JPH0938687A - Sludge floating predicting device - Google Patents
Sludge floating predicting deviceInfo
- Publication number
- JPH0938687A JPH0938687A JP19321895A JP19321895A JPH0938687A JP H0938687 A JPH0938687 A JP H0938687A JP 19321895 A JP19321895 A JP 19321895A JP 19321895 A JP19321895 A JP 19321895A JP H0938687 A JPH0938687 A JP H0938687A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- image
- granular
- floatability
- floating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、嫌気性反応槽内に
おける汚泥の浮上性を予測するための汚泥浮上予測装置
に係り、特に、UASB方式(顆粒状の汚泥を用いた上
向流式スラッジブランケット方式)の内部における汚泥
の浮上性予測に好適な装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge flotation prediction device for predicting sludge floatability in an anaerobic reaction tank, and more particularly to a UASB method (upflow sludge using granular sludge). (Blanket method) The present invention relates to a device suitable for predicting the floating property of sludge inside.
【0002】詳しくは、運転状態によって変化する顆粒
状汚泥の形状情報と個数情報およびそれの変化に基づい
て汚泥の浮上性を判定する汚泥浮上予測装置に関する。More specifically, the present invention relates to a sludge flotation prediction device that determines the flotation property of sludge based on the shape information and the number information of granular sludge that changes depending on the operating state and the change.
【0003】[0003]
【従来の技術】UASB方式の嫌気性汚泥処理装置にお
いて、メタンガスはコロイド状の微細気泡や、その微細
気泡が会合した粗大気泡となった状態で発生している。
処理装置内の汚泥の存在状態は、粒径0.5〜3mmの
顆粒状の汚泥が20000〜50000mg/lの濃度
の濃縮されている汚泥相と、流入原水中の微細なSSや
顆粒状の汚泥が破砕した粒径0.5mm以下の破砕汚泥
が、SS(汚泥)濃度として100〜1000mg/l
で存在している上澄み液相に大別できる。その汚泥相と
上澄み液相の界面(汚泥界面)は一定しておらず、発生
ガス量や流入原水量に応じて絶えず展開流動している。2. Description of the Related Art In an anaerobic sludge treatment apparatus of the UASB type, methane gas is generated in the form of colloidal fine bubbles and coarse bubbles in which the fine bubbles are associated.
The presence state of the sludge in the treatment apparatus is as follows: a sludge phase in which granular sludge having a particle size of 0.5 to 3 mm is concentrated at a concentration of 20000 to 50,000 mg / l; The crushed sludge having a particle size of 0.5 mm or less obtained by crushing the sludge has an SS (sludge) concentration of 100 to 1000 mg / l.
Can be roughly divided into the supernatant liquid phase that exists. The interface between the sludge phase and the supernatant liquid phase (sludge interface) is not constant, and is constantly developing and flowing according to the amount of generated gas and the amount of inflowing raw water.
【0004】この汚泥の浮上性が異常に高まると、処理
装置内から顆粒状の汚泥が処理水に流出する可能性があ
り、処理装置の汚泥保持量が少ないことにつながる。そ
のため、嫌気性汚泥処理装置の運転管理において、装置
内の汚泥界面を連続的に把握することは重要である。If the floating property of the sludge is abnormally increased, granular sludge may flow out into the treated water from the inside of the treatment device, leading to a small amount of sludge retained in the treatment device. Therefore, in the operation management of the anaerobic sludge treatment apparatus, it is important to continuously grasp the sludge interface in the apparatus.
【0005】一般に活性汚泥処理装置の沈澱槽や凝集沈
澱処理装置の沈澱槽の汚泥界面を測定する手段として、
超音波式汚泥界面計や光学式汚泥濃度計による方法が用
いられている。超音波式は、音波を汚泥界面に対して発
射し、汚泥界面で反射した音波が帰ってくるまでの時間
から汚泥までの距離を計測する方法である。また光学式
汚泥濃度計による方法は、光の透過量が汚泥層と上澄み
液で異なることを用いて界面を判定する方法である。Generally, as a means for measuring the sludge interface of the settling tank of the activated sludge treatment device or the settling tank of the coagulating sedimentation treatment device,
A method using an ultrasonic sludge interface meter or an optical sludge densitometer is used. The ultrasonic method is a method of emitting a sound wave to the sludge interface and measuring the distance from the time until the sound wave reflected at the sludge interface returns to the sludge. The method using an optical sludge densitometer is a method for determining the interface by using the fact that the amount of transmitted light differs between the sludge layer and the supernatant.
【0006】[0006]
【発明が解決しようとする課題】これらの方式を用いて
嫌気性汚泥処理装置内の汚泥界面を測定した結果、両方
式とも発生メタンガスの影響が多大であり、信頼できる
測定がなされなかった。特に、超音波式汚泥界面計で
は、発生メタンガスの気泡のため、超音波の伝播が正常
に行われない。また、光学式汚泥濃度計では、発生した
微細なメタンガスと顆粒状汚泥との識別が不十分となっ
た。As a result of measuring the sludge interface in an anaerobic sludge treatment apparatus using these methods, both methods were greatly affected by the generated methane gas, and could not be reliably measured. In particular, in the ultrasonic type sludge interface meter, ultrasonic waves are not normally propagated due to bubbles of generated methane gas. In addition, the optical sludge densitometer failed to distinguish between the generated fine methane gas and granular sludge.
【0007】さらに、これらの計器によって界面レベル
を検出したとしても、汚泥の流出という結果を検出する
ことはできても、今後の汚泥の流出を予測することはで
きない。Further, even if the interface level is detected by these instruments, the result of sludge outflow can be detected, but the future outflow of sludge cannot be predicted.
【0008】本発明は、上記のような問題点に鑑み、嫌
気性反応槽内の汚泥の浮上性を判断し、これに基づいて
浮上を予測することが可能な汚泥浮上予測装置を提供す
ることを目的とする。In view of the above problems, the present invention provides a sludge flotation prediction device capable of determining the flotability of sludge in an anaerobic reaction tank and predicting the flotation based on this. With the goal.
【0009】[0009]
【課題を解決するための手段】一般に嫌気性反応槽内の
汚泥は、顆粒状汚泥の内部に生成したガスが包みこまれ
た状態で成長し、大きな粒状物となって、浮上し易い状
態になる。したがって、汚泥層における大径の汚泥の数
が増えることを把握することにより、汚泥の浮上性が予
測できる。[Means for Solving the Problems] Generally, the sludge in the anaerobic reaction tank grows in a state in which the gas generated in the granular sludge is entrapped, becomes a large granular material, and is easily floated. Become. Therefore, by grasping that the number of large-sized sludges in the sludge layer increases, the floating property of the sludge can be predicted.
【0010】本発明の汚泥浮上予測装置は、かかる知見
に基づくものであり、嫌気性反応槽内部の懸濁液中を撮
影する撮像手段と、該撮像手段から得られた画像情報の
中から、形状パターンをもとに顆粒状汚泥を識別する画
像処理手段と、該画像処理手段が出力する顆粒状汚泥の
形状情報と個数情報とをもとに汚泥の浮上性を判定する
判定部とを具備したものである。The sludge flotation prediction device of the present invention is based on such knowledge, and is composed of an image pickup means for photographing the inside of the suspension in the anaerobic reaction tank and image information obtained from the image pickup means. An image processing unit for identifying the granular sludge based on the shape pattern, and a determination unit for determining the floating property of the sludge based on the shape information and the number information of the granular sludge output by the image processing unit. It was done.
【0011】かかる本発明の汚泥浮上予測装置によって
汚泥の浮上性を予測するには、例えば、CCDカメラ等
の撮像手段によって液中を撮像する。この撮像データを
画像処理することにより、汚泥と気泡とがそれぞれ塊粒
状の画像として認識される。このうち、気泡の画像は円
または円に近似したものとなっており、しかも液中を比
較的高速で移動するのに対し、汚泥の画像は非円形で不
規則形状となっており、しかも液中の移動が緩慢である
ので、塊粒状の画像のうちの汚泥画像と気泡画像とを識
別できる。In order to predict the floating property of sludge by the sludge floating prediction device of the present invention, the inside of the liquid is imaged by an image pickup means such as a CCD camera. By subjecting the imaged data to image processing, sludge and air bubbles are recognized as lumpy images. Of these, the image of bubbles is a circle or something similar to a circle, and while moving in the liquid at a relatively high speed, the image of sludge is non-circular and irregularly shaped. Since the movement in the inside is slow, the sludge image and the bubble image in the lump-shaped image can be distinguished.
【0012】たとえば、所定の撮像範囲内におけるこの
汚泥画像として識別された塊粒状物のうち所定大きさ以
上の個数をカウントする。このカウント数が所定個数を
超えるときには、撮像範囲内の汚泥は浮上性ありと判断
する。For example, the number of lumps and granules identified as this sludge image within a predetermined imaging range and having a predetermined size or more is counted. When the counted number exceeds the predetermined number, it is determined that the sludge in the imaging range has a floating property.
【0013】また、個数の経時的データに基いて、所定
大きさ以上の汚泥個数の増加率を求め、この増加率から
汚泥の浮上性を判断してもよい。Further, the rate of increase in the number of sludges having a predetermined size or more may be obtained based on the time-dependent data of the number, and the sludge floating property may be determined from this rate of increase.
【0014】[0014]
【発明の実施の形態】図1は実施例装置を備えた嫌気性
生物処理槽1の断面図であり、内部に上澄み液相2と汚
泥相3とが存在している。槽1の上部に設けられた昇降
装置6に対し懸吊部材7を介して撮像機(CCDカメ
ラ)4と投光器5とが吊設されている。この昇降装置6
は、カメラ4及び投光器5の水中の上下方向位置(深
さ)を変更できると共に、その深さを検知して深さ情報
を出力可能としている。1 is a cross-sectional view of an anaerobic biological treatment tank 1 equipped with an apparatus according to an embodiment, in which a supernatant liquid phase 2 and a sludge phase 3 are present. An image pickup device (CCD camera) 4 and a light projector 5 are suspended from a lifting device 6 provided at the top of the tank 1 via a suspension member 7. This lifting device 6
Can change the vertical position (depth) of the camera 4 and the light projector 5 in the water, and can detect the depth and output depth information.
【0015】この昇降装置6としては、ラックアンドピ
ニオン機構を備え、このピニオン回転用のモータの回転
数から深さ情報を出力するようにしたもの;回転ナット
に螺子棒を螺合し、ナットの回転により螺子棒を上下さ
せるようにした螺進機構を備え、ナット回転用のモータ
の回転数から深さ情報を出力するようにしたもの;懸吊
用のワイヤの巻取機を備え、この巻取機の回転数から深
さ情報を出力するようにしたもの;など、各種のものを
用いることができる。The lifting device 6 is provided with a rack and pinion mechanism so that depth information is output from the number of revolutions of the motor for rotating the pinion; Equipped with a screwing mechanism that raises and lowers a screw rod by rotation, and outputs depth information from the number of rotations of a motor for rotating a nut; Various types can be used, such as those that output depth information from the number of rotations of the machine.
【0016】投光器5は、外光を遮断した槽1内を照射
するために設置されているが、槽1に採光用の窓や照明
が設けられている場合は省略できる。The light projector 5 is installed to irradiate the inside of the tank 1 which is shielded from external light, but can be omitted when the tank 1 is provided with a daylighting window or illumination.
【0017】CCDカメラ4は、防水ケース(図示略)
内に配置されている。このCCDカメラ4は、例えば2
56×256個の画素を備えており、撮像データを信号
処理装置10の画像処理回路8に出力している。The CCD camera 4 is a waterproof case (not shown).
It is located inside. This CCD camera 4 is, for example, 2
It has 56 × 256 pixels and outputs the image pickup data to the image processing circuit 8 of the signal processing device 10.
【0018】画像処理回路8においては、図1(c)の
ように液中に気泡が存在すると、気泡を撮像した画素の
明度は周囲の液を撮像した画素の明度よりも高い。ま
た、液中に汚泥が存在すると、汚泥を撮像した画素の明
度は周囲の液を撮像した画素の明度よりも明度が低い。In the image processing circuit 8, when air bubbles exist in the liquid as shown in FIG. 1C, the brightness of the pixels that image the air bubbles is higher than the brightness of pixels that image the surrounding liquid. Further, when sludge is present in the liquid, the brightness of the pixels that image the sludge is lower than the brightness of the pixels that image the surrounding liquid.
【0019】従って、この画像処理回路において、例え
ば隣接する画素の明度差から粒状物とその周囲の液との
境界が識別され、すべての画素についてこの処理を行な
うことにより、粒状物(境界を結んで得られる線が閉じ
ている場合の閉じた領域)と液(連続相)との識別が行
なわれる。Therefore, in this image processing circuit, for example, the boundary between the granular material and the liquid around it is identified from the difference in brightness of the adjacent pixels, and this processing is performed for all the pixels, so that the granular material (the boundary is connected). When the line obtained in (1) is closed, a closed area) is distinguished from a liquid (continuous phase).
【0020】本発明では、図3(a)に示すように、例
えば径が0.5mm以上であって且つ形状が円又は円近
似形状でない粒状物の撮像を汚泥の撮像として判定す
る。In the present invention, as shown in FIG. 3 (a), for example, the image pickup of a granular object having a diameter of 0.5 mm or more and the shape not being a circle or a circular approximate shape is determined as the image pickup of sludge.
【0021】この径Dとしては、複数方向の径の平均を
採るのが好適であり、例えば、最大系D1 (図1
(c))と、該最大径方向と直交方向の径D2 との平均
をとることが好ましい。As the diameter D, it is preferable to take the average of the diameters in a plurality of directions. For example, the maximum system D 1 (see FIG. 1).
It is preferable to take the average of (c)) and the diameter D 2 in the direction orthogonal to the maximum radial direction.
【0022】この径が0.5mm以上であっても、形状
が円又は円近似形状であるものは気泡として判定する。
円又は円近似形状であるか否かの判定は、例えばその粒
状物の像の外周囲の長さLが、径Dの3.14倍(円の
外周囲長さ)に対し所定範囲内のもの即ち、L/3.1
4D≦N(予め定めた値)であれば円又は円近似形状で
あると判定することにより行なわれる。Even if the diameter is 0.5 mm or more, a circle or a circle approximate shape is judged as a bubble.
Whether or not the shape is a circle or a circle approximate shape is determined, for example, when the outer peripheral length L of the image of the granular material is within a predetermined range with respect to 3.14 times the diameter D (the outer peripheral length of the circle). That is, L / 3.1
If 4D ≦ N (predetermined value), it is determined to be a circle or an approximate circle shape.
【0023】また、気泡の移動速度が汚泥のそれより大
きいことから短時間例えば1秒間に2回の撮像を行な
い、その2つの画像データを比較して移動の大きい粒子
を気泡と判定しても良い。画像処理回路8では、上述の
ようにして顆粒状汚泥を識別すると共に、粒径Dのレン
ジ別に個数カウントを浮上性判定部9に出力する。粒径
Dのレンジとしては、例えば0.5〜1.5mm、1.
5〜3mm、3mm以上とすることができる。Further, since the moving speed of air bubbles is higher than that of sludge, images are taken twice, for example, once per second for a short time, and the two moving image data are compared to determine that the particles having large movement are air bubbles. good. The image processing circuit 8 identifies the granular sludge as described above, and outputs a number count for each range of the particle size D to the levitation determination unit 9. The range of the particle diameter D is, for example, 0.5 to 1.5 mm, 1.
It can be 5 to 3 mm, 3 mm or more.
【0024】図2に示すように、ある深さにおける1つ
の撮像画面中における所定大きさ以上のすべての汚泥を
検出し、粒径レンジ別にその個数をカウントする。そし
て、所定レンジのカウント数が所定個数以上であるとき
には、その撮像地点の汚泥は浮上性が高いものと判定
し、汚泥浮上予測信号を出力する。例えば、画像処理回
路8から入力されたデータに基づいて浮上性判定部9に
おいて、図3(b)に示すように、粒径Dが3mm以上
又は1.5〜3mmの汚泥の個数が所定個数以上になっ
た場合は、浮上性が高くなると予測する。As shown in FIG. 2, all sludges having a predetermined size or more in one image pickup screen at a certain depth are detected, and the number is counted for each particle size range. Then, when the count number of the predetermined range is equal to or more than the predetermined number, it is determined that the sludge at the imaging point has a high floating property, and the sludge floating prediction signal is output. For example, based on the data input from the image processing circuit 8, in the levitation determination unit 9, as shown in FIG. 3B, the number of sludge having a particle diameter D of 3 mm or more or 1.5 to 3 mm is a predetermined number. When it is above, it is predicted that the floating property will be high.
【0025】次に所定距離上方又は下方へCCDカメラ
4を移動させ、その地点で液中を撮像し、所定大きさ以
上の汚泥個数をカウントし、その地点での汚泥の浮上性
を予測する。このようにして、嫌気性反応槽内のすべて
の深さあるいは予め設定した範囲の深さにおける汚泥の
浮上性が予測される。Next, the CCD camera 4 is moved upward or downward by a predetermined distance, the inside of the liquid is imaged at that point, the number of sludge having a predetermined size or more is counted, and the floating property of the sludge at that point is predicted. In this way, the sludge floatability is predicted at all depths in the anaerobic reaction tank or at a depth within a preset range.
【0026】上記説明では、図3(b)のように、所定
大きさ以上の汚泥の個数から直ちに浮上性を予測してい
るが、同一の深さにおいて同一領域を経時的に撮像し、
その領域における所定大きさ以上の汚泥の個数の変化率
(増加率又は減少率)を検出し、この増加率が所定比率
以上である場合に汚泥浮上性ありと予測するようにして
も良い。In the above description, as shown in FIG. 3B, the floating property is immediately predicted from the number of sludges having a predetermined size or more. However, the same region is imaged at the same depth over time,
It is also possible to detect the change rate (increase rate or decrease rate) of the number of sludges having a predetermined size or more in that region, and to predict that sludge floatability is present when this increase rate is not less than a predetermined rate.
【0027】上記説明では、径が所定値以上の粒状物
を、その外周長さにもとづいて汚泥と気泡とに判別して
いるが、同一地点(深さ)において撮像時間を異ならせ
て複数回撮像し、各撮像画像上における粒状物の位置変
化の大きいものを気泡として判定するようにしても良
い。即ち、気泡は液中を速やかに移動(特に上昇)する
が、汚泥は殆ど停滞しているため、経時的な位置変化か
ら汚泥と気泡とを判別できる。もちろん、この経時的な
位置変化(形状パターンの経時的変化)と外周長さデー
タとの双方に基づいて気泡と汚泥との判別を行なうよう
にしても良い。In the above description, the granular material having a diameter of a predetermined value or more is discriminated into sludge and bubbles based on the outer peripheral length thereof. It is also possible to pick up an image and determine as a bubble the one in which the position change of the granular material on each picked-up image is large. That is, the bubbles move (especially rise) in the liquid rapidly, but the sludge is almost stagnant, and therefore the sludge and the bubbles can be discriminated from the change in position over time. Of course, it is possible to discriminate between air bubbles and sludge based on both the position change with time (change of shape pattern with time) and the outer circumference length data.
【0028】[0028]
【発明の効果】以上の通り、本発明の汚泥浮上予測装置
によると、液中の汚泥と気泡とを識別して高精度にて汚
泥の浮上性を予測することが可能となる。また、汚泥の
浮上予測信号を受けて適切な汚泥処理(汚泥の破砕等)
を実施することで、汚泥の浮上を防止でき、この結果と
して汚泥の処理水への流出を阻止することが可能とな
る。As described above, according to the sludge flotation prediction device of the present invention, it is possible to predict sludge flotability with high accuracy by distinguishing sludge and bubbles in liquid. In addition, appropriate sludge treatment (sludge crushing, etc.) in response to the sludge floating prediction signal
By carrying out, it is possible to prevent the sludge from floating, and as a result, it is possible to prevent the sludge from flowing out to the treated water.
【図1】(a)図は実施例装置を備えた生物処理槽の断
面図、(b)図は実施例装置のブロック図、(c)図は
液中の汚泥と気泡とを示す模式図である。FIG. 1A is a cross-sectional view of a biological treatment tank equipped with an embodiment apparatus, FIG. 1B is a block diagram of the embodiment apparatus, and FIG. 1C is a schematic view showing sludge and bubbles in a liquid. Is.
【図2】実施例装置の作動を示すフローチャートであ
る。FIG. 2 is a flowchart showing the operation of the embodiment device.
【図3】汚泥と気泡との判別方法及び浮上性判定の説明
図である。FIG. 3 is an explanatory diagram of a method for discriminating sludge from bubbles and levitation determination.
1 生物処理槽 2 上澄み液相 3 汚泥相 4 CCDカメラ 5 投光器 6 昇降装置 1 Biological treatment tank 2 Supernatant liquid phase 3 Sludge phase 4 CCD camera 5 Light projector 6 Lifting device
Claims (1)
撮像手段と、該撮像手段から得られた画像情報の中か
ら、形状パターンをもとに顆粒状汚泥を識別する画像処
理手段と、該画像処理手段が出力する顆粒状汚泥の形状
情報と個数情報とをもとに汚泥の浮上性を判定する判定
部とを具備してなる汚泥浮上予測装置。1. An image processing unit for capturing an image of the inside of a suspension in an anaerobic reaction tank, and an image processing unit for identifying granular sludge based on a shape pattern from image information obtained from the image capturing unit. A sludge flotation prediction apparatus comprising: a sludge flotation determination unit that determines the flotation property of the sludge based on the shape information and the number information of the granular sludge output by the image processing unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19321895A JP3700204B2 (en) | 1995-07-28 | 1995-07-28 | Sludge levitation prediction device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19321895A JP3700204B2 (en) | 1995-07-28 | 1995-07-28 | Sludge levitation prediction device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0938687A true JPH0938687A (en) | 1997-02-10 |
JP3700204B2 JP3700204B2 (en) | 2005-09-28 |
Family
ID=16304283
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19321895A Expired - Fee Related JP3700204B2 (en) | 1995-07-28 | 1995-07-28 | Sludge levitation prediction device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3700204B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016099279A (en) * | 2014-11-25 | 2016-05-30 | 株式会社島津製作所 | Particle analyzer and particle analysis method |
CN114180733A (en) * | 2021-11-02 | 2022-03-15 | 合肥中盛水务发展有限公司 | Sewage aeration amount detection and aeration control system based on video analysis algorithm |
CN117780334A (en) * | 2024-02-27 | 2024-03-29 | 西南石油大学 | Drilling fluid level measuring device and measuring method |
-
1995
- 1995-07-28 JP JP19321895A patent/JP3700204B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016099279A (en) * | 2014-11-25 | 2016-05-30 | 株式会社島津製作所 | Particle analyzer and particle analysis method |
CN114180733A (en) * | 2021-11-02 | 2022-03-15 | 合肥中盛水务发展有限公司 | Sewage aeration amount detection and aeration control system based on video analysis algorithm |
CN117780334A (en) * | 2024-02-27 | 2024-03-29 | 西南石油大学 | Drilling fluid level measuring device and measuring method |
CN117780334B (en) * | 2024-02-27 | 2024-05-03 | 西南石油大学 | Drilling fluid level measuring device and measuring method |
Also Published As
Publication number | Publication date |
---|---|
JP3700204B2 (en) | 2005-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104823037B (en) | Determine the liquid phase turbidity of multiphase waste water | |
EP0240974A2 (en) | Injection control system of flocculating agent | |
JPH04168346A (en) | Decision of flocculation pattern of particle | |
CN112964606A (en) | Machine vision suspension turbidity detection device and detection method | |
US20190227578A1 (en) | Image Processing For Improving Coagulation And Flocculation | |
JP3700204B2 (en) | Sludge levitation prediction device | |
CA2216558C (en) | Process and apparatus for controlling gravity settling system | |
JP3557726B2 (en) | Sludge interface measuring device | |
JP2008002917A (en) | Content inspection method of liquid packed in container, content inspection device and method of manufacturing liquid food packed in container | |
JPS6345000A (en) | Device for flocculating sludge of water treatment | |
JP3700205B2 (en) | Sludge levitation detector | |
JPS63133061A (en) | Fish living condition monitoring instrument | |
JPS61138161A (en) | Monitoring method of flock in water purifying plant | |
TW202124022A (en) | Water treatment system, control device, water treatment method, and program | |
JP3235501B2 (en) | Sludge interface measuring device | |
JP2003075429A (en) | Scum detection method and apparatus | |
JPH0579999A (en) | Inspecting device for precipitated foreign object in bottle | |
JP2539179B2 (en) | Device for monitoring substances suspended in water | |
JP4431868B2 (en) | Condition monitoring device | |
Nobbs et al. | The design, construction and commissioning of a low-cost optical particle size analyser specifically for measurement of settling velocities and size of flocs | |
JPH08309399A (en) | Sludge flocculation device | |
JPH04148849A (en) | Aggregated floc monitoring apparatus | |
JP3446804B2 (en) | Sludge interface measuring device | |
JP2021146240A (en) | Water treatment system, control apparatus, water treatment method and program | |
JPH08210992A (en) | Method for inspecting settled foreign matter in vessel and device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050704 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080722 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090722 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100722 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110722 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120722 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130722 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140722 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |