JP3266309B2 - Treatment method for acidic fluorine-containing water - Google Patents

Treatment method for acidic fluorine-containing water

Info

Publication number
JP3266309B2
JP3266309B2 JP12137492A JP12137492A JP3266309B2 JP 3266309 B2 JP3266309 B2 JP 3266309B2 JP 12137492 A JP12137492 A JP 12137492A JP 12137492 A JP12137492 A JP 12137492A JP 3266309 B2 JP3266309 B2 JP 3266309B2
Authority
JP
Japan
Prior art keywords
fluorine
water
containing water
ammonia
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12137492A
Other languages
Japanese (ja)
Other versions
JPH05293475A (en
Inventor
忠弘 大見
伸 佐藤
忠 高土居
正博 三木
敏郎 福留
又五郎 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Stella Chemifa Corp
Original Assignee
Kurita Water Industries Ltd
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Stella Chemifa Corp filed Critical Kurita Water Industries Ltd
Priority to JP12137492A priority Critical patent/JP3266309B2/en
Publication of JPH05293475A publication Critical patent/JPH05293475A/en
Application granted granted Critical
Publication of JP3266309B2 publication Critical patent/JP3266309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は酸性フッ素含有水の処理
方法の改良に関するものである。さらに詳しくいえば、
本発明は、例えば半導体製造工程などから排出される酸
性フッ素含有水中のフッ素イオンを回収する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved method for treating acidic fluorine-containing water. More specifically,
The present invention relates to a method for recovering fluorine ions in acidic fluorine-containing water discharged from, for example, a semiconductor manufacturing process.

【0002】[0002]

【従来の技術】近年、半導体製造分野やその関連分野、
各種金属材料、単結晶材料等の表面処理分野では、多量
のエッチング剤が使われ、主としてフッ化水素若しくは
フッ化アンモニウムとフッ化水素の混合液、さらにはこ
れらに酢酸や硝酸などを含む混合液等、多種に雑多の組
成のものが、廃液として排出される。この廃液を炭酸カ
ルシウムと接触反応させてフッ化カルシウムとして、フ
ッ素をろ材表面に不溶化固定する場合には、原液の組成
や濃度によって反応状態が変化し、特に、硝酸等の酸を
含む場合などは、ろ材が崩壊し、処理水中へろ材表面が
流出するために乳濁化した処理水になる現象が生じる。
その結果、炭酸カルシウムをフッ化カルシウムに転換さ
せて、最終的に高純度、低含水率のフッ化カルシウムを
生成させ、たとえば、これをHF等の原料に再利用する
ことを意図しても、ろ材崩壊によってフッ素回収率が低
下する。しかも流出した乳濁化したフッ化カルシウムの
回収には別途凝集沈殿処理を必要とし、凝集沈殿処理に
より捕集しても、低品位、高含水率の凝集物しか得られ
ず、フッ素の再利用には不適当なものであった。この現
象は、特に、HF系エッチング剤廃液に顕著に現れる欠
点である。
2. Description of the Related Art In recent years, semiconductor manufacturing fields and related fields,
In the field of surface treatment of various metal materials, single crystal materials, etc., a large amount of etchant is used, mainly hydrogen fluoride or a mixed solution of ammonium fluoride and hydrogen fluoride, and a mixed solution containing acetic acid, nitric acid, etc. A variety of miscellaneous compositions are discharged as waste liquid. When this waste liquid is contact-reacted with calcium carbonate to form calcium fluoride, and when fluorine is insolubilized and fixed on the surface of the filter medium, the reaction state changes depending on the composition and concentration of the undiluted solution, especially when an acid such as nitric acid is contained. As a result, a phenomenon occurs in which the filter medium collapses and the surface of the filter medium flows out into the treated water, resulting in emulsified treated water.
As a result, calcium carbonate is converted into calcium fluoride, and finally calcium fluoride having a high purity and a low water content is produced. For example, even if it is intended to reuse this as a raw material such as HF, Fluorine recovery decreases due to filter media collapse. In addition, a separate coagulation sedimentation process is required to recover the emulsified calcium fluoride that has flowed out, and even if collected by coagulation sedimentation, only low-grade, high-moisture-content aggregates are obtained, and fluorine is reused. Was inappropriate. This phenomenon is a defect that appears particularly in HF-based etchant waste liquid.

【0003】[0003]

【発明が解決しようとする課題】本発明は、エッチング
剤廃液中のフッ素をカルシウム充填材に接触させてフッ
化カルシウムとして回収する方法において、ろ材の崩壊
を防止して、ろ材から低含水率のフッ化カルシウムを回
収して、フッ化水素生産等の再利用を可能にすることを
目的とするものである。
SUMMARY OF THE INVENTION The present invention relates to a method of recovering calcium fluoride by contacting fluorine in an etchant waste liquid with a calcium filler to prevent collapse of the filter medium and to reduce the water content of the filter medium from low. An object of the present invention is to recover calcium fluoride and enable reuse such as hydrogen fluoride production.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記目的
を達成するためにはろ剤の崩壊を防止することが肝要と
考え、酸性フッ素濃厚系廃水からフッ素をフッ化カルシ
ウムとして固定化するために、予めアルカリ剤を原水に
添加した後、炭酸カルシウム充填材に通水すれば、ろ材
の崩壊を防止し得ることを見出し、この知見に基づき本
発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention consider that it is important to prevent the disintegration of the filter agent in order to achieve the above object, and fix fluorine as calcium fluoride from acidic fluorine-rich wastewater. For this reason, it has been found that if an alkaline agent is added to raw water in advance and then water is passed through a calcium carbonate filler, collapse of the filter medium can be prevented, and based on this finding, the present invention has been completed.

【0005】すなわち、本発明は、 (1)エッチング剤廃液の酸性のフッ素含有水を炭酸カ
ルシウム充填槽に通水してフッ素をフッ化カルシウムと
して除去する方法において、酸性フッ素含有水に含まれ
るフッ酸以外の酸の当量以上の量のアンモニア系若しく
は苛性アルカリ系アルカリ剤を、該酸性フッ素含有水に
あらかじめ添加してフッ素をフッ化カルシウムとして除
去することを特徴とする酸性フッ素含有水の処理方法、
及び、 (2)酸性のフッ素含有水を炭酸カルシウム充填槽に通
水してフッ素をフッ化カルシウムとして除去する方法に
おいて、酸性フッ素含有水に含まれるフッ酸以外の酸の
当量以上の量のアルカリ剤を、該酸性フッ素含有水にあ
らかじめ添加する方法であって、該アルカリ剤の全量若
しくは一部が充填槽流出水から回収したアンモニア含有
ガスであることを特徴とする酸性フッ素含有水の処理方
法、を提供するものである。酸性フッ素含有水中の酸の
種類は、分析するか又は工場で使用される酸の種類から
判明するが、標準的に含まれるのはフッ酸、硝酸、ケイ
酸である。
That is, the present invention provides (1) a method of removing acidic fluorine-containing water by passing acidic fluorine-containing water in an etchant waste liquid through a calcium carbonate-filled tank to remove fluorine as calcium fluoride. A method for treating acidic fluorine-containing water, comprising adding an ammonia-based or caustic-based alkali agent in an amount equal to or more than the equivalent of an acid other than the acid to the acidic fluorine-containing water in advance to remove fluorine as calcium fluoride. ,
And (2) in a method of removing acidic fluorine-containing water from calcium fluoride by passing acidic fluorine-containing water through a calcium carbonate-filled tank, wherein an alkali having an amount equal to or more than the equivalent of an acid other than hydrofluoric acid contained in the acidic fluorine-containing water. A method of pre-adding an agent to the acidic fluorine-containing water, wherein the whole or a part of the alkaline agent is an ammonia-containing gas recovered from a filling tank effluent. , Is provided. The type of acid in the acidic fluorine-containing water can be analyzed or determined from the type of acid used in the factory, but typically includes hydrofluoric acid, nitric acid and silicic acid.

【0006】本発明の一態様の工程フロー説明図により
説明する。まず、フッ素を含む原水は原水槽1に入り、
処理水用配管5により、炭酸カルシウム充填塔2、2'
によりフッ素が除去される。本発明の対象とするフッ素
含有水は、硝酸やケイ酸等の酸を含むものであり、通常
pH1〜4程度のものである。本発明においては、このよ
うな酸性のフッ素含有水を、炭酸カルシウム充填塔に通
水する前にアルカリ剤を添加してpH4.5〜8.5程度に
中和する。すなわち、原水槽1において、原水中のフッ
酸以外の全酸の当量以上のアルカリ剤を供給管10によ
り供給する。このようなアルカリ剤としては、アンモニ
アガスや水酸化アンモニウム、水酸化ナトリウム、水酸
化カリウム等が挙げられる。アルカリ剤と原水の接触を
高めるために撹拌機等を設けるのが望ましい(図示せ
ず)。
A process flow according to one embodiment of the present invention will be described with reference to the drawings. First, raw water containing fluorine enters the raw water tank 1,
Calcium carbonate packed tower 2, 2 '
Removes fluorine. The fluorine-containing water targeted by the present invention contains an acid such as nitric acid or silicic acid, and is usually
It has a pH of about 1 to 4. In the present invention, such an acidic fluorine-containing water is neutralized to a pH of about 4.5 to 8.5 by adding an alkaline agent before passing the water through a calcium carbonate packed tower. That is, in the raw water tank 1, an alkali agent having an equivalent amount or more of all acids other than hydrofluoric acid in the raw water is supplied through the supply pipe 10. Examples of such an alkaline agent include ammonia gas, ammonium hydroxide, sodium hydroxide, and potassium hydroxide. It is desirable to provide a stirrer or the like to increase the contact between the alkaline agent and the raw water (not shown).

【0007】次に、こうして中和された被処理水は、原
水ポンプ4で炭酸カルシウム充填塔2に通水する。充填
塔へは上向流、下向流いづれの流れでもよいが、炭酸カ
ルシウムとの反応によってCO2等のガスを発生するこ
とがあるので、塔内の水切れ防止や充填材の混合・流動
化のためには上向流通水の方が望ましい。又、塔の数
は、図面では2塔であるが1塔または2塔以上の多段工
程にすることができる。本発明に用いる炭酸カルシウム
層は、炭酸カルシウム層が液と接触する構造のものであ
れば特に制限はなく、例えば、充填塔の代わりに微細炭
酸カルシウムを用いたスラリー型の沈殿槽方式を使用す
ることができ、また、反応槽−沈殿槽の単段又は多段方
式の炭酸カルシウム充填槽にも適用できる。炭酸カルシ
ウム塔に充填する炭酸カルシウム粒子としては粒径0.
1〜0.5mmの炭酸カルシウム粒子が好ましい。通水速
度はSV0.1〜5hr-1、好ましくはSV1〜3hr-1
度とする。
Next, the water thus neutralized is passed through the raw water pump 4 to the calcium carbonate packed tower 2. Either an upward flow or a downward flow may be applied to the packed tower, but gas such as CO 2 may be generated by the reaction with calcium carbonate, preventing water drainage in the tower and mixing and fluidizing the filler. For this purpose, upward flow water is more desirable. Although the number of towers is two in the drawing, one or two or more towers can be used in a multistage process. The calcium carbonate layer used in the present invention is not particularly limited as long as it has a structure in which the calcium carbonate layer comes into contact with a liquid. For example, a slurry type precipitation tank method using fine calcium carbonate instead of a packed tower is used. The present invention can be applied to a single-stage or multi-stage calcium carbonate-filled tank of a reaction tank and a precipitation tank. The particle size of the calcium carbonate particles to be filled in the calcium carbonate tower is 0.3.
Calcium carbonate particles of 1-0.5 mm are preferred. The water flow rate is set to SV 0.1 to 5 hr -1 , preferably about SV 1 to 3 hr -1 .

【0008】こうしてフッ素がフッ化カルシウムとして
除去された処理水はアルカリ剤としてアンモニア系化合
物を添加した場合には、必要に応じ、処理水槽3に送
り、水中に含まれるアンモニア成分を除去する。具体的
には炭酸カルシウム充填塔2でフッ素を除去した処理水
は処理水槽3に送り、ブロワー8等で曝気する。処理水
中のアンモニアはNH4HCO3や(NH4)2CO3の形で
溶存しているので、空気等のガスで曝気すれば、容易に
NH3ガスとして揮散するが、揮散効率を高めるため
に、プラスチック材等の充填物や多段の棚段とした放出
塔を好適に使用することができる。又、加温又は減圧手
段を付与して曝気効率を高める手段を用いてもよい。こ
こで例示した空気曝気の他にも、処理量に応じて、酸ス
トリッピング方法やゼオライト等の吸着剤による方法を
適宜採用することができる。
[0008] The treated water from which fluorine has been removed as calcium fluoride, when an ammonia-based compound is added as an alkaline agent, is sent to a treated water tank 3 as necessary to remove the ammonia component contained in the water. Specifically, the treated water from which fluorine has been removed in the calcium carbonate packed tower 2 is sent to the treated water tank 3 and aerated by a blower 8 or the like. Ammonia in the treated water is dissolved in the form of NH 4 HCO 3 or (NH 4 ) 2 CO 3 , so if it is aerated with a gas such as air, it can be easily volatilized as NH 3 gas. In addition, a filler such as a plastic material or a discharge tower having a plurality of trays can be suitably used. Further, a means for increasing the aeration efficiency by providing a heating or decompression means may be used. In addition to the air aeration exemplified here, an acid stripping method or a method using an adsorbent such as zeolite can be appropriately employed depending on the treatment amount.

【0009】こうしてフッ素アンモニア共に除去された
処理水は配管5'により系外に排出されるが、さらに必
要に応じてアンモニア、フッ素、BOD等の浄化処理を
行い、放流するか、又は工程用水として再利用する。本
発明において、アルカリ剤としてアンモニア系化合物を
用いた場合、好ましくは処理水槽3で脱アンモニアが行
われるので、前述のアルカリ剤添加工程において、こう
して回収されたアンモニアガスを新品のアンモニアに替
えて、もしくは新品のアンモニア又は、別工程から排出
されるアンモニア水と共に使用することができる。以
下、処理水槽で空気曝気によりアンモニア成分を分離し
た例を述べる。処理水槽3をブロワー8により曝気して
得たアンモニアガスを含む排ガスは、アンモニア通気管
9により原水槽1の底から通気する。原水槽1から排出
されたガスは一定回数循環させた後、まだ、アンモニア
が含まれているようならば、ガス吸収塔6へ送る。ガス
吸収塔6には、ガス吸収剤槽7からガス吸収剤が供給さ
れる。吸収剤としては、通常硫酸、塩酸、硝酸等の酸を
用いるが、吸収剤として原水の一部を塔頂から噴霧して
使用することができる。
The treated water thus removed together with the fluorine ammonia is discharged to the outside of the system through the pipe 5 '. If necessary, the treated water is subjected to a purification treatment of ammonia, fluorine, BOD or the like, and is discharged or used as process water. Reuse. In the present invention, when an ammonia-based compound is used as the alkali agent, deammonia is preferably performed in the treatment water tank 3, and thus, in the above-described alkali agent addition step, the ammonia gas thus collected is replaced with new ammonia. Alternatively, it can be used together with new ammonia or ammonia water discharged from another process. Hereinafter, an example in which an ammonia component is separated by air aeration in a treatment water tank will be described. Exhaust gas containing ammonia gas obtained by aerating the treated water tank 3 with a blower 8 is ventilated from the bottom of the raw water tank 1 through an ammonia vent pipe 9. After the gas discharged from the raw water tank 1 is circulated a certain number of times, if the gas still contains ammonia, it is sent to the gas absorption tower 6. The gas absorbent 6 is supplied with a gas absorbent from a gas absorbent tank 7. As the absorbent, an acid such as sulfuric acid, hydrochloric acid, or nitric acid is usually used, but a part of raw water can be sprayed from the top of the tower and used as the absorbent.

【0010】原水槽内へのアンモニアガスの吹き込み量
は、原水に含有されるフッ酸以外の硝酸、及びケイ酸
(H2SiO3)等の各酸量の総和の当量以上の量を添加
するが、必ずしもこのアンモニアだけで原水を中和する
必要はなく、アルカリ剤として別に用意したアンモニア
水、苛性ソーダ、苛性カリなどを単独又は処理水槽から
の曝気排ガスとともに併用して使用することができる。
この場合も、アンモニア水が処理工程の操作性の面から
最適である。原水槽1の中和用アルカリ剤として、Ca
(OH)2、CaO、CaCO3などのカルシウム剤を使用
すると、原水中のフッ素と化合して微細なフッ化カルシ
ウムやSiO2を生成するので好ましくない。又、苛性
ソーダや苛性カリは共存するフッ酸以外の遊離の硝酸等
の酸に当量添加すれば、ろ材崩壊防止には有効だが、不
足する場合には処理水が乳濁し、一方、過剰添加の場合
はフッ素除去性が悪くなるので適正添加の制御に難しさ
がある。
The amount of ammonia gas blown into the raw water tank is equal to or more than the total amount of nitric acid other than hydrofluoric acid and silicic acid (H 2 SiO 3 ) contained in the raw water. However, it is not always necessary to neutralize the raw water only with this ammonia, and ammonia water, caustic soda, caustic potash, etc. separately prepared as an alkaline agent can be used alone or in combination with the aerated exhaust gas from the treated water tank.
Also in this case, ammonia water is optimal from the viewpoint of the operability of the treatment process. As an alkali agent for neutralization of the raw water tank 1, Ca
It is not preferable to use a calcium agent such as (OH) 2 , CaO, CaCO 3 , because it combines with fluorine in raw water to form fine calcium fluoride and SiO 2 . Also, caustic soda and caustic potash are effective to prevent filter media collapse if added to an acid such as free nitric acid other than hydrofluoric acid that coexists, but if insufficient, treated water will be emulsified. It is difficult to control the proper addition because the fluorine removal property is deteriorated.

【0011】[0011]

【実施例】本発明を実施例によりさらに詳細に説明す
る。 実施例1及び比較例 試薬HF、H2SiO3、HNO3を使用して、全フッ素
濃度10gF/l、HNO3濃度3.0g/lのフッ素含
有原水(pH3.7)を調製した。この原水中には、硝酸
濃度0.048当量/l、H2SiO3濃度0.088当
量、HF濃度0.263当量/lが存在する。この原水
にアンモニア含有ガスを約2リットル/分の流量で0〜
20時間吹き込み、第1表に表示の量を吸収させた。こ
れらアンモニアガス吸収原水を内径30φmmカラムに平
均粒径0.32φmmの炭酸カルシウム粒子100mlを充
填したカラムに空間速度2hr-1で通水した。通水開始
後、3時間の処理水を集め、分析した結果を第1表に示
す。表中の酸当量比は、酸に対するアンモニアの添加量
を当量で示したものである。実験番号1はアンモニアを
添加しなかった場合であり、実験番号2〜4はアンモニ
アを添加した場合の結果を示す。
EXAMPLES The present invention will be described in more detail with reference to Examples. Example 1 and Comparative Example reagents HF, using H 2 SiO 3, HNO 3, was total fluorine concentration 10 gf / l, fluorine-containing raw water HNO 3 concentration 3.0 g / l of (pH 3.7) was prepared. In this raw water, a nitric acid concentration of 0.048 equivalent / l, an H 2 SiO 3 concentration of 0.088 equivalent, and an HF concentration of 0.263 equivalent / l are present. Ammonia-containing gas is added to this raw water at a flow rate of about 2 liters / min.
Blowing was performed for 20 hours to absorb the amount indicated in Table 1. The ammonia gas-absorbing raw water was passed at a space velocity of 2 hr -1 through a column filled with 100 ml of calcium carbonate particles having an average particle diameter of 0.32 mm through a 30 mm-diameter column. Table 1 shows the results of the analysis and analysis of the treated water for 3 hours after the start of water passage. The acid equivalent ratio in the table indicates the amount of ammonia added to the acid in equivalent. Experiment No. 1 shows the case where ammonia was not added, and Experiment Nos. 2 to 4 show the results when ammonia was added.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例の結果より、アンモニア無添加の実
験番号1では、炭酸カルシウム粒子が崩壊して懸濁物質
(SS)として処理水中に流出した。使用するアンモニ
ア量は、実験番号2を見れば、硝酸をちょうど中和する
量では不十分である。実験番号4により十分目的を達成
していることから、アンモニンガスは、全酸を中和する
当量までは不要であることが分かる。実験番号4では、
HNO3とH2SiO3の合計以上添加すれば無添加時よ
りも懸濁物質発生量の80%以上を抑制している。実験
番号4の懸濁物質の成分はSiO2が主成分であった。
なお、実験番号4の処理水をもう一度同一規模の炭酸カ
ルシウム充填塔に通水したところ、pH7.3、フッ素濃
度4.5mg/l、懸濁物質2000mg/lの処理水が得
られた。このことは、炭酸カルシウム充填塔を多段にす
れば、処理水中のフッ素濃度が増加した場合に十分対処
できることがわかる。 実施例2 フッ素を8790mg/リットル、硝酸を6900mg/リ
ットル及びケイ酸を2300mg/リットル(SiO2
して)含むpH3.2の電子部材エッチング工程廃水を対
象として本発明を実施した。この廃水中の硝酸及びケイ
酸の合計量に対して第2表記載の量の水酸化ナトリウム
を添加した後、実施例1と同様にして炭酸カルシウム充
填層に通水した。結果を第2表に示す。これから、硝酸
とケイ酸の合計量に対して、水酸化ナトリウムの添加量
が1当量未満になると、ろ剤のリークが認められるが、
1当量以上では認められなくなることがわかる。
According to the results of the examples, in Experiment No. 1 in which ammonia was not added, the calcium carbonate particles collapsed and flowed out into the treated water as a suspended solid (SS). According to Experiment No. 2, the amount of ammonia used is not sufficient to just neutralize nitric acid. Experiment No. 4 shows that the objective was sufficiently achieved, indicating that the amount of ammonin gas is unnecessary up to an equivalent amount for neutralizing all acids. In experiment number 4,
If more than the total of HNO 3 and H 2 SiO 3 is added, 80% or more of the amount of suspended solids is suppressed as compared with the case of no addition. The component of the suspended substance of Experiment No. 4 was mainly SiO 2 .
When the treated water of Experiment No. 4 was once again passed through a calcium carbonate packed tower of the same scale, treated water having a pH of 7.3, a fluorine concentration of 4.5 mg / l, and a suspended substance of 2000 mg / l was obtained. It can be seen that this can be adequately dealt with when the concentration of fluorine in the treated water is increased by increasing the number of the packed columns of calcium carbonate. Example 2 The present invention was carried out for a pH 3.2 electronic component etching process wastewater containing 8790 mg / liter of fluorine, 6900 mg / liter of nitric acid, and 2300 mg / liter of silicic acid (as SiO 2 ). After adding sodium hydroxide in the amount shown in Table 2 with respect to the total amount of nitric acid and silicic acid in the wastewater, water was passed through the packed bed of calcium carbonate in the same manner as in Example 1. The results are shown in Table 2. From this, when the addition amount of sodium hydroxide is less than 1 equivalent to the total amount of nitric acid and silicic acid, a leak of the filter medium is observed,
It turns out that it is not recognized at more than 1 equivalent.

【0014】[0014]

【表2】 [Table 2]

【0015】[0015]

【発明の効果】本発明処理方法は、処理水中への微細な
CaF2微粒子の流出がなく、CaF2の回収率が高い利
点、処理水中への微細な濁質リークがないので後処理と
しての固液分離装置が不要となる利点、好ましくはアン
モニア添加の場合、添加したアンモニアを循環利用する
ので、薬品コストが安い利点及び循環利用により、塩分
増加が無く再利用水としての純水化が容易である利点が
ある。
The treatment method of the present invention is advantageous in that fine CaF 2 fine particles do not flow into the treated water, the recovery rate of CaF 2 is high, and there is no fine turbidity leak into the treated water. The advantage of eliminating the need for a solid-liquid separator, preferably in the case of adding ammonia, the added ammonia is circulated, so the advantage of low chemical cost and the circulating use make it easy to purify as reused water without increasing salt content. There are advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明方法を実施するための1態様例の
フロー説明図である。
FIG. 1 is an explanatory diagram of a flow of an example of one embodiment for carrying out the method of the present invention.

【符号の説明】 1 原水槽 2 炭酸カルシウム充填塔 2' 炭酸カルシウム充填塔 3 処理水槽 4 ポンプ 5 処理水用配管 5' 放流水配管 6 ガス吸収塔 7 ガス吸収剤槽 8 ブロワー 9 アンモニアガス通気管 10 供給管[Description of Signs] 1 Raw water tank 2 Calcium carbonate filling tower 2 'Calcium carbonate filling tower 3 Treatment water tank 4 Pump 5 Treatment water pipe 5' Discharge water pipe 6 Gas absorption tower 7 Gas absorbent tank 8 Blower 9 Ammonia gas vent pipe 10 Supply pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高土居 忠 東京都新宿区西新宿3丁目4番7号 栗 田工業株式会社内 (72)発明者 三木 正博 大阪府大阪市阿倍野区帝塚山一丁目23番 14−521 (72)発明者 福留 敏郎 大阪府南河内郡千早赤阪村大字小吹68− 335 (72)発明者 前野 又五郎 大阪府和泉市光明台2−42−6 (56)参考文献 特開 昭53−125993(JP,A) 特開 昭54−7762(JP,A) (58)調査した分野(Int.Cl.7,DB名) C02F 1/58 CDG ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tadashi Takadoi 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Water Industries Co., Ltd. (72) Inventor Masahiro Miki 1-23 Teidukayama, Abeno-ku, Osaka-shi, Osaka No. 14-521 (72) Inventor Toshiro Fukudome 68-335 Kobuki, Chihayaakasaka-mura, Minamikawachi-gun, Osaka Prefecture 72-335 (72) Inventor Matagoro Maeno 2-42-6, Komeidai, Izumi-shi, Osaka (56) References JP JP-A-53-125993 (JP, A) JP-A-54-7762 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C02F 1/58 CDG

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】エッチング剤廃液の酸性のフッ素含有水を
炭酸カルシウム充填槽に通水してフッ素をフッ化カルシ
ウムとして除去する方法において、酸性フッ素含有水に
含まれるフッ酸以外の酸の当量以上の量のアンモニア系
若しくは苛性アルカリ系アルカリ剤を、該酸性フッ素含
有水にあらかじめ添加してフッ素をフッ化カルシウムと
して除去することを特徴とする酸性フッ素含有水の処理
方法。
1. A method for removing fluorine as calcium fluoride by passing acidic fluorine-containing water of an etching agent waste liquid through a calcium carbonate-filled tank, wherein an amount of an acid other than hydrofluoric acid contained in the acidic fluorine-containing water is equal to or more than an equivalent. A method for treating acidic fluorine-containing water, characterized in that an amount of an ammonia-based or caustic-based alkaline agent is previously added to the acidic fluorine-containing water to remove fluorine as calcium fluoride.
【請求項2】酸性のフッ素含有水を炭酸カルシウム充填
槽に通水してフッ素をフッ化カルシウムとして除去する
方法において、酸性フッ素含有水に含まれるフッ酸以外
の酸の当量以上の量のアルカリ剤を、該酸性フッ素含有
水にあらかじめ添加する方法であって、該アルカリ剤の
全量若しくは一部が充填槽流出水から回収したアンモニ
ア含有ガスであることを特徴とする酸性フッ素含有水の
処理方法。
2. A method for removing fluorine as calcium fluoride by passing acidic fluorine-containing water through a calcium carbonate-filled tank, wherein an alkali having an amount of at least an equivalent of an acid other than hydrofluoric acid contained in the acidic fluorine-containing water. A method of pre-adding an agent to the acidic fluorine-containing water, wherein the whole or a part of the alkaline agent is an ammonia-containing gas recovered from a filling tank effluent. .
JP12137492A 1992-04-15 1992-04-15 Treatment method for acidic fluorine-containing water Expired - Lifetime JP3266309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12137492A JP3266309B2 (en) 1992-04-15 1992-04-15 Treatment method for acidic fluorine-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12137492A JP3266309B2 (en) 1992-04-15 1992-04-15 Treatment method for acidic fluorine-containing water

Publications (2)

Publication Number Publication Date
JPH05293475A JPH05293475A (en) 1993-11-09
JP3266309B2 true JP3266309B2 (en) 2002-03-18

Family

ID=14809653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12137492A Expired - Lifetime JP3266309B2 (en) 1992-04-15 1992-04-15 Treatment method for acidic fluorine-containing water

Country Status (1)

Country Link
JP (1) JP3266309B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3192557B2 (en) 1994-08-26 2001-07-30 シャープ株式会社 Wastewater treatment device and wastewater treatment method
AT413697B (en) * 2001-11-07 2006-05-15 Andritz Ag Maschf METHOD FOR TREATING ACIDIC WATER
JP3801187B2 (en) * 2003-08-28 2006-07-26 セイコーエプソン株式会社 Chemical reprocessing method and fluorite manufacturing method
JP5334264B2 (en) * 2010-01-14 2013-11-06 株式会社日立製作所 Fluorine and sulfuric acid containing wastewater treatment method and fluorine and sulfuric acid containing wastewater treatment equipment
JP5779934B2 (en) * 2011-03-25 2015-09-16 栗田工業株式会社 Calcium fluoride recovery method

Also Published As

Publication number Publication date
JPH05293475A (en) 1993-11-09

Similar Documents

Publication Publication Date Title
US5876685A (en) Separation and purification of fluoride from industrial wastes
JP4880656B2 (en) Water treatment apparatus and water treatment method
CN110330164B (en) Method for recovering fluorine resource and sodium resource from alkaline high-salt high-fluorine wastewater
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3266309B2 (en) Treatment method for acidic fluorine-containing water
EP0684067B1 (en) Process for treating acidic exhaust gas
JP3238745B2 (en) Method of treating ammonium fluoride-containing water
KR20010108162A (en) Method of removing calcium from water containing calcium hydrogen carbonate in high concentration
JP2927255B2 (en) Treatment method for wastewater containing fluorine
JP3203745B2 (en) Fluorine-containing water treatment method
JPH0256958B2 (en)
JPH0938463A (en) Treating method of waste gas from semiconductor production
JP2972437B2 (en) Calcium fluoride recovery device
JPH0975925A (en) Treatment of flue gas desulfurization waste water
JP3175445B2 (en) Fluorine-containing water treatment method
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
JP2009285579A (en) Recycling method for fluorine-containing waste water, and waste water treatment device used therefor
JP3175283B2 (en) Fluorine-containing water treatment method
JP4485562B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3622407B2 (en) Water treatment method
JP2001137864A (en) Method for treating waste water containing hydrofluoric acid
JP3257063B2 (en) Treatment method for fluorine-containing water
JPH10235374A (en) Wastewater treatment by map method using sea water
JP3396919B2 (en) Water recovery method from fluorine-containing water
JPH0783819B2 (en) Method and apparatus for treating wastewater containing fluoric and hydrogen peroxide and exhaust gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011127

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11