JPH0938463A - Treating method of waste gas from semiconductor production - Google Patents

Treating method of waste gas from semiconductor production

Info

Publication number
JPH0938463A
JPH0938463A JP7213962A JP21396295A JPH0938463A JP H0938463 A JPH0938463 A JP H0938463A JP 7213962 A JP7213962 A JP 7213962A JP 21396295 A JP21396295 A JP 21396295A JP H0938463 A JPH0938463 A JP H0938463A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
waste gas
adsorption tower
quaternary ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7213962A
Other languages
Japanese (ja)
Other versions
JP3129945B2 (en
Inventor
Takashi Kyotani
敬史 京谷
Koji Okayasu
康次 岡安
Yoichi Mori
洋一 森
Tadao Kato
忠男 加藤
Yasuhiro Iio
泰洋 飯尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP07213962A priority Critical patent/JP3129945B2/en
Publication of JPH0938463A publication Critical patent/JPH0938463A/en
Application granted granted Critical
Publication of JP3129945B2 publication Critical patent/JP3129945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide such a treating method of waste gas from the production process of semiconductors that a harmful component can be removed at high removing rate from the waste gas without contaminating the environment of the production process of semiconductors due to alkali metals and the running cost is low. SOLUTION: In the treating method to remove a harmful component from the waste gas from the production process of semiconductors, the waste gas 1 is mixed with ammonia and/or quaternary ammonium hydroxide 2 to control pH to 81-10, brought into contact with a detergent 5, then brought into contact with water 9 (in a zone 8), and further introduced to an adsorption tower 11 packed with a chemical which removes the residual component. As for the chemical to be supplied in the adsorption tower, one or more kinds are selected from alkali-added activated carbon, metal oxides and ion exchange resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造排ガス
の処理方法に係り、特に、湿式と乾式の処理方式を組合
せた半導体製造排ガスの処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating semiconductor production exhaust gas, and more particularly to a method for treating semiconductor production exhaust gas that combines wet and dry treatment methods.

【0002】[0002]

【従来の技術】現在の半導体製造産業では、シリコンウ
ェハのドライエッチング及びチャンバークリーニングな
どの工程でエッチャントとしてCF4 ,CHF3 ,C2
6 ,Cl2 ,HBr,HCl,BCl3 ,ClF3
どが使用されている。これらの工程の排ガスには、上記
の未反応のエッチャットの他、F2 ,HF,HCl,S
iF4 ,SiCl4 などの分解生成物も含まれており、
そのまま排出することができないものなので、除害装置
により有害成分を除去した後に排出されている。除害装
置には大きく分けて、固体吸着剤を用いる乾式のもの
と、薬液を用いる湿式のものとがあるが、これらの従来
の半導体製造排ガスの除害装置には次のような問題点が
ある。
2. Description of the Related Art In the present semiconductor manufacturing industry, CF 4 , CHF 3 and C 2 are used as etchants in processes such as dry etching of silicon wafers and chamber cleaning.
F 6 , Cl 2 , HBr, HCl, BCl 3 , ClF 3 or the like is used. Exhaust gas from these processes contains not only the above-mentioned unreacted etch chat, but also F 2 , HF, HCl, S.
Decomposition products such as iF 4 and SiCl 4 are also included,
Since it cannot be discharged as it is, it is discharged after the harmful components are removed by the abatement device. The abatement devices are roughly classified into a dry type using a solid adsorbent and a wet type using a chemical solution, but these conventional semiconductor manufacturing exhaust gas abatement devices have the following problems. is there.

【0003】即ち、乾式では一般に処理性能が高く、除
害出口の有害成分濃度を作業環境許容濃度以下にするこ
とができるが、以下に示すような問題点がある。 (1)固体吸着剤が消耗する毎に交換する必要があり、
ランニングコストが高い。 (2)有害物を固体吸着剤に高濃度に濃縮するので、発
熱などのトラブルが起こる場合がある。 (3)使用済み吸着剤は有害物を高濃度吸着しているの
で、処理に手間とコストがかかる。これもランニングコ
ストを高くする要因となる。
That is, the dry type generally has a high processing performance and can reduce the concentration of harmful components at the harm removal outlet to the allowable concentration in the working environment or less, but it has the following problems. (1) It is necessary to replace the solid adsorbent every time it is consumed,
High running cost. (2) Since harmful substances are concentrated on the solid adsorbent to a high concentration, troubles such as heat generation may occur. (3) Since the used adsorbent adsorbs harmful substances at a high concentration, it takes time and cost to process the adsorbent. This also increases the running cost.

【0004】また、湿式の場合は、一般にランニングコ
ストは安価であるが、次のような問題点がある。 (1)一般に処理性能が低い。除害出口の有害成分濃度
を作業環境許容濃度以下にすることが難しい場合があ
る。 (2)処理性能を高めるために、薬液としてNaOHや
KOHの水溶液がよく用いられる。しかし、Na,Kな
どのアルカリ金属元素が極微量でもシリコンウェハに付
着すると、このシリコンウェハから作られた半導体デバ
イスの誤動作の原因となることがあり好ましくない。
In the case of the wet type, the running cost is generally low, but there are the following problems. (1) Generally, processing performance is low. It may be difficult to keep the concentration of harmful components at the removal port below the allowable concentration in the working environment. (2) In order to improve the treatment performance, an aqueous solution of NaOH or KOH is often used as a chemical solution. However, if an extremely small amount of an alkali metal element such as Na or K adheres to a silicon wafer, it may cause a malfunction of a semiconductor device made from this silicon wafer, which is not preferable.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点を解消し、アルカリ金属による半導体製造環
境の汚染を起こすことなく、排ガス中の有害成分の除去
率を高く保つことができ、また、ランニングコストが安
価な半導体製造排ガスの処理方法を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, and can maintain a high removal rate of harmful components in exhaust gas without causing pollution of the semiconductor manufacturing environment by alkali metals. Another object of the present invention is to provide a method for treating semiconductor manufacturing exhaust gas, which has a low running cost.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、半導体製造排ガスから有害成分を除去
する処理方法において、前記排ガスを、アンモニア及び
/又は水酸化第四アンモニウムでpH8から10に調整
した洗浄液と接触させた後、水と接触せしめ、さらに残
存成分を除去する薬剤を充填した吸着塔に導入して処理
することとしたものである。前記処理方法において、吸
着塔に充填する薬剤は、アルカリ添着活性炭、金属酸化
物又はイオン交換樹脂の一種以上から選ばれるのがよ
い。このように、本発明では、半導体製造排ガスを、
アンモニア又は水酸化第四アンモニウム又はアンモ
ニアと水酸化第四アンモニウムの混合物でpH8から1
0望ましくはpH8.5から9.5に調整した洗浄液と
接触せしめ有害成分を除去する方法において、洗浄液と
接触した後のガスを水と接触せしめ、さらに適当な薬剤
を充填した吸着塔に導いて残存成分の処理を行うことを
特徴とする半導体製造排ガスの処理方法としたものであ
る。
In order to solve the above problems, in the present invention, in a treatment method for removing harmful components from exhaust gas for semiconductor production, the exhaust gas is treated with ammonia and / or quaternary ammonium hydroxide from pH 8 to After being brought into contact with the cleaning liquid adjusted to 10, it is brought into contact with water, and further introduced into an adsorption tower filled with a chemical agent for removing the residual components for treatment. In the treatment method, the chemical to be charged in the adsorption tower is preferably selected from one or more of alkali-impregnated activated carbon, metal oxide and ion exchange resin. Thus, in the present invention, the semiconductor manufacturing exhaust gas,
PH 8 to 1 with ammonia or quaternary ammonium hydroxide or a mixture of ammonia and quaternary ammonium hydroxide
0 In the method of removing harmful components by contacting with a cleaning solution adjusted to pH 8.5 to 9.5, the gas after contacting the cleaning solution is contacted with water, and then introduced into an adsorption tower filled with a suitable chemical. This is a method for treating exhaust gas from semiconductor manufacturing, which is characterized in that residual components are treated.

【0007】[0007]

【発明の実施の形態】次に、本発明の処理方法を図1に
示す処理フロー図に従って説明する。図1において、半
導体製造排ガス1は、まずアンモニア及び/又は水酸化
第四アンモニウムの溶液2でpH8から10望ましくは
pH8.5から9.5に調整した洗浄液5と適当な気液
接触装置6で接触する。洗浄液5は循環ポンプ4によっ
て系内を循環している。ここで大部分の酸性成分は洗浄
液5に吸収除去される。気液接触装置6から出たガス7
には主に、(a)除去しきれなかったSiF4,N
2 ,Cl2 などの酸性成分、(b)洗浄液から気散す
るアンモニアあるいはアミン、(c)排ガス中のハロゲ
ンガスとアンモニア又は第四アンモニウムが反応して生
ずるクロラミンなどが含まれている。
BEST MODE FOR CARRYING OUT THE INVENTION Next, a processing method of the present invention will be described with reference to a processing flow chart shown in FIG. In FIG. 1, the semiconductor manufacturing exhaust gas 1 is first treated with a cleaning liquid 5 adjusted to pH 8 to 10, preferably pH 8.5 to 9.5 with a solution 2 of ammonia and / or quaternary ammonium hydroxide and a suitable gas-liquid contactor 6. Contact. The cleaning liquid 5 is circulated in the system by the circulation pump 4. Here, most of the acidic components are absorbed and removed by the cleaning liquid 5. Gas 7 emitted from gas-liquid contact device 6
Mainly, (a) SiF 4 , N that could not be removed completely
It contains acidic components such as O 2 and Cl 2 , (b) ammonia or amine vaporized from the cleaning liquid, and (c) chloramine produced by the reaction of halogen gas in the exhaust gas with ammonia or quaternary ammonium.

【0008】そこで、適当な気液接触装置8で水9と接
触し、続いてデミスタ10で液滴が除去される。気液接
触後の水は気液分離部17でガスと分離され排水管15
から排出される。ここで(b)アンモニア又はアミンは
ほとんど吸収され作業環境許容濃度以下になるが、
(a)除去しきれなかったSiF4 ,NO2 ,Cl2
どの酸性成分、及び(c)クロラミンなどの一部はなお
残留する。これを適当な薬剤を充填した吸着塔11で吸
着処理したのち、処理ガス12として装置から排出す
る。
Thereupon, a suitable gas-liquid contact device 8 is brought into contact with water 9, and then a demister 10 removes the droplets. The water after the gas-liquid contact is separated from the gas in the gas-liquid separation unit 17 and the drain pipe 15
Emitted from. Here, (b) most of the ammonia or amine is absorbed and the concentration becomes lower than the allowable concentration in the working environment.
(A) Acid components such as SiF 4 , NO 2 , and Cl 2 which cannot be completely removed, and (c) a part of chloramine and the like still remain. This is subjected to adsorption treatment in an adsorption tower 11 filled with an appropriate chemical, and then discharged as a processing gas 12 from the apparatus.

【0009】洗浄液5は循環使用されるので、処理によ
り消費され除去効率が低下する。そこでpH電極13で
常時pHを測定し、規定のpH(pH8望ましくは8.
5)を下回った場合には薬液注入ポンプ3により、アン
モニア及び/又は水酸化第四アンモニウムの溶液2を洗
浄液に注入する。また、排ガス中の酸性成分とアンモニ
ア又は水酸化第四アンモニウムの反応生成物が洗浄液中
に蓄積し、除去率の低下や生成物の析出を起こすので、
一定量の水16を添加しながら同量の洗浄液をオーバー
フロー管14から排出して、生成物の蓄積を防ぐ。ここ
で添加する水には、気液分離部17で分離した水を用い
ても良い。気液接触装置6及び8は、充分な気液接触効
率を得ることができるものならば、いかなる形式のもの
でもかまわない。
Since the cleaning liquid 5 is circulated and used, it is consumed by the treatment and the removal efficiency is lowered. Therefore, the pH is constantly measured by the pH electrode 13, and the specified pH (pH8, preferably 8.
If it is lower than 5), the chemical solution injection pump 3 injects the solution 2 of ammonia and / or quaternary ammonium hydroxide into the cleaning solution. Further, the reaction product of the acidic component in the exhaust gas and ammonia or quaternary ammonium hydroxide accumulates in the cleaning liquid, which causes a reduction in the removal rate and precipitation of the product.
The same amount of wash solution is drained from the overflow pipe 14 while adding a fixed amount of water 16 to prevent product accumulation. As the water added here, the water separated by the gas-liquid separation unit 17 may be used. The gas-liquid contact devices 6 and 8 may be of any type as long as sufficient gas-liquid contact efficiency can be obtained.

【0010】アンモニアは通常市販されている25%の
水溶液を用いても良いし、これを適当に稀釈したもので
もかまわない。水酸化第四アンモニウムとしては、テト
ラメチルアンモニウムヒドロキサイド(TMAH)やコ
リンの水酸化物などの強アルカリ性を有するものを用い
ることができる。吸着塔に充填する薬剤としては、
(A)アルカリ添着活性炭、(B)Cu,Mn,Fe,
Znなどの金属元素の酸化物から選ばれた1種以上の金
属酸化物、(C)第四アンモニウム基を有する陰イオン
交換樹脂が使用できる。(A)アルカリ添着活性炭はS
iF4 ,NO2 ,Cl2 ,NH2 Clなどの除去に効果
があり、(B)金属酸化物はSiF4 ,NO2 ,NH2
Clなどの除去に効果があり、また、(C)第四アンモ
ニウム基を有する陰イオン交換樹脂はSiF4 ,C
2,NH2 Clなどの除去に効果がある。
As the ammonia, a 25% aqueous solution which is usually commercially available may be used, or an appropriately diluted one may be used. As the quaternary ammonium hydroxide, those having strong alkalinity such as tetramethylammonium hydroxide (TMAH) and choline hydroxide can be used. As a chemical to be filled in the adsorption tower,
(A) Alkali-impregnated activated carbon, (B) Cu, Mn, Fe,
One or more kinds of metal oxides selected from oxides of metal elements such as Zn, and (C) anion exchange resin having a quaternary ammonium group can be used. (A) Alkali-impregnated activated carbon is S
It is effective in removing iF 4 , NO 2 , Cl 2 , NH 2 Cl, etc., and (B) the metal oxide is SiF 4 , NO 2 , NH 2
It is effective in removing Cl and the like, and (C) an anion exchange resin having a quaternary ammonium group is SiF 4 , C
It is effective in removing l 2 , NH 2 Cl and the like.

【0011】[0011]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 図2に本発明を実施するための実験装置の全体構成図を
示す。この図2で、半導体製造用ドライエッチング装置
の半導体製造排ガス1を導入し、処理を行った。排ガス
の流量は10リットル/minである。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 2 shows an overall configuration diagram of an experimental apparatus for carrying out the present invention. In FIG. 2, the semiconductor manufacturing exhaust gas 1 of the dry etching apparatus for semiconductor manufacturing was introduced and treated. The flow rate of exhaust gas is 10 liters / min.

【0012】半導体製造排ガス1は、まずアンモニアで
pH8.5〜9.5に調整された洗浄液5とジェットス
クラバー6において接触させられる。ここで噴霧される
洗浄液の流量は50リットル/minとした。ジェット
スクラバー6から出たガス7は、充填塔スクラバー8で
水9と向流接触させられる。水9の流量は10リットル
/min、充填塔の内径は300mmφ、塔高250m
mとし、充填物には径10mmの磁製ラシヒリング8′
を用いた。充填塔から出たガスをデミスター10に通し
ミスト除去した後に活性炭吸着塔11で吸着処理し、処
理ガス12として装置から排出する。活性炭吸着塔11
の内径は300mmφ、塔高200mmとし、8〜24
meshのアルカリ添着活性炭を充填した。
The semiconductor manufacturing exhaust gas 1 is first contacted with a cleaning liquid 5 adjusted to pH 8.5 to 9.5 with ammonia in a jet scrubber 6. The flow rate of the cleaning liquid sprayed here was 50 liters / min. The gas 7 emitted from the jet scrubber 6 is brought into countercurrent contact with the water 9 in the packed tower scrubber 8. The flow rate of water 9 is 10 liters / min, the inner diameter of the packed tower is 300 mmφ, and the tower height is 250 m.
m, and the filling is made of porcelain Raschig ring 8'with a diameter of 10 mm.
Was used. The gas discharged from the packed tower is passed through the demister 10 to remove mist, and then adsorbed by the activated carbon adsorption tower 11 and discharged from the apparatus as a treated gas 12. Activated carbon adsorption tower 11
Has an inner diameter of 300 mmφ and a tower height of 200 mm, and is 8 to 24
It was filled with mesh of alkali-impregnated activated carbon.

【0013】洗浄液5のpHをpH電極13で常時測定
し、pHが9.00を下回った場合には薬液注入ポンプ
3により、25v/v%濃度のアンモニア水2を洗浄液
に注入する。洗浄液中の生成物の蓄積を防ぐために、気
液分離部17の計量升から0.5リットル/minの水
16を循環液5に流下させながら同量の洗浄液をオーバ
ーフロー管14より排出した。以上のような条件で排ガ
ス処理を行い、(1)除害入口、(2)ジェットスクラ
バー出口、(3)水スクラバー出口、(4)活性炭塔出
口の4ヶ所のガスを採取しその組成を分析した。この結
果を表1に示す。
The pH of the cleaning liquid 5 is constantly measured by the pH electrode 13, and when the pH is lower than 9.00, the chemical liquid injection pump 3 injects the ammonia water 2 having a concentration of 25 v / v% into the cleaning liquid. In order to prevent the accumulation of products in the cleaning liquid, the same amount of cleaning liquid was discharged from the overflow pipe 14 while flowing 0.5 liter / min of water 16 into the circulating liquid 5 from the measuring cell of the gas-liquid separating section 17. Exhaust gas treatment is carried out under the above conditions, and gas is collected at four locations: (1) detoxification inlet, (2) jet scrubber outlet, (3) water scrubber outlet, and (4) activated carbon tower outlet, and the composition is analyzed. did. Table 1 shows the results.

【0014】[0014]

【表1】 濃度の単位はいずれもppm 排ガスに含まれていたCl2 ,F2 ,NO2 ,SiF4
は、各処理を経て次第に処理され、活性炭出口で検出限
界以下の濃度になっている。また処理過程で発生するN
3 ,NH2 Clのような成分も、活性炭出口で検出限
界以下の濃度になっている。
[Table 1] Concentration units were all contained in the exhaust gas in ppm Cl 2 , F 2 , NO 2 , SiF 4
Is gradually treated after each treatment, and the concentration is below the detection limit at the activated carbon outlet. Also, N generated in the process
Components such as H 3 and NH 2 Cl are also below the detection limit at the activated carbon outlet.

【0015】実施例2 実施例1と同一条件で処理を行い、一定時間毎に活性炭
塔出口の成分を分析すると共に、5時間処理を行う毎に
25wt%アンモニア水の消費量を測定した。この時の
除害入口ガス成分を表2に示す。処理を通算3000時
間行ったが、その間活性炭塔出口のCl2 ,F2 ,NO
2 ,SiF4 ,NH3 及びNH2 Cl濃度はいずれも検
出限界以下であった。この間の25%NH3 水の累計使
用量を図3に示す。
Example 2 The treatment was carried out under the same conditions as in Example 1, the components at the outlet of the activated carbon column were analyzed at regular intervals, and the consumption of 25 wt% ammonia water was measured every 5 hours of treatment. Table 2 shows the harmful inlet gas components at this time. The treatment was carried out for a total of 3000 hours, during which Cl 2 , F 2 , NO at the activated carbon tower outlet
The concentrations of 2 , SiF 4 , NH 3 and NH 2 Cl were all below the detection limit. The cumulative amount of 25% NH 3 water used during this period is shown in FIG.

【表2】 [Table 2]

【0016】実施例3 実施例1で使用したアルカリ添着活性炭に代えて、C
u,Mnを主体とする金属酸化物と第四アンモニウム基
を有する陰イオン交換樹脂を使用した。これらの薬剤を
充填した吸着塔を図4に示す。吸着塔21の内径は30
0mmφ、塔高は250mmである。ここにCu,Mn
を主体とする粒径8〜24meshに破砕した金属酸化
物23と粒径16〜32meshに破砕した第四アンモ
ニウム基を有する陰イオン交換樹脂22を充填した。こ
れらの薬剤の充填量は金属酸化物10.6リットルと陰
イオン交換樹脂7.1リットルとし、充填層高はそれぞ
れ150mm,100mmとした。この充填塔の金属酸
化物23側からデミスタからのガス24を導入し、陰イ
オン交換樹脂22側から処理ガス25を取り出す構造と
なっている。吸着塔以外の諸条件は実施例1と同一であ
る。以上のような条件で排ガス処理を行い、4ヶ所のガ
スを採取しその組成を分析した。その結果を表3に示
す。
Example 3 Instead of the alkali-impregnated activated carbon used in Example 1, C was used.
An anion exchange resin having a metal oxide mainly composed of u and Mn and a quaternary ammonium group was used. An adsorption tower filled with these chemicals is shown in FIG. The inner diameter of the adsorption tower 21 is 30
0 mmφ and the tower height is 250 mm. Cu, Mn here
Was filled with a metal oxide 23 crushed to a particle size of 8 to 24 mesh and an anion exchange resin 22 having a quaternary ammonium group crushed to a particle size of 16 to 32 mesh. The amounts of these chemicals filled were 10.6 liters of metal oxide and 7.1 liters of anion exchange resin, and the heights of the packed beds were 150 mm and 100 mm, respectively. The gas 24 from the demister is introduced from the metal oxide 23 side of this packed tower, and the processing gas 25 is taken out from the anion exchange resin 22 side. The conditions other than the adsorption tower are the same as in Example 1. Exhaust gas treatment was carried out under the above conditions, and gas at four locations was sampled and the composition thereof was analyzed. Table 3 shows the results.

【0017】[0017]

【表3】 濃度の単位はいずれもppm 排ガスに含まれていたCl2 ,F2 ,NO2 ,SiF4
は、各処理を経て次第に処理され、活性炭出口で検出限
界以下の濃度になっている。また処理過程で発生するN
3 ,NH2 Clのような成分も、活性炭出口で検出限
界以下の濃度になっている。
[Table 3] Concentration units were all contained in the exhaust gas in ppm Cl 2 , F 2 , NO 2 , SiF 4
Is gradually treated after each treatment, and the concentration is below the detection limit at the activated carbon outlet. Also, N generated in the process
Components such as H 3 and NH 2 Cl are also below the detection limit at the activated carbon outlet.

【0018】[0018]

【発明の効果】上記のように本発明方法では、3種類の
処理を組み合わせることにより、除害出口の有害成分濃
度を作業環境許容濃度以下にすることができる。また排
ガスは、前段の2回の気液接触によって大部分の酸性成
分を除去した上で、最終段の薬剤吸着塔に導かれるの
で、吸着塔にかかる負荷が軽い。このため、次の効果を
奏することができる。 (1)薬剤の量は乾式の場合に比べて少量でよく、交換
頻度も少なくて済み、ランニングコストが低廉となる。 (2)薬剤に濃縮される有害物は少量であるので、発熱
などのトラブルが起こりにくく、使用済み薬剤の安定化
も容易である。
As described above, in the method of the present invention, the concentration of harmful components at the harm removal outlet can be made equal to or lower than the allowable concentration in the working environment by combining three types of treatments. Further, since the exhaust gas is guided to the final stage chemical adsorption tower after removing most of the acidic components by the gas-liquid contact in the former stage twice, the load on the adsorption tower is light. Therefore, the following effects can be obtained. (1) The amount of chemicals may be smaller than that of the dry type, the replacement frequency may be low, and the running cost may be low. (2) Since the harmful substances concentrated in the drug are small in amount, troubles such as fever are unlikely to occur, and the used drug can be easily stabilized.

【0019】加えて、KOHやNaOHを洗浄液中に含
まないので、Na,Kなどのアルカリ金属元素がシリコ
ンウェハを汚染する可能性が無い。このため本方式を用
いた除害装置は、半導体製造の現場に置くことができ、
次のようなメリットが生じる。 (1)有害ガス発生源の直近で除害が行えるため、有害
ガスを遠方に送る必要がなく、他の有害ガスとの混触を
防ぐことができる。これにより、作業環境の安全性を向
上することができる。 (2)作業者が除害装置の状態チェックやメンテナンス
を行うことが容易となる。
In addition, since KOH and NaOH are not contained in the cleaning liquid, there is no possibility that alkali metal elements such as Na and K will contaminate the silicon wafer. Therefore, the abatement device using this method can be placed in the semiconductor manufacturing site,
The following merits occur. (1) Since the harmful gas can be removed in the immediate vicinity of the harmful gas source, it is not necessary to send the harmful gas to a distant place, and it is possible to prevent contact with other harmful gas. As a result, the safety of the work environment can be improved. (2) It becomes easy for the worker to check the state of the abatement device and perform maintenance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の処理方法に用いる処理フローの全体構
成図。
FIG. 1 is an overall configuration diagram of a processing flow used in a processing method of the present invention.

【図2】実施例に用いた装置の処理フローの全体構成
図。
FIG. 2 is an overall configuration diagram of a processing flow of the apparatus used in the embodiment.

【図3】実施例2で用いたNH3 水の累計使用量を示す
グラフ。
FIG. 3 is a graph showing the cumulative amount of NH 3 water used in Example 2.

【図4】実施例3で用いた吸着塔の構成図。FIG. 4 is a configuration diagram of an adsorption tower used in Example 3.

【符号の説明】 1:半導体製造排ガス、2:アンモニア溶液及び/又は
水酸化第四アンモニウム溶液、3、4:ポンプ、5:洗
浄液、6、8:気液接触装置、7:ガス流れ、9:水、
10:デミスタ、11:吸着塔、12:処理ガス、1
3:pH電極、14:オーバーフロー管、15:排水
管、16:水導入管、17:気液分離部、21:吸着
塔、22:陰イオン交換樹脂、23:金属酸化物、2
4:ガス導入口、25:処理ガス排出口
[Explanation of Codes] 1: Exhaust gas for semiconductor production, 2: Ammonia solution and / or quaternary ammonium hydroxide solution, 3, 4: Pump, 5: Cleaning liquid, 6, 8: Gas-liquid contact device, 7: Gas flow, 9 :water,
10: demister, 11: adsorption tower, 12: process gas, 1
3: pH electrode, 14: overflow pipe, 15: drain pipe, 16: water introduction pipe, 17: gas-liquid separation section, 21: adsorption tower, 22: anion exchange resin, 23: metal oxide, 2
4: Gas inlet, 25: Processed gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 忠男 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 飯尾 泰洋 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadao Kato 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Yasuhiro Iio 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体製造排ガスから有害成分を除去す
る処理方法において、前記排ガスを、アンモニア及び/
又は水酸化第四アンモニウムでpH8から10に調整し
た洗浄液と接触させた後、水と接触せしめ、さらに残存
成分を除去する薬剤を充填した吸着塔に導入して処理す
ることを特徴とする半導体製造排ガスの処理方法。
1. A processing method for removing harmful components from semiconductor manufacturing exhaust gas, wherein the exhaust gas is ammonia and / or
Alternatively, it is brought into contact with a cleaning liquid whose pH is adjusted to 8 to 10 with quaternary ammonium hydroxide, then brought into contact with water, and further introduced into an adsorption tower filled with a chemical agent for removing residual components for treatment. Exhaust gas treatment method.
【請求項2】 前記吸着塔に充填する薬剤は、アルカリ
添着活性炭、金属酸化物又はイオン交換樹脂の一種以上
から選ばれることを特徴とする請求項1記載の半導体製
造排ガスの処理方法。
2. The method for treating semiconductor manufacturing exhaust gas according to claim 1, wherein the chemical to be filled in the adsorption tower is selected from one or more of alkali-impregnated activated carbon, metal oxide and ion exchange resin.
【請求項3】 前記金属酸化物は、Cu,Mn,Fe又
はZnの酸化物の一種以上から選ばれ、イオン交換樹脂
は第四アンモニウム基を有する陰イオン交換樹脂である
ことを特徴とする請求項2記載の半導体製造排ガスの処
理方法。
3. The metal oxide is selected from one or more oxides of Cu, Mn, Fe or Zn, and the ion exchange resin is an anion exchange resin having a quaternary ammonium group. Item 2. A method for treating semiconductor manufacturing exhaust gas according to Item 2.
JP07213962A 1995-08-01 1995-08-01 Semiconductor manufacturing exhaust gas treatment method Expired - Fee Related JP3129945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07213962A JP3129945B2 (en) 1995-08-01 1995-08-01 Semiconductor manufacturing exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07213962A JP3129945B2 (en) 1995-08-01 1995-08-01 Semiconductor manufacturing exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH0938463A true JPH0938463A (en) 1997-02-10
JP3129945B2 JP3129945B2 (en) 2001-01-31

Family

ID=16647954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07213962A Expired - Fee Related JP3129945B2 (en) 1995-08-01 1995-08-01 Semiconductor manufacturing exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP3129945B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030010207A (en) * 2001-07-26 2003-02-05 김영택 Waste gas treatment system
US6953557B1 (en) 1997-10-17 2005-10-11 Ebara Corporation Process and apparatus for treating semiconductor production exhaust gases
US10016724B2 (en) 2014-01-24 2018-07-10 Hanwha Chemical Corporation Purification method and purification apparatus for off-gas
CN108579388A (en) * 2018-07-03 2018-09-28 深圳市华海智联科技有限公司 A kind of emission-control equipment and its long-distance monitoring method
CN113634093A (en) * 2021-08-11 2021-11-12 上海协微环境科技有限公司 Gas purifier for treating semiconductor waste gas
WO2022092086A1 (en) * 2020-10-30 2022-05-05 栗田工業株式会社 Exhaust gas treatment facility
JP2022122616A (en) * 2021-02-10 2022-08-23 栗田工業株式会社 Exhaust disposal facility
WO2023189306A1 (en) * 2022-03-30 2023-10-05 栗田工業株式会社 Cleaning method, cleaning liquid, and cleaning agent for exhaust gas treatment facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953557B1 (en) 1997-10-17 2005-10-11 Ebara Corporation Process and apparatus for treating semiconductor production exhaust gases
KR20030010207A (en) * 2001-07-26 2003-02-05 김영택 Waste gas treatment system
US10016724B2 (en) 2014-01-24 2018-07-10 Hanwha Chemical Corporation Purification method and purification apparatus for off-gas
CN108579388A (en) * 2018-07-03 2018-09-28 深圳市华海智联科技有限公司 A kind of emission-control equipment and its long-distance monitoring method
WO2022092086A1 (en) * 2020-10-30 2022-05-05 栗田工業株式会社 Exhaust gas treatment facility
JP2022122616A (en) * 2021-02-10 2022-08-23 栗田工業株式会社 Exhaust disposal facility
CN113634093A (en) * 2021-08-11 2021-11-12 上海协微环境科技有限公司 Gas purifier for treating semiconductor waste gas
WO2023189306A1 (en) * 2022-03-30 2023-10-05 栗田工業株式会社 Cleaning method, cleaning liquid, and cleaning agent for exhaust gas treatment facility

Also Published As

Publication number Publication date
JP3129945B2 (en) 2001-01-31

Similar Documents

Publication Publication Date Title
JP3129945B2 (en) Semiconductor manufacturing exhaust gas treatment method
KR19990063297A (en) Cleaning water for electronic materials
EP1027918A1 (en) Method and apparatus for processing exhaust gas of semiconductor fabrication
KR100262301B1 (en) Method and device for wet-treating semiconductor wafer
US4861578A (en) Method of treating waste gas
EP0684067B1 (en) Process for treating acidic exhaust gas
JPH03217217A (en) Treatment of waste gas containing chlorine trifluoride
KR920007856B1 (en) Method of removing gassy acidic halogen compound
JPH0716583B2 (en) Method for dry treatment of exhaust gas containing chlorine fluoride
JP3266309B2 (en) Treatment method for acidic fluorine-containing water
JPH0436727B2 (en)
JP2013138097A (en) Acid mixture liquid recovery system, acid mixture liquid recovery method, and silicon material cleaning method
JP2006231105A (en) Method for removing oxidizing gas
JPH05301092A (en) Treatment of ammonium fluoride-containing water
JP2000271437A (en) Method and device for treating waste gas
JPH0857246A (en) Treatment of acidic exhaust gas
RU2065488C1 (en) Detergent for polymeric surface washing off and a method of washing off
JP2003104721A (en) Apparatus and method for recovering ammonia
JPH078738A (en) Method and apparatus for wet treatment of exhaust gas from semiconductor producing process
JP2000135492A (en) Decomposition treatment of hydrogen peroxide
JP2020163385A (en) Exhaust gas treatment method
JP3861042B2 (en) Exhaust treatment method and exhaust treatment apparatus
JPH06285332A (en) Treatment of waste dry-etching gas
JPH03254125A (en) Method of washing semiconductor wafer
JPH11156355A (en) Method for treating fluorine-containing water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees