JPH0937523A - Manufacture of rotary machine rotor and permanent magnet fixing device for manufacture of rotary machine rotor - Google Patents

Manufacture of rotary machine rotor and permanent magnet fixing device for manufacture of rotary machine rotor

Info

Publication number
JPH0937523A
JPH0937523A JP7178963A JP17896395A JPH0937523A JP H0937523 A JPH0937523 A JP H0937523A JP 7178963 A JP7178963 A JP 7178963A JP 17896395 A JP17896395 A JP 17896395A JP H0937523 A JPH0937523 A JP H0937523A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
peripheral surface
rotor body
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7178963A
Other languages
Japanese (ja)
Other versions
JP3599132B2 (en
Inventor
Naomasa Kimura
直正 木村
Katsutoshi Nozaki
勝敏 野崎
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17896395A priority Critical patent/JP3599132B2/en
Publication of JPH0937523A publication Critical patent/JPH0937523A/en
Application granted granted Critical
Publication of JP3599132B2 publication Critical patent/JP3599132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the breakage of permanent magnets which owing to the diameter increase caused by the heat expansion of a rotor main part. SOLUTION: A rotary machine rotor has a cylindrical rotor main part 3 and a plurality of permanent magnets 5 which are bonded by heating to the outer circumference of the rotor main part 3 with bonding layers made of solder 15 therebetween. First, the permanent magnets 5 are provided on the outer circumference of the rotor main part 3 with the solder 15 therebetween. At the same time, the permanent magnets 5 are pressed against the rotor main part 3 by coil springs 16. Then, under the heating, the bonding layers made of solder 15 are formed and, at the same time, accompanying the diameter increase of the rotor main part 3 which is caused by thermal expansion, the coil springs 16 are allowed to be displaced outward in the radial directions of the permanent magnets 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は回転機用ロータ、特
に、円筒形ロータ本体と、そのロータ本体の外周面にろ
う材よりなる接合層を介して加熱接合された複数の永久
磁石とを備えたロータの製造方法および回転機のロータ
製造用永久磁石固定装置に関する。この回転機にはモー
タおよびジェネレータが含まれる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a rotor for a rotating machine, in particular, a cylindrical rotor body, and a plurality of permanent magnets heat-bonded to the outer peripheral surface of the rotor body via a bonding layer made of a brazing material. And a permanent magnet fixing device for manufacturing a rotor of a rotating machine. The rotating machine includes a motor and a generator.

【0002】[0002]

【従来の技術】従来、鋼製ロータ本体に複数の永久磁石
を接合してロータを製造する場合、合成樹脂接着剤が用
いられている(例えば、特開平7−79537号公報参
照)。
2. Description of the Related Art Conventionally, when a plurality of permanent magnets are joined to a steel rotor body to manufacture a rotor, a synthetic resin adhesive has been used (for example, see JP-A-7-79537).

【0003】このように合成樹脂接着剤を用いる理由
は、永久磁石、特に、希土類元素を含む永久磁石は、非
常に脆いため機械加工性が悪く、また高温下に曝される
と、金属組織が変化するのでそれに伴い磁気特性が影響
を受ける、といった性質を有し、そのため、永久磁石を
ロータ本体に取付ける場合、あり差し構造、ねじ止め、
溶接等の取付手段を採用することができないからであ
る。
The reason why the synthetic resin adhesive is used in this way is that permanent magnets, especially permanent magnets containing rare earth elements, are very brittle and therefore have poor machinability and, when exposed to high temperatures, have a metallic structure. Since it changes, the magnetic characteristics are affected accordingly. Therefore, when attaching the permanent magnet to the rotor body, the insertion structure, screwing,
This is because attachment means such as welding cannot be adopted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、合成樹
脂接着剤による接合では、その永久磁石の昇温に伴い接
合強度が著しく低下し、また接合強度のばらつきが大き
いため品質管理が難しい、といった問題がある。
However, in the case of joining with a synthetic resin adhesive, there is a problem in that the joining strength remarkably decreases as the temperature of the permanent magnet rises and the joining strength varies greatly, which makes quality control difficult. is there.

【0005】そこで、本出願人は先に、希土類元素系合
金よりなるろう材を用い、永久磁石の接合強度を向上さ
せることのできる接合方法を提案している(例えば、特
願平6−277027号明細書および図面参照)。
Therefore, the present applicant has previously proposed a joining method which can improve the joining strength of a permanent magnet by using a brazing material made of a rare earth element-based alloy (for example, Japanese Patent Application No. 6-277027). See the specification and drawings).

【0006】前記接合方法を適用してロータを製造する
場合、その生産能率を向上させるためには、先ず、ロー
タ本体の外周面に全部の永久磁石をろう材を介して位置
決め固定し、次いで加熱下で各ろう材より各接合層を形
成する、といった方法を採用するのが望ましい。この場
合、各永久磁石の位置決め固定に当っては、簡便な方法
として、押えボルトにより永久磁石をロータ本体外周面
に押圧固定することが考えられる。
When the rotor is manufactured by applying the above-mentioned joining method, in order to improve the production efficiency, first, all the permanent magnets are positioned and fixed to the outer peripheral surface of the rotor body through the brazing material, and then heated. It is desirable to adopt a method of forming each bonding layer from each brazing material below. In this case, as a simple method for positioning and fixing each permanent magnet, it is conceivable to press and fix the permanent magnet to the outer peripheral surface of the rotor body with a holding bolt.

【0007】しかしながら、前記のように、永久磁石の
半径方向外方への変位を阻止するような押圧固定手段を
採用すると、ロータ本体の熱膨脹率が比較的大きいこと
に起因して、加熱下におけるロータ本体の拡径に伴い次
のような問題を生じる。 (a) 永久磁石がボルト当接部を起点として割れを生じ
ることがある、(b) 液相状態または固相と液相とが共
存する固液共存状態となったろう材の不定量が永久磁石
およびロータ本体間から食出し、その結果、各接合層の
厚さが不均一となるため各永久磁石の接合強度に比較的
大きなばらつきを生じる、(c) 永久磁石が前記状態の
ろう材を介してロータ軸線方向へ滑り易く、これにより
永久磁石が前記方向へ位置ずれを起す。
However, if the pressing and fixing means for preventing the permanent magnets from being displaced outward in the radial direction is employed as described above, the thermal expansion coefficient of the rotor body is relatively large, so that the rotor body is heated under heating. The following problems occur as the diameter of the rotor body increases. (a) The permanent magnet may crack at the bolt contact point as the starting point, (b) Indeterminate amount of brazing filler metal in a liquid phase state or a solid-liquid coexistence state where a solid phase and a liquid phase coexist. And between the rotor main body, and as a result, the thickness of each bonding layer becomes non-uniform, resulting in a relatively large variation in the bonding strength of each permanent magnet. (C) The permanent magnets intervene through the brazing material in the above state. Slippery in the rotor axis direction, which causes the permanent magnet to be displaced in that direction.

【0008】本発明は前記に鑑み、ロータ本体の拡径に
伴う永久磁石の割れ発生等を回避することのできる前記
製造方法およびその方法に用いられる前記永久磁石固定
装置を提供することを目的とする。
In view of the above, it is an object of the present invention to provide the manufacturing method and the permanent magnet fixing device used in the manufacturing method, which can prevent the permanent magnet from cracking due to the diameter expansion of the rotor body. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、円筒形ロータ
本体と、そのロータ本体の外周面にろう材よりなる接合
層を介して加熱接合された複数の永久磁石とを備えた回
転機用ロータを製造するに当り、前記ロータ本体の外周
面に前記永久磁石を前記ろう材を介して配設すると共に
前記永久磁石をばね部材により前記ロータ本体に押圧
し、次いで加熱下で、前記ろう材より前記接合層を形成
すると共に前記ロータ本体の熱膨脹による拡径に伴い、
前記ばね部材に、前記永久磁石の半径方向外方への変位
を許容させることを特徴とする。
SUMMARY OF THE INVENTION The present invention is directed to a rotary machine having a cylindrical rotor body and a plurality of permanent magnets heat-bonded to the outer peripheral surface of the rotor body via a bonding layer made of a brazing material. In manufacturing a rotor, the permanent magnet is arranged on the outer peripheral surface of the rotor body via the brazing material, and the permanent magnet is pressed against the rotor body by a spring member, and then the brazing material is heated. With the formation of the bonding layer with the diameter expansion due to thermal expansion of the rotor body,
The spring member is allowed to displace the permanent magnet outward in the radial direction.

【0010】この製造方法において、各永久磁石はロー
タ本体の拡径に伴い半径方向外方への変位を許容されて
いるので、ロータ本体の拡径に起因した永久磁石の割れ
発生、永久磁石の接合強度におけるばらつきの発生およ
び永久磁石の位置ずれの発生といった各種不具合をこと
ごとく回避することができる。
In this manufacturing method, since the permanent magnets are allowed to be displaced outward in the radial direction as the diameter of the rotor body is expanded, the permanent magnets are cracked due to the diameter expansion of the rotor body, and the permanent magnets are deformed. It is possible to avoid all kinds of problems such as variations in the bonding strength and displacement of the permanent magnets.

【0011】また本発明は、円筒形ロータ本体と、その
ロータ本体の外周面にろう材よりなる接合層を介して加
熱接合された複数の永久磁石とを備えた回転機用ロータ
を製造するために用いられる永久磁石固定装置であっ
て、前記ロータ本体の外周面を囲繞する筒体と、前記ロ
ータ本体の外周面にろう材を介して配設された前記永久
磁石を前記ロータ本体に押圧すべく、前記永久磁石と前
記筒体内周面との間に配設されるばね部材と、そのばね
部材の位置決めを行う位置決め手段とを備え、前記ばね
部材の押圧力が、前記ロータ本体の熱膨脹による拡径に
伴い、前記永久磁石の半径方向外方への変位を許容する
ように設定されていることを特徴とする。
Further, the present invention is for manufacturing a rotor for a rotating machine, which comprises a cylindrical rotor body and a plurality of permanent magnets which are heat-bonded to the outer peripheral surface of the rotor body via a bonding layer made of a brazing material. A permanent magnet fixing device used for, wherein a cylindrical body surrounding the outer peripheral surface of the rotor body and the permanent magnet arranged on the outer peripheral surface of the rotor body via a brazing material are pressed against the rotor body. Therefore, a spring member disposed between the permanent magnet and the peripheral surface of the cylinder is provided, and a positioning means for positioning the spring member, and the pressing force of the spring member is due to thermal expansion of the rotor body. It is characterized in that it is set so as to allow displacement of the permanent magnets outward in the radial direction as the diameter increases.

【0012】この永久磁石固定装置によれば、前記各種
不具合の回避を確実に実現することができる。
According to this permanent magnet fixing device, it is possible to surely avoid the above-mentioned various problems.

【0013】[0013]

【発明の実施の形態】図1〜3において、回転機として
のモータ用ロータ1は、複数の円形鋼板2を積層して構
成された円筒形ロータ本体3と、そのロータ本体3の外
周面にろう材よりなる接合層4を介して加熱接合された
複数の永久磁石5とを備えている。この場合、ロータ本
体3の熱膨脹率は各永久磁石5のそれに比べて大きい。
ロータ本体3の中心に存するスプライン孔3aに、ロー
タ軸6のスプライン軸部6aが圧入され、スプライン孔
3aの両開口縁部はロータ軸6にそれぞれ溶接部7を介
して固着される。各永久磁石5は、ロータ本体3の外周
面母線方向に延びると共に相隣る両永久磁石5間には間
隔が存する。
1 to 3, a rotor 1 for a motor as a rotating machine has a cylindrical rotor body 3 formed by laminating a plurality of circular steel plates 2 and an outer peripheral surface of the rotor body 3. It is provided with a plurality of permanent magnets 5 that are heat-bonded through a bonding layer 4 made of a brazing material. In this case, the coefficient of thermal expansion of the rotor body 3 is larger than that of each permanent magnet 5.
The spline shaft portion 6a of the rotor shaft 6 is press-fitted into the spline hole 3a existing at the center of the rotor body 3, and both opening edge portions of the spline hole 3a are fixed to the rotor shaft 6 via welded portions 7, respectively. Each of the permanent magnets 5 extends in the generatrix direction of the outer peripheral surface of the rotor body 3, and there is a space between the adjacent permanent magnets 5.

【0014】ロータ本体3は、スプライン孔3aを備え
たボス部8と、そのボス部8外周面から放射状に延びる
複数のアーム部9と、各アーム部9に連設されたリム部
10とからなる。リム部10に、その外周面母線方向に
延びる複数の接合溝11が形成され、各接合溝11にお
いて、各永久磁石5がロータ本体3に接合されている。
各鋼板2のリム部形成領域aにおいて、接合溝11を形
成する切欠き状凹部12を備えた各永久磁石接合部bの
両側には、その領域aの外周面から半径方向中間部まで
延びるスリットcが形成されている。この場合、相隣る
両永久磁石接合部b間に1つのスリットcが存在し、各
鋼板2の各スリットcはロータ本体3の外周面母線方向
において合致している。
The rotor body 3 comprises a boss portion 8 having a spline hole 3a, a plurality of arm portions 9 extending radially from the outer peripheral surface of the boss portion 8, and a rim portion 10 connected to each arm portion 9. Become. A plurality of joining grooves 11 extending in the direction of the generatrix of the outer peripheral surface of the rim portion 10 are formed, and each permanent magnet 5 is joined to the rotor body 3 in each joining groove 11.
In the rim portion forming region a of each steel plate 2, slits extending from the outer peripheral surface of the region a to the radial middle portion are provided on both sides of each permanent magnet joint portion b provided with the notch-shaped recess 12 forming the joint groove 11. c is formed. In this case, one slit c exists between the adjacent permanent magnet joints b, and each slit c of each steel plate 2 is aligned in the direction of the generatrix of the outer peripheral surface of the rotor body 3.

【0015】図2,3に明示するように、ロータ本体3
の少なくとも軸線d方向両端部側において、複数の鋼板
2の各永久磁石接合部bは、その両側に存するスリット
cの存在下で、ロータ本体3外方側へ折曲がることによ
り、前記軸線d方向において相隣る両永久磁石接合部b
間に間隙eが存する。
As clearly shown in FIGS. 2 and 3, the rotor body 3
At least on both ends in the direction of the axis d, the permanent magnet joints b of the plurality of steel plates 2 are bent toward the outside of the rotor body 3 in the presence of the slits c existing on both sides thereof. At both permanent magnet joints b adjacent to each other
There is a gap e between them.

【0016】ロータ1において、そのロータ本体3に永
久磁石5がろう材よりなる接合層4を介して接合されて
いるので、モータの運転に伴いロータ温度が、合成樹脂
接着剤の接合強度を低下させる、例えば100℃に上昇
しても、各永久磁石5の接合強度が損われることはな
い。
In the rotor 1, since the permanent magnet 5 is joined to the rotor body 3 through the joining layer 4 made of a brazing material, the rotor temperature is lowered by the operation of the motor and the joining strength of the synthetic resin adhesive is lowered. Even if the temperature is raised to, for example, 100 ° C., the bonding strength of each permanent magnet 5 is not impaired.

【0017】一方、ロータ温度の上昇、降下に伴い、ロ
ータ本体3の軸線d方向両端部外周側に熱応力が集中す
る。前記構成によれば、これら両端部外周側においては
複数の鋼板2の相隣る両永久磁石接合部b間に間隙eが
存するので、それら永久磁石接合部bの膨脹、収縮は前
記間隙eにより吸収され、これにより前記両端部外周側
における熱応力が緩和されるので、各永久磁石5に割れ
を生じることはない。なお、ロータ本体3の軸線方向2
等分位置よりも一端側に位置する各永久磁石接合部b
と、他端側に位置する各永久磁石接合部bとが、スリッ
トcの存在下で、互に離れる方向、つまりロータ本体3
外方側へ折曲がることにより全部の相隣る両永久磁石接
合部b間に間隙eが生じていてもよい。
On the other hand, as the rotor temperature rises and falls, thermal stress concentrates on the outer circumference of both ends of the rotor body 3 in the axis d direction. According to the above configuration, since the gap e exists between the adjacent permanent magnet joints b of the plurality of steel plates 2 on the outer peripheral side of these both ends, expansion and contraction of the permanent magnet joints b is caused by the gap e. The permanent magnets 5 are absorbed, and the thermal stresses on the outer peripheral sides of the both ends are relieved, so that the permanent magnets 5 are not cracked. The axial direction 2 of the rotor body 3
Each permanent magnet joint b located at one end side from the equally divided position
And the permanent magnet joints b located on the other end side in the presence of the slit c in a direction in which they separate from each other, that is, the rotor body 3
By bending outward, a gap e may be formed between all adjacent permanent magnet joints b.

【0018】さらに、各鋼板2の各スリットcは、ボス
部8のスプライン孔3aにロータ軸6を圧入する際に広
がり傾向となってその圧入に伴う応力を緩和する効果を
発揮する。
Further, each slit c of each steel plate 2 has a tendency to expand when the rotor shaft 6 is press-fitted into the spline hole 3a of the boss portion 8 and exerts an effect of relieving stress associated with the press-fitting.

【0019】永久磁石5としては、NdFeB系永久磁
石、SmCo系永久磁石等の希土類元素を含む永久磁石
が用いられる。
As the permanent magnet 5, a permanent magnet containing a rare earth element such as an NdFeB system permanent magnet or an SmCo system permanent magnet is used.

【0020】ろう材は、前記のような希土類元素を含む
永久磁石5の磁気特性に影響を与えない温度T、つまり
T≦650℃で接合力を発揮するものでなければならな
い。また、この接合力は、加熱下において、ろう材が固
相状態である場合にはその拡散性により発現し、一方、
ろう材が液相状態または固液共存状態である場合にはそ
の濡れ性により発現することが必要である。
The brazing material must exhibit a bonding force at a temperature T that does not affect the magnetic characteristics of the permanent magnet 5 containing the rare earth element, that is, T ≦ 650 ° C. Further, this bonding force is expressed by the diffusivity of the brazing filler metal when it is in a solid state under heating.
When the brazing material is in a liquid phase state or a solid-liquid coexisting state, it is necessary that the brazing material develops due to its wettability.

【0021】このような観点から、ろう材としては、希
土類元素系合金より構成された高活性なものが用いられ
る。この希土類元素系合金においては、非晶質相の体積
分率Vfが50%≦Vf≦100%であることが望まし
い。その理由は次の通りである。即ち、非晶質相は、酸
化の起点となるような粒界層が存在しないので耐酸化性
が著しく高く、また酸化物の混在も僅少であり、その上
偏析がなく組成が均一である、といった特性を有するの
で、接合層4の強度向上を図る上で有効であるからであ
る。
From this point of view, as the brazing filler metal, a highly active one composed of a rare earth element type alloy is used. In this rare earth element-based alloy, it is desirable that the volume fraction Vf of the amorphous phase is 50% ≦ Vf ≦ 100%. The reason is as follows. That is, the amorphous phase has a significantly high oxidation resistance because there is no grain boundary layer that serves as the starting point of oxidation, and the amount of oxides is very small, and the composition is uniform without segregation. This is because such characteristics are effective in improving the strength of the bonding layer 4.

【0022】この場合、希土類元素にはY、La、C
e、Pr、Nd、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、YbおよびLuから選択される少なく
とも一種が該当し、それらは単体、または混合物である
Mm(ミッシュメタル)、Di(ジジミウム)の形態で
用いられる。また合金元素AEは希土類元素と共晶反応
を行うもので、その合金元素AEには、Cu、Al、G
a、Co、Fe、Ag、Ni、Au、Mn、Zn、P
d、Sn、Sb、Pb、Bi、GeおよびInから選択
される少なくとも一種が該当する。合金元素AEの含有
量は5原子%≦AE≦50原子%に設定される。二種以
上の合金元素AEを含有する場合には、それらの合計含
有量が5原子%≦AE≦50原子%となる。ただし、合
金元素AEの含有量がAE>50原子%では希土類元素
系合金の活性が損われ、一方、AE<5原子%では、固
液共存状態において液相を確保することが難しくなる。
In this case, the rare earth elements are Y, La and C.
e, Pr, Nd, Sm, Eu, Gd, Tb, Dy, H
At least one selected from o, Er, Tm, Yb and Lu is applicable, and they are used in the form of Mm (Misch metal) or Di (didymium) which is a single substance or a mixture. Further, the alloy element AE causes a eutectic reaction with a rare earth element, and the alloy element AE includes Cu, Al, and G.
a, Co, Fe, Ag, Ni, Au, Mn, Zn, P
At least one selected from d, Sn, Sb, Pb, Bi, Ge and In is applicable. The content of the alloy element AE is set to 5 atomic% ≦ AE ≦ 50 atomic%. When two or more kinds of alloying elements AE are contained, the total content thereof is 5 atom% ≦ AE ≦ 50 atom%. However, when the content of the alloy element AE is AE> 50 atomic%, the activity of the rare earth element-based alloy is impaired, while when AE <5 atomic%, it becomes difficult to secure a liquid phase in a solid-liquid coexisting state.

【0023】希土類元素系合金における共晶合金を例示
すれば表1の通りである。
Table 1 shows examples of eutectic alloys in rare earth element-based alloys.

【0024】[0024]

【表1】 [Table 1]

【0025】また希土類元素系合金における亜、過共晶
合金としては以下のものを挙げることができる。各化学
式において、数値の単位は原子%である(これは以下同
じ)。 (a) Nd60Cu40合金、Nd75Cu25合金、Nd80
Cu20合金、Nd50Cu 50合金……液相発生温度520
℃(図4参照) (b) Sm75Cu25合金、Sm65Cu35合金……液相
発生温度597℃ (c) Nd90Al10合金(液相発生温度634℃)、
Nd80Co20合金(液相発生温度599℃)、La85
15合金(液相発生温度550℃) さらに三元系合金としては、Nd65Fe5 Cu30合金
(液相発生温度501℃)およびNd70Cu25Al5
金(液相発生温度474℃)を挙げることができる。
Sub- and hyper-eutectic crystals in rare earth element-based alloys
The following may be mentioned as alloys. Each chemistry
In the formula, the unit of numerical value is atomic% (this is the same below.
Same). (A) Nd60Cu40Alloy, Nd75Cutwenty fiveAlloy, Nd80
Cu20Alloy, Nd50Cu 50Alloy: Liquid phase generation temperature 520
℃ (See Fig. 4) (b) Sm75Cutwenty fiveAlloy, Sm65Cu35Alloy ... Liquid phase
Generation temperature 597 ° C (c) Nd90AlTenAlloy (liquid phase generation temperature 634 ° C),
Nd80Co20Alloy (liquid phase generation temperature 599 ℃), La85G
aFifteenAlloy (liquid phase generation temperature 550 ° C) Further, as a ternary alloy, Nd65FeFiveCu30alloy
(Liquid phase generation temperature 501 ° C) and Nd70Cutwenty fiveAlFiveCombination
Gold (liquid phase generation temperature 474 ° C.) can be mentioned.

【0026】前記ロータ1の製造に当っては、次のよう
な方法が採用される。
In manufacturing the rotor 1, the following method is adopted.

【0027】即ち、図5に示すように鋼板2として、切
欠き状凹部12を持つ各永久磁石接合部bの両側に、外
周面から内方に向って延びる、図示例では半径方向中間
部まで延びるスリットcを備えたものを、複数積層して
構成され、且つロータ軸6を有するロータ本体3を用意
する。
That is, as shown in FIG. 5, a steel plate 2 extends inward from the outer peripheral surface on both sides of each permanent magnet joint b having a notch-shaped recess 12, and in the illustrated example, to a radial middle portion. A rotor main body 3 having a rotor shaft 6 is prepared, which is formed by stacking a plurality of slits c each having an extending slit c.

【0028】また図6〜9に示す永久磁石固定装置13
を用意する。この装置13は、ロータ本体3の外周面を
囲繞する断面円形の筒体14と、ロータ本体3の外周面
の各接合溝11にろう材15を介して配設された各永久
磁石5をロータ本体3に押圧すべく、各永久磁石5と筒
体14内周面との間に配設される複数のコイルばね(ば
ね部材)16と、各コイルばね16の位置決めを行う複
数の位置決めピン(位置決め手段)17とを備えてい
る。
The permanent magnet fixing device 13 shown in FIGS.
Prepare This device 13 includes a cylindrical body 14 having a circular cross section surrounding the outer peripheral surface of the rotor body 3 and each permanent magnet 5 arranged in each joint groove 11 on the outer peripheral surface of the rotor body 3 via a brazing material 15. A plurality of coil springs (spring members) 16 arranged between each permanent magnet 5 and the inner peripheral surface of the cylindrical body 14 so as to be pressed against the main body 3, and a plurality of positioning pins (for positioning each coil spring 16) Positioning means) 17.

【0029】筒体14は炭素鋼より構成され、その周壁
18には、図6,7 に明示するように複数の係合孔19
が形成される。それら係合孔19において、筒体14の
外周面母線方向に所定の間隔で並ぶ各2つの係合孔19
がロータ本体3の各接合溝11に対応する。各係合孔1
9は円形孔部20と、その円形孔部20に開口する少な
くとも2つ、実施例では2つの切欠き部21とよりな
る。両切欠き部21は互に対向すると共に筒体14の外
周面母線上に存する。
The cylindrical body 14 is made of carbon steel, and the peripheral wall 18 thereof has a plurality of engaging holes 19 as shown in FIGS.
Is formed. In each of the engagement holes 19, two engagement holes 19 are arranged in the outer peripheral surface generatrix direction of the cylindrical body 14 at predetermined intervals.
Corresponds to each joint groove 11 of the rotor body 3. Each engagement hole 1
Reference numeral 9 includes a circular hole portion 20 and at least two, and in the embodiment, two notch portions 21 that open to the circular hole portion 20. Both notch portions 21 face each other and are present on the generatrix of the outer peripheral surface of the cylindrical body 14.

【0030】各コイルばね16はニッケル基合金より構
成される。図8に明示するように、コイルばね16は各
永久磁石5に対して2つ宛設けられ、両コイルばね16
の一端部は永久磁石5に押当てられる押え板22にそれ
ぞれ固着される。両コイルばね16間の間隔は、筒体1
4の外周面母線方向に並ぶ2つの係合孔19の間隔に等
しい。各押え板22はステンレス鋼より構成される。
Each coil spring 16 is made of a nickel base alloy. As clearly shown in FIG. 8, two coil springs 16 are provided for each permanent magnet 5, and both coil springs 16 are provided.
One end of each is fixed to the holding plate 22 pressed against the permanent magnet 5. The space between the coil springs 16 is equal to that of the cylindrical body 1.
4 is equal to the interval between the two engaging holes 19 arranged in the generatrix direction of the outer peripheral surface. Each holding plate 22 is made of stainless steel.

【0031】各位置決めピン17はステンレス鋼、低炭
素鋼等より構成され、図9に明示するように、大径部2
3と小径部24を有するピン状本体25と、その大径部
23における小径部24側の端部外周面に突設された少
なくとも2つ、実施例では互に逆方向に突出する2つの
ピン状凸部26とよりなる。前記係合孔19の円形孔部
20は大径部23の嵌挿を許容し、また各切欠き部21
は各ピン状凸部26の通過を許容するようになってい
る。
Each positioning pin 17 is made of stainless steel, low carbon steel or the like, and as shown in FIG.
3, a pin-shaped main body 25 having a small diameter portion 24, at least two protruding portions on the outer peripheral surface of the large diameter portion 23 on the side of the small diameter portion 24, and in the embodiment, two pins protruding in mutually opposite directions. And a convex portion 26. The circular hole portion 20 of the engaging hole 19 allows the large diameter portion 23 to be fitted therein, and each notch portion 21.
Allow passage of each pin-shaped convex portion 26.

【0032】ロータ本体3に対する永久磁石5の固定に
当っては、図6に明示するように、ロータ本体3に筒体
14を被せてロータ軸6の両端部を所定の支持具に支持
させる。
In fixing the permanent magnet 5 to the rotor main body 3, as shown in FIG. 6, the rotor main body 3 is covered with the cylindrical body 14 so that both ends of the rotor shaft 6 are supported by predetermined supporting members.

【0033】図6において(A)に示すように、筒体1
4の外周面母線上に存する2個の係合孔19をロータ本
体3の接合溝11に対向させて、係合溝11と筒体14
内周面との間に、押え板22とそれに一端を固着された
2個のコイルばね16とを配設する。押え板22は接合
溝11に位置し、また両コイルばね16はそれぞれ圧縮
状態にある。この作業を、残りの接合溝11全てについ
て繰返して行う。
As shown in FIG. 6A, the cylindrical body 1
The two engaging holes 19 existing on the outer peripheral surface generatrix of No. 4 are made to face the joining groove 11 of the rotor body 3, and the engaging groove 11 and the cylindrical body 14 are provided.
A pressing plate 22 and two coil springs 16 whose one end is fixed to the pressing plate 22 are arranged between the pressing plate 22 and the inner peripheral surface. The pressing plate 22 is located in the joint groove 11, and the coil springs 16 are in a compressed state. This operation is repeated for all the remaining joining grooves 11.

【0034】図6において(A),(B)に示すよう
に、位置決めピン17のピン状本体25を係合孔19の
円形孔部20に嵌挿して小径部24をコイルばね16内
に挿入し、また各ピン状凸部26を各切欠き部21を通
過させて各コイルばね16の端部に係合させる。そし
て、ピン状本体25を押圧してコイルばね16を圧縮さ
せながら、そのピン状本体25を回転させて各ピン状凸
部26と各切欠き部21とを食違わせ、次いでピン状本
体25に対する押圧力を解除すると、各ピン状凸部26
がコイルばね16により筒体14内周面に押圧される。
これにより、筒体14に対する各位置決めピン17の外
れ止めがなされ、また各コイルばね16の位置決めがな
される。この作業を、残りのコイルばね16全てについ
て繰返して行う。
As shown in FIGS. 6A and 6B, the pin-shaped body 25 of the positioning pin 17 is fitted into the circular hole portion 20 of the engaging hole 19 and the small diameter portion 24 is inserted into the coil spring 16. In addition, each pin-shaped protrusion 26 is passed through each notch 21 and engaged with the end of each coil spring 16. Then, while pressing the pin-shaped main body 25 to compress the coil spring 16, the pin-shaped main body 25 is rotated to cause the pin-shaped convex portions 26 and the notches 21 to be misaligned, and then the pin-shaped main body 25. When the pressing force on the
Is pressed against the inner peripheral surface of the cylindrical body 14 by the coil spring 16.
As a result, the positioning pins 17 are prevented from coming off from the cylindrical body 14, and the coil springs 16 are positioned. This operation is repeated for all the remaining coil springs 16.

【0035】図6において(C)に示すように、押え板
22を2つのコイルばね16の押圧力に抗して半径方向
外方へ移動させ、次いで接合溝11に箔状ろう材15を
介して永久磁石5を重ね合せ、次いで図6において
(D)および図10に示すように押え板22を永久磁石
5に押当てて2つのコイルばね16により永久磁石5を
ロータ本体3に押圧する。この作業を、残りの永久磁石
5全てについて繰返して行う。
As shown in FIG. 6C, the pressing plate 22 is moved radially outward against the pressing force of the two coil springs 16, and then the foil-shaped brazing material 15 is inserted into the joint groove 11. The permanent magnets 5 are superposed on each other, and then the pressing plate 22 is pressed against the permanent magnets 5 as shown in FIG. 6 (D) and FIG. 10, and the permanent magnets 5 are pressed against the rotor body 3 by the two coil springs 16. This operation is repeated for all the remaining permanent magnets 5.

【0036】この場合、1つの永久磁石5に対する2つ
1組のコイルばね16による押圧力は、ロータ本体3の
熱膨脹による拡径に伴い、永久磁石5の半径方向外方へ
の変位を許容するように設定されている。
In this case, the pressing force of one pair of coil springs 16 against one permanent magnet 5 allows the permanent magnet 5 to be displaced outward in the radial direction as the rotor body 3 expands in diameter due to thermal expansion. Is set.

【0037】このように各永久磁石5を固定されたロー
タ本体3を真空加熱炉内に設置して加熱下でろう材15
を、例えば液相状態にして、各永久磁石5をロータ本体
3に接合する。
The rotor body 3 to which the permanent magnets 5 are fixed in this way is installed in a vacuum heating furnace and the brazing material 15 is heated under heating.
In a liquid state, for example, and each permanent magnet 5 is bonded to the rotor body 3.

【0038】図11は前記加熱接合のメカニズムを示
す。図11(a)の加熱前においては、ロータ本体3と
各永久磁石5の長さL1 は等しい。また各コイルばね1
6は圧縮状態にあって、その長さはL2 である。
FIG. 11 shows the mechanism of the heat bonding. Before heating in FIG. 11A, the rotor body 3 and the permanent magnets 5 have the same length L 1 . In addition, each coil spring 1
6 is in a compressed state and its length is L 2 .

【0039】図11(b)の加熱中においてはロータ本
体3および各永久磁石5が熱膨脹し、各鋼板2の厚さt
2 が加熱前のそれt1 よりも厚くなり(t2 >t1 )、
また各永久磁石5の長さL3 が加熱前のそれL1 よりも
長くなる(L3 >L1 )。さらにロータ本体3の拡径に
伴い各コイルばね16が収縮してその長さL4 が加熱前
のそれL2 よりも短くなる(L4 <L2 )、つまり、各
コイルばね16により各永久磁石5の半径方向外方への
変位が許容される。これにより、ロータ本体3の拡径に
起因した各永久磁石5の割れ発生、接合層4の厚さの不
均一化に伴う接合強度のばらつきの発生および各永久磁
石5の位置ずれの発生といった各種不具合をことごとく
回避することができる。
During heating shown in FIG. 11B, the rotor body 3 and the permanent magnets 5 are thermally expanded, and the thickness t of each steel plate 2 is increased.
2 becomes thicker than that t 1 before heating (t 2 > t 1 ),
Further, the length L 3 of each permanent magnet 5 becomes longer than that L 1 before heating (L 3 > L 1 ). Further, as the diameter of the rotor body 3 increases, each coil spring 16 contracts and its length L 4 becomes shorter than that L 2 before heating (L 4 <L 2 ). Radial outward displacement of the magnet 5 is allowed. As a result, the permanent magnets 5 are cracked due to the expanded diameter of the rotor body 3, the bonding strength is varied due to the uneven thickness of the bonding layer 4, and the permanent magnets 5 are displaced. All defects can be avoided.

【0040】図11(c)の冷却後においては、冷却時
に熱膨脹率の大きいロータ本体3の各鋼板2が収縮する
と共に各永久磁石5と接合されるので、ロータ本体3の
軸線d方向2等分位置fよりも一端側に位置する各永久
磁石接合部bと、他端側に位置する各永久磁石接合部b
とが、スリットcの存在下で、相隣る両スリットcの終
端間を結ぶ仮想線を折れ目gとして互に離れる方向、つ
まりロータ本体3外方側へ折曲がる。その結果、軸線d
方向において相隣る両永久磁石接合部b間には間隙eが
生じるので、ロータ本体3における永久磁石接合部b側
は、加熱前の長さL1 よりも長い状態に拘束され、L5
>L1 となる。これにより、図11(c)に鎖線で示す
ようにロータ本体3における永久磁石接合部b側の長さ
が加熱前の長さL1 に略復元する場合に比べてその永久
磁石接合部bに発生する熱応力が緩和されるので、ロー
タ本体3と各永久磁石5との熱膨脹率の差に起因した永
久磁石5の割れ発生を回避することができる。
After cooling as shown in FIG. 11 (c), each steel plate 2 of the rotor main body 3 having a large coefficient of thermal expansion contracts during cooling and is joined to each permanent magnet 5, so that the rotor main body 3 has the axis d direction 2 etc. Each permanent magnet joint b located on one end side with respect to the minute position f and each permanent magnet joint b located on the other end side
And, in the presence of the slit c, they are bent in directions away from each other with a virtual line connecting the ends of the adjacent slits c as a fold line g, that is, toward the outside of the rotor body 3. As a result, axis d
Since a gap e is formed between the permanent magnet joint portions b adjacent to each other in the direction, the permanent magnet joint portion b side of the rotor body 3 is constrained to be longer than the length L 1 before heating and L 5
> L 1 . As a result, as compared with the case where the length on the permanent magnet joint portion b side of the rotor body 3 is substantially restored to the length L 1 before heating as shown by the chain line in FIG. Since the generated thermal stress is relieved, it is possible to avoid cracking of the permanent magnet 5 due to the difference in thermal expansion coefficient between the rotor body 3 and each permanent magnet 5.

【0041】前記接合過程における加熱時間hは、それ
が長過ぎる場合にはロータ本体3および永久磁石5の特
性に影響を与えるので、h≦10時間であることが望ま
しく、生産性向上の観点からはh≦1時間である。
If the heating time h in the joining process is too long, the heating time h affects the characteristics of the rotor body 3 and the permanent magnets 5, so it is desirable that h ≦ 10 hours, from the viewpoint of improving productivity. Is h ≦ 1 hour.

【0042】以下、具体例について説明する。Specific examples will be described below.

【0043】ロータ本体3として、図5に示すように切
欠き状凹部12の数が12個、スリットcの数が12
個、各スリットcの寸法が幅0.3mm、長さが10mmで
あり、また厚さが0.4mmの複数の円形冷間圧延鋼板2
を積層して構成されたものを用意した。ロータ本体3に
おいて、その外径は136mm、長さは100mm、接合溝
11の数は12本、各接合溝11の寸法は幅20mm、深
さ1mm、長さ100mmである。
As shown in FIG. 5, the rotor body 3 has 12 notched recesses 12 and 12 slits c.
A plurality of circular cold-rolled steel plates each having a slit c of 0.3 mm in width and 10 mm in length and 0.4 mm in thickness.
Was prepared by stacking. In the rotor body 3, the outer diameter is 136 mm, the length is 100 mm, the number of the joining grooves 11 is 12, and the dimensions of each joining groove 11 are width 20 mm, depth 1 mm, and length 100 mm.

【0044】また永久磁石固定装置13として前記構造
のものを用意した。この場合、筒体14は、JIS S
35Cより構成され、外径が216mm、内径が202m
m、長さが104mmである。各コイルばね16はインコ
ネルX750より構成され、ばね定数は0.8kgf/mm
である。各押え板22および各位置決めピン17はJI
S SUS304より構成される。
The permanent magnet fixing device 13 having the above structure was prepared. In this case, the cylinder 14 is JIS S
Made of 35C, outer diameter is 216mm, inner diameter is 202m
m, length 104 mm. Each coil spring 16 is composed of Inconel X750 and has a spring constant of 0.8 kgf / mm.
It is. Each holding plate 22 and each positioning pin 17 are JI
It is composed of S SUS304.

【0045】またろう材15として、Nd70Cu25Al
5 合金よりなり、且つ非晶質相の体積分率VfがVf=
100%であり、縦104mm、横20mm、厚さ100μ
mの箔状ろう材を用意した。
As the brazing material 15, Nd 70 Cu 25 Al is used.
5 alloy, and the volume fraction Vf of the amorphous phase is Vf =
100%, length 104mm, width 20mm, thickness 100μ
m foil-like brazing material was prepared.

【0046】さらに永久磁石5として、縦104mm、横
20mm、厚さ6mmのNdFeB系永久磁石(住友特殊金
属社製、商品名NEOMAX−28UH、キュリー点3
10℃)を用意した。
Further, as the permanent magnet 5, an NdFeB type permanent magnet having a length of 104 mm, a width of 20 mm and a thickness of 6 mm (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH, Curie point 3)
10 ° C.) was prepared.

【0047】図12は、ロータ本体3とNdFeB系永
久磁石5の温度に対する熱膨脹率の変化を示す。図12
より、温度上昇に伴い両熱膨脹率の差が大きく広がるこ
とが判る。
FIG. 12 shows changes in the coefficient of thermal expansion of the rotor body 3 and the NdFeB system permanent magnet 5 with respect to temperature. FIG.
From this, it can be seen that the difference between the coefficients of thermal expansion greatly increases as the temperature rises.

【0048】図6,10に示すように、永久磁石固定装
置13により各永久磁石5およびろう材15をロータ本
体3に固定した。この場合、各コイルばね16の撓み量
は2mmであり、また各コイルばね16のばね定数は前記
のように0.8kgf/mmであって、各永久磁石5に対し
て2つのコイルばね16が用いられているから、各永久
磁石5に対する押圧力(荷重)は、室温にて、(0.8
×2)×2=3.2kgfとなる。このように永久磁石5
等を固定されたロータ本体3を、10-3Torrの真空加熱
炉内に設置して、加熱温度T=520℃、加熱時間h=
20分間の加熱工程、それに次ぐ炉冷よりなる接合処理
を行って、図1〜3に示すように各永久磁石5を接合層
4を介しロータ本体3に接合したロータ1を得た。
As shown in FIGS. 6 and 10, each permanent magnet 5 and the brazing material 15 were fixed to the rotor body 3 by the permanent magnet fixing device 13. In this case, the amount of bending of each coil spring 16 is 2 mm, the spring constant of each coil spring 16 is 0.8 kgf / mm as described above, and two coil springs 16 are provided for each permanent magnet 5. Since it is used, the pressing force (load) to each permanent magnet 5 is (0.8) at room temperature.
X2) x2 = 3.2 kgf. Thus, the permanent magnet 5
The rotor main body 3 to which the above components are fixed is installed in a vacuum heating furnace of 10 −3 Torr, heating temperature T = 520 ° C., heating time h =
A joining process of heating for 20 minutes and then furnace cooling was performed to obtain a rotor 1 in which each permanent magnet 5 was joined to the rotor body 3 via the joining layer 4 as shown in FIGS.

【0049】このロータ1においては、相隣る両永久磁
石接合部b間の全てに間隙eが存在しており、その間隙
eにおける両永久磁石接合部bの外周縁m間における平
均長さは0.04mmであった。また各永久磁石5の割れ
およびロータ軸線方向への位置ずれは生じていなかっ
た。
In this rotor 1, a gap e exists between all the adjacent permanent magnet joints b, and the average length between the outer peripheral edges m of both permanent magnet joints b in the gap e is It was 0.04 mm. Moreover, the permanent magnets 5 were not cracked or displaced in the axial direction of the rotor.

【0050】さらに、各接合層4の厚さは約30μm±
5μmであり、均一化が達成されていることが判明し
た。
Further, the thickness of each bonding layer 4 is about 30 μm ±.
It was 5 μm, and it was found that homogenization was achieved.

【0051】比較のため、図13に示すように各永久磁
石5を押えボルト27によりロータ本体3に押圧固定し
た、ということ以外は前記と同一条件にて前記同様の接
合処理を行ったところ、3個の永久磁石5に割れが生じ
ており、また2個の永久磁石5がロータ軸線方向への位
置ずれを生じていた。さらに接合層4の厚さは、最小で
10μm、最大で50μmであって不均一であることが
判明した。
For comparison, the same joining process was performed under the same conditions as described above except that the permanent magnets 5 were pressed and fixed to the rotor body 3 by the holding bolts 27 as shown in FIG. The three permanent magnets 5 were cracked, and the two permanent magnets 5 were displaced in the axial direction of the rotor. Further, it was found that the thickness of the bonding layer 4 was 10 μm at the minimum and 50 μm at the maximum, and was non-uniform.

【0052】ロータ1の耐熱性を調べるため、ロータ1
を加熱炉に設置して150℃で、1時間加熱し、次いで
室温下にて冷却したところ、各永久磁石5に割れの発生
はなかった。
In order to investigate the heat resistance of the rotor 1, the rotor 1
Was placed in a heating furnace, heated at 150 ° C. for 1 hour, and then cooled at room temperature, and no crack was generated in each permanent magnet 5.

【0053】なお、前記接合処理後において、各永久磁
石5に着磁処理が施される。
After the joining process, each permanent magnet 5 is magnetized.

【0054】図14はロータ1の他例を示す。そのロー
タ本体3は、ボス部8と、そのボス部8外周面から放射
状に延びる複数のアーム部9と、各アーム部9に連設さ
れたリム部10とからなる。相隣る両スリットcは、鋼
板2のリム部形成領域aとアーム部形成領域hとの連設
部kを挟むように、そのリム部形成領域aにおいて、そ
の外周面から内周面まで延びている。この場合、各鋼板
2の各永久磁石接合部bは幅狭の各連設部kにおいて折
れ目gより折曲がるので、図5のものに比べて折曲り易
く、したがって間隙eの形成が容易に行われる。
FIG. 14 shows another example of the rotor 1. The rotor body 3 includes a boss portion 8, a plurality of arm portions 9 radially extending from the outer peripheral surface of the boss portion 8, and a rim portion 10 that is connected to each arm portion 9. The two adjacent slits c extend from the outer peripheral surface to the inner peripheral surface of the rim portion forming area a so as to sandwich the continuous portion k of the rim portion forming area a and the arm portion forming area h of the steel plate 2. ing. In this case, since the permanent magnet joints b of the steel plates 2 are bent from the folds g at the narrow connecting portions k, they are easier to bend than those of FIG. 5, and thus the gap e can be easily formed. Done.

【0055】[0055]

【発明の効果】本発明によれば、前記のように特定され
た手段を採用することによって、ロータ本体の熱膨脹に
よる拡径に起因した永久磁石の割れ発生、接合強度のば
らつき発生および永久磁石の位置ずれ発生といった各種
不具合をことごとく回避し得る回転機用ロータの製造方
法を提供することができる。
According to the present invention, by adopting the means specified as described above, cracking of permanent magnets, variation in bonding strength and permanent magnets due to diameter expansion due to thermal expansion of the rotor body occur. It is possible to provide a method for manufacturing a rotor for a rotating machine that can avoid all kinds of problems such as displacement.

【0056】また本発明によれば、前記不具合の回避を
確実に実現し得る永久磁石固定装置を提供することがで
きる。
Further, according to the present invention, it is possible to provide a permanent magnet fixing device which can surely realize the avoidance of the above-mentioned problems.

【図面の簡単な説明】[Brief description of drawings]

【図1】ロータの一例を示す正面図である。FIG. 1 is a front view showing an example of a rotor.

【図2】一部を拡大した図1の2−2線断面図である。FIG. 2 is a partially enlarged sectional view taken along line 2-2 of FIG.

【図3】図2の3−3線要部断面図である。FIG. 3 is a sectional view taken along line 3-3 of FIG.

【図4】Nd−Cu系状態図の要部を示す。FIG. 4 shows a main part of a Nd—Cu system phase diagram.

【図5】一部を拡大したロータ本体の要部破断端面図で
ある。
FIG. 5 is a fragmentary end view of a rotor body with a part thereof enlarged.

【図6】ロータ本体と永久磁石固定装置との関係を示す
要部破断端面図である。
FIG. 6 is a fragmentary end view showing the relationship between the rotor body and the permanent magnet fixing device.

【図7】筒体の正面図である。FIG. 7 is a front view of a cylindrical body.

【図8】コイルばねを備えた押え板の斜視図である。FIG. 8 is a perspective view of a holding plate provided with a coil spring.

【図9】位置決めピンの斜視図である。FIG. 9 is a perspective view of a positioning pin.

【図10】図6の10−10線断面図である。FIG. 10 is a sectional view taken along line 10-10 of FIG. 6;

【図11】加熱接合メカニズムを示す説明図である。FIG. 11 is an explanatory diagram showing a heating and joining mechanism.

【図12】温度と熱膨脹率の関係を示すグラフである。FIG. 12 is a graph showing the relationship between temperature and coefficient of thermal expansion.

【図13】比較例の要部断面図で、図6に対応する。13 is a cross-sectional view of a main part of a comparative example, which corresponds to FIG.

【図14】一部を拡大したロータの他例を示す断面図
で、図2に対応する。
FIG. 14 is a cross-sectional view showing another example of a partially enlarged rotor, corresponding to FIG.

【符号の説明】[Explanation of symbols]

1 ロータ 2 鋼板 3 ロータ本体 4 接合層 5 永久磁石 13 永久磁石用固定装置 14 筒体 15 ろう材 16 コイルばね(ばね部材) 17 位置決めピン(位置決め手段) 18 周壁 20 円形孔部 21 切欠き部 25 ピン状本体 26 ピン状凸部 DESCRIPTION OF SYMBOLS 1 rotor 2 steel plate 3 rotor body 4 joining layer 5 permanent magnet 13 permanent magnet fixing device 14 cylindrical body 15 brazing material 16 coil spring (spring member) 17 positioning pin (positioning means) 18 peripheral wall 20 circular hole 21 notch 25 Pin-shaped body 26 Pin-shaped convex part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 円筒形ロータ本体(3)と、そのロータ
本体(3)の外周面にろう材(15)よりなる接合層
(4)を介して加熱接合された複数の永久磁石(5)と
を備えた回転機用ロータ(1)を製造するに当り、前記
ロータ本体(3)の外周面に前記永久磁石(5)を前記
ろう材(15)を介して配設すると共に前記永久磁石
(5)をばね部材(16)により前記ロータ本体(3)
に押圧し、次いで加熱下で、前記ろう材(15)より前
記接合層(4)を形成すると共に前記ロータ本体(3)
の熱膨脹による拡径に伴い、前記ばね部材(16)に、
前記永久磁石(5)の半径方向外方への変位を許容させ
ることを特徴とする、回転機用ロータの製造方法。
1. A cylindrical rotor body (3) and a plurality of permanent magnets (5) heat bonded to the outer peripheral surface of the rotor body (3) via a bonding layer (4) made of a brazing material (15). In manufacturing a rotor (1) for a rotating machine, the permanent magnet (5) is arranged on the outer peripheral surface of the rotor body (3) via the brazing material (15), and the permanent magnet is The rotor body (3) is provided with (5) by a spring member (16).
The bonding layer (4) is formed from the brazing filler metal (15) under pressure and then to the rotor body (3).
As the diameter of the spring member (16) expands due to thermal expansion,
A method of manufacturing a rotor for a rotating machine, comprising allowing the permanent magnets (5) to be displaced outward in the radial direction.
【請求項2】 前記ろう材(15)は希土類元素系合金
よりなる、請求項1記載の回転機用ロータの製造方法。
2. The method for manufacturing a rotor for a rotating machine according to claim 1, wherein the brazing material (15) is made of a rare earth element alloy.
【請求項3】 前記ろう材(15)において、希土類元
素REはY、La、Ce、Pr、Nd、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、YbおよびLuか
ら選択される少なくとも一種であり、合金元素AEはC
u、Al、Ga、Co、Fe、Ag、Ni、Au、M
n、Zn、Pd、Sn、Sb、Pb、Bi、Geおよび
Inから選択される少なくとも一種であって、その合金
元素AEの含有量が5原子%≦AE≦50原子%であ
る、請求項1または2記載の回転機用ロータの製造方
法。
3. In the brazing material (15), the rare earth element RE is Y, La, Ce, Pr, Nd, Sm, Eu, G.
At least one selected from d, Tb, Dy, Ho, Er, Tm, Yb and Lu, and the alloy element AE is C
u, Al, Ga, Co, Fe, Ag, Ni, Au, M
2. At least one selected from n, Zn, Pd, Sn, Sb, Pb, Bi, Ge and In, and the content of the alloying element AE is 5 atomic% ≦ AE ≦ 50 atomic%. Alternatively, the method for manufacturing a rotor for a rotating machine according to the item 2.
【請求項4】 前記永久磁石は希土類元素を含有する永
久磁石(5)であり、また前記ロータ本体(3)は複数
の鋼板(2)を積層して構成されている、請求項1,2
または3記載の回転機用ロータの製造方法。
4. The permanent magnet is a permanent magnet (5) containing a rare earth element, and the rotor body (3) is formed by laminating a plurality of steel plates (2).
Alternatively, the method for manufacturing a rotor for a rotating machine according to the item 3.
【請求項5】 円筒形ロータ本体(3)と、そのロータ
本体(3)の外周面にろう材(15)よりなる接合層
(4)を介して加熱接合された複数の永久磁石(5)と
を備えた回転機用ロータ(1)を製造するために用いら
れる永久磁石固定装置(13)であって、前記ロータ本
体(3)の外周面を囲繞する筒体(14)と、前記ロー
タ本体(3)の外周面にろう材(15)を介して配設さ
れた前記永久磁石(5)を前記ロータ本体(3)に押圧
すべく、前記永久磁石(5)と前記筒体(14)内周面
との間に配設されるばね部材(16)と、そのばね部材
(16)の位置決めを行う位置決め手段(17)とを備
え、前記ばね部材(16)の押圧力は、前記ロータ本体
(3)の熱膨脹による拡径に伴い、前記永久磁石(5)
の半径方向外方への変位を許容するように設定されてい
ることを特徴とする、回転機のロータ製造用永久磁石固
定装置。
5. A cylindrical rotor body (3) and a plurality of permanent magnets (5) heat bonded to the outer peripheral surface of the rotor body (3) via a bonding layer (4) made of a brazing material (15). A permanent magnet fixing device (13) used for manufacturing a rotor (1) for a rotating machine, comprising: a cylindrical body (14) surrounding an outer peripheral surface of the rotor body (3); In order to press the permanent magnet (5) arranged on the outer peripheral surface of the main body (3) via the brazing material (15) against the rotor main body (3), the permanent magnet (5) and the tubular body (14). ) A spring member (16) is provided between the spring member (16) and the inner peripheral surface, and a positioning means (17) for positioning the spring member (16). As the rotor body (3) expands due to thermal expansion, the permanent magnet (5)
A permanent magnet fixing device for manufacturing a rotor of a rotating machine, wherein the permanent magnet fixing device is set so as to allow a radial outward displacement of the rotor.
【請求項6】 前記ばね部材はコイルばね(16)であ
り、前記位置決め手段は位置決めピン(17)であっ
て、ピン状本体(25)と、そのピン状本体(25)の
外周面に突設された少なくとも2つのピン状凸部(2
6)とよりなり、前記ピン状本体(25)は前記筒体周
壁(18)の孔部(20)に嵌挿されて前記コイルばね
(16)内に挿入され、また各ピン状凸部(26)は、
前記孔部(20)に開口して各ピン状凸部(26)の通
過を許容する各切欠き部(21)と食違うと共に前記コ
イルばね(16)の端部と係合して前記筒体(14)内
周面に押圧される、請求項5記載の回転機のロータ製造
用永久磁石固定装置。
6. The spring member is a coil spring (16), and the positioning means is a positioning pin (17), which protrudes from the pin-shaped body (25) and the outer peripheral surface of the pin-shaped body (25). At least two pin-shaped protrusions (2
6), the pin-shaped body (25) is inserted into the hole (20) of the cylindrical peripheral wall (18) and inserted into the coil spring (16), and each pin-shaped protrusion ( 26) is
The cylinder is disengaged with each notch (21) that opens in the hole (20) and allows each pin-shaped protrusion (26) to pass therethrough, and engages with the end of the coil spring (16). The permanent magnet fixing device for manufacturing a rotor of a rotating machine according to claim 5, which is pressed against the inner peripheral surface of the body (14).
JP17896395A 1995-07-14 1995-07-14 Method of manufacturing rotor for rotating machine and permanent magnet fixing device for manufacturing rotor of rotating machine Expired - Lifetime JP3599132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17896395A JP3599132B2 (en) 1995-07-14 1995-07-14 Method of manufacturing rotor for rotating machine and permanent magnet fixing device for manufacturing rotor of rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17896395A JP3599132B2 (en) 1995-07-14 1995-07-14 Method of manufacturing rotor for rotating machine and permanent magnet fixing device for manufacturing rotor of rotating machine

Publications (2)

Publication Number Publication Date
JPH0937523A true JPH0937523A (en) 1997-02-07
JP3599132B2 JP3599132B2 (en) 2004-12-08

Family

ID=16057731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17896395A Expired - Lifetime JP3599132B2 (en) 1995-07-14 1995-07-14 Method of manufacturing rotor for rotating machine and permanent magnet fixing device for manufacturing rotor of rotating machine

Country Status (1)

Country Link
JP (1) JP3599132B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081360A (en) * 2004-09-13 2006-03-23 Yaskawa Electric Corp Apparatus for bonding magnet on surface of rotor
JP2006180679A (en) * 2004-12-24 2006-07-06 Aisin Aw Co Ltd Heating device and heating method
CN105119434A (en) * 2015-09-14 2015-12-02 浙江兆丰机电股份有限公司 Permanent magnet pasting semi-automatic machine of permanent magnetic brushless external rotor wheel hub motor
CN104269980B (en) * 2014-10-09 2016-08-24 中山市罗顿五金机械有限公司 A kind of instrument of motor case fast loading reed
CN111112785A (en) * 2020-01-17 2020-05-08 浙江大学 Combined flexible fixture for brazing of outer rotor neodymium-iron-boron permanent magnet of permanent magnet motor
JP2021022973A (en) * 2019-07-25 2021-02-18 三菱電機株式会社 Permanent magnet motor and manufacturing device thereof
WO2022259695A1 (en) * 2021-06-09 2022-12-15 Dmg森精機株式会社 Motor rotor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101321448B1 (en) * 2013-08-30 2013-10-28 (주)에스엠파워텍 Device for assembling magnet in electric motor and generator rotor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081360A (en) * 2004-09-13 2006-03-23 Yaskawa Electric Corp Apparatus for bonding magnet on surface of rotor
JP4622402B2 (en) * 2004-09-13 2011-02-02 株式会社安川電機 Magnet adhesion device to rotor surface
JP2006180679A (en) * 2004-12-24 2006-07-06 Aisin Aw Co Ltd Heating device and heating method
CN104269980B (en) * 2014-10-09 2016-08-24 中山市罗顿五金机械有限公司 A kind of instrument of motor case fast loading reed
CN105119434A (en) * 2015-09-14 2015-12-02 浙江兆丰机电股份有限公司 Permanent magnet pasting semi-automatic machine of permanent magnetic brushless external rotor wheel hub motor
JP2021022973A (en) * 2019-07-25 2021-02-18 三菱電機株式会社 Permanent magnet motor and manufacturing device thereof
CN111112785A (en) * 2020-01-17 2020-05-08 浙江大学 Combined flexible fixture for brazing of outer rotor neodymium-iron-boron permanent magnet of permanent magnet motor
WO2022259695A1 (en) * 2021-06-09 2022-12-15 Dmg森精機株式会社 Motor rotor
JP2022188331A (en) * 2021-06-09 2022-12-21 Dmg森精機株式会社 rotor for motor

Also Published As

Publication number Publication date
JP3599132B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
US5830585A (en) Article made by joining two members together, and a brazing filler metal
CN1237686C (en) Rotor body and production method thereof
US8193680B2 (en) Squirrel-cage rotor and manufacturing method of squirrel-cage rotor
CA1109109A (en) Electromagnetic clutch and method of manufacture
JPH0937523A (en) Manufacture of rotary machine rotor and permanent magnet fixing device for manufacture of rotary machine rotor
US6553645B2 (en) Hermetic motor compressor and method assembling the same
JP3376496B2 (en) Print motor rotor
JPH0582142B2 (en)
JP3535256B2 (en) Rotor for rotating machine and method of manufacturing the same
JP3631808B2 (en) Rotor for rotating machine, method for manufacturing the rotor, and magnet unit
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP2004040973A (en) Rotor device
US5980251A (en) Laminated magnetostrictive transducer
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JPS5839258B2 (en) Electromagnetic clutch and its manufacturing method
JP3382392B2 (en) Brazing material
JP2003169453A (en) Rotor arrangement
JP2003153477A (en) Rare earth element magnet unit
JP3056235B2 (en) Magnetostrictive clutch
JPH08309581A (en) Joined body comprising two members to be joined
JPH01117214A (en) Electrode for vacuum circuit-breaker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8