CT装置 4 寝台装置 5 データ処理装置
6 有効視野中心 7 被検体 8 天板移動範
囲 9 呼吸量センサ装置 41 寝台天板 4
3 天板移動機構 44 天板位置検出部1 Radiation diagnostic equipment 2 SPECT equipment 3 X
X-ray CT device 4 Bed device 5 Data processing device
6 Effective visual field center 7 Subject 8 Moving range of the top 9 Respiratory volume sensor device 41 Bed top 4
3 Top moving mechanism 44 Top position detector
Claims (5)
ことなくX線断層像及び核医学画像を収集する段階と、 被検体の同一位置に関するX線断層像及び核医学画像か
ら形態計測及び機能計測を行う段階と、 を備えることを特徴とする放射線診断方法。1. A step of collecting an X-ray tomographic image and a nuclear medicine image without changing the posture of the subject along with position information, and a morphological measurement from the X-ray tomographic image and the nuclear medicine image of the same position of the subject. A radiation diagnostic method comprising: a step of performing functional measurement.
係数とCT値との対応関係を求める段階と、 放射性医薬品から放射されるγ線のエネルギーに対する
被検体の減衰係数分布像をX線断層像と前記対応関係と
に基づいて算出する段階と、 減衰係数分布像を用いてシングルフォトンエミッション
CTの再構成における減衰補正を行う段階と、 を備えたことを特徴とする放射線診断方法。2. A step of obtaining a correspondence relationship between a γ-ray attenuation coefficient and a CT value using a known standard sample in advance, and an X-ray attenuation coefficient distribution image of an object with respect to γ-ray energy emitted from a radiopharmaceutical. A radiation diagnostic method comprising: a step of calculating based on a line tomographic image and the correspondence; a step of performing attenuation correction in reconstruction of a single photon emission CT using an attenuation coefficient distribution image.
係数とCT値との対応関係を求める段階と、 放射性医薬品から放射されるγ線のエネルギーに対する
被検体の減衰係数分布像をX線断層像と前記対応関係と
に基づいて算出する段階と、 X線断層像から被検体の関心領域の深さ情報を算出する
段階と、 減衰係数分布像と関心領域の深さ情報を用いて、ガンマ
カメラ装置から得られた2次元分布画像から比放射能を
求めるための減衰補正を行う段階と、 を備えたことを特徴とする放射線診断方法。3. A step of obtaining a correspondence relationship between a γ-ray attenuation coefficient and a CT value using a standard sample known in advance, and an X-ray attenuation coefficient distribution image of a subject with respect to γ-ray energy emitted from a radiopharmaceutical. A step of calculating the depth information of the region of interest of the subject from the X-ray tomographic image, and a step of calculating the depth information of the region of interest from the X-ray tomographic image using the attenuation coefficient distribution image and the depth information of the region of interest And a step of performing attenuation correction for obtaining a specific activity from a two-dimensional distribution image obtained from the gamma camera device, and a radiation diagnostic method.
置と、 被検体に投与された放射性医薬品から放射されるγ線を
検出して放射性医薬品の2次元分布画像又は3次元分布
画像を得るガンマカメラ装置と、 被検体のX線断層像を撮影するX線CT装置と、 ガンマカメラ装置又はX線CT装置の有効視野中に被検
体の関心領域が包含されるようにガンマカメラ装置及び
/又はX線CT装置と天板部とを相対運動させる移動手
段と、 ガンマカメラ装置と天板部との相対位置及びX線CT装
置と天板部との相対位置を測定し位置情報を得る位置測
定手段と、 位置測定手段により得られた位置情報に基づいてガンマ
カメラ装置により得られた画像とX線CT装置により得
られた画像とを位置合わせ又は合成して表示するデータ
処理装置と、 を備えたことを特徴とする放射線診断装置。4. A bed apparatus having a top plate on which a subject is placed, and a two-dimensional or three-dimensional distribution image of the radiopharmaceutical by detecting γ-rays emitted from the radiopharmaceutical administered to the subject. A gamma camera device for obtaining an X-ray tomographic image of a subject, and a gamma camera device such that the region of interest of the subject is included in the effective field of view of the gamma camera device or the X-ray CT device. And / or moving means for relatively moving the X-ray CT apparatus and the top plate section, and measuring the relative position between the gamma camera apparatus and the top plate section and the relative position between the X-ray CT apparatus and the top board section to obtain position information. And a data processing device for aligning or synthesizing the image obtained by the gamma camera device and the image obtained by the X-ray CT device based on the position information obtained by the position measuring device. Equipped with Radiodiagnostic and wherein the.
射されるγ線を検出して放射性医薬品の2次元分布画像
又は3次元分布画像を得るガンマカメラ装置と、 被検体のX線断層像を撮影するX線CT装置と、 被検体の周期的な体動の時相を測定して時相情報を得る
時相測定手段と、 前記時相情報に基づいてX線CT装置に時相同期CTス
キャンを行わせるとともにガンマカメラ装置に時相同期
分布画像を収集させて、時相同期CTスキャンにより得
られたX線断層像とガンマカメラ装置により得られた時
相同期分布画像とを時相合わせして表示又は情報処理す
るデータ処理装置と、 を備えたことを特徴とする放射線診断装置。5. A gamma camera device for detecting a γ-ray emitted from a radiopharmaceutical administered to a subject to obtain a two-dimensional distribution image or a three-dimensional distribution image of the radiopharmaceutical, and an X-ray tomographic image of the subject. An X-ray CT apparatus for imaging, a time phase measuring means for measuring time phase of periodic body movement of the subject to obtain time phase information, and a time phase synchronous CT for the X-ray CT apparatus based on the time phase information. The gamma camera device is made to perform scanning, and the gamma camera device is made to collect time-phase synchronous distribution images, and the X-ray tomographic image obtained by the time-phase synchronous CT scan and the time-phase synchronous distribution image obtained by the gamma camera device are time-phased. And a data processing device that displays or processes information, and a radiation diagnostic device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15779395A JP4049829B2 (en) | 1995-06-23 | 1995-06-23 | Radiation diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15779395A JP4049829B2 (en) | 1995-06-23 | 1995-06-23 | Radiation diagnostic equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006042849A Division JP2006192286A (en) | 2006-02-20 | 2006-02-20 | Radiation diagnosis system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH095441A true JPH095441A (en) | 1997-01-10 |
JP4049829B2 JP4049829B2 (en) | 2008-02-20 |
Family
ID=15657417
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15779395A Expired - Lifetime JP4049829B2 (en) | 1995-06-23 | 1995-06-23 | Radiation diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4049829B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172568A (en) * | 1997-07-02 | 1999-03-16 | Hiromi Tomaru | Method for semiautomatically setting concerning region of kidney in kidney scintigraphy |
JP2001190542A (en) * | 1999-11-24 | 2001-07-17 | Adac Lab | Method and device for dual mode medical image system |
KR20030068381A (en) * | 2002-02-13 | 2003-08-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | An apparatus for generation of tomographic image, a method for generation of tomographic image and an x-ray inspection apparatus |
EP1325706A3 (en) * | 2001-12-26 | 2004-04-07 | Hitachi, Ltd. | Radiological imaging apparatus |
JP2004530914A (en) * | 2001-06-27 | 2004-10-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Collect multiple gamma camera datasets simultaneously |
JP2005505376A (en) * | 2001-10-19 | 2005-02-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Multi-modality medical imaging system and method with separable detection device |
KR100501588B1 (en) * | 2001-06-19 | 2005-07-18 | 가부시키가이샤 히타치세이사쿠쇼 | Radiation inspection apparatus and inspection method thereof |
US6973159B2 (en) | 2002-03-20 | 2005-12-06 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method and radiological imaging support method |
JP2006087540A (en) * | 2004-09-22 | 2006-04-06 | Shimadzu Corp | Medical image diagnostic apparatus |
JP2006098411A (en) * | 2005-11-15 | 2006-04-13 | Hitachi Ltd | Pet device and control method of pet device |
JP2006122548A (en) * | 2004-11-01 | 2006-05-18 | Toshiba Corp | Image diagnostic apparatus |
WO2006067663A1 (en) * | 2004-12-22 | 2006-06-29 | Koninklijke Philips Electronics N.V. | Real-time list mode reconstruction |
JP2006223573A (en) * | 2005-02-17 | 2006-08-31 | Toshiba Corp | Radiographic examination device |
JP2006262963A (en) * | 2005-03-22 | 2006-10-05 | Shimadzu Corp | Nuclear medicine diagnostic apparatus and diagnostic system used therein |
JP2006262962A (en) * | 2005-03-22 | 2006-10-05 | Shimadzu Corp | Nuclear medicine diagnostic apparatus and diagnostic system used therein |
JP2006304860A (en) * | 2005-04-26 | 2006-11-09 | Shimadzu Corp | Pet-ct apparatus |
US7154989B2 (en) | 2002-10-23 | 2006-12-26 | Hitachi, Ltd. | Radiological imaging apparatus |
WO2007037307A1 (en) * | 2005-09-28 | 2007-04-05 | Japan Health Sciences Foundation | Tomography device calibration method and tomography image superposition method |
JP2008022930A (en) * | 2006-07-19 | 2008-02-07 | Shimadzu Corp | Diagnostic system |
JP2009000205A (en) * | 2007-06-20 | 2009-01-08 | Univ Of Tsukuba | Conversion apparatus and method for ct number-water equivalent thickness, storage medium used therefor, and radiation therapy apparatus and method |
JP2009098120A (en) * | 2007-09-25 | 2009-05-07 | Shimadzu Corp | Imaging device and light source position calculating method |
US7627082B2 (en) | 2001-12-03 | 2009-12-01 | Hitachi, Ltd. | Radiological imaging apparatus |
JP2010528277A (en) * | 2007-05-24 | 2010-08-19 | サージックアイ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Image generating apparatus and method for radioactive imaging |
JP2010279602A (en) * | 2009-06-05 | 2010-12-16 | Toshiba Corp | Particle radiation therapy apparatus |
JP2011053210A (en) * | 2009-08-31 | 2011-03-17 | General Electric Co <Ge> | Motion correction in tomographic image |
JP2011522275A (en) * | 2008-06-06 | 2011-07-28 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for attenuation correction |
JP2011154031A (en) * | 2011-03-07 | 2011-08-11 | Hitachi Ltd | Radiation inspection device |
WO2014109338A1 (en) * | 2013-01-08 | 2014-07-17 | 株式会社 東芝 | Medical image diagnostic device, nuclear medicine diagnostic device, x-ray ct device, and bed device |
CN110691551A (en) * | 2018-05-02 | 2020-01-14 | 上海联影医疗科技有限公司 | Radiation system for radiation therapy and imaging |
-
1995
- 1995-06-23 JP JP15779395A patent/JP4049829B2/en not_active Expired - Lifetime
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1172568A (en) * | 1997-07-02 | 1999-03-16 | Hiromi Tomaru | Method for semiautomatically setting concerning region of kidney in kidney scintigraphy |
JP2001190542A (en) * | 1999-11-24 | 2001-07-17 | Adac Lab | Method and device for dual mode medical image system |
KR100501588B1 (en) * | 2001-06-19 | 2005-07-18 | 가부시키가이샤 히타치세이사쿠쇼 | Radiation inspection apparatus and inspection method thereof |
US6976784B2 (en) | 2001-06-19 | 2005-12-20 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method |
US6965661B2 (en) | 2001-06-19 | 2005-11-15 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method |
JP2004530914A (en) * | 2001-06-27 | 2004-10-07 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Collect multiple gamma camera datasets simultaneously |
JP2005505376A (en) * | 2001-10-19 | 2005-02-24 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Multi-modality medical imaging system and method with separable detection device |
US7634048B2 (en) | 2001-12-03 | 2009-12-15 | Hitachi Ltd. | Radiological imaging apparatus |
US8116427B2 (en) | 2001-12-03 | 2012-02-14 | Hitachi, Ltd. | Radiological imaging apparatus |
US7627082B2 (en) | 2001-12-03 | 2009-12-01 | Hitachi, Ltd. | Radiological imaging apparatus |
US7986763B2 (en) | 2001-12-03 | 2011-07-26 | Hitachi, Ltd. | Radiological imaging apparatus |
EP1325706A3 (en) * | 2001-12-26 | 2004-04-07 | Hitachi, Ltd. | Radiological imaging apparatus |
US6920196B2 (en) | 2001-12-26 | 2005-07-19 | Hitachi, Ltd. | Radiological imaging apparatus |
KR20030068381A (en) * | 2002-02-13 | 2003-08-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | An apparatus for generation of tomographic image, a method for generation of tomographic image and an x-ray inspection apparatus |
US6973159B2 (en) | 2002-03-20 | 2005-12-06 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method and radiological imaging support method |
US7053376B2 (en) | 2002-03-20 | 2006-05-30 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method and radiological imaging support method |
US7355181B2 (en) | 2002-03-20 | 2008-04-08 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method and radiological imaging support method |
US7127026B2 (en) | 2002-03-20 | 2006-10-24 | Hitachi, Ltd. | Radiological imaging apparatus and radiological imaging method and radiological imaging support method |
US7218701B2 (en) | 2002-10-23 | 2007-05-15 | Hitachi, Ltd. | Radiological imaging apparatus |
US7154989B2 (en) | 2002-10-23 | 2006-12-26 | Hitachi, Ltd. | Radiological imaging apparatus |
JP2006087540A (en) * | 2004-09-22 | 2006-04-06 | Shimadzu Corp | Medical image diagnostic apparatus |
JP4586473B2 (en) * | 2004-09-22 | 2010-11-24 | 株式会社島津製作所 | Medical diagnostic imaging equipment |
JP2006122548A (en) * | 2004-11-01 | 2006-05-18 | Toshiba Corp | Image diagnostic apparatus |
US7265352B2 (en) | 2004-12-22 | 2007-09-04 | Koninklijke Philips Electronics N.V. | Real-time list mode reconstruction |
WO2006067663A1 (en) * | 2004-12-22 | 2006-06-29 | Koninklijke Philips Electronics N.V. | Real-time list mode reconstruction |
JP2006223573A (en) * | 2005-02-17 | 2006-08-31 | Toshiba Corp | Radiographic examination device |
JP4529749B2 (en) * | 2005-03-22 | 2010-08-25 | 株式会社島津製作所 | Nuclear medicine diagnostic apparatus and diagnostic system used therefor |
JP2006262962A (en) * | 2005-03-22 | 2006-10-05 | Shimadzu Corp | Nuclear medicine diagnostic apparatus and diagnostic system used therein |
JP4595608B2 (en) * | 2005-03-22 | 2010-12-08 | 株式会社島津製作所 | Nuclear medicine diagnostic apparatus and diagnostic system used therefor |
JP2006262963A (en) * | 2005-03-22 | 2006-10-05 | Shimadzu Corp | Nuclear medicine diagnostic apparatus and diagnostic system used therein |
JP2006304860A (en) * | 2005-04-26 | 2006-11-09 | Shimadzu Corp | Pet-ct apparatus |
WO2007037307A1 (en) * | 2005-09-28 | 2007-04-05 | Japan Health Sciences Foundation | Tomography device calibration method and tomography image superposition method |
JP2006098411A (en) * | 2005-11-15 | 2006-04-13 | Hitachi Ltd | Pet device and control method of pet device |
JP4604974B2 (en) * | 2005-11-15 | 2011-01-05 | 株式会社日立製作所 | PET equipment |
JP2008022930A (en) * | 2006-07-19 | 2008-02-07 | Shimadzu Corp | Diagnostic system |
JP2010528277A (en) * | 2007-05-24 | 2010-08-19 | サージックアイ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Image generating apparatus and method for radioactive imaging |
US9743898B2 (en) | 2007-05-24 | 2017-08-29 | Surgiceye Gmbh | Image formation apparatus and method for nuclear imaging |
JP2009000205A (en) * | 2007-06-20 | 2009-01-08 | Univ Of Tsukuba | Conversion apparatus and method for ct number-water equivalent thickness, storage medium used therefor, and radiation therapy apparatus and method |
JP2009098120A (en) * | 2007-09-25 | 2009-05-07 | Shimadzu Corp | Imaging device and light source position calculating method |
JP2011522275A (en) * | 2008-06-06 | 2011-07-28 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for attenuation correction |
US9420974B2 (en) | 2008-06-06 | 2016-08-23 | Koninklijke Philips N.V. | Method and apparatus for attenuation correction |
JP2010279602A (en) * | 2009-06-05 | 2010-12-16 | Toshiba Corp | Particle radiation therapy apparatus |
JP2011053210A (en) * | 2009-08-31 | 2011-03-17 | General Electric Co <Ge> | Motion correction in tomographic image |
JP2011154031A (en) * | 2011-03-07 | 2011-08-11 | Hitachi Ltd | Radiation inspection device |
WO2014109338A1 (en) * | 2013-01-08 | 2014-07-17 | 株式会社 東芝 | Medical image diagnostic device, nuclear medicine diagnostic device, x-ray ct device, and bed device |
US9872658B2 (en) | 2013-01-08 | 2018-01-23 | Toshiba Medical Systems Corporation | Medical imaging diagnosis apparatus, nuclear medicine diagnosis apparatus, X-ray CT apparatus, and bed apparatus |
CN110691551A (en) * | 2018-05-02 | 2020-01-14 | 上海联影医疗科技有限公司 | Radiation system for radiation therapy and imaging |
US11612767B2 (en) | 2018-05-02 | 2023-03-28 | Shanghai United Imaging Healthcare Co., Ltd. | Radiation systems for radiation treatment and imaging |
Also Published As
Publication number | Publication date |
---|---|
JP4049829B2 (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4049829B2 (en) | Radiation diagnostic equipment | |
US7592600B2 (en) | Diagnosis device for radiographic and nuclear medical examinations | |
JP4604101B2 (en) | Image information creation method, tomographic image information creation method of tomography apparatus, and tomography apparatus | |
JP3022773B2 (en) | How to align nuclear medicine images | |
JP3800101B2 (en) | Tomographic image creating apparatus, tomographic image creating method and radiation inspection apparatus | |
CN102860838B (en) | Equipment and method for dental X-ray tomography | |
US20080087833A1 (en) | Modular multi-modal tomographic detector and system | |
US20090245457A1 (en) | Image generation method and device for emission computed tomography | |
US20070238950A1 (en) | Separate and combined multi-modality diagnostic imaging system | |
CN101401725B (en) | Patient treatment using a hybrid imaging system | |
US7907698B2 (en) | Gated CT with irregular sampling for slow CT acquisition | |
JP2003325499A (en) | Multi modality x-ray and nuclear medicine mammography imaging system and imaging method | |
JP3404080B2 (en) | Positron CT system | |
JP2006192286A (en) | Radiation diagnosis system | |
JP3828195B2 (en) | Gamma ray detector and nuclear medicine diagnostic apparatus using the same | |
US20040260171A1 (en) | Combined tomography and radiographic projection system | |
JP5262152B2 (en) | Diagnostic system | |
JP5140810B2 (en) | Tomographic image overlay display method and computer program for displaying tomographic images superimposed | |
JP2004045318A (en) | Nuclear medicine diagnostic system | |
JPH11190776A (en) | Display for inside and contour of body | |
JP4169291B2 (en) | Nuclear medicine diagnostic equipment | |
JP4719812B2 (en) | Image information creation method, tomographic image information creation method of tomography apparatus, and tomography apparatus | |
Billingsley | EXPANDING THE DIMENSIONALITY OF CARBON NANOTUBE IMAGING | |
JP2006346056A (en) | Medical image diagnostic apparatus | |
JP2023129000A (en) | Medical image diagnostic apparatus, reconstitution method, and reconstitution program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040506 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040802 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050427 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050620 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051220 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060131 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060307 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060721 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 6 |
|
EXPY | Cancellation because of completion of term |