JPH0941038A - Method for measuring size of primarily recrystallized grain of silicon steel sheet - Google Patents

Method for measuring size of primarily recrystallized grain of silicon steel sheet

Info

Publication number
JPH0941038A
JPH0941038A JP19770995A JP19770995A JPH0941038A JP H0941038 A JPH0941038 A JP H0941038A JP 19770995 A JP19770995 A JP 19770995A JP 19770995 A JP19770995 A JP 19770995A JP H0941038 A JPH0941038 A JP H0941038A
Authority
JP
Japan
Prior art keywords
steel sheet
measuring
grain size
core loss
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19770995A
Other languages
Japanese (ja)
Inventor
Takashi Mogi
尚 茂木
Yasunari Yoshitomi
康成 吉冨
Masao Ono
正雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19770995A priority Critical patent/JPH0941038A/en
Publication of JPH0941038A publication Critical patent/JPH0941038A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the dispersion of core loss value and to improve measuring accuracy, at the time of measuring the size of primarily recrystallized grains based on core loss value measured by applying a magnetic field to a silicon steel sheet, by removing a nitrided layer on the surface of the steel sheet and measuring the core loss value. SOLUTION: Before the start of secondary recrystallization in final-finish annealing after hot rolling, as to the measurement of core loss value in a primarily recrystallized sheet subjected to nitriding treatment, the surface layer to 20μm from the surface of the steel sheet is removed by using a means such as grinding. This is because that the nitrogen content in the sheet width direction of the nitrided steel sheet varies to the average nitrogen content in the whole body, also, the sheet thickness distribution of the nitrogen content is not similar in the sheet width direction, the nitrogen content in the surface layer varies, and this difference causes the dispersion of the measured value of core loss, so the surface layer of the steel sheet in which nitriding variation is present is removed. Moreover, this measuring method is applicable to any parameter measurement related to secondary recrystallizing phenomenohs such as the average grain size, the ratio of coarsened grains and the distribution of the grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、産業上で利用され
る一方向性電磁鋼板を製造する際の一次再結晶平均粒径
の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an average primary recrystallization grain size when manufacturing a grain-oriented electrical steel sheet used in industry.

【0002】[0002]

【従来の技術】現在、実用化されている一方向性電磁鋼
板は、例外なく二次再結晶によって形成された尖鋭な集
合組織を持っている。二次再結晶集合組織は、鋼板が電
気機器として使われた際、最も優れた性能、効率を発揮
するような結晶方位に制御されている。
2. Description of the Related Art The unidirectional electrical steel sheets that have been put into practical use at present have a sharp texture formed by secondary recrystallization without exception. The secondary recrystallization texture is controlled to a crystal orientation that gives the best performance and efficiency when the steel sheet is used as electrical equipment.

【0003】従って、二次再結晶集合組織の尖鋭度が高
いほど、電気機器の性能は優れる。二次再結晶集合組織
の尖鋭度は、一般に磁束密度B8 (800AT/mの磁
場中の磁束密度の強さ)に強く反映する。磁束密度は、
二次再結晶した集合組織によって、極めて敏感に変化す
る。従って、適正な二次再結晶成長は製造者、利用者に
とって有益なものである。
Therefore, the higher the sharpness of the secondary recrystallization texture, the better the performance of the electric device. The sharpness of the secondary recrystallization texture generally strongly reflects on the magnetic flux density B 8 (the strength of the magnetic flux density in a magnetic field of 800 AT / m). The magnetic flux density is
It changes extremely sensitively due to the secondary recrystallized texture. Therefore, proper secondary recrystallization growth is beneficial to manufacturers and users.

【0004】二次再結晶は、一次再結晶粒の、方位選択
性の極めて強い異常粒成長現象である。この二次再結晶
粒の{110}〈001〉方位集積度の指標である磁束
密度を支配する主要因子が、一次再結晶組織の集合組
織、結晶粒径、およびインヒビター強度(析出物や粒界
偏析元素による粒界移動に対する抵抗力)であること
は、既によく認識されている。
Secondary recrystallization is an abnormal grain growth phenomenon of primary recrystallized grains having extremely strong orientation selectivity. The main factors that control the magnetic flux density, which is an index of the degree of {110} <001> orientation integration of the secondary recrystallized grains, are the texture of the primary recrystallized structure, the crystal grain size, and the inhibitor strength (precipitates and grain boundaries). It is already well recognized that it is resistance to grain boundary migration due to segregation elements).

【0005】しかしながら、一方向性電磁鋼板の製造に
おいて、上記因子をオンライン計測し、適正な一次再結
晶組織形成を確保する技術はあるが(特公平2−267
223号公報)、更にきめ細かい制御を望んだ場合、満
足した精度を得るには達していない。
However, in the production of grain-oriented electrical steel sheets, there is a technique for measuring the above factors online to ensure proper primary recrystallization structure formation (Japanese Patent Publication No. 2-267).
No. 223), when a finer control is desired, satisfactory accuracy has not been achieved.

【0006】このような状況を反映して、一方向性電磁
鋼板の工業的製造は、次のような問題点を有している。
極く希であるが、大量の二次再結晶不良(製品は屑化さ
れる)が発生することがある。一方向性電磁鋼板の仕上
焼鈍は、50〜500時間に及ぶ長時間のバッチ焼鈍で
あり、多くの同種コイルが同時併行で焼鈍される。
Reflecting such a situation, the industrial production of grain-oriented electrical steel sheet has the following problems.
Although extremely rare, a large amount of secondary recrystallization defects (the product is scrapped) may occur. The finish annealing of the grain-oriented electrical steel sheet is a batch annealing for a long time of 50 to 500 hours, and many similar coils are simultaneously annealed.

【0007】従って、仕上焼鈍後に二次再結晶不良が発
見された時点では、既に大量の二次再結晶不良の発生を
招くことになる。従って、二次再結晶不良の原因究明と
その救済策の確立に長時間を要するので、多大の損失を
生じる。
Therefore, when a secondary recrystallization defect is found after the finish annealing, a large amount of secondary recrystallization defect is already generated. Therefore, it takes a long time to investigate the cause of the secondary recrystallization defect and to establish a remedy for the defect, resulting in a large loss.

【0008】上記二次再結晶不良の他に、通常の製造状
況における正常材においても、磁束密度はばらつきを生
じる。例えば、成分的にほとんど差がないのに溶製ロッ
ト間や、同一溶製ロット内のコイル間で、また同一コイ
ル内の部位によって、多少の磁束密度のばらつきがあ
り、磁束密度の高位安定化の障害となる。これは、二次
再結晶挙動が各種工程条件の微妙な変動を極めて敏感に
反映するからである。
In addition to the above-mentioned secondary recrystallization failure, the magnetic flux density also varies in a normal material under normal manufacturing conditions. For example, although there is almost no difference in composition, there is some variation in the magnetic flux density between melted lots, between coils in the same melted lot, and depending on the part in the same coil, which stabilizes the magnetic flux density at a high level. Becomes an obstacle. This is because the secondary recrystallization behavior very sensitively reflects subtle variations in various process conditions.

【0009】上記二次再結晶不良や磁束密度のばらつき
の原因が仕上焼鈍より前の工程に存在するならば、その
影響は一次再結晶平均粒径等の磁束密度支配因子に及ん
でいる筈である。従って、これら支配因子を一次再結晶
焼鈍工程でオンライン計測によって精度よく把握できれ
ば、二次再結晶不良の大量発生防止に極めて有益であ
り、かつ、一次再結晶焼鈍条件の変更によって、その悪
影響を除去できるならば、磁束密度の高位安定化に対し
て有益である。
If the cause of the secondary recrystallization defect or the variation of the magnetic flux density exists in the process before the finish annealing, the influence should be exerted on the magnetic flux density controlling factors such as the primary recrystallization average grain size. is there. Therefore, if these controlling factors can be accurately grasped by online measurement in the primary recrystallization annealing process, it is extremely useful in preventing a large amount of secondary recrystallization defects from occurring, and the adverse effects can be removed by changing the primary recrystallization annealing conditions. If possible, it is beneficial for high-order stabilization of the magnetic flux density.

【0010】一次再結晶平均粒径は、磁束密度や二次再
結晶不良の発生に極めて大きな影響を与える。また、平
均粒径を18〜23μmの範囲に制御すれば、高位安定
の磁束密度が得られることは公知である。但し、この1
8〜23μmという最適値は、一方向性電磁鋼板に共通
ではなく、集合組織やインヒビターの強度や種類(耐熱
特性)によってそれぞれ異なった値をとる。よって、前
工程の小さな変動は後工程の適正条件を大きく変え、二
次再結晶不良や磁束密度のばらつきの原因となる。
The average particle size of primary recrystallization has an extremely large effect on the magnetic flux density and the occurrence of secondary recrystallization defects. Further, it is known that a magnetic flux density with high stability can be obtained by controlling the average particle diameter within the range of 18 to 23 μm. However, this 1
The optimum value of 8 to 23 μm is not common to the grain-oriented electrical steel sheet, but takes different values depending on the texture and the strength and type (heat resistance characteristics) of the inhibitor. Therefore, small fluctuations in the previous process greatly change the appropriate conditions in the subsequent process, and cause secondary recrystallization defects and variations in magnetic flux density.

【0011】以上のように、一次再結晶平均粒径を適正
範囲に制御できれば、二次再結晶不良や磁束密度のばら
つき発生を排除でき、磁気特性の優れた一方向性電磁鋼
板を工業的に安定して製造できる。
As described above, if the average primary recrystallization grain size can be controlled within an appropriate range, secondary recrystallization defects and variations in magnetic flux density can be eliminated, and a unidirectional electrical steel sheet with excellent magnetic properties can be industrially produced. Can be manufactured stably.

【0012】[0012]

【発明が解決しようとする課題】本発明は、適正な粒径
の一次再結晶を生成させるために、一次再結晶平均粒径
を精度よく測定する方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for accurately measuring the average primary recrystallization grain size in order to generate primary recrystallization having an appropriate grain size.

【0013】[0013]

【課題を解決するための手段】本発明の目的は、上記の
問題点を除去改善し、一方向性電磁鋼板の一次再結晶平
均粒径を精度よく測定する方法を提供することにある。
本発明の要旨とするところは、電磁鋼板に磁界を加
え、測定される鉄損値によって一次再結晶粒径を計測す
るに際し、鋼板表面を研磨等で除去し、残存部分の鉄損
を測定し、外部からのガス等により、非磁性体の介在
物が多く存在する板厚表面から20μmの表層を除き、
一方向性電磁鋼板用一次再結晶板に用いることを特徴と
する電磁鋼板の一次再結晶粒径測定法を提供するもので
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for eliminating and improving the above problems and for accurately measuring the average primary recrystallization grain size of a grain-oriented electrical steel sheet.
The place to be the gist of the present invention is to apply a magnetic field to an electromagnetic steel sheet, and at the time of measuring the primary recrystallized grain size by the measured iron loss value, the steel sheet surface is removed by polishing or the like, and the iron loss of the remaining portion is measured. The surface layer of 20 μm is removed from the plate thickness surface where many non-magnetic inclusions are present due to external gas, etc.
The present invention provides a method for measuring the primary recrystallized grain size of an electromagnetic steel sheet, which is used as a primary recrystallized sheet for a unidirectional electrical steel sheet.

【0014】以下、実験結果を基に詳細に説明する。本
発明者らは、一次再結晶平均粒径の測定法を種々検討し
た結果、従来の鋼板鉄損を測定する手段に対し、例え
ば、板厚方向で非磁性体などの介在物が多いと予想され
る表層を除去し、残存部の鉄損を測定して一次再結晶平
均粒径を算出する方法が、粒径測定精度向上に極めて有
効であるという知見を得た。この測定条件はオンライ
ン、オフラインの何れも限定するものではない。
The details will be described below based on the experimental results. As a result of various examinations on the method for measuring the average primary recrystallization grain size, the present inventors expect that there are many inclusions such as non-magnetic substances in the sheet thickness direction in comparison with the conventional means for measuring iron loss of a steel sheet. It has been found that a method of removing the surface layer that is formed and measuring the iron loss in the remaining portion to calculate the average primary recrystallization particle size is extremely effective in improving the particle size measurement accuracy. This measurement condition is not limited to online or offline.

【0015】本発明の測定法では一般の一方向性電磁鋼
板を対象とするが、その中でも表面に触れるガスによっ
て、鉄損から計算された一次再結晶粒径が大きく誤差を
生じる、熱延後最終仕上焼鈍の二次再結晶開始までの間
に鋼板に窒化処理を施す一方向性電磁鋼板を例にとり、
以下に説明する。
In the measuring method of the present invention, general unidirectional electrical steel sheets are used. Among them, the primary recrystallized grain size calculated from iron loss causes a large error due to the gas touching the surface. Taking as an example a unidirectional electrical steel sheet that is subjected to nitriding treatment on the steel sheet before the start of secondary recrystallization of final finish annealing,
This will be described below.

【0016】工場でNH3 ガスにより窒化された鋼板の
板幅方向における窒素量は、全体の平均窒素量に対して
約80ppm の変動がある(図1)。また窒素量の板厚分
布は板幅方向で同様ではなく、表層の窒化量が変化し、
この差異が鉄損測定においてばらつきを生む誤差要因と
考えられる。従来、表面から約20μm程度の表層にお
ける窒素の影響は鉄損に殆ど影響しないと考えられ、見
落とされていた。
The nitrogen amount in the plate width direction of the steel sheet nitrided with NH 3 gas at the factory has a fluctuation of about 80 ppm with respect to the total average nitrogen amount (FIG. 1). Also, the distribution of nitrogen thickness is not the same in the width direction, and the nitriding amount of the surface layer changes,
This difference is considered to be an error factor that causes variations in iron loss measurement. Conventionally, it has been overlooked that the effect of nitrogen in the surface layer of about 20 μm from the surface is considered to have little effect on iron loss.

【0017】しかしながら、場所的に不均一な表層分布
を持つ窒素が非磁性体として働くことで、鋼板の場所に
より鉄損の変動をもたらすことが本実験で明らかになっ
た。従来では、この影響を考慮せずに鉄損を測定し、粒
径との対応をとっていたため、大きな誤差が生じてい
た。
However, it was clarified in the present experiment that nitrogen having a non-uniform surface layer distribution locally acts as a non-magnetic material to cause variations in iron loss depending on the location of the steel sheet. In the past, iron loss was measured without considering this effect and the correspondence was made with the grain size, resulting in a large error.

【0018】従って、本発明では種々の実験結果に基づ
き、この解決方法として誤差要因となる表面窒化層を除
去する結論に至った。この手法を用い鉄損を測定するこ
とで鉄損と粒径の関係が一次直線に近づき、一次再結晶
平均粒径がより精度良く測定できる。
Therefore, in the present invention, based on the results of various experiments, it was concluded as a solution to this that the surface nitriding layer which causes an error is removed. By measuring the iron loss using this method, the relationship between the iron loss and the grain size approaches a linear straight line, and the primary recrystallization average grain size can be measured more accurately.

【0019】次に、本発明の構成要件の限定理由につい
て述べる。一次再結晶粒径の計測において、鋼板の窒化
変動は結晶粒成長の場所的なばらつきを生むことが予想
され、鉄損を測定する場所に大きく影響されると考えら
れる。従って窒化変動のある部分を除き測定をする。粒
径の測定は平均粒径、粗大粒の割合、粒径の分布等、二
次再結晶現象と関係する何れのパラメータを測定するこ
とも許容される。
Next, the reasons for limiting the constituents of the present invention will be described. In the measurement of the primary recrystallized grain size, the nitriding fluctuation of the steel sheet is expected to cause a local variation in the grain growth, and it is considered that it is greatly influenced by the place where the iron loss is measured. Therefore, the measurement is performed excluding the portion where the nitriding fluctuation occurs. The particle size can be measured by measuring any parameter related to the secondary recrystallization phenomenon, such as the average particle size, the ratio of coarse particles, and the particle size distribution.

【0020】窒化処理についてであるが、本発明では熱
延終了後最終仕上焼鈍の二次再結晶開始までの間に、鋼
板に窒化処理を施した鋼板の一次再結晶粒径を窒素の影
響を除いて測定することを前提とする。
Regarding the nitriding treatment, according to the present invention, the influence of nitrogen on the primary recrystallized grain size of the steel sheet subjected to the nitriding treatment is influenced by nitrogen between the end of hot rolling and the start of secondary recrystallization of final annealing. It is assumed that the measurement is made excluding.

【0021】この窒化処理で、鋼板中に窒化物が形成さ
れ、最終仕上焼鈍の昇温時に、この窒化物はAlN、
(Al,Si)Nの状態になり、二次再結晶時、粒界移
動の粒界性格依存性を強調するインヒビターとして機能
する。窒化方法については特に限定するものではなく、
NH3 ガスを用いる方法、プラズマを用いる方法、焼鈍
雰囲気にN2 を含有させる方法等、いずれの方法でも良
い。
By this nitriding treatment, a nitride is formed in the steel sheet, and the nitride is AlN when the temperature of the final annealing is increased.
In the state of (Al, Si) N, it functions as an inhibitor that emphasizes the grain boundary character dependence of grain boundary migration during secondary recrystallization. The nitriding method is not particularly limited,
Any method such as a method using NH 3 gas, a method using plasma, a method of containing N 2 in the annealing atmosphere, or the like may be used.

【0022】工場において、NH3 ガスを用いて窒化さ
れた鋼板中における窒化量がその平均値からずれると、
平均粒径推定誤差は大きくなる。窒素の板厚分布をEP
MAで測定すると、窒素は板厚断面に対して部分的に固
まって分布し、特に表面から約20μm以内の表層に多
く集中している(図2)。化学研磨によって窒素の集中
した表層を取り除くと、平均粒径推定誤差が小さくなる
と予想される。
When the amount of nitridation in the steel sheet nitrided with NH 3 gas at the factory deviates from its average value,
The average particle size estimation error becomes large. EP for the thickness distribution of nitrogen
When measured by MA, nitrogen is partially solidified and distributed in the plate thickness cross section, and particularly concentrated in the surface layer within about 20 μm from the surface (FIG. 2). It is expected that the average grain size estimation error will be reduced by removing the surface layer in which nitrogen is concentrated by chemical polishing.

【0023】化学研磨には、最初に約5%に希釈した硝
酸水溶液に所定の時間浸し表面を溶かし、その後水洗
し、過酸化水素で置換した後ドライヤーなどで乾燥させ
る方法がある。化学研磨の深さには最良値があり、浅い
場合には窒素の影響が残って測定誤差を生み、深い場合
には窒素の影響は除去できるが鋼板自体薄くなるため、
表面の凹凸が鉄損を大きく支配し、化学研磨の出来によ
って鉄損のばらつき(誤差)が生じると考えられる。
For chemical polishing, there is a method of first immersing in a nitric acid aqueous solution diluted to about 5% for a predetermined time to dissolve the surface, then washing with water, replacing with hydrogen peroxide, and then drying with a dryer or the like. There is the best value for the depth of chemical polishing.When the depth is shallow, the influence of nitrogen remains and causes a measurement error.When the depth is deep, the influence of nitrogen can be removed, but the steel plate itself becomes thin,
It is considered that the unevenness of the surface largely controls the iron loss, and the variation (error) of the iron loss occurs due to the chemical polishing.

【0024】窒化量のばらつきや同一窒化量を得る処理
条件のばらつきにより粒径推定精度が決定されるのは、
窒素が鋼板の鉄損に影響を与えるからである。鋼板に非
磁性体である窒化物が存在すると鉄損が増加する。また
窒化物の板厚方向の分布の違いによっても鉄損が変わ
る。
The particle size estimation accuracy is determined by the variation in the nitriding amount and the variation in the processing conditions for obtaining the same nitriding amount.
This is because nitrogen affects the iron loss of the steel sheet. Iron loss increases when non-magnetic nitride is present in the steel sheet. Further, the iron loss also changes depending on the distribution of the nitride in the plate thickness direction.

【0025】この板厚方向の窒素の変動は、本発明の対
象材となる窒化処理を受けた鋼板の場合特に顕著であ
り、特に留意すべきである。これらにより鉄損の変動が
ばらつきを生み、推定精度に影響を与えることになる。
なお、本方法は表面研磨を行うことで、鋼板のいかなる
場所においても精度良く粒径測定ができる。
This fluctuation of nitrogen in the plate thickness direction is particularly remarkable in the case of the steel sheet subjected to the nitriding treatment which is the target material of the present invention, and should be particularly noted. As a result, variations in iron loss cause variations, which affects the estimation accuracy.
In this method, by polishing the surface, the particle size can be accurately measured at any place of the steel sheet.

【0026】[0026]

【作用】本発明により、従来は精度良く測定できなかっ
た鉄損測定による一次再結晶平均粒径測定の精度向上が
可能となる。これは、鉄損のばらつき原因であった鋼板
の窒化部分を除去したからである。上記の理由から、一
次再結晶平均粒径を測定し適正に制御することで、磁気
特性の優れた一方向性電磁鋼板を安定して製造すること
が可能となった。
According to the present invention, it is possible to improve the accuracy of primary recrystallization average particle size measurement by iron loss measurement, which could not be accurately measured in the past. This is because the nitrided portion of the steel sheet, which was the cause of the variation in iron loss, was removed. For the above reason, by measuring the primary recrystallization average grain size and controlling it appropriately, it has become possible to stably produce the grain-oriented electrical steel sheet having excellent magnetic properties.

【0027】[0027]

【実施例】【Example】

(実施例1)工場で脱炭焼鈍後、NH3 を用いて窒化さ
れた鋼板の鉄損と一次再結晶平均粒径は、図3に示すよ
うにある幅を持ち一次関数で表された。磁束密度1.0
T、励磁周波数50Hzでの鉄損(W10/50 )測定にお
いて、一次再結晶平均粒径の推定誤差は約6.7μmに
なった。次に表層を20μmの深さで化学研磨し、鉄損
を測定した結果、この推定誤差が約3.3μmに減少
し、精度が向上した。
(Example 1) The iron loss and primary recrystallization average grain size of a steel sheet nitrided with NH 3 after decarburization annealing in a factory have a certain width and are represented by a linear function as shown in FIG. Magnetic flux density 1.0
In the measurement of iron loss (W10 / 50) at T and an excitation frequency of 50 Hz, the estimation error of the average primary recrystallization grain size was about 6.7 μm. Next, the surface layer was chemically polished to a depth of 20 μm and the iron loss was measured. As a result, this estimation error was reduced to about 3.3 μm, and the accuracy was improved.

【0028】(実施例2)同様の鋼板について周波数2
00Hzにおいて鉄損を測定した場合、鉄損と一次再結
晶平均粒径は図4に示す関係となった。磁束密度1.0
Tでの鉄損(W10/200)の測定において、一次再結晶平
均粒径の推定誤差は約5.8μmの幅であった。次に表
層を20μm化学研磨して除き鉄損を測定した結果、こ
の誤差が約3.3μmに減少し、精度が向上した。
(Embodiment 2) Frequency 2 for the same steel sheet
When the iron loss was measured at 00 Hz, the iron loss and the average primary recrystallization grain size have the relationship shown in FIG. Magnetic flux density 1.0
In the measurement of iron loss (W10 / 200) at T, the estimation error of the average primary recrystallization grain size was about 5.8 μm. Next, as a result of removing the surface layer by chemical polishing to 20 μm and measuring the iron loss, this error was reduced to about 3.3 μm and the accuracy was improved.

【0029】(実施例3)重量比でC:0.052%、
Si:3.30%、Mn:0.14%、S:0.005
%、酸可溶性Al:0.018%、N:0.0074%
を含有するスラブを1150%の温度に加熱した後、熱
延し、圧下率約85%で最終板厚まで冷延し、脱炭焼鈍
を施し、一方向性電磁鋼板用一次再結晶板を作成した。
次いで窒化後において鋼板表面をそれぞれ研磨し鉄損と
粒径の関係を調べた(図5)。
(Example 3) C: 0.052% by weight,
Si: 3.30%, Mn: 0.14%, S: 0.005
%, Acid-soluble Al: 0.018%, N: 0.0074%
After heating the slab containing slab to a temperature of 1150%, it is hot-rolled, cold-rolled at a reduction rate of about 85% to the final plate thickness, decarburized and annealed, and a primary recrystallized plate for unidirectional electrical steel sheet is prepared. did.
Then, after nitriding, the surface of the steel sheet was polished to examine the relationship between iron loss and grain size (FIG. 5).

【0030】10μmの研磨では窒素の影響が除かれ
ず、推定誤差が研磨前とあまり変わらない。20μmの
研磨で測定誤差が下がった。さらに50μmの深さまで
表面研磨すると測定誤差が大きくなった。これは研磨の
深さが50μmでは鉄損が表面状態に大きく影響される
状態になっていると予想される。
The polishing of 10 μm does not eliminate the influence of nitrogen, and the estimation error is not much different from that before polishing. The polishing error of 20 μm reduced the measurement error. Further, when the surface was polished to a depth of 50 μm, the measurement error increased. It is expected that the iron loss is greatly affected by the surface condition when the polishing depth is 50 μm.

【0031】[0031]

【発明の効果】本発明によれば、一方向性電磁鋼板の一
次再結晶粒径を精度良く測定することが可能になった。
一次再結晶粒径は、二次再結晶挙動を通じて磁束密度に
大きな影響を与えるので、本発明を用いてこれを適正範
囲に維持することにより、二次再結晶不良発生の防止や
磁束密度の高位安定化に極めて顕著な効果が生じ、産業
上の利益は極めて大きい。
According to the present invention, the primary recrystallized grain size of the grain-oriented electrical steel sheet can be accurately measured.
Since the primary recrystallized grain size has a great influence on the magnetic flux density through the secondary recrystallization behavior, by maintaining it in an appropriate range using the present invention, it is possible to prevent the occurrence of secondary recrystallization defects and increase the magnetic flux density. The stabilization has a very remarkable effect, and the industrial benefit is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】板幅方向の鋼板窒素量を示した図表である。FIG. 1 is a chart showing a nitrogen amount of a steel plate in a plate width direction.

【図2】板厚方向の鋼板窒素量を示した模式図である。FIG. 2 is a schematic diagram showing the amount of nitrogen in the steel plate in the plate thickness direction.

【図3】50Hzの鉄損と平均粒径の関係の図表であ
る。
FIG. 3 is a chart showing the relationship between iron loss at 50 Hz and average particle size.

【図4】200Hzの鉄損と平均粒径の関係の図表であ
る。
FIG. 4 is a table showing the relationship between iron loss at 200 Hz and average particle diameter.

【図5】化学研磨の深さと平均粒径推定誤差の関係を示
した図表である。
FIG. 5 is a table showing the relationship between the depth of chemical polishing and the average particle size estimation error.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電磁鋼板に磁界を加えて測定される鉄損
値に基づいて一次再結晶粒径を計測するに際し、鋼板表
面の所定厚みを研磨等で除き、残存部分の鉄損を測定す
ることを特徴とする電磁鋼板の一次再結晶粒径測定法。
1. When measuring the primary recrystallized grain size based on the iron loss value measured by applying a magnetic field to an electromagnetic steel sheet, a predetermined thickness of the steel sheet surface is removed by polishing or the like, and the iron loss in the remaining portion is measured. A method for measuring the primary recrystallized grain size of an electrical steel sheet, which is characterized in that
【請求項2】 熱延後最終仕上焼鈍の二次再結晶開始ま
での間に鋼板に窒化処理を施した一次再結晶板に用いら
れる請求項1記載の電磁鋼板の一次再結晶粒径測定法。
2. The method for measuring the primary recrystallized grain size of an electromagnetic steel sheet according to claim 1, which is used for a primary recrystallized sheet obtained by nitriding a steel sheet after hot rolling and before the start of secondary recrystallization in final annealing. .
【請求項3】 板厚表面から20μmの表層を除くこと
を特徴とする請求項1または2記載の電磁鋼板の一次再
結晶粒径測定法。
3. The primary recrystallized grain size measuring method according to claim 1, wherein the surface layer having a thickness of 20 μm is removed from the surface of the plate thickness.
JP19770995A 1995-08-02 1995-08-02 Method for measuring size of primarily recrystallized grain of silicon steel sheet Withdrawn JPH0941038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19770995A JPH0941038A (en) 1995-08-02 1995-08-02 Method for measuring size of primarily recrystallized grain of silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19770995A JPH0941038A (en) 1995-08-02 1995-08-02 Method for measuring size of primarily recrystallized grain of silicon steel sheet

Publications (1)

Publication Number Publication Date
JPH0941038A true JPH0941038A (en) 1997-02-10

Family

ID=16379061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19770995A Withdrawn JPH0941038A (en) 1995-08-02 1995-08-02 Method for measuring size of primarily recrystallized grain of silicon steel sheet

Country Status (1)

Country Link
JP (1) JPH0941038A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271881A1 (en) * 2016-03-15 2017-09-21 General Electric Company Rotor synchronization of cross-compound systems on turning gear

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170271881A1 (en) * 2016-03-15 2017-09-21 General Electric Company Rotor synchronization of cross-compound systems on turning gear

Similar Documents

Publication Publication Date Title
JP5446377B2 (en) Oriented electrical steel sheet and manufacturing method thereof
US3347718A (en) Method for improving the magnetic properties of ferrous sheets
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
US4692193A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
US4997493A (en) Process for production of double-oriented electrical steel sheet having high flux density
KR950005792B1 (en) Process for production of oriented electrical steel sheet having excellent magnetic properties
JPS5932528B2 (en) Method for manufacturing unidirectional silicon steel sheet with excellent magnetic properties
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JPH0941038A (en) Method for measuring size of primarily recrystallized grain of silicon steel sheet
JP7348524B2 (en) A steel plate processing method that eliminates grooves formed on the surface of grain-oriented electrical steel sheets
JPH06220537A (en) Production of non-oriented silicon steel sheet
JP4317305B2 (en) Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction
JP2003089821A (en) Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet
JPS59123715A (en) Production of non-directional electromagnetic steel
JPH0684524B2 (en) Primary recrystallization annealing method for grain-oriented electrical steel sheet
JP3890790B2 (en) High silicon steel sheet
JPH08199240A (en) Method for measuring primary recrystallized grain diameter of magnetic steel sheet
JP2671077B2 (en) Method for controlling primary recrystallized grain size of grain-oriented electrical steel sheet
JPH09178706A (en) Method for measuring grain size of primary recrystallization in electromagnetic steel plate
JP3456860B2 (en) Manufacturing method of unidirectional electrical steel sheet with extremely excellent iron loss characteristics
JP2001164344A (en) Double oriented silicon steel sheet excellent in magnetic property, and manufacturing method therefor
JP2824660B2 (en) Primary recrystallization annealing method and processing equipment for grain-oriented electrical steel sheets
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH1025553A (en) Gain originated silicon steel sheet for gauge excellent in low magnetic field characteristics and its production
JPH08269756A (en) Production of grain oriented silicon steel sheet excellent in magnetic property and surface property

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021105