JPH0936444A - Cooling method for superconducting coil - Google Patents

Cooling method for superconducting coil

Info

Publication number
JPH0936444A
JPH0936444A JP7208567A JP20856795A JPH0936444A JP H0936444 A JPH0936444 A JP H0936444A JP 7208567 A JP7208567 A JP 7208567A JP 20856795 A JP20856795 A JP 20856795A JP H0936444 A JPH0936444 A JP H0936444A
Authority
JP
Japan
Prior art keywords
coil
oxygen
cooling
superconducting coil
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7208567A
Other languages
Japanese (ja)
Inventor
Mitsuru Morita
充 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7208567A priority Critical patent/JPH0936444A/en
Publication of JPH0936444A publication Critical patent/JPH0936444A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To sustain an oxide superconducting coil stably at a constant temperature by feeding liquid oxygen into the coil housing and then reducing the pressure through a pressure reduction pump thereby cooling the coil down to the triple point of oxygen. SOLUTION: The cooling system for superconducting coil comprises an oxide superconductor 6, a coil housing 1, and a pressure reduction pump 2. Liquid oxygen 7 is then fed through an upper supply port 5 under the atmospheric pressure of about 1atm and then the cover is closed. Subsequently, a valve 4 is opened and communicated with the pressure reduction pump 2 which regulates the inner pressure and controls the temperature in the range of 90-54.4K. Consequently, the coil can be cooled down to the triple point of oxygen (about 54.4K) and sustained stably at a constant temperature level. With such a method, application of oxygen superconductor can be widened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は酸化物超電導マグネ
ットまたはバルク材料の冷却方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for cooling an oxide superconducting magnet or a bulk material.

【0002】[0002]

【従来の技術】超電導材料は臨界温度(Tc)以下にお
いて超電導特性を示すが、酸化物高温超電導体はその高
いTcから液体窒素温度77Kでの使用が期待されてい
る。超電導体を冷却する手段は大きく分けて二通りあ
る。ひとつは冷凍機などによる冷却、もうひとつは液体
ヘリウムや液体窒素を冷媒とする方法である。コイルま
たはバルク体の冷却には熱伝達および熱伝導効率や温度
の均一性の観点から上記冷媒が望ましい。液体ヘリウム
は減圧して超流動状態にして2.19K以下の温度で使
用されることもある。また、特開平4−822077号
公報には窒素の三重点(63.1K)および融点(6
3.9K)での冷却について記載されている。上記のよ
うにバルク酸化物超電導材料の使用温度は2.19K、
4.2K、77Kおよび約63Kが有望とされている。
2. Description of the Related Art Superconducting materials show superconducting properties below a critical temperature (Tc), but high-temperature oxide superconductors are expected to be used at a liquid nitrogen temperature of 77K because of their high Tc. There are roughly two means for cooling the superconductor. One is cooling with a refrigerator, and the other is using liquid helium or liquid nitrogen as a refrigerant. For cooling the coil or bulk body, the above-mentioned refrigerant is desirable from the viewpoint of heat transfer and heat transfer efficiency and temperature uniformity. Liquid helium may be decompressed into a superfluid state and used at a temperature of 2.19K or less. Further, in Japanese Patent Laid-Open No. 4-822077, the triple point (63.1 K) of nitrogen and the melting point (6
Cooling at 3.9 K) is described. As described above, the operating temperature of the bulk oxide superconducting material is 2.19K,
4.2K, 77K and about 63K are promising.

【0003】[0003]

【発明が解決しようとする課題】液体ヘリウムを用いた
冷却(2.19K、4.2K)ではヘリウム自身が高価
なことや取り扱いが不便であることなどから、77Kに
比べ臨界電流密度は向上するものの、酸化物高温超電導
体の高臨界温度という利点を活かすことができない。一
方、液体窒素温度(77K)での使用では、現在溶融法
で作製したQMG材料(未踏科学技術協会、新超電導材
料研究会、New Superconducting
Materials Forum News No.1
0 p.15)が1Tの磁場中で3万A/cm2 程度、
Bi系銀シース線材では、4000A/cm2 のJcを
記録しており、本格的な実用レベルに迫っている。しか
しながらこれら酸化物超電導体の実用化を促進させるに
は取り扱いの容易なより低温の冷媒を用い、より高い超
電導特性を引き出すために77K以下さらには約63K
以下での簡便かつ安定した冷却方法が望まれる。
In cooling with liquid helium (2.19K, 4.2K), helium itself is expensive and inconvenient to handle, so that the critical current density is improved as compared with 77K. However, it is not possible to take advantage of the high critical temperature of oxide high-temperature superconductors. On the other hand, when used at liquid nitrogen temperature (77K), the QMG material currently manufactured by the melting method (Mitou Science and Technology Association, New Superconducting Material Research Group, New Superconducting)
Materials Forum News No. 1
0 p. 15) is about 30,000 A / cm 2 in a magnetic field of 1 T,
The Bi-based silver sheath wire has a Jc of 4000 A / cm 2 and is approaching a full-scale practical level. However, in order to promote the practical application of these oxide superconductors, a lower temperature refrigerant that is easy to handle is used, and in order to bring out higher superconducting properties, 77K or less, or about 63K or less.
The following simple and stable cooling method is desired.

【0004】また、77KにおいてQMG材料を用いた
バルクマグネットは最大1.35Tの磁束密度を発生し
たことが報告されている(日刊鉄鋼新聞、平成3年2月
7日)。このQMGバルクマグネットではフラックスク
リープがおこり磁束が時間と共に減少することも報告さ
れている。このようにフラックスクリープは実用上好ま
しくなくこれを防ぐ方策が求められている。
Further, it has been reported that a bulk magnet using a QMG material at 77K generated a maximum magnetic flux density of 1.35T (Nikkan Iron and Steel Shimbun, February 7, 1991). It has also been reported that flux creep occurs in this QMG bulk magnet and the magnetic flux decreases with time. As described above, flux creep is not practically desirable, and a measure for preventing it is required.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題に鑑
み、安価で取り扱いが比較的容易な酸素を用いた酸化物
超電導バルク体またはマグネットの冷却方法および励磁
方法を提供するものである。本発明は次の二つに大別で
きる。一つは、液体酸素を減圧し冷却することで酸素の
三重点温度(約54.4K)で安定に冷却する手段に関
するものであり、もう一つは大気圧中で液相、固相間の
潜熱を利用して約54.8Kで安定に冷却する手段に関
するものである。
In view of the above problems, the present invention provides a method for cooling and exciting an oxide superconducting bulk body or magnet using oxygen which is inexpensive and relatively easy to handle. The present invention can be roughly classified into the following two. One relates to a means for stably cooling liquid oxygen at the triple point temperature (about 54.4 K) of oxygen by decompressing and cooling the liquid oxygen, and the other relates to means for stably cooling the liquid oxygen at atmospheric pressure between the liquid phase and the solid phase. The present invention relates to means for stably cooling at about 54.8K by utilizing latent heat.

【0006】三重点における冷却においては、酸化物超
電導コイルが収納された空間が減圧ポンプと連結し、前
記収納室がポンプにより減圧できる構造を有する酸化物
超電導コイル冷却装置、または酸化物超電導コイルが収
納された空間と減圧ポンプとの間に予備の減圧空間が連
結し、コイル収納室および予備減圧室とがポンプにより
減圧できる構造を有する酸化物超電導コイル冷却装置を
用いる。これにより酸化物超電導コイルの収納室に液体
酸素を入れしかる後、減圧ポンプにより減圧し、酸素の
三重点の温度(約54.4K)に冷却し安定にコイルを
一定温度に保ち超電導コイルを冷却するかさらには、酸
化物超電導コイルの収納室に液体酸素を入れしかる後減
圧ポンプにより減圧し、酸素の三重点の温度(約54.
4K)に冷却し安定にコイルを一定温度に保ち、つぎ
に、コイル収納室内に冷媒である三重点温度の酸素を補
充するために、一旦予備減圧室に液体酸素を入れこれを
減圧することで三重点の状態に冷却した後コイル収納室
にこの酸素を補充し、この補充を繰り返すことで長時間
に亘り安定にコイルを一定温度に保ち超電導コイルを冷
却する。
In cooling at the triple point, the oxide superconducting coil cooling device or the oxide superconducting coil having a structure in which the space in which the oxide superconducting coil is housed is connected to a decompression pump and the housing chamber can be depressurized by the pump. An oxide superconducting coil cooling device having a structure in which a preliminary decompression space is connected between the accommodated space and a decompression pump, and the coil accommodation chamber and the preliminary decompression chamber can be decompressed by a pump is used. With this, liquid oxygen is put into the storage room of the oxide superconducting coil, then decompressed by the decompression pump, cooled to the temperature of the triple point of oxygen (about 54.4K), and the coil is stably maintained at a constant temperature to cool the superconducting coil. In addition, liquid oxygen is put into the storage chamber of the oxide superconducting coil and then decompressed by a decompression pump, and the temperature at the triple point of oxygen (about 54.
4K) to stably maintain the coil at a constant temperature, and then, in order to replenish the coil storage chamber with oxygen at a triple point temperature as a refrigerant, liquid oxygen is once put in the preliminary decompression chamber to decompress it. After cooling to the triple point state, this oxygen is replenished in the coil storage chamber, and by repeating this replenishment, the coil is stably maintained at a constant temperature for a long time to cool the superconducting coil.

【0007】また、フラックスクリープの防止策として
は、液体酸素を用いた酸化物超電導コイルの冷却におい
て、コイル収納室内の気圧を調整し酸化物超電導コイル
を約54.4K以上の温度で励磁した後、コイル収納室
内の気圧を減圧し約54.4Kにして超電導コイルの磁
束のクリープを防ぐ超電導コイルの冷却方法がある。
As a measure for preventing flux creep, in cooling the oxide superconducting coil using liquid oxygen, after adjusting the atmospheric pressure in the coil housing chamber and exciting the oxide superconducting coil at a temperature of about 54.4 K or more. There is a cooling method for the superconducting coil that reduces the atmospheric pressure in the coil housing chamber to about 54.4K to prevent the creep of the magnetic flux of the superconducting coil.

【0008】一方、大気中での融点における冷却におい
ては、酸化物超電導コイルが収納された空間中に冷凍機
の冷却部があり、この収納された空間内の酸素が冷却で
きる構造を有する酸化物超電導コイル冷却装置、または
酸化物超電導コイルが収納された空間と予備の冷却空間
が連結し、コイル収納室および予備冷却室とが冷凍機に
より冷却できる構造を有する酸化物超電導コイル冷却装
置を用いる。これにより酸化物超電導コイルの収納室に
液体酸素を入れしかる後冷凍機により冷却し、大気圧中
での酸素の融点の温度(約54.8K)近傍で安定にコ
イルを一定温度に保ち超電導コイルを冷却するかさらに
は、酸化物超電導コイルの収納室に液体酸素を入れしか
る後冷凍機により冷却し、大気圧中での酸素の融点の温
度(約54.8K)で安定にコイルを一定温度に保ち、
つぎに、コイル収納室内に冷媒である固相と液相が共存
する酸素を補充するために、一旦予備冷却室に液体酸素
を入れこれを冷凍機で冷却することで固相と液相が共存
する状態にした後コイル収納室に酸素を補充し、この補
充を繰り返すことで長時間に亘り安定にコイルを一定温
度に保ち超電導コイルを冷却する。
On the other hand, in the case of cooling at a melting point in the atmosphere, there is a cooling part of a refrigerator in a space in which an oxide superconducting coil is housed, and an oxide having a structure capable of cooling oxygen in the housed space. A superconducting coil cooling device or an oxide superconducting coil cooling device having a structure in which a space in which an oxide superconducting coil is housed and a spare cooling space are connected and the coil housing chamber and the precooling chamber can be cooled by a refrigerator is used. As a result, liquid oxygen is put into the storage chamber of the oxide superconducting coil, then cooled by a refrigerator, and the coil is stably maintained at a constant temperature near the melting point of oxygen at atmospheric pressure (about 54.8 K). Or by cooling liquid oxygen into the oxide superconducting coil storage chamber and then cooling with a refrigerator to stabilize the coil at a constant temperature at the melting point of oxygen at atmospheric pressure (about 54.8 K). Keep in
Next, in order to replenish the oxygen in which the solid phase, which is the refrigerant, and the liquid phase coexist in the coil storage chamber, liquid oxygen is first put in the pre-cooling chamber and cooled by a refrigerator, so that the solid phase and the liquid phase coexist. After that, the coil storage chamber is supplemented with oxygen, and by repeating this supplementation, the coil is stably maintained at a constant temperature for a long time to cool the superconducting coil.

【0009】またフラックスクリープの防止策として
は、液体酸素を用いた酸化物超電導コイルの冷却におい
て、コイル収納室内の温度を冷凍機により調整し酸化物
超電導コイルを約54.8K以上の温度で励磁した後、
コイル収納室の温度を約54.8K近傍に下げて超電導
コイルの磁束のクリープを防ぐ超電導コイルの冷却方法
である。
As a measure for preventing flux creep, in cooling the oxide superconducting coil using liquid oxygen, the temperature inside the coil housing chamber is adjusted by a refrigerator to excite the oxide superconducting coil at a temperature of about 54.8 K or more. After doing
This is a cooling method for a superconducting coil that lowers the temperature of the coil housing chamber to about 54.8K to prevent the creep of the magnetic flux of the superconducting coil.

【0010】[0010]

【発明の実施の形態】酸素の三重点は約54.4Kであ
り、この温度は液体酸素を減圧(約1.1mmHgに)
することにより得られる。三重点にある酸素は固化した
酸素がシャーベット状になり液相中にあることが多い。
また大気圧中の酸素の融点は約54.8Kであり、固相
と液相が共存する状態は液体酸素を冷凍機等で冷却する
ことにより得られる。これら液相のほかに固相がある状
態は相変化にともなう潜熱があるため温度を一定にしや
すく、また超電導体は液相に接しており冷却効率が良い
状態にある。三重点での冷却の利点は冷凍機を必要とせ
ず減圧用のポンプにより比較的容易に冷却できる点にあ
る。また大気中における融点での利点は減圧容器を必要
とせず構造が比較的簡単な点にある。
BEST MODE FOR CARRYING OUT THE INVENTION The triple point of oxygen is about 54.4 K, and this temperature depressurizes liquid oxygen (to about 1.1 mmHg).
It is obtained by doing. Oxygen at the three points is often in the liquid phase because the solidified oxygen becomes sherbet-like.
The melting point of oxygen at atmospheric pressure is about 54.8 K, and the state in which a solid phase and a liquid phase coexist can be obtained by cooling liquid oxygen with a refrigerator or the like. When there is a solid phase in addition to these liquid phases, there is latent heat associated with the phase change, so it is easy to keep the temperature constant, and the superconductor is in contact with the liquid phase and the cooling efficiency is good. The advantage of the three-point cooling is that it does not require a refrigerator and can be cooled relatively easily by a decompression pump. Further, the advantage of the melting point in the atmosphere is that a decompression container is not required and the structure is relatively simple.

【0011】QMG材料は、約54.4K(または約5
4.8K)において77Kの約5倍のJcを有し、1T
で15万A/cm2 程度の高い値をもち、バルクマグネ
ットとしては77Kに比べて発生磁界も5倍程度に向上
する。これにより応用の範囲も拡大される。
The QMG material is approximately 54.4K (or approximately 5K).
4.8K) has a Jc of about 5 times that of 77K and 1T
Has a high value of about 150,000 A / cm 2 , and the generated magnetic field is improved by about 5 times compared to 77K for a bulk magnet. This extends the range of applications.

【0012】図1に酸化物超電導体6とコイル収納室1
さらに減圧ポンプ2からなる装置を示す。コイル収納室
1は減圧に耐えられる強度を有しなければならない。ま
た、コイル収納室1の内側は断熱材3によりある程度断
熱されていなければならない。約1気圧の大気中で上部
の液体酸素供給口5より液体酸素7を入れ蓋をした後、
バルブ4をあけ減圧ポンプ2と接続し減圧し、内圧を調
整することにより90Kから約54.4Kまでの温度に
制御することができる。このように請求項1の発明は約
1.1mmHgの気圧(約54.4K)での冷却方法
で、この三重点は物質固有の値であるため極めて安定な
温度となる。
FIG. 1 shows an oxide superconductor 6 and a coil storage chamber 1.
Further, an apparatus including the decompression pump 2 is shown. The coil storage chamber 1 must have a strength that can withstand decompression. Further, the inside of the coil housing chamber 1 must be insulated to some extent by the heat insulating material 3. After putting liquid oxygen 7 from the upper liquid oxygen supply port 5 in the atmosphere of about 1 atm and closing the lid,
It is possible to control the temperature from 90K to about 54.4K by opening the valve 4 and connecting to the decompression pump 2 to reduce the pressure and adjusting the internal pressure. As described above, the invention of claim 1 is a cooling method at an atmospheric pressure of about 1.1 mmHg (about 54.4 K), and since this triple point is a value peculiar to the substance, the temperature becomes extremely stable.

【0013】図2に酸化物超電導体6、コイル収納室
1、減圧ポンプ2と予備減圧室8からなる装置を示す。
コイル収納室1および予備減圧室8は減圧に耐えられる
強度を有しなければならない。また、コイル収納室1お
よび予備減圧室8の内側は断熱材3によりある程度断熱
されていなければならない。約1気圧の大気中で上部の
液体酸素供給口5より液体酸素7を入れ蓋をした後、バ
ルブ9をあけ減圧ポンプ2と接続し減圧し、内圧を調整
することにより90Kから約54.4Kまでの温度に制
御することができる。
FIG. 2 shows an apparatus comprising an oxide superconductor 6, a coil housing chamber 1, a decompression pump 2 and a preliminary decompression chamber 8.
The coil storage chamber 1 and the preliminary decompression chamber 8 must have a strength that can withstand decompression. Further, the insides of the coil storage chamber 1 and the preliminary decompression chamber 8 must be insulated to some extent by the heat insulating material 3. After putting liquid oxygen 7 from the upper liquid oxygen supply port 5 in the atmosphere of about 1 atm and closing the lid, open the valve 9 and connect it to the decompression pump 2 to decompress and adjust the internal pressure from 90K to about 54.4K. The temperature can be controlled up to.

【0014】長時間冷却するには酸素の補充が必要とな
る。補充のさい大気圧の液体酸素をコイル収納室に供給
したのでは、内部の温度を上げてしまい、安定に一定な
温度が保たれない。そこで一旦予備減圧室8に液体酸素
供給口5より液体酸素を投入し減圧しコイル収納室1と
同じ温度になったところで仕切り壁10をあけコイル収
納室に供給される。これにより温度を一定に保った状態
で酸素の補充が可能となり長時間の冷却が可能になる。
このように請求項2の発明は長時間(半永久的)の約5
4.4Kでの冷却方法を提供するものである。
For long-term cooling, supplemental oxygen is required. If liquid oxygen at atmospheric pressure is supplied to the coil storage chamber during replenishment, the internal temperature rises, and a stable and constant temperature cannot be maintained. Therefore, once liquid oxygen is introduced into the preliminary decompression chamber 8 from the liquid oxygen supply port 5 and decompressed to reach the same temperature as the coil housing chamber 1, the partition wall 10 is opened and the liquid is supplied to the coil housing chamber. As a result, oxygen can be replenished while the temperature is kept constant, and long-term cooling is possible.
Thus, the invention of claim 2 is a long time (semi-permanent) about 5
It provides a cooling method at 4.4K.

【0015】図3に酸化物超電導体とコイル収納室と冷
凍機からなる装置を示す。コイル収納室1内に冷凍機1
2の冷却部11があり大気圧中でコイル収納室1内の液
体酸素7を冷却し固相と液相が共存する状態(融点)に
まで冷却する。また、コイル収納室1の内側は断熱材3
によりある程度断熱されていなければならない。約1気
圧の大気中で上部の液体酸素供給口5より液体酸素を入
れ、冷凍機を作動させ90Kから約54.8Kまでの温
度に制御することができる。このように請求項3の発明
は融点での冷却方法で、相変化に伴なう潜熱により極め
て安定に冷却できる。
FIG. 3 shows an apparatus comprising an oxide superconductor, a coil storage chamber and a refrigerator. Refrigerator 1 in coil storage chamber 1
There is a second cooling unit 11 to cool the liquid oxygen 7 in the coil storage chamber 1 under atmospheric pressure to a state (melting point) where a solid phase and a liquid phase coexist. In addition, the inside of the coil storage chamber 1 has a heat insulating material 3
Must be insulated to some extent. Liquid oxygen can be introduced from the upper liquid oxygen supply port 5 in the atmosphere of about 1 atm, and the refrigerator can be operated to control the temperature from 90K to about 54.8K. As described above, the invention of claim 3 is a cooling method at the melting point, which enables extremely stable cooling due to the latent heat accompanying the phase change.

【0016】図4に酸化物超電導体6、コイル収納室
1、冷凍機12と冷却予備室13からなる装置を示す。
コイル収納室1および予備冷却室13中には冷凍機12
の冷却部(11および11a)があり、大気圧中でコイ
ル収納室1および予備冷却室13内の液体酸素を冷却
し、固相と液相が共存する状態(融点)にまで冷却す
る。また、コイル収納室1および予備冷却室13の内側
は断熱材によりある程度断熱されていなければならな
い。約1気圧の大気中で上部の液体酸素供給口5より液
体酸素を入れ、冷凍機12により90Kから約54.8
Kまでの温度に制御することができる。
FIG. 4 shows an apparatus comprising an oxide superconductor 6, a coil housing chamber 1, a refrigerator 12 and a cooling preliminary chamber 13.
A refrigerator 12 is provided in the coil storage chamber 1 and the precooling chamber 13.
Of the cooling chamber (11 and 11a) for cooling liquid oxygen in the coil housing chamber 1 and the pre-cooling chamber 13 under atmospheric pressure to a state where the solid phase and the liquid phase coexist (melting point). Further, the insides of the coil storage chamber 1 and the precooling chamber 13 must be insulated to some extent by a heat insulating material. Liquid oxygen was introduced from the upper liquid oxygen supply port 5 in the atmosphere of about 1 atm, and the refrigerator 12 was operated from 90 K to about 54.8.
The temperature can be controlled up to K.

【0017】長時間冷却するには酸素の補充が必要とな
る。補充のさい90Kの液体酸素をコイル収納室1へ供
給したのでは内部の温度を上げてしまい、安定に一定な
温度が保たれない。そこで一旦予備冷却室13に液体酸
素を投入し融点まで冷却しコイル収納室と同じ温度にな
ったところでバルブ14を開けてコイル収納室1に供給
される。これにより温度を一定に保った状態で酸素の補
充が可能となり長時間の冷却が可能になる。このように
請求項4の発明は長時間(半永久的)の約54.8Kで
の冷却方法を提供するものである。
For long-term cooling, supplemental oxygen is required. If 90 K of liquid oxygen is supplied to the coil storage chamber 1 during replenishment, the internal temperature rises, and a constant temperature cannot be maintained stably. Then, liquid oxygen is once charged into the pre-cooling chamber 13 to be cooled to the melting point, and when the temperature reaches the same temperature as the coil storage chamber, the valve 14 is opened and the oxygen is supplied to the coil storage chamber 1. As a result, oxygen can be replenished while the temperature is kept constant, and long-term cooling is possible. Thus, the invention of claim 4 provides a long-term (semi-permanent) cooling method at about 54.8K.

【0018】これら酸素を冷媒として用いることによ
り、従来技術である窒素を用いた冷却方法に対し次のよ
うな利点が挙げられる。 (1)窒素融点または沸点(約63K)に比しより低い
温度(約54K)で安定に冷却できる。 (2)酸素の沸点は約90.2Kであり、冷媒の酸素を
放置(減圧も冷却もしない状態)すると、Y系に代表さ
れる希土類系超電導体のTcは約90Kであることか
ら、ほとんど超電導性を失う。このことによって使用後
のコイル(特にバルク材)の消磁に対し放置するだけで
よく、マグネットの保管が容易である。 (3)酸素は窒素と異なり磁性を有しているため、磁場
発生中はマグネットに付着し効率よく冷媒として機能す
る。
The use of oxygen as a refrigerant has the following advantages over the conventional cooling method using nitrogen. (1) It can be cooled stably at a lower temperature (about 54K) than the nitrogen melting point or boiling point (about 63K). (2) The boiling point of oxygen is about 90.2K, and if the oxygen of the refrigerant is left as it is (without being depressurized or cooled), the Tc of the rare earth superconductor typified by the Y system is about 90K. Loss superconductivity. As a result, the coil (especially the bulk material) after use need only be left for demagnetization, and the magnet can be stored easily. (3) Oxygen, unlike nitrogen, has magnetism and therefore adheres to the magnet during the generation of a magnetic field to efficiently function as a refrigerant.

【0019】[0019]

【実施例】【Example】

実施例1 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、図5に示すマグネットを作製した。図
5において(a)は各層のコイルを分解した時の斜視
図、(b)は4枚重ねて組み立てた時の斜視図であっ
て、各層7回巻であるから28回巻の超電導コイルと見
なすことができる。図中22は電流の方向、20Aは1
層目のコイル、20Bは2層目のコイル、20Cは3層
目のコイル、20Dは4層目のコイルであって、21
A、21B、21Cは電極部である。なおこれら各電極
部は図5(a)においては2個所のごとく示されている
が、図5(b)のように組み立てられた状態ではそれぞ
れ同一符号は合体して同一個所となる。これを図1に示
すようにコイル収納室1に配置した。液体酸素を投入し
た後、減圧して54.4Kまで冷却した。つぎに約5
4.4Kを保った状態で外部から徐々に電流を供給し4
00A流して超電導コイルを励磁した。発生された磁束
の分布を調べたところ最高0.32Tの磁束の捕捉を確
認した。77Kでは電流端子での発熱が原因で350A
しか流せず0.28T程度しか磁束が得られず発生磁界
の向上が見られた。
Example 1 RE of several μm in REBa 2 Cu 3 O 7-X phase of single crystal form
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to manufacture the magnet shown in FIG. In FIG. 5, (a) is a perspective view when the coils of each layer are disassembled, and (b) is a perspective view when four layers are stacked and assembled. Since each layer has 7 turns, a superconducting coil with 28 turns is shown. I can see it. In the figure, 22 is the direction of current, 20A is 1
The coil of the second layer, 20B is the coil of the second layer, 20C is the coil of the third layer, and 20D is the coil of the fourth layer.
A, 21B, and 21C are electrode parts. Note that each of these electrode portions is shown as two locations in FIG. 5A, but in the state assembled as shown in FIG. 5B, the same reference numerals are combined to form the same location. This was placed in the coil storage chamber 1 as shown in FIG. After introducing liquid oxygen, the pressure was reduced and the mixture was cooled to 54.4K. Next about 5
While maintaining 4.4K, gradually supply current from the outside and
The superconducting coil was excited by flowing 00A. When the distribution of the generated magnetic flux was examined, it was confirmed that the maximum magnetic flux was 0.32T. At 77K, 350A due to heat generation at the current terminal
Only the magnetic flux was flowed, and only about 0.28T was obtained, and the generated magnetic field was improved.

【0020】実施例2 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、厚さ15mm、直径42mmのバルク
マグネットを作製した(このマグネットは単巻の超電導
コイルと見なすことができる)。これを図2に示すよう
にコイル収納室1に配置した。常電導マグネットにより
2.5Tの磁場を印加し、液体酸素を投入した後、減圧
して約54.4Kまで冷却した。つぎに約54.4Kを
保った状態で外部磁界を除去しバルクマグネットに磁束
を捕捉させることにより超電導コイルを励磁した。常電
導マグネットを取り外した後、捕捉された磁束の分布を
調べたところ100秒後最高2.1Tの磁束の捕捉を確
認した。10時間後酸素を補給するために予備減圧室8
に液体酸素を投入し、減圧して約54.4Kにした後、
超電導コイル収納室に供給した。供給の前後で発生磁界
は変化せず約54.4Kを保った状態で液体酸素の供給
ができた。
Example 2 RE of several μm in a single crystalline REBa 2 Cu 3 O 7-X phase
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to fabricate a bulk magnet having a thickness of 15 mm and a diameter of 42 mm (this magnet can be regarded as a single-turn superconducting coil). This was placed in the coil storage chamber 1 as shown in FIG. A magnetic field of 2.5 T was applied by a normal conducting magnet, liquid oxygen was added, and then the pressure was reduced to about 54.4 K. Next, the superconducting coil was excited by removing the external magnetic field and keeping the magnetic flux trapped in the bulk magnet while maintaining about 54.4K. When the distribution of the trapped magnetic flux was examined after removing the normal conducting magnet, trapping of a magnetic flux of maximum 2.1T was confirmed after 100 seconds. After 10 hours, a preliminary decompression chamber 8 to replenish oxygen
After adding liquid oxygen to and reducing the pressure to about 54.4K,
It was supplied to the superconducting coil storage room. The generated magnetic field did not change before and after the supply, and liquid oxygen could be supplied while maintaining about 54.4K.

【0021】実施例3 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、厚さ15mm、直径42mmのバルク
マグネットを作製した(このマグネットは単巻の超電導
コイルと見なすことができる)。これを図1に示すよう
にコイル収納室1に配置した。液体酸素を投入した後、
減圧して約54.4Kまで冷却した。つぎに約54.4
Kを保った状態でSmCo系のリング状永久磁石を超電
導体コイルから0.8mmにまで近づけた。このとき永
久磁石には25kgの浮上力(反発力)が働いているこ
とを重りを載せることにより確認した。浮上力が働いて
いる状態は超電導コイル中に超電導電流が流れており、
超電導コイルが励磁されていると見なすことができる。
Example 3 RE of several μm in a single crystalline REBa 2 Cu 3 O 7-X phase
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to fabricate a bulk magnet having a thickness of 15 mm and a diameter of 42 mm (this magnet can be regarded as a single-turn superconducting coil). This was placed in the coil storage chamber 1 as shown in FIG. After adding liquid oxygen,
The pressure was reduced and the mixture was cooled to about 54.4K. Next about 54.4
While maintaining K, the SmCo type ring-shaped permanent magnet was brought close to 0.8 mm from the superconductor coil. At this time, it was confirmed that a 25 kg levitation force (repulsion force) was acting on the permanent magnet by placing a weight. When the levitation force is working, the superconducting current flows in the superconducting coil,
It can be considered that the superconducting coil is excited.

【0022】実施例4 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、図5に示すマグネットを作製した(こ
れは28回巻の超電導コイルと見なすことができる)。
これを図3に示すようにコイル収納室1に配置した。液
体酸素を投入した後、冷凍機により約54.8Kまで冷
却した。つぎに約54.8Kを保った状態で外部から徐
々に電流を供給し400A流して超電導コイルを励磁し
た。発生された磁束の分布を調べたところ最高0.32
Tの磁束の捕捉を確認した。77Kでは電流端子での発
熱が原因で340Aしか流せず0.27T程度しか磁束
が得られず発生磁界の向上が見られた。
Example 4 RE of several μm in a single crystal REBa 2 Cu 3 O 7-X phase
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to fabricate the magnet shown in FIG. 5 (which can be regarded as a 28-turn superconducting coil).
This was placed in the coil storage chamber 1 as shown in FIG. After introducing liquid oxygen, it was cooled to about 54.8 K by a refrigerator. Next, while maintaining about 54.8 K, a current was gradually supplied from the outside to flow 400 A to excite the superconducting coil. When the distribution of the generated magnetic flux was examined, the maximum was 0.32
It was confirmed that the magnetic flux of T was captured. At 77K, due to the heat generation at the current terminal, only 340A was allowed to flow, and a magnetic flux of only about 0.27T was obtained, thus improving the generated magnetic field.

【0023】実施例5 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、厚さ15mm、直径42mmのバルク
マグネットを作製した(このマグネットは単巻の超電導
コイルと見なすことができる)。これを図4に示すよう
にコイル収納室1に配置した。常電導マグネットにより
2.5Tの磁場を印加し、液体酸素を投入した後、冷凍
機により減圧して54.8Kまで冷却した。つぎに5
4.4Kを保った状態で外部磁界を除去しバルクマグネ
ットに磁束を捕捉させることにより超電導コイルを励磁
した。常電導マグネットを取り外した後、捕捉された磁
束の分布を調べたところ100秒後最高2.1Tの磁束
の捕捉を確認した。10時間後酸素を補給するために予
備冷却室13に液体酸素を投入し、冷却して約54.8
Kにした後、超電導コイル収納室に供給した。供給の前
後で発生磁界は変化せず約54.8Kを保った状態で液
体酸素の供給ができた。
Example 5 RE of 2 μm in a single crystalline REBa 2 Cu 3 O 7-X phase
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to fabricate a bulk magnet having a thickness of 15 mm and a diameter of 42 mm (this magnet can be regarded as a single-turn superconducting coil). This was placed in the coil storage chamber 1 as shown in FIG. A magnetic field of 2.5 T was applied by a normal conducting magnet, liquid oxygen was introduced, and the pressure was reduced by a refrigerator to cool to 54.8K. Next 5
The superconducting coil was excited by removing the external magnetic field and keeping the magnetic flux trapped by the bulk magnet while maintaining 4.4K. When the distribution of the trapped magnetic flux was examined after removing the normal conducting magnet, trapping of a magnetic flux of maximum 2.1T was confirmed after 100 seconds. After 10 hours, liquid oxygen was added to the precooling chamber 13 to replenish the oxygen, and the mixture was cooled to about 54.8.
After changing to K, it was supplied to the superconducting coil storage chamber. The generated magnetic field did not change before and after the supply, and liquid oxygen could be supplied while maintaining about 54.8K.

【0024】実施例6 単結晶状のREBa2 Cu37-X 相中に数μmのRE
2 BaCuO5 相が微細に分散した超電導材料(QMG
材料)を用いて、厚さ15mm、直径42mmのバルク
マグネットを作製した(このマグネットは単巻の超電導
コイルと見なすことができる)。これを図3に示すよう
にコイル収納室1に配置した。液体酸素を投入した後、
冷凍機により約54.8Kまで冷却した。つぎに約5
4.8Kを保った状態でSmCo系のリング状永久磁石
を超電導体コイルから0.8mmにまで近づけた。この
とき永久磁石には25kgの浮上力(反発力)が働いて
いることを重りを載せることにより確認した。浮上力が
働いている状態は超電導コイル中に超電導電流が流れて
おり、超電導コイルが励磁されていると見なすことがで
きる。
Example 6 RE of several μm in a single crystalline REBa 2 Cu 3 O 7-X phase
2 Superconducting material with finely dispersed BaCuO 5 phase (QMG
Material) was used to fabricate a bulk magnet having a thickness of 15 mm and a diameter of 42 mm (this magnet can be regarded as a single-turn superconducting coil). This was placed in the coil storage chamber 1 as shown in FIG. After adding liquid oxygen,
It was cooled to about 54.8K by a refrigerator. Next about 5
While maintaining 4.8K, the SmCo-based ring-shaped permanent magnet was brought close to 0.8 mm from the superconductor coil. At this time, it was confirmed that a 25 kg levitation force (repulsion force) was acting on the permanent magnet by placing a weight. When the levitation force is working, it can be considered that the superconducting current is flowing in the superconducting coil and the superconducting coil is excited.

【0025】[0025]

【発明の効果】以上詳述したごとく本発明により、酸化
物超電導体を液体酸素を用い約55Kで容易にかつ安定
に冷却しうる方法が提供され、酸化物超電導体の応用の
幅を広げることができた。このような冷却方法は各分野
での応用が可能であり大きな工業的効果が期待できる。
As described in detail above, according to the present invention, there is provided a method capable of easily and stably cooling an oxide superconductor at about 55 K using liquid oxygen, and broadening the range of applications of the oxide superconductor. I was able to. Such a cooling method can be applied in various fields, and a great industrial effect can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の例を示す図FIG. 1 is a diagram showing an example of an apparatus for carrying out the present invention.

【図2】本発明を実施するための装置の例を示す図FIG. 2 is a diagram showing an example of an apparatus for carrying out the present invention.

【図3】本発明を実施するための装置の例を示す図FIG. 3 is a diagram showing an example of an apparatus for carrying out the present invention.

【図4】本発明を実施するための装置の例を示す図FIG. 4 is a diagram showing an example of an apparatus for carrying out the present invention.

【図5】実施例で用いたバルクマグネットのうちの一つ
を示す斜視図で、(a)は分解して示したもの、(b)
は組み立てた状態を示す。
FIG. 5 is a perspective view showing one of the bulk magnets used in the embodiment, (a) being an exploded view, and (b).
Shows the assembled state.

【符号の説明】[Explanation of symbols]

1 コイル収納室 2 減圧ポンプ 3 断熱材 4、9 バルブ 5 液体酸素投入口 6 酸化物超電導体 7 液体酸素 8 予備減圧室 10 仕切り壁 11、11a 冷却部 12 冷凍機 13 予備冷却室 14 バルブ 20A 1層目のコイル 20B 2層目のコイル 20C 3層目のコイル 20D 4層目のコイル 21A、21B、21C 電極部 22 電流の方向 1 Coil Storage Chamber 2 Decompression Pump 3 Heat Insulation 4, 9 Valve 5 Liquid Oxygen Inlet 6 Oxide Superconductor 7 Liquid Oxygen 8 Preliminary Decompression Chamber 10 Partition Wall 11, 11a Cooling Part 12 Refrigerator 13 Preliminary Cooling Chamber 14 Valve 20A 1 Coil of the second layer 20B Coil of the second layer 20C Coil of the third layer 20D Coil of the fourth layer 21A, 21B, 21C Electrode part 22 Current direction

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導コイルの収納室に液体酸素
を入れしかる後減圧ポンプにより減圧し、酸素の三重点
の温度(約54.4K)に冷却し安定にコイルを一定温
度に保つことを特徴とする超電導コイルの冷却方法。
1. An oxide superconducting coil containing chamber is filled with liquid oxygen and then decompressed by a decompression pump to cool to a triple point temperature of oxygen (about 54.4 K) to stably maintain the coil at a constant temperature. A characteristic method for cooling a superconducting coil.
【請求項2】 酸化物超電導コイルの収納室に液体酸素
を入れしかる後減圧ポンプにより減圧し、酸素の三重点
の温度(約54.4K)に冷却し安定にコイルを一定温
度に保ち、つぎに、コイル収納室内に冷媒である三重点
にある酸素を補充するために、一旦予備減圧室に液体酸
素を入れこれを減圧することで三重点の状態に冷却した
後コイル収納室にこの酸素を補充し、この補充を繰り返
すことで長時間に亘り安定にコイルを一定温度に保つこ
とを特徴とする超電導コイルの冷却方法。
2. An oxide superconducting coil is filled with liquid oxygen, decompressed by a decompression pump, cooled to the triple point temperature of oxygen (about 54.4 K), and the coil is stably maintained at a constant temperature. In order to replenish the oxygen at the triple point, which is a refrigerant, in the coil storage chamber, liquid oxygen is once put in the preliminary decompression chamber to reduce the pressure to cool it to the triple point state, and then the oxygen is supplied to the coil storage chamber. A method for cooling a superconducting coil, characterized in that the coil is stably maintained at a constant temperature for a long time by replenishing and repeating this replenishment.
【請求項3】 酸化物超電導コイルの収納室に液体酸素
を入れしかる後冷凍機により冷却し、大気圧中での酸素
の融点の温度(約54.8K)近傍で安定にコイルを一
定温度に保つことを特徴とする超電導コイルの冷却方
法。
3. Oxide superconducting coil housing chamber is filled with liquid oxygen and then cooled by a refrigerator to stabilize the coil at a constant temperature near the melting point of oxygen at atmospheric pressure (about 54.8 K). A method for cooling a superconducting coil, which is characterized by keeping the same.
【請求項4】 酸化物超電導コイルの収納室に液体酸素
を入れしかる後冷凍機により冷却し、大気圧中での酸素
の融点の温度(約54.8K)近傍で安定にコイルを一
定温度に保ち、つぎに、コイル収納室内に冷媒である固
相と液相が共存する酸素を補充するために、一旦予備冷
却室に液体酸素を入れこれを冷凍機により冷却すること
で固相と液相が共存する状態にした後コイル収納室にこ
の酸素を補充し、この補充を繰り返すことで長時間に亘
り安定にコイルを一定温度に保つことを特徴とする超電
導コイルの冷却方法。
4. A liquid oxygen is put into a storage chamber of the oxide superconducting coil and then cooled by a refrigerator to stably bring the coil to a constant temperature in the vicinity of a melting point of oxygen at atmospheric pressure (about 54.8 K). Next, in order to replenish the oxygen in which the solid phase, which is the refrigerant, and the liquid phase coexist in the coil storage chamber, liquid oxygen is once put in the pre-cooling chamber and cooled by a refrigerator to cool the solid phase and the liquid phase. A method for cooling a superconducting coil, characterized in that the coil storage chamber is replenished with oxygen after the coexistence of the above conditions, and the replenishment is repeated to stably maintain the coil at a constant temperature for a long time.
JP7208567A 1995-07-25 1995-07-25 Cooling method for superconducting coil Withdrawn JPH0936444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7208567A JPH0936444A (en) 1995-07-25 1995-07-25 Cooling method for superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7208567A JPH0936444A (en) 1995-07-25 1995-07-25 Cooling method for superconducting coil

Publications (1)

Publication Number Publication Date
JPH0936444A true JPH0936444A (en) 1997-02-07

Family

ID=16558327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7208567A Withdrawn JPH0936444A (en) 1995-07-25 1995-07-25 Cooling method for superconducting coil

Country Status (1)

Country Link
JP (1) JPH0936444A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069092A (en) * 2001-08-24 2003-03-07 Japan Magnet Technol Kk Method and device for operating superconducting magnet device and pressure reduction device unit used therefor
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
JP2008113893A (en) * 2006-11-06 2008-05-22 Sumitomo Electric Ind Ltd Operation method of superconducting apparatus
JP2010045267A (en) * 2008-08-17 2010-02-25 Central Res Inst Of Electric Power Ind Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter
CN111412695A (en) * 2020-03-25 2020-07-14 西安交通大学 Super supercooled liquid oxygen acquisition system based on liquid oxygen and liquid nitrogen mixing and vacuumizing

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069092A (en) * 2001-08-24 2003-03-07 Japan Magnet Technol Kk Method and device for operating superconducting magnet device and pressure reduction device unit used therefor
JP2007093059A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Cooling method using nitrogen-oxygen mixed refrigerant
JP2008113893A (en) * 2006-11-06 2008-05-22 Sumitomo Electric Ind Ltd Operation method of superconducting apparatus
JP2010045267A (en) * 2008-08-17 2010-02-25 Central Res Inst Of Electric Power Ind Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter
CN111412695A (en) * 2020-03-25 2020-07-14 西安交通大学 Super supercooled liquid oxygen acquisition system based on liquid oxygen and liquid nitrogen mixing and vacuumizing
CN111412695B (en) * 2020-03-25 2021-01-15 西安交通大学 Super supercooled liquid oxygen acquisition system based on liquid oxygen and liquid nitrogen mixing and vacuumizing
US11262124B2 (en) 2020-03-25 2022-03-01 Xi'an Jiaotong University System for preparing deeply subcooled liquid oxygen based on mixing of liquid oxygen and liquid nitrogen and then vacuum-pumping

Similar Documents

Publication Publication Date Title
EP0541819B1 (en) Method for cooling oxide superconductor coil
US5289150A (en) Method and apparatus for superconducting trapped-field energy storage and power stabilization
US5787714A (en) Cooling method and energizing method of superconductor
JP5017640B2 (en) Cryogenic refrigeration method and cryogenic refrigeration system
US5659278A (en) Superconducting magnet device, magnetizing device and method for superconductor
JPH10335137A (en) Cooling method and conducting method for superconductor
JPH0936444A (en) Cooling method for superconducting coil
US6621395B1 (en) Methods of charging superconducting materials
Sato et al. High field generation using silver-sheathed BSCCO conductor
JP7120303B2 (en) Magnetic field generator and method for magnetizing magnetic field generator
JPH10275719A (en) Method for cooling superconductor
Whetstone et al. Nucleate cooling stability for superconductor-normal metal composite conductors in liquid helium
JP2002005552A (en) Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment
JP2001126916A (en) High-temperature superconducting coil and high- temperature superconducting magnet using the same
JPH0787724A (en) Superconducting motor
JP5162088B2 (en) Cooling method using nitrogen-oxygen mixed refrigerant
JP3377350B2 (en) Thermoelectric cooling type power lead
JP2004111581A (en) Superconducting magnet unit
JPH10247753A (en) Superconducting device and control method thereof
JPH0797527B2 (en) Oxide superconducting coil cooling method and cooling device
JP2515813B2 (en) Current lead for superconducting equipment
US3250958A (en) Bulk superconductor high field persistent magnet and means for making same
Haldar et al. Development of Bi-2223 HTS high field coils and magnets
JP3860070B2 (en) Thermoelectric cooling power lead
JP2003151821A (en) Superconductive coil device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20021001