JPH08199240A - Method for measuring primary recrystallized grain diameter of magnetic steel sheet - Google Patents
Method for measuring primary recrystallized grain diameter of magnetic steel sheetInfo
- Publication number
- JPH08199240A JPH08199240A JP674995A JP674995A JPH08199240A JP H08199240 A JPH08199240 A JP H08199240A JP 674995 A JP674995 A JP 674995A JP 674995 A JP674995 A JP 674995A JP H08199240 A JPH08199240 A JP H08199240A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- primary recrystallized
- grain size
- measuring
- nitriding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はトランスの鉄心等に利用
される一方向性電磁鋼板を製造する際の一次再結晶平均
粒径の測定方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring an average primary recrystallization grain size in producing a unidirectional electrical steel sheet used for a transformer core or the like.
【0002】[0002]
【従来の技術】現在、実用化されている一方向性電磁鋼
板は、例外なく二次再結晶によって形成された尖鋭な集
合組織を持っている。二次再結晶集合組織は、鋼板が電
気機器として使われた際、最も優れた性能、効率を発揮
するような結晶方位に制御されている。従って、二次再
結晶集合組織の尖鋭度が高いほど、電気機器の性能は優
れる。二次再結晶集合組織の尖鋭度は、一般に磁束密度
B8(800AT/mの磁場中の磁束密度の強さ)に強
く反映する。磁束密度は、二次再結晶の挙動によって、
極めて敏感に変化する。従って、適正な二次再結晶成長
は製造者、利用者にとって有益なものである。2. Description of the Related Art The unidirectional electrical steel sheets that have been put into practical use at present have a sharp texture formed by secondary recrystallization without exception. The secondary recrystallization texture is controlled so that the crystal orientation exhibits the best performance and efficiency when the steel sheet is used as an electric device. Therefore, the higher the sharpness of the secondary recrystallization texture, the better the performance of the electric device. The sharpness of the secondary recrystallized texture generally strongly reflects on the magnetic flux density B8 (the magnetic flux density strength in a magnetic field of 800 AT / m). The magnetic flux density depends on the behavior of secondary recrystallization,
It changes extremely sensitively. Therefore, proper secondary recrystallization growth is beneficial to manufacturers and users.
【0003】方向性電磁鋼板は、製造条件に敏感な鋼種
であり、通常の製造状況における正常材においても、磁
束密度にばらつきを生じる。例えば、成分的にほとんど
差がないのに溶製ロット間や、同一溶製ロット内でもコ
イル間で、同一コイル内でもその部位よって、多少の磁
束密度のばらつきがあり、磁束密度の高位安定化の障害
となる。これは、二次再結晶挙動が各種工程条件の微妙
な変動を極めて敏感に反映することによる。The grain-oriented electrical steel sheet is a type of steel that is sensitive to manufacturing conditions, and even in a normal material under normal manufacturing conditions, the magnetic flux density varies. For example, although there is almost no difference in composition, there is some variation in magnetic flux density between molten lots, within the same molten lot, and between coils, even within the same coil, and there is some variation in magnetic flux density, which stabilizes the magnetic flux density at a high level. Becomes an obstacle. This is because the secondary recrystallization behavior very sensitively reflects subtle variations in various process conditions.
【0004】二次再結晶不良や、磁束密度のばらつきの
原因は、仕上焼鈍より前の工程に存在していると考えら
れる。具体的には、一次再結晶平均粒径が大きく関与し
ているものと考えられる。従って、一次再結晶粒径をオ
ンライン計測によって精度よく把握することが、上記二
次再結晶のばらつき、ひいては磁気特性のばらつきを改
善するために極めて有効である。The cause of the secondary recrystallization failure and the variation of the magnetic flux density is considered to exist in the process before the finish annealing. Specifically, it is considered that the primary recrystallization average grain size is greatly involved. Therefore, accurately grasping the primary recrystallized grain size by on-line measurement is extremely effective for improving the above-mentioned variation in secondary recrystallization, and eventually variation in magnetic characteristics.
【0005】そして、一次再結晶焼鈍条件の変更によっ
て、一次再結晶粒径を、適正な範囲に制御し、その悪影
響を除去すれば、磁気特性の高位安定化が可能となる。
一方向性電磁鋼板の製造において、一次再結晶粒径をオ
ンライン計測し、これを基に、適正な一次再結晶組織形
成を確保する技術は、既に特開平2−267223号公
報に開示されている。しかし、この方法においては、上
記磁気特性のばらつきを十分解消するまでには致ってお
らず、更なる改善が望まれている。Then, by changing the primary recrystallization annealing conditions to control the primary recrystallization grain size within an appropriate range and eliminate the adverse effect thereof, it becomes possible to stabilize the magnetic characteristics at a high level.
In the production of a grain-oriented electrical steel sheet, a technique for measuring the primary recrystallized grain size online and ensuring an appropriate primary recrystallized structure formation based on this is already disclosed in JP-A-2-267223. . However, in this method, the variation in the magnetic characteristics is not sufficiently eliminated, and further improvement is desired.
【0006】[0006]
【発明が解決しようとする課題】本発明は、上記の問題
点を除去改善し、適正な粒径の一次再結晶を生成させる
ために一次再結晶平均粒径を精度よく測定する方法を提
供するものである。DISCLOSURE OF THE INVENTION The present invention provides a method for eliminating and improving the above problems and for accurately measuring the average primary recrystallization grain size in order to generate primary recrystallization having an appropriate grain size. It is a thing.
【0007】[0007]
【課題を解決するための手段】本発明の要旨は (1)熱延後最終仕上げ焼鈍の二次再結晶開始までの間
に窒化処理が施された方向性電磁鋼板の一次再結晶板の
結晶粒径を測定するに際し、鋼板の窒化量が、鋼板の平
均の窒化量に対して所定の値以上変動した部分を除い
て、残りの部分を測定することを特徴とする電磁鋼板の
一次再結晶粒径測定方法。 (2)鋼板の窒化量が、鋼板の平均の窒化量に比較して
30%以上変動した部分を除いて残りの部分を測定する
(1)記載の電磁鋼板の一次再結晶粒径測定方法。 (3)一次再結晶板として、重量比でC:0.021〜
0.075%、Si:2.5〜4.5%、酸可溶性A
l:0.010〜0.060%、N:0.0010〜
0.0130%、S+0.405Se:0.014%以
下、Mn:0.05〜0.8%、残部がFe及び不可避
的不純物からなるスラブを1280℃未満の温度で加熱
した後、熱延し、引き続き圧下率80%以上の最終冷延
を含む1回以上の冷延を行い、次いで脱炭焼鈍を行った
ものとすることを特徴とする(1)又は(2)記載の電
磁鋼板の一次再結晶粒径測定方法にある。Means for Solving the Problems The gist of the present invention is (1) Crystals of a primary recrystallized sheet of grain-oriented electrical steel sheet that has been subjected to a nitriding treatment after hot rolling and before the start of secondary recrystallization of final finish annealing. In measuring the grain size, the nitriding amount of the steel sheet is a primary recrystallization of the electromagnetic steel sheet, which is characterized by measuring the remaining portion, except for a portion that has fluctuated by a predetermined value or more with respect to the average nitriding amount of the steel sheet. Particle size measurement method. (2) The method for measuring the primary recrystallized grain size of an electromagnetic steel sheet according to (1), wherein the remaining portion is measured except for the portion where the nitriding amount of the steel sheet varies by 30% or more compared to the average nitriding amount of the steel sheet. (3) As a primary recrystallized plate, C: 0.021-by weight ratio
0.075%, Si: 2.5-4.5%, acid-soluble A
1: 0.010 to 0.060%, N: 0.0010
0.0130%, S + 0.405Se: 0.014% or less, Mn: 0.05 to 0.8%, the balance consisting of Fe and inevitable impurities is heated at a temperature of less than 1280 ° C., and then hot rolled. The primary of the electromagnetic steel sheet according to (1) or (2), characterized in that the steel sheet is cold-rolled at least once including a final cold-rolling with a rolling reduction of 80% or more, and then decarburized and annealed. It is in the method of measuring the recrystallized grain size.
【0008】以下、スラブ加熱温度1280℃未満の方
向性電磁鋼板における実験結果を基に詳細に説明する。
本発明者らは、一次再結晶平均粒径の計測法を種々検討
した結果、従来の鋼板鉄損を測定する手段に対し、鋼板
において、例えば、ある板厚方向の平均の窒化量等基準
となる値を規定し、この部分から外れた部分を除去し、
残りの部分の鋼板鉄損を測定して一次平均粒径を算出す
る方法が粒径測定精度向上に極めて有効であるという結
論に達した。この測定条件はオンライン測定、オフライ
ン測定の何れにも限定されるものではない。The details will be described below based on the experimental results in the grain-oriented electrical steel sheet having a slab heating temperature of less than 1280 ° C.
As a result of various studies on the measurement method of the primary recrystallization average grain size, the present inventors have compared the conventional means for measuring the iron loss of a steel sheet with a steel sheet, for example, with a standard such as an average nitriding amount in a certain sheet thickness direction. Value, and remove the part outside this part,
It was concluded that the method of measuring the iron loss of the remaining steel plate and calculating the primary average particle size is extremely effective in improving the particle size measurement accuracy. This measurement condition is not limited to online measurement and offline measurement.
【0009】まず、重量でC:0.053%、Si:
3.25%、Mn:0.13%、S:0.005%、酸
可溶性Al:0.019%、N:0.0074%を含有
するスラブを1150℃の温度に加熱した後、熱延し、
圧下率約85%で最終板厚まで冷延し、脱炭焼鈍を施
し、一方向性電磁鋼板用一次再結晶板を作成した。NH
3で窒化された鋼板を幅方向に対し短冊状に切断した。First, C: 0.053% by weight and Si:
After heating a slab containing 3.25%, Mn: 0.13%, S: 0.005%, acid-soluble Al: 0.019%, N: 0.0074% to a temperature of 1150 ° C., hot rolling was performed. Then
Cold rolling was performed to a final plate thickness at a reduction rate of about 85%, decarburization annealing was performed, and a primary recrystallized plate for a grain-oriented electrical steel sheet was prepared. NH
The steel plate nitrided in 3 was cut into strips in the width direction.
【0010】鋼板の窒化量は板幅方向である分布を持つ
(図1)。この図において工場でNH3 ガスを用いて窒
化された鋼板のW・S(ワークサイド)とD・S(ドラ
イブサイド)の両端部の窒素量は板中央部と約80ppm
異なっている。この差異が鉄損測定においてばらつきを
生む原因となっている。この部分を除去し、鉄損を測定
することで正確な一次再結晶平均粒径を測定できる。The nitriding amount of the steel sheet has a distribution in the sheet width direction (FIG. 1). In this figure, the nitrogen content at both ends of W ・ S (work side) and D ・ S (drive side) of the steel sheet nitrided with NH 3 gas at the factory is approximately 80 ppm with the center of the sheet.
Is different. This difference causes variations in iron loss measurement. By removing this portion and measuring the iron loss, the accurate primary recrystallization average grain size can be measured.
【0011】次に本発明の構成要件の限定理由について
述べる。一次再結晶粒径の計測において、鋼板の窒化変
動は結晶粒成長の場所的なばらつきを生むことが予測さ
れ、鉄損を測定する場所に大きく影響されると考えられ
る。従って、窒化変動のある部分を除き測定をする。粒
径の測定は平均粒径、粗大粒の割合、粒径の分散等、二
次再結晶現象と関係する何れのパラメータを測定するこ
とも許容される。Next, the reasons for limiting the constituent features of the present invention will be described. In the measurement of the primary recrystallized grain size, it is expected that the nitriding fluctuation of the steel sheet will cause a local variation in the grain growth, and it will be greatly influenced by the place where the iron loss is measured. Therefore, the measurement is performed excluding the portion where the nitriding fluctuation occurs. For the measurement of the particle size, it is acceptable to measure any parameter related to the secondary recrystallization phenomenon, such as the average particle size, the ratio of coarse particles, and the dispersion of the particle size.
【0012】窒化処理についてであるが、本発明では熱
延終了後最終仕上焼鈍の二次再結晶開始までの間に、鋼
板に窒化処理を施した鋼板の一次再結晶粒径を窒素の影
響を除いて測定することを前提とする。この窒化処理
で、鋼板中に窒化物が形成され、最終仕上焼鈍の昇温時
に、この窒化物はAlN、(Al、Si)Nの状態にな
り、二次再結晶時、粒界移動の粒界性格依存性を強調す
るインヒビターとして機能する。窒化方法については特
に限定するものではなく、NH3 ガスを用いる方法、プ
ラズマを用いる方法、焼鈍雰囲気にN2 を含有させる方
法等いずれの方法でも良い。Regarding the nitriding treatment, in the present invention, the influence of nitrogen on the primary recrystallized grain size of the steel sheet subjected to the nitriding treatment after the hot rolling is completed and before the secondary recrystallization of the final finish annealing is started. It is assumed that the measurement is made excluding. By this nitriding treatment, a nitride is formed in the steel sheet, and at the time of temperature increase during final annealing, the nitride becomes AlN, (Al, Si) N, and during secondary recrystallization, grain boundaries move. It functions as an inhibitor that emphasizes the personality dependence. The nitriding method is not particularly limited, and any method such as a method using NH 3 gas, a method using plasma, a method of containing N 2 in the annealing atmosphere may be used.
【0013】工場においてNH3 ガスを用いて窒化され
た鋼板中における窒化量がその平均値からずれると、平
均粒径推定誤差は大きくなる(図2)。ここでは窒化量
がその平均値と一致する部分で平均粒径を推定してい
る。窒化量が平均値から30%以上ずれると、平均粒径
の誤差が急激に上昇し5%を超える。これは窒化物が鋼
板内部まで分布することで渦電流と磁束が内部に集中
し、鉄損を増加させることが原因であると考えられる。
この5%は一次再結晶平均粒径の推定誤差の約±1μm
に相当し、二次再結晶不良、および磁束密度のばらつき
に対し、十分適正範囲に制御できる値ではない。ここで
精度を確保するため窒化量の平均値からのずれを30%
以下とした。窒化量の平均値からのずれが10%以下で
あると、一次再結晶平均粒径の推定誤差が2.5%(約
±0.5μm)となり、光学顕微鏡像を画像処理して得
られるレベルに達するので更に好ましい。If the nitriding amount in the steel sheet nitrided with NH 3 gas at the factory deviates from its average value, the average grain size estimation error becomes large (FIG. 2). Here, the average grain size is estimated at the portion where the nitriding amount matches the average value. When the amount of nitriding deviates from the average value by 30% or more, the error in the average particle diameter sharply increases and exceeds 5%. It is considered that this is because the eddy current and the magnetic flux are concentrated inside due to the distribution of the nitride inside the steel sheet, which increases the iron loss.
This 5% is about ± 1 μm of the estimation error of the primary recrystallization average grain size.
This is not a value that can be controlled to a sufficiently appropriate range with respect to secondary recrystallization failure and variations in magnetic flux density. To ensure accuracy, the deviation from the average nitriding amount is 30%
Below. If the deviation from the average value of the nitriding amount is 10% or less, the estimation error of the average primary recrystallization grain size becomes 2.5% (about ± 0.5 μm), which is a level obtained by image processing an optical microscope image. It is more preferable because it reaches.
【0014】一方、窒化処理条件として工場で同一窒化
量を得るためのNH3 流量の平均値からずれると、平均
粒径推定誤差が大きくなる(図3)。ここで、平均粒径
の推定は所定の窒化量を得るためのNH3 流量が平均値
となった部分を用いて行っている。上記と同様に、流量
のずれが40%を超えると平均粒径推定誤差が5%を超
えることになるので、この場合ずれを40%を以下とす
るのが望ましい。この平均値からのずれが10%以下だ
と、一次再結晶平均粒径の推定誤差が±0.5μmとな
り、光学顕微鏡像と画像処理して得られるレベルに達す
るので更に好ましい。他の窒化条件(温度、時間、露点
等)についても、同じ窒化量を得るための処理条件の平
均値のずれもまた40%以下にすることで所期の精度が
得られる。On the other hand, when the nitriding condition deviates from the average value of the NH 3 flow rate for obtaining the same nitriding amount in the factory, the average particle size estimation error increases (FIG. 3). Here, the estimation of the average particle diameter is performed by using the portion where the NH 3 flow rate for obtaining the predetermined nitriding amount has the average value. Similarly to the above, if the deviation of the flow rate exceeds 40%, the average particle size estimation error exceeds 5%, so in this case, it is desirable that the deviation be 40% or less. If the deviation from the average value is 10% or less, the estimation error of the average primary recrystallization particle size becomes ± 0.5 μm, which is more preferable because it reaches the level obtained by image processing with an optical microscope image. With respect to other nitriding conditions (temperature, time, dew point, etc.), the desired accuracy can be obtained by setting the deviation of the average value of the processing conditions for obtaining the same nitriding amount to 40% or less.
【0015】窒化量のばらつきや同一窒化量を得るため
の処理条件のばらつきにより粒径推定精度が決定される
のは、窒素が鋼板の鉄損に影響を与えるからである。鋼
板に非磁性体である窒化物が存在すると鉄損が増加す
る。また窒化物の板厚方向の分布の違いによっても鉄損
が変わる。この板厚方向の窒素の変動は本発明の対象材
となる窒化処理を受けた鋼板の場合特に顕著であり、特
に留意すべきである。これらにより鉄損の変動がばらつ
きを生み、推定精度に影響を与えることになる。The particle size estimation accuracy is determined by the variation of the nitriding amount and the variation of the processing conditions for obtaining the same nitriding amount because nitrogen affects the iron loss of the steel sheet. Iron loss increases when non-magnetic nitride is present in the steel sheet. Further, the iron loss also changes depending on the distribution of the nitride in the plate thickness direction. This fluctuation of nitrogen in the plate thickness direction is particularly remarkable in the case of the steel sheet subjected to the nitriding treatment which is the target material of the present invention, and should be particularly noted. As a result, variations in iron loss cause variations, which affects the estimation accuracy.
【0016】次に、この測定法は以下の製造法により製
造された鋼板の一次再結晶粒径の測定により有効であ
る。まず成分について、Cは0.021重量%(以下単
に%と略述)未満になると二次再結晶が不安定になり、
かつ二次再結晶した場合でもB8>1.80(T)が得
がたいので0.021%以上が望ましい。一方、Cが多
くなりすぎると脱炭焼鈍時間が長くなり経済的でないの
で0.075%以下が望ましい。Next, this measuring method is effective for measuring the primary recrystallized grain size of the steel sheet manufactured by the following manufacturing method. First, regarding the components, when C is less than 0.021% by weight (hereinafter simply referred to as%), secondary recrystallization becomes unstable,
Moreover, even if secondary recrystallization is performed, it is difficult to obtain B8> 1.80 (T), so 0.021% or more is desirable. On the other hand, if the amount of C is too large, the decarburization annealing time becomes long and it is not economical, so 0.075% or less is desirable.
【0017】Siは4.5%を超えると冷延時の割れが
著しくなるので4.5%以下が望ましい。また2.5%
未満では素材の固有抵抗が低すぎ、トランス鉄心材料と
して必要な低鉄損が得られないので2.5%以上が望ま
しい。更に望ましくは3.2%以上である。If Si exceeds 4.5%, cracking during cold rolling becomes significant, so Si is preferably 4.5% or less. 2.5% again
If less than 2.5%, the specific resistance of the material is too low, and the low iron loss required as a transformer core material cannot be obtained, so 2.5% or more is desirable. More preferably, it is 3.2% or more.
【0018】Alは二次再結晶の安定化に必要なAlN
もしくは(Al,Si)nitridesを確保するた
め、酸可溶性Alとして0.010%以上が望ましい。
酸可溶性Alが0.060%を超えると熱延板のAlN
が不適切となり、二次再結晶が不安定になるので0.0
60%以下が望ましい。Al is AlN necessary for stabilizing secondary recrystallization.
Alternatively, in order to secure (Al, Si) nitrides, the acid-soluble Al is preferably 0.010% or more.
When acid-soluble Al exceeds 0.060%, AlN of hot rolled sheet
Becomes inappropriate and the secondary recrystallization becomes unstable, so 0.0
60% or less is desirable.
【0019】Nについては通常の製鋼作業では0.00
10%未満にすることが困難であり、かつ経済的に好ま
しくないので0.0010%以上とし、一方、0.01
30%を超えるとブリスターと呼ばれる“鋼板表面ふく
れ”が発生するので0.0130%以下が望ましい。N is 0.00 in normal steelmaking work.
Since it is difficult to make it less than 10% and it is not economically preferable, it is set to 0.0010% or more, while 0.01
If it exceeds 30%, "steel plate surface blistering" called blister occurs, so 0.0130% or less is desirable.
【0020】Mns,MnSeが鋼中に存在しても、製
造工程の条件を適正に選ぶことによって磁気特性を良好
にすることが可能である。しかしながら、SやSeが高
いと線状細粒と呼ばれる二次再結晶不良部が発生する傾
向があり、この二次再結晶不良部の発生を予防するため
には(S+0.405Se)≦0.014%であること
が望ましい。SあるいはSeが上記値を超える場合に
は、製造条件をいかに変更しても二次再結晶不良部が発
生する確率が高くなり好ましくない。また最終仕上焼鈍
で純化するのに要する時間が長くなりすぎてしまい好ま
しくなく、このような観点からSあるいはSeを不必要
に増すことは意味がない。Even if Mns and MnSe are present in the steel, it is possible to improve the magnetic characteristics by properly selecting the conditions of the manufacturing process. However, when S and Se are high, secondary recrystallization defective portions called linear fine grains tend to occur, and in order to prevent the generation of the secondary recrystallization defective portion, (S + 0.405Se) ≦ 0. It is preferably 014%. When S or Se exceeds the above value, the probability of occurrence of a secondary recrystallization defect portion increases even if the manufacturing conditions are changed, which is not preferable. Further, the time required for purification in the final finish annealing becomes too long, which is not preferable, and it is meaningless to increase S or Se unnecessarily from such a viewpoint.
【0021】Mnの下限値は0.05%が望ましい。
0.05%未満では、熱間圧延によって得られる熱延板
の形状(平坦さ)、就中、ストリップの側縁部が波形状
となり製品歩留りを低下させる問題が発生する。一方、
Mn量が0.8%を超えると製品の磁束密度を低下さ
せ、好ましくないので、Mn量の上限は0.8%が望ま
しい。The lower limit of Mn is preferably 0.05%.
If it is less than 0.05%, the shape (flatness) of the hot-rolled sheet obtained by hot rolling, in particular, the side edge portion of the strip becomes corrugated, which causes a problem of lowering the product yield. on the other hand,
If the Mn content exceeds 0.8%, the magnetic flux density of the product is lowered, which is not preferable. Therefore, the upper limit of the Mn content is preferably 0.8%.
【0022】この他、インヒビター構成元素として知ら
れているSn,Sb,Cr,Cu,Ni,B,Ti,B
i,Nb等を微量に含有する事はさしつかえない。In addition, Sn, Sb, Cr, Cu, Ni, B, Ti, B, which are known as inhibitor constituent elements,
It is safe to contain a small amount of i, Nb, etc.
【0023】次に、スラブ加熱温度は、普通鋼並にして
コストダウンを行うという目的から、この場合1280
℃未満とするが、好ましくは1200℃以下である。引
き続く熱延工程は、通常100〜400mm厚のスラブを
加熱した後、いずれも複数回のパスで行う粗圧延と仕上
熱延よりなる。粗圧延、仕上熱延の方法については特に
限定するものではなく通常の方法で行われる。熱延後、
必要に応じて熱延板焼鈍を施し、引き続き圧下率80%
以上の最終冷延を含み、必要に応じて中間焼鈍を挟む1
回以上の冷延を行い最終冷延板とする。この最終冷延板
はO2 を含む焼鈍雰囲気中で脱炭焼鈍を施される。Next, the slab heating temperature is set to 1280 in this case for the purpose of cost reduction by making it equal to that of ordinary steel.
The temperature is lower than 0 ° C, but preferably 1200 ° C or lower. The subsequent hot-rolling step usually consists of heating a slab having a thickness of 100 to 400 mm, and then performing rough rolling and finish hot-rolling in multiple passes. The methods of rough rolling and hot rolling for finish are not particularly limited, and ordinary methods are used. After hot rolling,
If necessary, hot-rolled sheet is annealed, and the rolling reduction is 80%.
Including the above final cold rolling, and sandwiching intermediate annealing as required 1
The final cold-rolled sheet is obtained by performing cold rolling more than once. This final cold rolled sheet is decarburized and annealed in an annealing atmosphere containing O 2 .
【0024】本発明は、この製造方法によって得られ
た、一次再結晶板に対し、特に有効である。この理由
は、定かではないが、このプロセスが、特に一次再結晶
粒径の影響を受けやすいためと考えられる。この手法に
より従来において精度良く測定できなかった鉄損測定に
よる一次再結晶平均粒径測定の精度向上が可能となる。
これは鉄損のばらつきの原因であった鋼板の窒化量を規
定し、この範囲以外の鉄損を除外したからである。上記
の理由から一次再結晶平均粒径を測定、適正に制御する
ことで磁気特性の優れた一方向性電磁鋼板を安定して製
造することが可能となった。The present invention is particularly effective for the primary recrystallized plate obtained by this manufacturing method. The reason for this is not clear, but it is considered that this process is particularly susceptible to the primary recrystallized grain size. By this method, it is possible to improve the accuracy of primary recrystallization average particle size measurement by iron loss measurement, which could not be accurately measured in the past.
This is because the nitriding amount of the steel sheet, which was the cause of the variation in iron loss, was defined and iron loss outside this range was excluded. For the above reasons, it has become possible to stably produce a grain-oriented electrical steel sheet having excellent magnetic properties by measuring the primary recrystallization average grain size and controlling it appropriately.
【0025】[0025]
(実施例1)重量でC:0.051%、Si:3.30
%、Mn:0.13%、S:0.005%、酸可溶性A
l:0.019%、N:0.0074%を含有するスラ
ブを1150℃の温度に加熱した後、熱延し、圧下率約
85%で最終板厚まで冷延し、脱炭焼鈍を施し、一方向
性電磁鋼板用一次再結晶板を作成した。NH3 で窒化さ
れた鋼板を幅方向に対し短冊状に切断し、各短冊の鉄損
と一次再結晶平均粒径を図4にまとめた。周波数50H
z、磁束密度1.5Tにおける鉄損(W15/50)測
定では一次再結晶平均粒径は約2.4μmの幅を持つ。
次に、窒化量が鋼板の平均値から30%以上外れている
端部から取りだした短冊の測定値を除いた(図5)。こ
れによりこの幅が約1μm(±0.5μm)に減少し、
精度が向上した。(Example 1) C: 0.051% by weight, Si: 3.30
%, Mn: 0.13%, S: 0.005%, acid-soluble A
A slab containing 1: 0.019% and N: 0.0074% was heated to a temperature of 1150 ° C., then hot rolled, cold rolled to a final plate thickness at a reduction rate of about 85%, and decarburized and annealed. , A primary recrystallized plate for unidirectional electrical steel sheet was prepared. The steel sheet nitrided with NH 3 was cut into strips in the width direction, and the core loss and primary recrystallization average grain size of each strip are summarized in FIG. Frequency 50H
In the iron loss (W15 / 50) measurement at z and magnetic flux density of 1.5 T, the average primary recrystallization grain size has a width of about 2.4 μm.
Next, the measured value of a strip taken out from the end where the amount of nitriding deviated from the average value of the steel sheet by 30% or more was excluded (FIG. 5). This reduces the width to about 1 μm (± 0.5 μm),
Accuracy improved.
【0026】(実施例2)重量でC:0.056%、S
i:3.24%、Mn:0.14%、S:0.006
%、酸可溶性Al:0.025%、N:0.0079%
を含有するスラブを1150℃の温度に加熱した後、熱
延し、圧下率約85%で最終板厚まで冷延し、脱炭焼鈍
を施し、一方向性電磁鋼板用一次再結晶板を作成した。
予めコイル先端部で鋼板幅方向に関して窒化量を測定し
たところ、端部から100mm内側の部分にかけて窒化量
の平均値からのずれが相対比30%以上であった。この
部分を測定範囲から除くため、1/2コイル法(探針
法)によって測定部分を囲み、オンラインで鉄損測定を
行った(図6)。この測定方法は異なる二点間の誘起電
圧を測定することで二点間の鋼板内磁束密度を測定し、
鉄損を測定する方法である。コイルと鋼板部の導電性を
保つため接触部には銅製のローラーを用いた。これによ
り従来法と比べ推定精度が図7に示すように向上した。(Example 2) C: 0.056% by weight, S
i: 3.24%, Mn: 0.14%, S: 0.006
%, Acid-soluble Al: 0.025%, N: 0.0079%
The slab containing is heated to a temperature of 1150 ° C., then hot-rolled, cold-rolled at a reduction rate of about 85% to the final sheet thickness, decarburized and annealed, and a primary recrystallized sheet for unidirectional electrical steel sheet is prepared. did.
When the nitriding amount was measured in advance in the width direction of the steel sheet at the tip of the coil, the deviation from the average value of the nitriding amount from the end to the portion 100 mm inward was 30% or more. In order to remove this portion from the measurement range, the measurement portion was surrounded by the 1/2 coil method (probe method), and the iron loss was measured online (FIG. 6). This measuring method measures the magnetic flux density in the steel sheet between two points by measuring the induced voltage between two different points,
This is a method of measuring iron loss. A copper roller was used for the contact portion in order to maintain the conductivity of the coil and the steel sheet portion. As a result, the estimation accuracy is improved as shown in FIG. 7 as compared with the conventional method.
【0027】(実施例3)重量でC:0.052%、S
i:3.29%、Mn:0.14%、S:0.005
%、酸可溶性Al:0.018%、N:0.0074%
を含有するスラブを1150℃の温度に加熱した後、熱
延し、圧下率約87%で最終板厚まで冷延し、脱炭焼鈍
を施し、一方向性電磁鋼板用一次再結晶板を作成した。
次いで、窒化後において窒素量を200ppm とするため
のNH3 の流量の平均値からのずれと平均粒径推定誤差
の関係を工場で調べたところ表1となった。表1のよう
にNH3 の流量の平均値の誤差が少ないと平均粒径推定
誤差が向上した。NH3 の流量の平均値からのずれと平
均粒径推定誤差を表1に示す。(Example 3) C: 0.052% by weight, S
i: 3.29%, Mn: 0.14%, S: 0.005
%, Acid-soluble Al: 0.018%, N: 0.0074%
After heating the slab containing slab to a temperature of 1150 ° C, it is hot-rolled, cold-rolled to a final sheet thickness at a reduction rate of about 87%, decarburized and annealed to prepare a primary recrystallized sheet for unidirectional electrical steel sheet. did.
Next, when the factory investigated the relationship between the deviation of the flow rate of NH 3 from the average value and the average particle size estimation error after nitriding to make the amount of nitrogen 200 ppm, Table 1 was obtained. As shown in Table 1, when the error of the average value of the flow rate of NH 3 is small, the average particle size estimation error is improved. Table 1 shows the deviation of the flow rate of NH 3 from the average value and the average particle size estimation error.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【発明の効果】以上説明したように、本発明によれば一
方向性電磁鋼板の一次再結晶粒径を精度良く測定するこ
とが可能になった。一次再結晶粒径は、二次再結晶挙動
を通じて磁束密度に大きな影響を与えるので、本発明を
用いてこれを適正範囲に維持することにより、二次再結
晶不良発生防止や磁束密度の高位安定化に極めて顕著な
効果が生じ、産業上の利益は極めて大きい。As described above, according to the present invention, the primary recrystallized grain size of the grain-oriented electrical steel sheet can be accurately measured. Since the primary recrystallized grain size has a great influence on the magnetic flux density through the secondary recrystallization behavior, by maintaining it in an appropriate range using the present invention, it is possible to prevent secondary recrystallization defects from occurring and to stabilize the magnetic flux density at a high level. There is a very remarkable effect on industrialization, and the industrial benefit is extremely large.
【図1】板幅方向の鋼板窒素量を示したものである。FIG. 1 shows the amount of steel sheet nitrogen in the sheet width direction.
【図2】窒化量の平均値からのずれと平均粒径推定誤差
である。FIG. 2 is a deviation from an average value of a nitriding amount and an average particle size estimation error.
【図3】同一窒化量を得るためのNH3 の流量の平均値
からのずれと平均粒径推定誤差である。FIG. 3 is a deviation from an average value of a flow rate of NH 3 for obtaining the same nitriding amount and an average particle size estimation error.
【図4】一次再結晶平均粒径と鉄損の関係である。FIG. 4 shows the relationship between the average primary recrystallization grain size and iron loss.
【図5】本発明によって得られた手法を適用した測定の
一例である。FIG. 5 is an example of measurement to which the method obtained according to the present invention is applied.
【図6】1/2コイル法(探針法)の測定原理である。FIG. 6 shows the measurement principle of the 1/2 coil method (probe method).
【図7】コイル長さ方向に対する平均粒径を従来法と1
/2コイル法で測定した例である。FIG. 7: The average particle size in the coil length direction is 1 compared with the conventional method.
This is an example of measurement by the / 2 coil method.
Claims (3)
までの間に窒化処理が施された方向性電磁鋼板の一次再
結晶板の結晶粒径を測定するに際し、鋼板の窒化量が、
鋼板の平均の窒化量に対して所定の値以上変動した部分
を除いて、残りの部分を測定することを特徴とする電磁
鋼板の一次再結晶粒径測定方法。1. When measuring the grain size of a primary recrystallized grain of a grain-oriented electrical steel sheet that has been subjected to nitriding treatment after hot rolling and before the start of secondary recrystallization in final finish annealing, the nitriding amount of the steel sheet is measured. ,
A method for measuring a primary recrystallized grain size of an electromagnetic steel sheet, which comprises measuring a remaining portion of a steel sheet except for a portion that has fluctuated by a predetermined value or more with respect to an average nitriding amount.
比較して30%以上変動した部分を除いて残りの部分を
測定する請求項1記載の電磁鋼板の一次再結晶粒径測定
方法。2. The primary recrystallized grain size measurement of an electromagnetic steel sheet according to claim 1, wherein the remaining portion is measured except for the portion where the nitriding amount of the steel sheet fluctuates by 30% or more as compared with the average nitriding amount of the steel sheet. Method.
021〜0.075%、Si:2.5〜4.5%、酸可
溶性Al:0.010〜0.060%、N:0.001
0〜0.0130%、S+0.405Se:0.014
%以下、Mn:0.05〜0.8%、残部がFe及び不
可避的不純物からなるスラブを1280℃未満の温度で
加熱した後、熱延し、引き続き圧下率80%以上の最終
冷延を含む1回以上の冷延を行い、次いで脱炭焼鈍を行
ったものとすることを特徴とする請求項1又は2記載の
電磁鋼板の一次再結晶粒径測定方法。3. The primary recrystallized plate as a weight ratio of C: 0.
021 to 0.075%, Si: 2.5 to 4.5%, acid-soluble Al: 0.010 to 0.060%, N: 0.001
0 to 0.0130%, S + 0.405Se: 0.014
% Or less, Mn: 0.05 to 0.8%, the balance consisting of Fe and unavoidable impurities is heated at a temperature of less than 1280 ° C., then hot rolled, and then finally cold rolled at a rolling reduction of 80% or more. The method for measuring the primary recrystallized grain size of an electromagnetic steel sheet according to claim 1 or 2, wherein the cold rolling is performed at least once and then decarburization annealing is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP674995A JPH08199240A (en) | 1995-01-19 | 1995-01-19 | Method for measuring primary recrystallized grain diameter of magnetic steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP674995A JPH08199240A (en) | 1995-01-19 | 1995-01-19 | Method for measuring primary recrystallized grain diameter of magnetic steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08199240A true JPH08199240A (en) | 1996-08-06 |
Family
ID=11646849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP674995A Withdrawn JPH08199240A (en) | 1995-01-19 | 1995-01-19 | Method for measuring primary recrystallized grain diameter of magnetic steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08199240A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018123377A (en) * | 2017-02-01 | 2018-08-09 | 新日鐵住金株式会社 | Directional electromagnetic steel sheet and process for producing the same |
-
1995
- 1995-01-19 JP JP674995A patent/JPH08199240A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018123377A (en) * | 2017-02-01 | 2018-08-09 | 新日鐵住金株式会社 | Directional electromagnetic steel sheet and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2580776C1 (en) | Method of making sheet of textured electrical steel | |
US4692193A (en) | Process for producing a grain-oriented electrical steel sheet having a low watt loss | |
RU2744254C1 (en) | Textured electrical steel sheet with low level of core losses and method of its production | |
JP2519615B2 (en) | Method for producing grain-oriented electrical steel sheet with excellent magnetic properties | |
EP0378131B1 (en) | A method of manufacturing a grain-oriented electrical steel strip | |
JPH06220537A (en) | Production of non-oriented silicon steel sheet | |
JPH08288115A (en) | Grain oriented electromagnetic steel plate with low iron loss | |
JPH08199240A (en) | Method for measuring primary recrystallized grain diameter of magnetic steel sheet | |
JP3397277B2 (en) | Manufacturing method of ultra-low iron loss ultra-high magnetic flux density unidirectional electromagnetic steel strip | |
JP2000345306A (en) | High magnetic flux density grain oriented silicon steel sheet excellent in high magnetic field core loss | |
JP4317305B2 (en) | Cold rolling method for obtaining a unidirectional electrical steel sheet with small fluctuation in magnetic properties in the cold rolling direction | |
JP4377477B2 (en) | Method for producing high magnetic flux density unidirectional electrical steel sheet | |
JP2003089821A (en) | Method for producing ultrahigh magnetic flux density grain oriented silicon steel sheet | |
JP3914270B2 (en) | Oriented electrical steel sheet with low iron loss and method for producing the same | |
JP4021503B2 (en) | Method for controlling primary recrystallized grain size of grain-oriented electrical steel sheet | |
JP2671077B2 (en) | Method for controlling primary recrystallized grain size of grain-oriented electrical steel sheet | |
JPH0684524B2 (en) | Primary recrystallization annealing method for grain-oriented electrical steel sheet | |
JPH04337029A (en) | Primary recrystallization annealing method for grain-oriented silicon steel sheet | |
JP3561323B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP3399721B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JPH09111349A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JPH0941038A (en) | Method for measuring size of primarily recrystallized grain of silicon steel sheet | |
JPH0941037A (en) | Production of nonoriented silicon steel sheet | |
JPH10259423A (en) | Production of grain-oriented silicon steel sheet excellent in low magnetic field core loss characteristic compared to high magnetic field core loss characteristic | |
JPH08283855A (en) | Production of grain-oriented silicon steel sheet extremely in magnetic property |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020402 |