JPH09511867A - Cu-Mg-Sn copper alloy conductor with high strength, heat resistance and abrasion resistance - Google Patents

Cu-Mg-Sn copper alloy conductor with high strength, heat resistance and abrasion resistance

Info

Publication number
JPH09511867A
JPH09511867A JP8505661A JP50566196A JPH09511867A JP H09511867 A JPH09511867 A JP H09511867A JP 8505661 A JP8505661 A JP 8505661A JP 50566196 A JP50566196 A JP 50566196A JP H09511867 A JPH09511867 A JP H09511867A
Authority
JP
Japan
Prior art keywords
copper alloy
copper
alloy
alloy conductor
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP8505661A
Other languages
Japanese (ja)
Inventor
ジョン チュン パク
クワング ヒョウン ハン
サング キョウム キム
ヤング ジン ユーン
ドング キー キム
ユン シュク ジョー
Original Assignee
エルジー ケーブル アンド マーチネリー エルティーディー
タイハン エレクトリック ワイヤー シーオー エルティーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エルジー ケーブル アンド マーチネリー エルティーディー, タイハン エレクトリック ワイヤー シーオー エルティーディー filed Critical エルジー ケーブル アンド マーチネリー エルティーディー
Publication of JPH09511867A publication Critical patent/JPH09511867A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】 本発明は銅合金材料に関するものであり、特に高い電気伝導性を維持しながら耐熱、耐磨耗性に優れた電車線用、自動車用電線などの特殊電線用導体及びリードフレームなどの使用に適した高強度、耐熱及び耐磨耗性を有するCu−Mg−Snの銅合金導体に関するものである。本発明の銅合金導体において、Cu−Mg−Snの3元合金の添加成分がMgは0.1〜0.5wt%、Snは0.1〜0.6wt%とし、MgとSnの合計が0.7wt%を超過しないようにしたものである。   (57) [Summary] The present invention relates to a copper alloy material, and is particularly suitable for use as a conductor for special electric wires such as electric wires for automobiles, electric wires for electric wires, etc., which have excellent heat resistance and abrasion resistance while maintaining high electric conductivity, and lead frames. It also relates to a Cu-Mg-Sn copper alloy conductor having high strength, heat resistance and abrasion resistance. In the copper alloy conductor of the present invention, the additive components of the Cu-Mg-Sn ternary alloy are 0.1 to 0.5 wt% for Mg and 0.1 to 0.6 wt% for Sn, and the total of Mg and Sn does not exceed 0.7 wt%. It was done like this.

Description

【発明の詳細な説明】 発明の名称 高強度、耐熱及び耐磨耗性を有するCu−Mg−Sn銅合金導体 発明の背景 発明の分野 本発明は銅合金材料に関し、特に高い電気伝導性を維持しながら耐熱、耐磨 耗性に優れた電車線用、自動車用電線などの特殊電線用導体及びリードフレーム などの使用に適した高強度、耐熱及び耐磨耗性を有するCu−Mg−Sn銅合金導 体に関する。 従来の技術 従来、電気鉄道分野に用いられる電線用導体は電気伝導性は勿論、耐磨耗性 が基本的に満たさなければならない。なぜなら、電動車の給電方式が電流導入線 であるトロリー線と電動車との上段に設けられている集電板との接触によって成 されるため電動車の運行が進んでいる間、トロリー線と集電板との摩擦が続けて 発生され、電動車の運行が進むほどトロリー線の磨耗はもっと大きくなるので、 線材の耐磨耗特性がトロリー線の壽命を決める重要な要因となる。 一般的に純銅を冷間圧延によって約35−44kgf/mm2程度の強度と磨耗性を有 するようにした硬銅トロリー線とか小量のAgを添加して耐熱特性を改善させた 銀入銅トロリー線が広く使用されていたが、これは耐磨耗性が不足して頻繁な交 替作業が要求されるなど、重要な大衆交通手段としての電動車システムの安全性 確保及び維持管理上の問題点となっている。 最近、硬銅トロリー線とか銀入銅トロリー線の代わりに耐磨耗性トロリー線 としてCu−Sn合金である錫入銅や、Cu−Cd合金であるカドミウム銅などが開 発され用いられているが、カドミウム銅の場合、その特性は80%IACS(国際聯銅 標準)以上の高い電気伝導度と50kgf/mm2以上の引張強度など比較的良好な方で あるが、製造費用があまり高く、また、有害重金属であるカドミウムを使用しな ければならないため製造工程だけでなく、環境公害が生じる危険がある。 なお、錫入銅の場合、電車線の用度と要求特性によって0.3−0.7wt%程度の Snが含有されている固溶形合金として引張強度が約40−45kgf/mm2程度として 固溶強化の効果は認められるが、導電特性が約60−70%IACS程度として比較的劣 る方であり、特に海岸地域とか融雪剤撒布地域及び公団地域などの塩海環境での 耐食性が問題視されている。 発明の要約 本発明は上記のような従来銅合金導体の問題点を解決するために研究開発され たものであり、本発明の目的は、高い電気伝導性、高強度、耐熱及び耐磨耗性を 有する電線用導体に適したCu−Mg−Sn銅合金導体を提供することを目的とす る。 本発明によれば、上記目的は、電線及び電気、電子用銅合金素材において、C u−Mg−Snの3元合金の添加成分がSn含量が0.1wt%−0.6wt%であり、Mg含 量が0.1wt%−0.5wt%範囲以内であるCu−Mg−Sn銅合金導体によって達成さ れ、好ましくは上記MgとSnの含量組成の合計が0.7wt%を超過しないことであ る。 これら、そして他の多くの本発明の目的及び利益は、クレームの精読、添付図 面及び後述の実施態様の詳細な説明から、本発明に係る当業者によって容易に明 らかになるだろう。 図面の簡単な説明 図1は、本発明のMg−Sn含量及び加工量による引張強度の変化を表わした グラフである。 図2は、本発明のMg−Sn含量及び加工量による電気伝導度の変化を表わし たグラフである。 好ましい実施態様の詳細な説明 本発明の銅合金は銅に微量のMgとSnを添加して作られたCu−Mg−Snの3 元系合金からなされたことを特徴とする。 本発明合金の構成要素であるMgは比重が1.74である代表的な軽金属元素の 一つとして比較的低価で、かつ無毒性であり、微量の添加によって導電率を損じ ないながらも加工硬化性に優れて冷間加工による強度の増加を大きくする効果を 得ることができる。 また、酸素との親和力が大きくて合金の溶解鋳造時導電率を損じやすいリン 脱酸などによる脱酸処理なしでも充分な脱酸効果を得ることができ、合金内の残 存酸素量を少なくすることにより合金の耐食性を改善する効果も得ることができ る。反面に、銅合金溶解時、Mgは銅と比重差異が大きくてよく混ぜないばかり でなく溶湯の流動性を大きく低下させるので鋳造作業性が劣り、度を越した脱酸 で材料を脆弱にする懸念がある。 このような短所を改善するために、本発明ではSnを添加するにおいて、そ のSn添加自体では合金の耐磨耗性を改善させ、銅との融合性に優れ、Mgの合金 化も容易にしてくれるだけでなく、溶湯の流動性をよくすることにより鋳造性を 向上させ、Mgによって材料が脆弱になる短所を補完してくれる効果を与えるよ うにするものである。 合金処理による代表的な金属の強化方法としては固溶強化及び析出強化があ る。 上記固溶形合金の場合には添加元素の増加により各種物理的性質が大きく変 化するが、特に、電気的特性を低下し過ぎる傾向があり、析出形合金の場合には 一般的に電気的特性の低下が少なく、耐熱性改善などの効果があって高伝導性を 要求する電気、電子用素材に多く適用されているが、工程上必ず溶体化処理、析 出熱処理などの工程を含んでいるために経済性の側面でとても不利な点があり、 機械的強度も不十分な傾向がある。 従って、本発明では電気的特性を大きく損じない範囲内で微量のMgとSnを 含む固溶体強化形のCu−Mg−Snの3元合金系を構成することにその目的があ る。 本発明によって製造される銅合金導体は図面1及び図面2に図示されている ように合金組成及び加工条件によって60%IACS−80%IACS(国際聯銅標準)まで の高い導電率と、40kgf/mm2−80kgf/mm2程度までの機械的強度を有し、特に、 耐磨耗性と耐熱性が既存材料に比べて優れた特性を有するようにするものである 。 以下に、本発明の望ましい実施例を詳細に説明すると次のようである。 図面1及び図面2に図示されたグラフから分かることができるように合金元 素の添加量は、Mgの場合0.5wt%以上添加時、合金の電気伝導度が急激に低下さ れ、Snも0.6wt%以上添加時は強度の改善効果よりは導電率の低下だけを生ずる ことになる。なお、MgやSnは共に0.1wt%未満では導電率においては有利であ るが、機械的特性上の顕著な上昇効果は得ることができない。従って、本発明で はMgは0.1〜0.5wt%、Snは0.1〜0.6wt%にし、MgとSnの合計が0.7wt%を超 過しないようにした。 本発明は適用効果を確認するために実施例を通じてCu−0.2wt%Mg−0.1wt %Sn、Cu−0.1wt%Mg−0.1wt%Sn及びCu−0.3wt%Mg−0.1wt%Snの組成 を有する3元合金を製造して、一例として従来の電車線用トロリー線及び吊架線 とその特性をそれぞれ比較例示した。 本実施例は比較対象の製品が使用特性上長さが長い線材を要求する電線であ るため水平連続鋳造方式を利用して直径23φmmロードで鋳造した。勿論、半連続 鋳造など他の鋳造方式を採択しても素材特性上にはなんの差異がない。SnとMg の合金処理はMgは20wt%Mg−Cu母合金を使用し、Snは純金属状態で使用した 。溶解時溶湯の上部には十分な量の木炭を覆って、窒素ガス(N2)で不活性雰 囲気を維持して溶湯が直接大気雰囲気と接触することを防止した。溶湯の脱酸は Mg装入時酸化損失を考慮した量を装入することによりMgによる脱酸処理を通じ て酸化スラグで除去した。 水平連続鋳造方式によって製造された23φmmのCu−0.2wt%Mg−0.1wt%S n、Cu−0.1wt%Mg−0.1wt%Sn鋳造棒は110sq.規格のトロリー線で新鮮加工し 、Cu−0.3wt%Mg−0.1wt%Sn、Cu−0.2wt%Mg−0.1wt%Sn鋳造棒は中間熱 処理なしで1.5φmmまで新鮮加工した。 次の表1は本発明のCu−0.2wt%Mg−0.1wt%Sn及びCu−0.1wt%Mg−0. 1wt%Sn合金材と既存の硬銅トロリー線及び錫入銅トロリー線とその特性を比較 したものである。 上記で磨耗試験はトロリーワイヤ線材から得られた直径8mm、長さ12mmのシ リンダー形の試験片で長手方向面を100φmmの高速度鋼材質のディスクに接触さ せた後600RPMで10,000回回転した後試験片の重さ減量を測定し、潤滑 剤としては収容性切削油を使用した。なお、耐熱性試験はアルゴンガス(Ar) 雰囲気の炉で300℃に2時間維持後、水冷して引張強度を測定して熱処理前の引 張強度値に分けて百分率として表示した。 また、表2は本発明のCu−0.3wt%Mg−0.1wt%Sn及びCu−0.2wt%Mg− 0.1wt%Sn合金材と既存のCd銅及び錫入銅吊架線とその特性を比較したもので ある。一方、耐熱性試験方法は上記表1での実験と同一であり、ただ、その温度 と時間を異にした。 上記の表1及び表2から分かることができるように本発明の合金は既存の硬 銅線及び錫入銅線材などに比べて諸般特性に優れており、特に代表的な有害重金 属によって環境公害要因となり、製造工程上の非経済的要因を随伴するCd含有 合金とほとんど同等以上の水準の特性を表わすことをわかることができる。なお 、リードフレーム用素材及び特殊電線導体、電極材などで広く使用されているZ r銅、Cr−Zr銅などの場合、強化機構自体が析出硬化用であるため、先に説明 したように製造工程上溶体化処理及び析出熱処理などが必要なので工程上非経済 的な要因を持っている。従って、本発明の合金は既存のCd含有合金材に対する 代替素材として、さらに既存の熱処理形銅合金の素材に比べて優れた特性及び経 済性を有する素材として代替競争力が充分であることをわかることができる。 以上、本発明の好ましい実施態様の説明したが、当業者であれば本発明の請求 の範囲に記載の範囲から想定される修正、設計変更等が可能であろう。 Name High Strength of the Detailed Description of the Invention] invention, FIELD OF THE INVENTION The present Cu-Mg-Sn copper alloy conductors invention having heat and abrasion resistance relates copper alloy material, maintain a particularly high electrical conductivity However, Cu-Mg-Sn copper with high strength, heat resistance and abrasion resistance suitable for use in conductors for special electric wires such as electric wires for automobiles, which have excellent heat resistance and abrasion resistance, and lead frames. Regarding alloy conductors. 2. Description of the Related Art Conventionally, electric wire conductors used in the field of electric railways must basically have wear resistance as well as electric conductivity. Because the power supply system of the electric car is made by contact between the trolley wire which is the current introduction line and the current collector plate provided in the upper stage of the electric car, the trolley wire is connected while the electric car is in operation. The friction of the trolley wire increases as the electric vehicle continues to operate due to continuous friction with the current collector plate, so the wear resistance of the wire is an important factor in determining the life of the trolley wire. Generally, pure copper is cold rolled to have a strength and wear resistance of about 35-44 kgf / mm 2 , a hard copper trolley wire, or a small amount of Ag added to improve the heat resistance of silver-filled copper trolley. The line was widely used, but this is a problem in ensuring safety and maintenance of the electric vehicle system as an important means of mass transportation, such as lack of abrasion resistance and frequent replacement work required. Has become. Recently, Cu-Sn alloy tin-containing copper and Cu-Cd alloy cadmium copper have been developed and used as wear-resistant trolley wires instead of hard copper trolley wire or silver-filled copper trolley wire. In the case of cadmium copper, its properties are relatively good such as high electrical conductivity of 80% IACS (International Union of Copper Standards) or higher and tensile strength of 50 kgf / mm 2 or higher, but the manufacturing cost is too high. Since cadmium, which is a harmful heavy metal, must be used, there is a risk of not only the manufacturing process but also environmental pollution. In the case of tin-filled copper, depending on the utility of the train wire and the required characteristics, a solid solution alloy containing about 0.3-0.7 wt% Sn has a tensile strength of about 40-45 kgf / mm 2 and solid solution strengthening. However, the conductivity is about 60-70% IACS, which is relatively inferior. Corrosion resistance in salt sea environments such as coastal areas, snow-melting agent spraying areas and public corporation areas is a problem. . SUMMARY OF THE INVENTION The present invention has been researched and developed in order to solve the above problems of conventional copper alloy conductors, and an object of the present invention is to provide high electrical conductivity, high strength, heat resistance and abrasion resistance. It is an object of the present invention to provide a Cu-Mg-Sn copper alloy conductor suitable for a conductor for electric wires having the above. According to the present invention, the above object is to provide a Cu-Mg-Sn ternary alloy having an Sn content of 0.1 wt% -0.6 wt% and a Mg content Is achieved with a Cu-Mg-Sn copper alloy conductor within the range of 0.1 wt% -0.5 wt%, preferably the sum of the Mg and Sn content compositions does not exceed 0.7 wt%. These and many other objects and benefits of the present invention will be readily apparent to those skilled in the art according to the present invention from reading the claims, the accompanying drawings, and the detailed description of the embodiments below. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing changes in tensile strength according to the Mg—Sn content and processing amount of the present invention. FIG. 2 is a graph showing the change in electrical conductivity according to the Mg—Sn content and processing amount of the present invention. Detailed Description of the Preferred Embodiments The copper alloy of the present invention is characterized by being made of a Cu-Mg-Sn ternary alloy made by adding trace amounts of Mg and Sn to copper. Mg, which is a constituent element of the alloy of the present invention, has a relatively low value as one of the typical light metal elements having a specific gravity of 1.74, is nontoxic, and has a work-hardening property even if the addition of a trace amount thereof does not impair the conductivity. It is possible to obtain the effect of greatly increasing the increase in strength due to cold working. Also, a sufficient deoxidizing effect can be obtained without deoxidation treatment such as phosphorus deoxidation, which has a large affinity for oxygen and tends to impair the conductivity during melting and casting of the alloy, and reduce the amount of residual oxygen in the alloy. By this, the effect of improving the corrosion resistance of the alloy can also be obtained. On the other hand, when the copper alloy is melted, Mg has a large difference in specific gravity from copper and does not mix well, and it also greatly reduces the fluidity of the molten metal, resulting in poor casting workability and deoxidizing too much to weaken the material. I have a concern. In order to improve such disadvantages, in the present invention, when Sn is added, the addition of Sn itself improves the wear resistance of the alloy, has excellent fusibility with copper, and facilitates the alloying of Mg. Not only does it improve the fluidity of the molten metal, but it also improves the castability and gives the effect of compensating for the weakness of the material due to Mg. Typical solution strengthening methods by alloying include solid solution strengthening and precipitation strengthening. In the case of the above solid solution type alloy, various physical properties change greatly due to the increase of additional elements, but in particular, there is a tendency for the electrical characteristics to deteriorate too much, and in the case of precipitation type alloys, the electrical characteristics generally change. It is applied to many electrical and electronic materials that require high conductivity with less deterioration of heat resistance and improved heat resistance, but it always includes solution treatment, precipitation heat treatment, etc. There is a great disadvantage in terms of economy, and the mechanical strength tends to be insufficient. Therefore, it is an object of the present invention to form a solid solution reinforced Cu-Mg-Sn ternary alloy system containing a trace amount of Mg and Sn within a range that does not significantly impair electrical characteristics. As shown in FIGS. 1 and 2, the copper alloy conductor manufactured according to the present invention has high conductivity up to 60% IACS-80% IACS (International Union of Copper Standards) and 40 kgf / depending on the alloy composition and processing conditions. It has a mechanical strength of up to about mm 2 -80 kgf / mm 2 , and in particular has excellent wear resistance and heat resistance compared to existing materials. Hereinafter, preferred embodiments of the present invention will be described in detail. As can be seen from the graphs shown in FIGS. 1 and 2, when the amount of alloying element added is 0.5 wt% or more in the case of Mg, the electrical conductivity of the alloy is drastically reduced and Sn is also 0.6 wt%. When added as described above, only the decrease in conductivity occurs rather than the effect of improving strength. If both Mg and Sn are less than 0.1 wt%, the conductivity is advantageous, but a significant increase in mechanical properties cannot be obtained. Therefore, in the present invention, Mg is set to 0.1 to 0.5 wt% and Sn is set to 0.1 to 0.6 wt% so that the total of Mg and Sn does not exceed 0.7 wt%. According to the present invention, the composition of Cu-0.2wt% Mg-0.1wt% Sn, Cu-0.1wt% Mg-0.1wt% Sn and Cu-0.3wt% Mg-0.1wt% Sn is confirmed in order to confirm the application effect. A ternary alloy having the following characteristics was manufactured, and by way of example, a conventional trolley wire for a train line and a suspension wire and their characteristics were compared and illustrated. In this example, since the product to be compared is an electric wire that requires a long wire due to its usage characteristics, it was cast with a diameter of 23 mm by using the horizontal continuous casting method. Of course, there is no difference in material characteristics even if other casting methods such as semi-continuous casting are adopted. For the alloy treatment of Sn and Mg, Mg was used as a 20 wt% Mg-Cu master alloy, and Sn was used in a pure metal state. During melting, a sufficient amount of charcoal was covered on the top of the melt to maintain an inert atmosphere with nitrogen gas (N 2 ) to prevent the melt from coming into direct contact with the atmosphere. Deoxidation of the molten metal was removed by oxidation slag through the deoxidation treatment with Mg by charging an amount in consideration of the oxidation loss at the time of charging Mg. The 23φ mm Cu-0.2wt% Mg-0.1wt% Sn and Cu-0.1wt% Mg-0.1wt% Sn casting rods produced by the horizontal continuous casting method were freshly processed with a trolley wire of 110sq. The 0.3 wt% Mg-0.1 wt% Sn and Cu-0.2 wt% Mg-0.1 wt% Sn cast rods were freshly processed to 1.5 mm without intermediate heat treatment. The following Table 1 shows the Cu-0.2wt% Mg-0.1wt% Sn and Cu-0.1wt% Mg-0.1wt% Sn alloy materials of the present invention, the existing hard copper trolley wire and the tin-filled copper trolley wire, and their characteristics. Are compared. The above wear test is a cylinder type test piece with a diameter of 8 mm and a length of 12 mm obtained from a trolley wire wire. The longitudinal surface is brought into contact with a disk made of a high speed steel material of 100 φ mm and then rotated 10,000 times at 600 RPM. The weight loss of the piece was measured, and the containing cutting oil was used as the lubricant. In the heat resistance test, the temperature was maintained at 300 ° C. for 2 hours in a furnace with an argon gas (Ar) atmosphere, water cooling was performed, and the tensile strength was measured and the tensile strength values before heat treatment were divided and expressed as a percentage. Table 2 compares the characteristics of the Cu-0.3wt% Mg-0.1wt% Sn and Cu-0.2wt% Mg-0.1wt% Sn alloy materials of the present invention with the existing Cd copper and tin-containing copper suspension wire. It is a thing. On the other hand, the heat resistance test method was the same as the experiment in Table 1 above, except that the temperature and time were different. As can be seen from the above Tables 1 and 2, the alloy of the present invention is superior in various characteristics to the existing hard copper wire and tin-filled copper wire material, and in particular, it is an environmental pollution factor due to typical harmful heavy metals. Therefore, it can be seen that the alloy exhibits characteristics of a level almost equal to or higher than that of the Cd-containing alloy accompanied by uneconomical factors in the manufacturing process. In the case of Zr copper and Cr-Zr copper, which are widely used for lead frame materials, special electric wire conductors, electrode materials, etc., the strengthening mechanism itself is for precipitation hardening, so it is manufactured as described above. Since solution treatment and precipitation heat treatment are required in the process, it has an uneconomical factor in the process. Therefore, it can be seen that the alloy of the present invention has sufficient alternative competitiveness as a substitute material for the existing Cd-containing alloy material and as a material having excellent properties and economical efficiency as compared with the existing heat-treated copper alloy material. be able to. Although the preferred embodiments of the present invention have been described above, those skilled in the art will be able to make modifications, design changes and the like that are envisioned from the scope of the claims of the present invention.

【手続補正書】特許法第184条の7第1項 【提出日】1995年6月7日 【補正内容】 1.電線及び電気、電子用銅合金素材において、Cu−Mg−Snの3元合金の 添加成分がSn含量が0.1wt%−0.6wt%であり、Mg含量が0.1wt%−0.5wt%範囲 以内であることを特徴とするCu−Mg−Sn銅合金導体。 2.上記MgとSnの含量組成の合計が0.7wt%を超過しないことを特徴とする 請求項1に記載のCu−Mg−Sn銅合金導体。 3.Cu−Mg−Snの3元合金から組成される銅合金導体を水平連続鋳造法に よって製造することを特徴とする請求項1又は2に記載の銅合金導体。 4.Cu−Mg−Snの3元合金から組成される銅合金導体を熱間加工及び冷間 加工を経て半連続鋳造法によって製造することを特徴とする請求項1又は2に記 載の銅合金導体。[Procedure of Amendment] Article 184-7, Paragraph 1 of the Patent Act [Submission date] June 7, 1995 [Correction contents]   1. Cu-Mg-Sn ternary alloy of copper alloy material for electric wire and electricity The additive component has a Sn content of 0.1 wt% -0.6 wt% and an Mg content of 0.1 wt% -0.5 wt% Cu-Mg-Sn copper alloy conductor characterized by being within.   2. The total content composition of Mg and Sn does not exceed 0.7 wt% The Cu-Mg-Sn copper alloy conductor according to claim 1.   3. Copper alloy conductor composed of Cu-Mg-Sn ternary alloy is applied to horizontal continuous casting method. Therefore, it manufactures, The copper alloy conductor of Claim 1 or 2 characterized by the above-mentioned.   4. Hot working and cold working of copper alloy conductors composed of Cu-Mg-Sn ternary alloys It manufactures by a semi-continuous casting method after processing, It described in Claim 1 or 2 characterized by the above-mentioned. Mounted copper alloy conductor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 パク ジョン チュン 大韓民国 425−040 キュンギ−ド アン サン−シ シュンポ−ドング 5−1006 シュンキュング アパートメント (72)発明者 ハン クワング ヒョウン 大韓民国 137−049 ソウル スウチョ− ク バンポ ボン−ドング 78−402 バ ンポ アパートメント (72)発明者 キム サング キョウム 大韓民国 137−074 ソウル スウチョ− ク スウチョ 4−ドング 4−403 サ ミク アパートメント (72)発明者 ユーン ヤング ジン 大韓民国 435−040 キュンギ−ド クー ンポ−シ サンボン−ドング 140−103 シュグオング アパートメント (72)発明者 キム ドング キー 大韓民国 132−103 ソウル ドボング− ク ミア 3−ドング 214−79 (72)発明者 ジョー ユン シュク 大韓民国 133−191 ソウル シュングド ング−ク ジャヤング 1−ドング 635 −33────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Park Jung Chun             Republic of Korea 425-040 Kyungui-doan             Sun-Shimppo Dong 5-1006             Shun Kung Apartment (72) Inventor Han Kwang Hyoeun             South Korea 137-049 Seoul Sucho-             Kubanpo Bon-Dong 78-402 Ba             Npo Apartment (72) Inventor Kim Sang Kyeoum             South Korea 137-074 Seoul Sucho-             Kusucho 4-Dong 4-403             Miku apartment (72) Inventor Yun Young Jin             Republic of Korea 435-040 Kyungyi Duku             Information System Don Dong 140-103             Shugong Apartment (72) Inventor Kim Dong Kee             Republic of Korea 132-103 Seoul Dobong-             Kumia 3-Dong 214-79 (72) Inventor Joe Yun Shuk             Republic of Korea 133-191 Seoul Shunde             Ngu-Ku Ja Young 1-Dong 635             −33

Claims (1)

【特許請求の範囲】 1.電線及び電気、電子用銅合金素材において、Cu−Mg−Snの3元合金の 添加成分がSn含量が0.1wt%−0.6wt%であり、Mg含量が0.1wt%−0.5wt%範囲 以内であることを特徴とするCu−Mg−Sn銅合金導体。 2.上記MgとSnの含量組成の合計が0.7wt%を超過しないことを特徴とする 請求項1に記載のCu−Mg−Sn銅合金導体。 3.Cu−Mg−Snの3元合金から組成される銅合金導体を水平連続鋳造法に よって製造することを特徴とする請求項1又は2に記載の銅合金導体。 4.Cu−Mg−Snの3元合金から組成される銅合金導体を半連続鋳造法によ って熱間加工及び冷間加工を経て製造することを特徴とする請求項1又は2に記 載の銅合金導体。[Claims]   1. Cu-Mg-Sn ternary alloy of copper alloy material for electric wire and electricity The additive component has a Sn content of 0.1 wt% -0.6 wt% and an Mg content of 0.1 wt% -0.5 wt% Cu-Mg-Sn copper alloy conductor characterized by being within.   2. The total content composition of Mg and Sn does not exceed 0.7 wt% The Cu-Mg-Sn copper alloy conductor according to claim 1.   3. Copper alloy conductor composed of Cu-Mg-Sn ternary alloy is applied to horizontal continuous casting method. Therefore, it manufactures, The copper alloy conductor of Claim 1 or 2 characterized by the above-mentioned.   4. A copper alloy conductor composed of a Cu-Mg-Sn ternary alloy is produced by a semi-continuous casting method. It manufactures through hot working and cold working according to claim 1 or 2, Mounted copper alloy conductor.
JP8505661A 1994-07-27 1994-08-09 Cu-Mg-Sn copper alloy conductor with high strength, heat resistance and abrasion resistance Ceased JPH09511867A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1019940018341A KR0133454B1 (en) 1994-07-27 1994-07-27 Cu-mg-sn copper alloy conductor having high strenght heat resistance and anti-abrasione
KR1994/18341 1994-07-27
PCT/KR1994/000109 WO1996003756A1 (en) 1994-07-27 1994-08-09 HIGH STRENGTH, HEAT RESISTANCE AND ABRASION RESISTANCE Cu-Mg-Sn ALLOY CONDUCTOR

Publications (1)

Publication Number Publication Date
JPH09511867A true JPH09511867A (en) 1997-11-25

Family

ID=19389057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8505661A Ceased JPH09511867A (en) 1994-07-27 1994-08-09 Cu-Mg-Sn copper alloy conductor with high strength, heat resistance and abrasion resistance

Country Status (3)

Country Link
JP (1) JPH09511867A (en)
KR (1) KR0133454B1 (en)
WO (1) WO1996003756A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002439A (en) * 2018-06-29 2020-01-09 株式会社神戸製鋼所 Copper alloy for fuse

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040238086A1 (en) * 2003-05-27 2004-12-02 Joseph Saleh Processing copper-magnesium alloys and improved copper alloy wire
ITUA20163211A1 (en) * 2016-05-06 2017-11-06 De Angeli Prod S R L ELECTRIC CONDUCTOR FOR ELECTRIC WINDINGS, ESPECIALLY FOR CONTINUOUS TRAVEL CABLE
KR102022982B1 (en) * 2018-03-09 2019-09-19 블루메탈(주) Copper-ferrous alloy cable having magnetic high shield and method thereof
KR102507381B1 (en) * 2022-02-09 2023-03-09 세종대학교산학협력단 Color Alloy Based on Juxtaposition Mixing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1431729A (en) * 1973-08-04 1976-04-14 Hitachi Shipbuilding Eng Co Copper alloy and mould produced therefrom
GB2123032B (en) * 1982-06-28 1985-10-02 Bicc Plc Copper-base alloys
JPH0586427A (en) * 1991-09-27 1993-04-06 Hitachi Cable Ltd Conductive extra fine copper wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020002439A (en) * 2018-06-29 2020-01-09 株式会社神戸製鋼所 Copper alloy for fuse

Also Published As

Publication number Publication date
WO1996003756A1 (en) 1996-02-08
KR960005628A (en) 1996-02-23
KR0133454B1 (en) 1998-05-15

Similar Documents

Publication Publication Date Title
US4559200A (en) High strength and high conductivity copper alloy
CN101345143A (en) Cu/Ti3SiC2 electric contact material and preparation technique
KR100706054B1 (en) Electrical conductive metal strip and connector manufactured from the same
CN101345142A (en) Electrical contact material with Ti3SiC2 multi-layer compound structure and preparation technique
JPH09511867A (en) Cu-Mg-Sn copper alloy conductor with high strength, heat resistance and abrasion resistance
MX2013004777A (en) Low lead ingot.
JPS6316456B2 (en)
JP2677875B2 (en) Copper alloy for trolley wire
JP4244380B2 (en) Trolley wire
JPH11189834A (en) High strength trolley wire and its manufacture
KR100519556B1 (en) Brass alloys which maintain a golden color and manufacturing method thereof
JPS626737B2 (en)
JP2677874B2 (en) Copper alloy for trolley wire
CN86103116A (en) The prescription of aluminium, zinc, silicon, manganese, rare-earth bearing metal and pouring procedure
JPH01165733A (en) High strength and high electric conductive copper alloy
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
KR950012422B1 (en) Cu-mg-zn alloy cable
JPH0941056A (en) Motor commutator material
JPS6316455B2 (en)
CN1346896A (en) Antiwear Cu-base material with high electric conductivity
JP2585347B2 (en) Method for producing highly conductive copper alloy with excellent migration resistance
CN112708815B (en) Heat-conducting anti-fatigue magnesium alloy and preparation method thereof
JPS6138252B2 (en)
JPH05125469A (en) Copper alloy trolley line
JPS5854180B2 (en) High strength and conductive copper alloy

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050117

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20050228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20050909

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20051017

A313 Final decision of rejection without a dissenting response from the applicant

Free format text: JAPANESE INTERMEDIATE CODE: A313

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060314