JP2003151821A - Superconductive coil device - Google Patents

Superconductive coil device

Info

Publication number
JP2003151821A
JP2003151821A JP2001352648A JP2001352648A JP2003151821A JP 2003151821 A JP2003151821 A JP 2003151821A JP 2001352648 A JP2001352648 A JP 2001352648A JP 2001352648 A JP2001352648 A JP 2001352648A JP 2003151821 A JP2003151821 A JP 2003151821A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting coil
temperature
current switch
permanent current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001352648A
Other languages
Japanese (ja)
Inventor
Masaru Nagashima
賢 長嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2001352648A priority Critical patent/JP2003151821A/en
Publication of JP2003151821A publication Critical patent/JP2003151821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive coil device which operates surely and stably even if the device uses a coil formed of high-temperature superconductor as a superconductive coil. SOLUTION: As shown in Figure 1, a superconductive coil device is composed of 'a permanent current switch which uses a metal (Nb-Ti or the like) superconductor as an operating material and serves as a permanent current switch 3 for a superconductive coil 1, the superconductive coil 1, and current leads 2 formed of oxide high-temperature superconductors and interposed between the permanent current switch 3 and the superconductive coil 1. This superconductive coil device is capable of operating stably even if the superconductive coil 1 is formed of a high-temperature superconductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、超電導コイルと
して“高温超電導体から成るコイル”を適用した場合で
あっても的確で安定した稼働が可能な超電導コイル装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting coil device capable of operating accurately and stably even when a "coil made of high temperature superconductor" is applied as the superconducting coil.

【0002】[0002]

【従来技術】近年、磁気浮上式鉄道,電磁推進船,医療
機器,エネルギ−貯蔵装置,発電機等の分野を始めとし
て超電導コイルを用いた装置の開発が著しく進んでお
り、また新しい高温超電導材料が次々に発見されたこと
もあって、超電導利用技術は益々広範な分野に及ぶもの
と考えられる。
2. Description of the Related Art In recent years, the development of devices using superconducting coils has been remarkably advanced in fields such as magnetic levitation railways, electromagnetic propulsion ships, medical devices, energy storage devices, and generators, and new high temperature superconducting materials have been developed. It is thought that superconducting technology will be applied to a wider range of fields due to the subsequent discovery of the above.

【0003】ただ、現在実用に供されている超電導コイ
ル装置は、製造性や性能の安定性等の面から何れも臨界
温度が9〜10K程度の金属系超電導体(Nb−30Ti合金,
Nb−46.5Ti合金,Nb−49Ti合金あるいはNb−48Ti−1.5T
a 合金といったNb−Ti系超電導材料)から成るコイルを
使用した装置であり、適温の冷却媒体が見つからないこ
ともあって液体ヘリウムにより作り出される極低温度
(4.2K程度の温度)での稼働を必要としている。
However, all of the superconducting coil devices currently in practical use are metallic superconductors (Nb-30Ti alloy, whose critical temperature is about 9 to 10 K) in terms of manufacturability and stability of performance.
Nb-46.5Ti alloy, Nb-49Ti alloy or Nb-48Ti-1.5T
This is a device that uses a coil made of Nb-Ti-based superconducting material such as a alloy, and the extremely low temperature created by liquid helium due to the fact that a cooling medium with an appropriate temperature cannot be found.
It is necessary to operate at a temperature of about 4.2K.

【0004】なお、超電導コイル装置では、電源と切り
離しても超電導コイルに電流が流れ続ける所謂“永久電
流状態”を安定して保持する必要があり、また必要によ
り電源と接続して超電導コイルを励磁あるいは消磁する
操作も必要である。従って、超電導コイル装置にはその
ような役目を担わせる永久電流スイッチが欠かせないも
のとなっている。
In the superconducting coil device, it is necessary to stably maintain a so-called "permanent current state" in which a current continues to flow in the superconducting coil even when the superconducting coil is disconnected from the power source. Alternatively, an operation of degaussing is also necessary. Therefore, the superconducting coil device is indispensable for the permanent current switch which plays such a role.

【0005】現在、永久電流スイッチとしては一般に熱
式のものが実用されている。この熱式の永久電流スイッ
チは、一般的にはエポキシ樹脂製の巻き枠に超電導線
(金属系超電導体の線材)を無誘導巻きし、その上にヒ
−タ線を巻き付けた構造を有しおり、ヒ−タ線への非通
電・通電によって超電導線の温度をその臨界温度の上下
に制御し、超電導コイルと電源とのオン・オフ動作を行
う。
At present, a thermal type switch is generally used as a permanent current switch. This thermal permanent current switch generally has a structure in which a superconducting wire (wire material of a metal-based superconductor) is non-inductively wound on an epoxy resin winding frame, and a heater wire is wound on the winding. The temperature of the superconducting wire is controlled above and below its critical temperature by de-energizing and energizing the heater wire, and the superconducting coil and the power supply are turned on and off.

【0006】ところで、前述したように、近年、臨界温
度が金属系超電導体のそれよりも高い金属間化合物系の
高温超電導体や、臨界温度が液体窒素温度(77.3K)を
越える酸化物系の高温超電導体が次々と発見されてい
る。そのため、臨界温度が比較的高いが故にクエンチに
よって超電導状態が破られる懸念の少ない高温超電導体
製のコイルを用いた超電導コイル装置の実用化が進むも
のと考えられる。しかしながら、これまで、高温超電導
コイルを使用した超電導コイル装置により高温領域(金
属系超電導体の臨界温度以上、 より具体的には20K以
上)で安定した永久電流運転に成功した例はない。
By the way, as mentioned above, in recent years, intermetallic compound high temperature superconductors having a critical temperature higher than that of metal superconductors and oxide type supercritical oxides having a critical temperature exceeding liquid nitrogen temperature (77.3K) have been used. High-temperature superconductors are being discovered one after another. Therefore, it is considered that the practical application of the superconducting coil device using the coil made of the high-temperature superconductor, in which the superconducting state is less likely to be broken by the quench because the critical temperature is relatively high, is expected. However, until now, there has been no example in which stable permanent current operation has been successful in a high temperature region (above the critical temperature of a metal-based superconductor, more specifically above 20K) by a superconducting coil device using a high temperature superconducting coil.

【0007】[0007]

【発明が解決しようとする課題】このようなことから、
本発明が目的としたのは、高温超電導体製コイルを適用
して金属系超電導体の臨界温度以上で使用した場合であ
っても安定した永久電流運転を適切に実施することがで
きる超電導コイル装置を提供することである。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The object of the present invention is to provide a superconducting coil device capable of appropriately performing stable persistent current operation even when a high temperature superconductor coil is applied and used at a temperature above the critical temperature of a metal-based superconductor. Is to provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく数多くの実験・研究を重ね、次の知見を得る
ことができた。即ち、本発明者は、高温領域で安定した
永久電流運転に成功した超電導コイル装置の例がこれま
でになかった理由が、当初、高温超電導体を線材化する
技術上の問題もあって高温超電導体製コイルを用いた超
電導磁石装置では磁束フロ−等のために永久電流の減衰
が金属系超電導体(Nb−Ti系超電導体)製コイルを用い
たものよりも早いということにあると考えたが、仮にこ
れらの問題が解決されたとしても永久電流の実現には運
用上の困難があることを認識するに至った。
Means for Solving the Problems The present inventor has obtained a number of experiments and studies in order to achieve the above object, and has been able to obtain the following findings. That is, the present inventor has found that there was no example of a superconducting coil device that succeeded in stable permanent current operation in a high temperature region so far. It was thought that in a superconducting magnet device using a body coil, the decay of the permanent current was faster than that using a metal superconductor (Nb-Ti system superconductor) coil due to magnetic flux flow etc. However, even if these problems are solved, it has been recognized that there are operational difficulties in realizing a permanent current.

【0009】つまり、先にも述べたように実用されてい
る永久電流スイッチは殆ど熱式であるが、高温超電導体
製コイルを用いた超電導磁石装置の運転温度に合わせて
永久電流スイッチを高温超電導体で作製しても、その動
作温度が高いため動作するまでの熱容量が必然的に大き
くなってしまい、スイッチを開とするためには大きな熱
を加える必要があり、またスイッチを閉とするためには
相応の大きな抜熱が必要であるので、ON−OFF動作
に時間がかかる等の問題があって実用が困難であった。
In other words, as described above, the practically used persistent current switch is almost of the thermal type, but the persistent current switch is changed to a high temperature superconducting device in accordance with the operating temperature of the superconducting magnet device using the high temperature superconducting coil. Even if it is made with a body, its operating temperature is high, so the heat capacity until it operates is inevitably large, and it is necessary to apply a large amount of heat to open the switch, and also to close the switch. Since it requires a considerably large amount of heat removal, there is a problem that the ON-OFF operation takes a long time, which makes practical use difficult.

【0010】一方、金属系超電導体(Nb−Ti系超電導
体)を動作材料とした永久電流スイッチは既に実用され
ていて信頼性も高く、また低温で動作するためON−O
FF動作に時間がかからないという利点がある。しか
し、この金属系超電導体を動作材料とした永久電流スイ
ッチは、“高温領域(金属系超電導体の臨界温度以上)
で運転する高温超電導コイル”への適用を試みてもその
ままでは高温超電導コイル側からの侵入熱のために適正
な動作がなされず、適正な動作を行おうとすると、永久
電流スイッチ部を格別な区画に収納して永久電流スイッ
チ部につながる電流リ−ド(一般には銅線が使用され
る)部を含めて大掛かりな冷却を施す必要があって現実
的なものでなくなる。
On the other hand, a persistent current switch using a metal-based superconductor (Nb-Ti-based superconductor) as an operating material has already been put into practical use and has high reliability, and since it operates at a low temperature, it is ON-O.
There is an advantage that the FF operation does not take much time. However, a persistent current switch using this metal-based superconductor as an operating material has a "high temperature region (above the critical temperature of the metal-based superconductor).
Even if an attempt is made to apply it to a "high temperature superconducting coil" that is operated as it is, proper operation will not be performed due to the heat entering from the high temperature superconducting coil side. It is not practical because it is necessary to perform large-scale cooling including the current lead (generally copper wire is used) that is housed in the device and connected to the permanent current switch.

【0011】これらの点を踏まえた本発明者ではある
が、それでも既に実用されていて信頼性が高い上にON
−OFF動作に時間がかからないという“金属系超電導
体を動作材料とした永久電流スイッチ”の利点を重視
し、これを高温超電導コイルに適用する術を求めて更に
研究を進めた結果、次の結論に到達した。
Although the present inventor is based on these points, it is still in practical use, has high reliability, and is ON.
-We have focused on the advantage of "a permanent current switch using a metal-based superconductor as an operating material" that it takes no time to turn off, and further researched for the application of this to a high-temperature superconducting coil. Reached

【0012】高温領域(金属系超電導体の臨界温度以上
の温度領域)で運転する高温超電導コイルの永久電流ス
イッチとして“金属系超電導体を動作材料とした永久電
流スイッチ”を適用する場合であっても、この永久電流
スイッチと超電導コイルとを接続する電流リ−ド部に酸
化物高温超電導体を介在させると、電流リ−ドの通常材
である銅の77Kにおける熱伝導率が5W/cm ・ Kであ
るのに対して、酸化物高温超電導体、例えばイットリウ
ム系酸化物超電導体の77Kにおける熱伝導率は65〜
76mW/cm ・ Kであって2桁程も銅の熱伝導率より小
さい値であるので、この酸化物高温超電導体部が断熱材
となって永久電流スイッチへの侵入熱が極めて少なくな
り、永久電流スイッチを小容量のコンパクトな冷凍機で
冷却するだけで十分に速やかで安定した作動をなすこと
が可能となる。
When a "persistent current switch using a metallic superconductor as an operating material" is applied as a persistent current switch for a high temperature superconducting coil operating in a high temperature region (a temperature region above the critical temperature of a metallic superconductor) Also, when an oxide high temperature superconductor is interposed in the current lead portion connecting the permanent current switch and the superconducting coil, the thermal conductivity of copper, which is a normal material of the current lead, at 77K is 5 W / cm. In contrast to K, the high temperature oxide superconductor, for example, yttrium oxide superconductor has a thermal conductivity of 65 to 77K.
Since it is 76 mW / cm · K, which is about two orders of magnitude lower than the thermal conductivity of copper, this oxide high-temperature superconductor section acts as a heat insulating material, and the heat that enters the permanent current switch is extremely reduced, making it permanent. Only by cooling the current switch with a compact refrigerator having a small capacity, it is possible to perform a sufficiently quick and stable operation.

【0013】本発明は、上記知見事項等を基にしてなさ
れたものであり、次に示す超電導コイル装置を提供する
ものである。 超電導コイルの永久電流スイッチを“金属系超電導
体を動作材料とした永久電流スイッチ”とすると共に、
当該永久電流スイッチと超電導コイルとの間に酸化物高
温超電導体から成る電流リ−ドを介在させたことを特徴
とする超電導コイル装置。 超電導コイルが高温超電導体から成るものである、
請求項1記載の超電導コイル装置。
The present invention is based on the above findings and the like, and provides the following superconducting coil device. The permanent current switch of the superconducting coil is "a permanent current switch using a metal-based superconductor as an operating material", and
A superconducting coil device, characterized in that a current lead made of an oxide high temperature superconductor is interposed between the permanent current switch and the superconducting coil. The superconducting coil is made of high temperature superconductor,
The superconducting coil device according to claim 1.

【0014】[0014]

【発明の実施の形態】本発明でいう「金属系超電導体」
とはNb−30Ti合金,Nb−46.5Ti合金,Nb−49Ti合金ある
いはNb−48Ti−1.5Ta 合金といったNb−Ti系超電導体を
意味し、また本発明でいう「高温超電導体」は、臨界温
度(超電導変移温度)が金属系超電導体の臨界温度以上
であるNb3Sn ,Nb3Ga ,Nb3(Al,Ge),Nb3Ge ,MgB2
の公知の金属間化合物や公知の酸化物高温超電導体を意
味している。なお、「酸化物高温超電導体」についても
その種類は制限されず、例えば希土類系の酸化物超電導
体{化学式がYBa2Cu3y ,NdBa2Cu3y , SmBa2Cu3
y ,GdBa2Cu3y 又はTl2Ba2Ca2Cu3y で表されるもの
等}や、Bi系の酸化物超電導体{化学式がBi2Sr2Ca2Cu3
z ,(Bi, Pb)2Sr2Ca2Cu3z で表されるもの等}など
の何れをも適用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION "Metal-based superconductor" according to the present invention
Means an Nb-Ti-based superconductor such as Nb-30Ti alloy, Nb-46.5Ti alloy, Nb-49Ti alloy or Nb-48Ti-1.5Ta alloy, and "high temperature superconductor" in the present invention means a critical temperature. Known intermetallic compounds and known oxides such as Nb 3 Sn, Nb 3 Ga, Nb 3 (Al, Ge), Nb 3 Ge, and MgB 2 whose (superconducting transition temperature) is higher than the critical temperature of the metal-based superconductor. It means a high temperature superconductor. The type of “oxide high-temperature superconductor” is not limited, and examples thereof include rare earth oxide superconductors (chemical formulas are YBa 2 Cu 3 O y , NdBa 2 Cu 3 O y , SmBa 2 Cu 3 O).
y , GdBa 2 Cu 3 O y or Tl 2 Ba 2 Ca 2 Cu 3 O y } and Bi-based oxide superconductors (chemical formula is Bi 2 Sr 2 Ca 2 Cu 3
Any of O z , (Bi, Pb) 2 Sr 2 Ca 2 Cu 3 O z , and the like} can be applied.

【0015】前述した通り、本発明に係る超電導コイル
装置は、超電導コイルの永久電流スイッチとして信頼性
が高くて動作時間の短い“金属系超電導体を動作材料と
した永久電流スイッチ”を用い、その際、超電導コイル
と永久電流スイッチの両者を接続する部分に熱伝導率の
低い酸化物高温超電導体製電流リ−ドを適用して両者間
の熱的絶縁を図ったものである。従って、超電導コイル
が“高温領域(金属系超電導体の臨界温度以上)で運転
する高温超電導体製のコイル”であっても、この超電導
コイルから永久電流スイッチへの侵入熱が極めて少なく
なり、永久電流スイッチの動作への悪影響を防ぐことが
できる。
As described above, the superconducting coil device according to the present invention uses the "permanent current switch using a metallic superconductor as an operating material" which is highly reliable and has a short operating time as the permanent current switch of the superconducting coil. At this time, a current lead made of an oxide high temperature superconductor having a low thermal conductivity is applied to a portion connecting both the superconducting coil and the permanent current switch to achieve thermal insulation between them. Therefore, even if the superconducting coil is "a coil made of a high-temperature superconductor that operates in a high temperature region (above the critical temperature of the metal-based superconductor), the heat that enters the persistent current switch from this superconducting coil is extremely small, It is possible to prevent an adverse effect on the operation of the current switch.

【0016】勿論、“金属系超電導体を動作材料とした
永久電流スイッチ”は高温超電導体製のコイルが機能す
る温度よりも低い“金属系超電導体の臨界温度”以下に
まで冷却しないと動作しないが、高温超電導体製コイル
系からの伝導熱は酸化物高温超電導体製電流リ−ドによ
って少なくできるので、永久電流スイッチを大型で高価
な設備を要することなく専用の小型冷凍機で冷却するだ
けで適正な動作温度にまで冷却することができる。小型
冷凍機としては構造が簡単なパルスチュ−ブ冷凍機の適
用も可能である。
Of course, the "permanent current switch using a metal superconductor as an operating material" does not operate unless it is cooled to a temperature below the "critical temperature of the metal superconductor" lower than the temperature at which the coil made of high temperature superconductor functions. However, the conduction heat from the coil system made of high temperature superconductor can be reduced by the current lead made of oxide high temperature superconductor, so the permanent current switch can be cooled with a dedicated small refrigerator without requiring large and expensive equipment. Can cool down to the proper operating temperature. As a small refrigerator, a pulse tube refrigerator having a simple structure can be applied.

【0017】従って、本発明に係る超電導コイル装置
は、高温超電導体製コイルを適用し金属系超電導体の臨
界温度を超える温度で使用する形態とした場合でも安定
した永久電流運転を適切に実施することができる。な
お、本発明に係る超電導コイル装置は、超電導コイルと
して金属系超電導体製コイルを適用し金属系超電導体の
臨界温度以下で使用する形態とした場合であっても、何
ら支障なく安定した永久電流運転を適切に実施できるも
のである。
Therefore, the superconducting coil device according to the present invention appropriately carries out stable permanent current operation even when a coil made of high-temperature superconductor is used and the superconducting coil device is used at a temperature exceeding the critical temperature of the metal-based superconductor. be able to. It should be noted that the superconducting coil device according to the present invention has a stable permanent current without any trouble even when a metal-based superconductor coil is used as the superconducting coil and used at a temperature below the critical temperature of the metal-based superconductor. The operation can be carried out appropriately.

【0018】さて、図1は、本発明に係る超電導コイル
装置の1例についての要部概要説明図であり、超電導コ
イル1に“酸化物高温超電導体から成る電流リ−ド”2
を介在させて“金属系超電導体を動作材料とした永久電
流スイッチ”3 を接続した超電導コイル装置を示してい
る。ここで、符号4は“金属系超電導体を動作材料とし
た永久電流スイッチ”3 をその動作温度(金属系超電導
体の臨界温度以下)にまで冷却するための小容量冷凍機
を示している。前記永久電流スイッチ3は、このような
冷却状態下において永久電流スイッチを構成するヒ−タ
線への非通電・通電により超電導コイル1と電源とのオ
ン・オフ動作を行って、超電導コイル1への電流の供給
・排除を実施したり、超電導コイル1に永久電流状態を
保持させたりする。
Now, FIG. 1 is a schematic explanatory view of an essential part of an example of a superconducting coil device according to the present invention. In the superconducting coil 1, "current lead composed of oxide high temperature superconductor" 2
The figure shows a superconducting coil device in which a "permanent current switch using a metal-based superconductor as an operating material" 3 is connected via an intervening wire. Here, reference numeral 4 indicates a small capacity refrigerator for cooling the "persistent current switch 3 using a metal-based superconductor as an operating material" to its operating temperature (below the critical temperature of the metal-based superconductor). Under such a cooling condition, the permanent current switch 3 turns on / off the superconducting coil 1 and the power source by de-energizing / energizing the heater wire forming the permanent current switch, and the superconducting coil 1 is connected to the superconducting coil 1. The current is supplied / excluded or the superconducting coil 1 is made to maintain a permanent current state.

【0019】この超電導コイル装置の超電導コイル1や
電流リ−ド2は、超電導コイル1が金属系超電導体製コ
イルである場合には当該金属系超電導体の臨界温度以下
に冷却された状態で運転されることは言うまでもない
が、超電導コイル1が高温超電導体製コイルである場合
には、金属系超電導体の臨界温度を超える温度であって
当該高温超電導体の臨界温度以下の温度に冷却された状
態で運転するのが冷却エネルギ−等の観点からして有利
である。そして、超電導コイル1を高温超電導体製コイ
ルとし、金属系超電導体の臨界温度を超える温度であっ
て当該高温超電導体の臨界温度以下の温度に冷却された
状態で運転する場合には、超電導コイル1の側から電流
リ−ド2を通して永久電流スイッチ3の側へ熱移動が生
じるが、電流リ−ド2は熱伝導率の低い酸化物高温超電
導体で構成されているので移動する熱は電流リ−ド2内
で先細り上の熱勾配を形勢して食い止められ、そのため
永久電流スイッチ3への侵入熱量は極めて小さい。従っ
て、永久電流スイッチ3を動作可能状態とするための冷
却には専用の小型冷凍機を設けるだけで事が足り、大掛
かりで高価な設備を要することがない。また、これによ
って、永久電流スイッチ部の冷却温度にとらわれること
なく超電導コイル部分の冷却温度を自由に選択すること
も可能となる。
When the superconducting coil 1 and the current lead 2 of this superconducting coil device are made of a metallic superconductor coil, the superconducting coil 1 and the current lead 2 are operated in a state of being cooled to a temperature below the critical temperature of the metallic superconductor. Needless to say, when the superconducting coil 1 is a coil made of high-temperature superconductor, it was cooled to a temperature higher than the critical temperature of the metal-based superconductor and lower than the critical temperature of the high-temperature superconductor. It is advantageous to operate in this state from the viewpoint of cooling energy. Then, when the superconducting coil 1 is a coil made of high-temperature superconductor and is operated in a state in which the temperature is higher than the critical temperature of the metal-based superconductor and is equal to or lower than the critical temperature of the high-temperature superconductor, the superconducting coil is Heat is transferred from the side 1 to the side of the permanent current switch 3 through the current lead 2. However, since the current lead 2 is composed of an oxide high temperature superconductor having a low thermal conductivity, the transferred heat is a current. A heat gradient on the taper is formed in the lead 2 to be stopped, so that the amount of heat entering the permanent current switch 3 is extremely small. Therefore, it suffices to provide a dedicated small refrigerator for cooling to make the permanent current switch 3 operable, and a large-scale and expensive facility is not required. Further, this makes it possible to freely select the cooling temperature of the superconducting coil portion regardless of the cooling temperature of the permanent current switch portion.

【0020】[0020]

【発明の効果】以上に説明した如く、この発明によれ
ば、高温超電導体製コイルあるいは金属系超電導体製コ
イルの何れを適用した場合であっても信頼性が高くて動
作時間の短い“金属系超電導体を動作材料とする永久電
流スイッチ”の使用を可能とした超電導コイル装置を提
供することができ、またコイル材として各種超電導体を
適用して性能を向上させた超電導コイル装置を開発する
道も開かれるなど、産業上極めて有用な効果がもたらさ
れる。
As described above, according to the present invention, "metal which has high reliability and short operating time regardless of whether the high temperature superconductor coil or the metal superconductor coil is applied. It is possible to provide a superconducting coil device that enables the use of a "permanent current switch" that uses a system superconductor as an operating material, and develops a superconducting coil device with improved performance by applying various superconductors as coil materials. It will have a very useful effect on industry, such as opening the road.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る超電導コイル装置の1例について
の要部概要説明図である。
FIG. 1 is a schematic explanatory view of a main part of an example of a superconducting coil device according to the present invention.

【符号の説明】[Explanation of symbols]

1 超電導コイル 2 酸化物高温超電導体から成る電流リ−ド 3 金属系超電導体を動作材料とした永久電流スイッチ 4 小容量冷凍機 1 Superconducting coil 2 Current lead composed of high temperature oxide superconductor 3 Persistent current switch using metal-based superconductor as operating material 4 small capacity refrigerator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルの永久電流スイッチを“金
属系超電導体を動作材料とした永久電流スイッチ”とす
ると共に、当該永久電流スイッチと超電導コイルとの間
に酸化物高温超電導体から成る電流リ−ドを介在させた
ことを特徴とする超電導コイル装置。
1. A permanent current switch for a superconducting coil is a "permanent current switch using a metal-based superconductor as an operating material", and a current resistor made of an oxide high temperature superconductor between the permanent current switch and the superconducting coil. -A superconducting coil device characterized by interposing a cord.
【請求項2】 超電導コイルが高温超電導体から成るも
のである、請求項1記載の超電導コイル装置。
2. The superconducting coil device according to claim 1, wherein the superconducting coil is made of a high temperature superconductor.
JP2001352648A 2001-11-19 2001-11-19 Superconductive coil device Pending JP2003151821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352648A JP2003151821A (en) 2001-11-19 2001-11-19 Superconductive coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352648A JP2003151821A (en) 2001-11-19 2001-11-19 Superconductive coil device

Publications (1)

Publication Number Publication Date
JP2003151821A true JP2003151821A (en) 2003-05-23

Family

ID=19164792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352648A Pending JP2003151821A (en) 2001-11-19 2001-11-19 Superconductive coil device

Country Status (1)

Country Link
JP (1) JP2003151821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332559A (en) * 2005-05-30 2006-12-07 Toshiba Corp Persistent current superconducting magnet and persistent current switch used therefor
CN110534285A (en) * 2018-05-23 2019-12-03 株式会社东芝 The method of operation and superconducting magnet apparatus of superconducting magnet apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332559A (en) * 2005-05-30 2006-12-07 Toshiba Corp Persistent current superconducting magnet and persistent current switch used therefor
JP4592498B2 (en) * 2005-05-30 2010-12-01 株式会社東芝 Permanent current superconducting magnet and permanent current switch used for this magnet
CN110534285A (en) * 2018-05-23 2019-12-03 株式会社东芝 The method of operation and superconducting magnet apparatus of superconducting magnet apparatus
EP3573080A3 (en) * 2018-05-23 2019-12-25 Kabushiki Kaisha Toshiba Control method for superconducting magnet apparatus and superconducting magnet apparatus
US11482358B2 (en) 2018-05-23 2022-10-25 Kabushiki Kaisha Toshiba Control method for superconducting magnet apparatus and superconducting magnet apparatus

Similar Documents

Publication Publication Date Title
Kakol et al. Superconductivity and antiferromagnetism in La2− xSrxNiO4
Yao et al. A Solid Nitrogen Cooled ${\hbox {MgB}} _ {2} $“Demonstration” Coil for MRI Applications
US20150340139A1 (en) Superconductive coil device and production method therefor
JPH0786025A (en) Permanent current switch and superconducting magnetic system
US5543768A (en) Composite of high-temperature superconductive bulk form with coil magnet
JP4612991B2 (en) Superconducting switch device
US5659278A (en) Superconducting magnet device, magnetizing device and method for superconductor
Sato et al. High field generation using silver-sheathed BSCCO conductor
Masuyama et al. NbTi split magnet directly cooled by cryocooler
JPH10275719A (en) Method for cooling superconductor
JP5162088B2 (en) Cooling method using nitrogen-oxygen mixed refrigerant
JP2003151821A (en) Superconductive coil device
WO2018211797A1 (en) Superconducting magnet
Kitaguchi et al. Advances in Bi-Based High-Tc superconducting tapes and wires
Kuriyama et al. Cryocooler directly cooled 6 T NbTi superconducting magnet system with 180 mmroom temperature bore
Oh et al. Fabrication of Bi-2223 HTS magnet with a superconducting switch
JPH0936444A (en) Cooling method for superconducting coil
JP3120557B2 (en) High magnetic field generator and permanent current switch
JP2515813B2 (en) Current lead for superconducting equipment
Oberly et al. Principles of application of high temperature superconductors to electromagnetic launch technology
Ohmatsu et al. Recent progress of HTS magnet using Bi-2223 Ag-sheathed wire
JPH09298320A (en) Perpetual current switch for oxide superconductive coil and switching device using it as well as switching method
Jian-xun High T c superconducting materials for strong current applications: Approach at the first stage
JPH1074621A (en) Magnetizing method for superconductor and superconducting magnetic device
JP3706900B2 (en) How to use bitter type low temperature resistance magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610