JP2006332559A - Persistent current superconducting magnet and persistent current switch used therefor - Google Patents

Persistent current superconducting magnet and persistent current switch used therefor Download PDF

Info

Publication number
JP2006332559A
JP2006332559A JP2005157926A JP2005157926A JP2006332559A JP 2006332559 A JP2006332559 A JP 2006332559A JP 2005157926 A JP2005157926 A JP 2005157926A JP 2005157926 A JP2005157926 A JP 2005157926A JP 2006332559 A JP2006332559 A JP 2006332559A
Authority
JP
Japan
Prior art keywords
permanent current
temperature
temperature superconducting
superconducting
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005157926A
Other languages
Japanese (ja)
Other versions
JP4592498B2 (en
Inventor
Taizo Tosaka
泰造 戸坂
Michitaka Ono
通隆 小野
Toru Kuriyama
透 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005157926A priority Critical patent/JP4592498B2/en
Publication of JP2006332559A publication Critical patent/JP2006332559A/en
Application granted granted Critical
Publication of JP4592498B2 publication Critical patent/JP4592498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a persistent current superconducting magnet and a persistent current switch used for this magnet by which quench of a high-temperature superconducting coil can be reliably prevented, the permanent current can be attenuated without quenching the high-temperature superconducting coil, and the high-temperature superconducting coil can be protected accordingly. <P>SOLUTION: The persistent current superconducting magnet 10 has the high-temperature superconducting coil 13 which is housed in a vacuum container 11, the persistent current switch 14 which is thermally connected with the high-temperature superconducting coil 13, a heat insulation means 12 which insulates the high-temperature superconducting coil 13 and the persistent current switch 14 from the external environment, a cooling means 18 which cools the high-temperature superconducting coil 13 and the persistent current switch 14, and a current carrying means 23 for exciting the high-temperature superconducting coil 13 through a current lead 22. The quenching temperature of the persistent current switch 14 is set lower than the quenching temperature of the high-temperature superconducting coil 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、超電導機器に用いられる永久電流超電導マグネットおよびこのマグネットに使用される永久電流スイッチに関する。   The present invention relates to a permanent current superconducting magnet used in a superconducting device and a permanent current switch used in the magnet.

従来、この種の永久電流超電導マグネットおよびこのマグネットに使用される永久電流スイッチには、特開2003−69093号公報(特許文献1)および特開2003−142744号公報(特許文献2)に開示されたものがある。   Conventionally, this type of permanent current superconducting magnet and the permanent current switch used for this magnet are disclosed in Japanese Patent Laid-Open No. 2003-69093 (Patent Document 1) and Japanese Patent Laid-Open No. 2003-142744 (Patent Document 2). There is something.

従来の超電導機器に用いられる永久電流超電導マグネットは、真空容器内に輻射シールドを介して高温超電導コイルと永久電流スイッチとを収容し、この高温超電導コイルと永久電流スイッチとを短絡させる高温超電導線で接続し、永久電流回路を構成している。   A permanent current superconducting magnet used in a conventional superconducting device is a high temperature superconducting wire that houses a high temperature superconducting coil and a permanent current switch in a vacuum vessel via a radiation shield, and short-circuits the high temperature superconducting coil and the permanent current switch. Connected to form a permanent current circuit.

高温超電導コイルと永久電流スイッチとは真空容器に設けられた冷凍機によりコイル伝熱板とスイッチ伝熱板を介して直接的に冷却させる一方、高温超電導コイルは励磁電源により電流リードを介して励磁されるようになっている。   The high temperature superconducting coil and the permanent current switch are cooled directly via the coil heat transfer plate and the switch heat transfer plate by a refrigerator provided in the vacuum vessel, while the high temperature superconducting coil is excited via the current lead by the excitation power source. It has come to be.

従来の永久電流超電導マグネットは、励磁電源で高温超電導コイルを励磁させると、永久電流が高温超電導コイルと永久電流スイッチとからなる永久電流回路を循環するように流れ、この永久電流により超電導マグネットはマグネット機能を連続的に発揮、維持できるようになっている。
特開2003−69093号公報 特開2003−142744号公報
In a conventional permanent current superconducting magnet, when a high-temperature superconducting coil is excited by an excitation power source, the permanent current flows through a permanent current circuit consisting of a high-temperature superconducting coil and a permanent current switch. Function can be continuously demonstrated and maintained.
JP 2003-69093 A JP 2003-142744 A

従来の永久電流超電導マグネットでは、永久電流が維持されている状態で冷凍機の故障や機能劣化、停電等により高温超電導コイルの冷却手段に不具合が発生した場合や、何らかの原因で真空容器の外部から侵入する熱が増大した場合、高温超電導コイルのコイル温度が上昇していき、究極的にクエンチに至る場合が生じる。   In the conventional permanent current superconducting magnet, when the permanent current is maintained, the cooling means of the high temperature superconducting coil has failed due to failure of the refrigerator, functional deterioration, power failure, etc., or for some reason from the outside of the vacuum vessel When the invading heat increases, the coil temperature of the high-temperature superconducting coil rises and may eventually be quenched.

高温超電導コイルは多数の高温(酸化物)超電導線をトーラス状あるいはドーナツ状に巻回して構成した非常に高価なものである。高温超電導コイルがクエンチするとコイルの高温超電導線に抵抗部が発生し、この抵抗部で高温超電導コイルのコイルの蓄積エネルギが熱エネルギに変換されるため永久電流は減衰していく。   The high-temperature superconducting coil is a very expensive coil constructed by winding a large number of high-temperature (oxide) superconducting wires in a torus shape or a donut shape. When the high-temperature superconducting coil is quenched, a resistance portion is generated in the high-temperature superconducting wire of the coil, and the accumulated energy of the coil of the high-temperature superconducting coil is converted into thermal energy by this resistance portion, so that the permanent current is attenuated.

高温超電導コイルの抵抗部における発熱は、熱歪みを生じさせて高温超電導線の性能を低下させてしまう虞があり、最悪の場合には高温超電導コイルのクエンチにより、高温超電導線が焼損に至る場合もある。   Heat generated in the resistance part of the high-temperature superconducting coil may cause thermal distortion and reduce the performance of the high-temperature superconducting wire. In the worst case, the quenching of the high-temperature superconducting coil causes the high-temperature superconducting wire to burn out. There is also.

高温超電導コイルは、低温超電導コイルと比較して運転温度が20K〜40Kと高いために比熱が大きく、クエンチ温度が伝播しにくい。高温超電導コイルのクエンチ時にクエンチ温度の伝播しにくさから、発生した抵抗部が拡大せず、局所的に発熱する。このため、結果として高温超電導コイルの蓄積エネルギを小さな領域の熱容量で受け持つことになり、熱歪みによる性能低下や焼損が起こり易いという問題があった。   The high temperature superconducting coil has an operating temperature as high as 20K to 40K as compared with the low temperature superconducting coil, so that the specific heat is large and the quench temperature is difficult to propagate. Since the quench temperature is difficult to propagate at the time of quenching the high-temperature superconducting coil, the generated resistance portion does not expand and generates heat locally. For this reason, as a result, the stored energy of the high-temperature superconducting coil is handled by a heat capacity in a small region, and there is a problem that performance degradation and burnout easily occur due to thermal distortion.

また、従来の永久電流超電導マグネットでは、永久電流スイッチの内部構造が詳しく述べられているが、高温超電導コイルにクエンチが発生する虞があったり、またクエンチが発生した場合の対策についての配慮は一切存在しない。   In addition, in the conventional permanent current superconducting magnet, the internal structure of the permanent current switch is described in detail, but there is a possibility that quenching may occur in the high temperature superconducting coil, and no consideration is given to countermeasures when quenching occurs not exist.

本発明は上述した事情を考慮してなされたもので、高温超電導コイルの温度が上昇しても、高温超電導コイルのクエンチを未然にかつ確実に防止し、高温超電導コイルをクエンチさせずに永久電流を減衰させ、高温超電導コイルの保護を図ることができる永久電流超電導マグネットおよびこのマグネットに使用される永久電流スイッチを提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances. Even if the temperature of the high-temperature superconducting coil rises, the high-temperature superconducting coil can be prevented from quenching without fail, and the permanent current can be obtained without quenching the high-temperature superconducting coil. An object of the present invention is to provide a permanent current superconducting magnet capable of attenuating the high temperature superconducting coil and protecting the high temperature superconducting coil, and a permanent current switch used for the magnet.

本発明の他の目的は、永久電流スイッチのクエンチ温度を高温超電導コイルのクエンチ温度より低く調節設定し、高温超電導コイルのクエンチを未然にかつ確実に防止し、高温超電導コイルの破損や焼損を確実に防止した永久電流超電導マグネットおよびこのマグネットに使用される永久電流スイッチを提供するにある。   Another object of the present invention is to adjust the quenching temperature of the permanent current switch to be lower than the quenching temperature of the high-temperature superconducting coil to prevent the quenching of the high-temperature superconducting coil in advance and to ensure that the high-temperature superconducting coil is not damaged or burned out. It is an object of the present invention to provide a permanent current superconducting magnet and a permanent current switch used for the magnet.

本発明に係る永久電流超電導マグネットは、上述した課題を解決するために、請求項1に記載したように、真空容器内に収納される高温超電導コイルと、この高温超電導コイルに熱的に接続された永久電流スイッチと、前記高温超電導コイルおよび永久電流スイッチを外部環境から断熱する断熱手段と、前記高温超電導コイルおよび永久電流スイッチを冷却する冷却手段と、電流リードを介して前記高温超電導コイルを励磁する通電手段とを有し、前記永久電流スイッチのクエンチ温度を高温超電導コイルのクエンチ温度より低く設定したものである。   In order to solve the above-described problem, a permanent current superconducting magnet according to the present invention is thermally connected to a high-temperature superconducting coil housed in a vacuum vessel and the high-temperature superconducting coil. A permanent current switch; heat insulating means for insulating the high temperature superconducting coil and the permanent current switch from an external environment; cooling means for cooling the high temperature superconducting coil and the permanent current switch; and exciting the high temperature superconducting coil via a current lead. And a quench temperature of the permanent current switch is set lower than a quench temperature of the high temperature superconducting coil.

また、本発明に係る永久電流超電導スイッチは、上述した課題を解決するために、請求項8に記載したように、金属板あるいは絶縁物の基板上に帯状の高温超電導薄膜を形成して超電導導体を構成し、この超電導導体は前記高温超電導薄膜の導体幅を調節設定自在とし、クエンチ温度を調節自在としたものである。   Further, in order to solve the above-mentioned problem, the permanent current superconducting switch according to the present invention is a superconducting conductor as described in claim 8 in which a band-like high-temperature superconducting thin film is formed on a metal plate or an insulating substrate. In this superconducting conductor, the conductor width of the high-temperature superconducting thin film can be adjusted and set, and the quench temperature can be adjusted.

本発明に係る永久電流超電導マグネットは、永久電流スイッチのクエンチ温度を高温超電導マグネットのクエンチ温度より低く調節設定することで、高温超電導コイルをクエンチさせることなく永久電流を減衰させることができ、高温超電導コイルの保護を図ることができる。   The permanent current superconducting magnet according to the present invention can attenuate the permanent current without quenching the high temperature superconducting coil by adjusting the quench temperature of the permanent current switch to be lower than the quench temperature of the high temperature superconducting magnet. The coil can be protected.

本発明に係る永久電流超電導マグネットおよびこのマグネットに用いられる永久電流スイッチの実施の形態について添付図面を参照して説明する。   Embodiments of a permanent current superconducting magnet according to the present invention and a permanent current switch used in the magnet will be described with reference to the accompanying drawings.

図1はリニアモータ等の超電導機器に用いられる本発明の永久電流超電導マグネットの第1実施形態を示す概略的な全体構成図を示す。   FIG. 1 is a schematic overall configuration diagram showing a first embodiment of a permanent current superconducting magnet of the present invention used in a superconducting device such as a linear motor.

永久電流超電導マグネット10は、ボックス状の真空容器11内にAl,CuあるいはC−FRP(炭素繊維強化プラスチック)の輻射シールド12が外部環境から断熱すね断熱手段として収容され、この輻射シールド12内にトーラス状あるいはドーナツ状の高温超電導コイル13と永久電流スイッチ14とが収容され、外部環境から断熱される。高温超電導コイル13は酸化物超電導体で構成され、真空容器11内に1個または複数個、例えば4個収容される。この高温超電導コイル13は、永久電流スイッチ14と高温超電導線15で接続され、永久電流回路16を真空容器11内で構成している。   In the permanent current superconducting magnet 10, a radiation shield 12 of Al, Cu or C-FRP (carbon fiber reinforced plastic) is housed in a box-shaped vacuum vessel 11 as a heat insulation means for heat insulation from the external environment. A torus-shaped or donut-shaped high-temperature superconducting coil 13 and a permanent current switch 14 are accommodated and insulated from the external environment. The high-temperature superconducting coil 13 is made of an oxide superconductor, and is accommodated in the vacuum vessel 11 by one or plural, for example, four. The high-temperature superconducting coil 13 is connected to a permanent current switch 14 and a high-temperature superconducting wire 15, and a permanent current circuit 16 is configured in the vacuum vessel 11.

また、高温超電導コイル13を収容した真空容器11には冷凍機18が高温超電導コイル13の冷却手段として設けられ、この冷凍機18の運転により可撓性伝熱板等からなるコイル伝熱手段19を介して高温超電導コイル13を10K〜77K程度、好ましくは20K〜40Kに冷却される。高温超電導コイル13はスイッチ伝熱手段20を介して永久電流スイッチ14に熱的に接続されており、高温超電導コイル13と永久電流スイッチ14とが略同じ冷却温度に冷却される。   In addition, a refrigerator 18 is provided as a cooling means for the high-temperature superconducting coil 13 in the vacuum vessel 11 containing the high-temperature superconducting coil 13, and a coil heat transfer means 19 comprising a flexible heat transfer plate or the like by operation of the refrigerator 18. The high temperature superconducting coil 13 is cooled to about 10K to 77K, preferably 20K to 40K. The high temperature superconducting coil 13 is thermally connected to the permanent current switch 14 via the switch heat transfer means 20, and the high temperature superconducting coil 13 and the permanent current switch 14 are cooled to substantially the same cooling temperature.

このように、高温超電導コイル13および永久電流スイッチ14は伝熱手段19,20を介して冷凍機18にて冷却される。スイッチ伝熱手段20は、永久電流スイッチ14を加熱してオフにする場合等のように永久電流スイッチ14での発熱が大きい場合以外は、永久電流スイッチ14は高温超電導コイル13と略同じ温度になるように設計される。   Thus, the high temperature superconducting coil 13 and the permanent current switch 14 are cooled by the refrigerator 18 through the heat transfer means 19 and 20. The switch heat transfer means 20 keeps the permanent current switch 14 at substantially the same temperature as the high temperature superconducting coil 13 except when the permanent current switch 14 generates a large amount of heat, such as when the permanent current switch 14 is heated to turn off. Designed to be

さらに、永久電流回路16には永久電流スイッチ14と並列に、高温超電導コイル13励磁用の電流リード22が設けられ、このコイル励磁用電流リード22に通電手段としての励磁電源23が設けられる。励磁電源23は真空容器11の外部、例えば室温部に設置される。この励磁電源23は電流リード22を介して高温超電導コイル13と電気的に接続され、高温超電導コイル13の励磁用として機能する。励磁用電源23は、永久電流スイッチ14をオフにすることで高温超電導コイル13を励磁している。   Further, the permanent current circuit 16 is provided with a current lead 22 for exciting the high-temperature superconducting coil 13 in parallel with the permanent current switch 14, and the coil exciting current lead 22 is provided with an exciting power source 23 as an energizing means. The excitation power source 23 is installed outside the vacuum vessel 11, for example, at a room temperature. The excitation power source 23 is electrically connected to the high temperature superconducting coil 13 via the current lead 22 and functions as an excitation for the high temperature superconducting coil 13. The excitation power source 23 excites the high-temperature superconducting coil 13 by turning off the permanent current switch 14.

また、永久電流スイッチ14には、図2に示すような、永久電流スイッチ用超電導導体25が用いられる。この超電導導体25は、金属製あるいはサファイア等絶縁物の基板26上に厚さ数μm以下、例えば1μmの高温超電導薄膜27を帯状に形成し、両端部に設けられた電極28,29を介して高温超電導線15に電気的に接続される。永久電流スイッチ用超電導導体25は両端の電極28,29により高温超電導コイル13と高温超電導線15を介して接続される。   Further, a permanent current switch superconducting conductor 25 as shown in FIG. 2 is used for the permanent current switch 14. The superconducting conductor 25 is formed by forming a high-temperature superconducting thin film 27 having a thickness of several μm or less, for example, 1 μm, on a metal or sapphire insulating substrate 26 in a strip shape, and via electrodes 28 and 29 provided at both ends. It is electrically connected to the high temperature superconducting wire 15. The superconducting conductor 25 for the permanent current switch is connected to the high-temperature superconducting coil 13 via the high-temperature superconducting wire 15 by the electrodes 28 and 29 at both ends.

高温超電導薄膜27を構成する導体の幅Wは、パターニングを切断により容易に幅調整することが可能であり、この導体幅Wの調整により永久電流スイッチ14がクエンチする温度を自由に設計することができる。永久電流スイッチ14のクエンチ温度は、導体幅Wを小さくすることで低くなり、かつ高温超電導コイル13のクエンチ温度よりも低い温度で確実にクエンチするように設計される。   The width W of the conductor constituting the high-temperature superconducting thin film 27 can be easily adjusted by cutting the patterning. By adjusting the conductor width W, the temperature at which the permanent current switch 14 quenches can be freely designed. it can. The quench temperature of the permanent current switch 14 is designed to be lowered by reducing the conductor width W, and to reliably quench at a temperature lower than the quench temperature of the high-temperature superconducting coil 13.

この永久電流超電導マグネット10では、永久電流スイッチ14に、金属乃至は絶縁物の基板26上に高温超電導薄膜27を帯状に形成した超電導導体25を用いており、高温超電導薄膜27の導体幅Wを変えることにより、永久電流スイッチ14のクエンチ温度の調節設定を容易にすることができる。   In this permanent current superconducting magnet 10, a superconducting conductor 25 in which a high temperature superconducting thin film 27 is formed in a strip shape on a metal or insulator substrate 26 is used for the permanent current switch 14, and the conductor width W of the high temperature superconducting thin film 27 is set. By changing the setting, the adjustment setting of the quench temperature of the permanent current switch 14 can be facilitated.

また、永久電流スイッチ14がクエンチしたとき、高温超電導薄膜27の一部に発熱が集中して焼損しないように高温超電導薄膜27に金属保護層30を図3に示すように設けてもよい。図3は金属保護層30を設けた永久電流スイッチ用超電導導体25Aの断面図を示すものである。金属保護層30にはAu,Agなどの良電導体が用いられる。この永久電流スイッチ用超電導導体25Aは永久電流スイッチ14の変形例を示すものである。   In addition, when the permanent current switch 14 is quenched, a metal protective layer 30 may be provided on the high temperature superconducting thin film 27 as shown in FIG. FIG. 3 shows a cross-sectional view of a permanent current switch superconducting conductor 25A provided with a metal protective layer 30. A good conductor such as Au or Ag is used for the metal protective layer 30. The permanent current switch superconducting conductor 25A is a modification of the permanent current switch 14.

永久電流スイッチ14に用いられる超電導導体25(25A)として金属ないし絶縁物の基板26上に帯状の高温超電導薄膜27を形成した超電導導体を用いるのでクエンチする温度の設定が容易となり、クエンチ温度を高温超電導コイル13より低く設定した永久電流スイッチ14を提供できる。   Since a superconducting conductor in which a belt-like high-temperature superconducting thin film 27 is formed on a metal or insulator substrate 26 is used as the superconducting conductor 25 (25A) used for the permanent current switch 14, the quenching temperature can be easily set, and the quenching temperature is increased. The permanent current switch 14 set lower than the superconducting coil 13 can be provided.

この永久電流超電導マグネット10では帯状の高温超電導薄膜27上に金属保護層28を形成した永久電流スイッチ14を用いている。この永久電流スイッチ14がクエンチした時に、高温超電導薄膜27に流れていた電流が、金属保護層30に分流するため、永久電流スイッチ14が焼損しにくくなる。   This permanent current superconducting magnet 10 uses a permanent current switch 14 in which a metal protective layer 28 is formed on a belt-like high-temperature superconducting thin film 27. When the permanent current switch 14 is quenched, the current flowing in the high-temperature superconducting thin film 27 is shunted to the metal protective layer 30, so that the permanent current switch 14 is difficult to burn out.

次に、永久電流超電導マグネット10の作用を説明する。   Next, the operation of the permanent current superconducting magnet 10 will be described.

この永久電流超電導マグネット10は、永久電流スイッチ14をオフにすることにより、励磁電源23が電流リード22を介して高温超電導コイル13に接続され、この高温超電導コイル13を励磁させる。このとき、高温超電導コイル13および永久電流スイッチ14は冷凍機18の運転により伝熱手段19を介して、例えば10K〜77K、好ましくは20K〜40K程度に冷却されている。   In the permanent current superconducting magnet 10, the excitation power source 23 is connected to the high temperature superconducting coil 13 through the current lead 22 by turning off the permanent current switch 14, and the high temperature superconducting coil 13 is excited. At this time, the high temperature superconducting coil 13 and the permanent current switch 14 are cooled to, for example, about 10K to 77K, preferably about 20K to 40K through the heat transfer means 19 by the operation of the refrigerator 18.

その後、永久電流スイッチ14をオンにすることで、永久電流回路16は永久電流モード運転に入る。この永久電流モード運転により高温超電導コイル13は励磁状態が継続され、超電導マグネットとしてマグネット機能が維持される。   Thereafter, by turning on the permanent current switch 14, the permanent current circuit 16 enters a permanent current mode operation. By this permanent current mode operation, the high temperature superconducting coil 13 continues to be excited, and the magnet function is maintained as a superconducting magnet.

永久電流モード運転中に、冷凍機18の故障等の何らかの原因で高温超電導コイル13の冷却が不良になったとき、高温超電導コイル13の温度が上昇してクエンチする虞があり、非常に高価な高温超電導コイル13の保護が充分に図れない可能性が生じる。   When the cooling of the high-temperature superconducting coil 13 becomes defective due to some cause such as failure of the refrigerator 18 during the permanent current mode operation, the temperature of the high-temperature superconducting coil 13 may rise and quench, which is very expensive. There is a possibility that the high-temperature superconducting coil 13 cannot be sufficiently protected.

永久電流超電導マグネット10に高温超電導コイル13が使用される場合、クエンチ伝播が非常に遅いため、高温超電導コイル13の蓄積エネルギがクエンチ発生場所近傍の局所的部位で消費され、終局的にはコイル焼損が生じてしまう可能性がある。   When the high-temperature superconducting coil 13 is used for the permanent current superconducting magnet 10, the quench propagation is very slow. Therefore, the energy stored in the high-temperature superconducting coil 13 is consumed at a local site in the vicinity of the quenching place, and eventually the coil burns out. May occur.

第1実施形態の永久電力超電導マグネット10では、永久電流スイッチ14に使用される永久電流スイッチ用超電導薄膜27の導体幅Wを幅調整してカットすることで、永久電流スイッチ14のクエンチ温度を調節設定できる。永久電流スイッチ14は高温超電導コイル13がクエンチする温度より数度ないし10数度低い温度、例えば10K低い温度で確実にクエンチするようにクエンチ温度が設定される。例えば、高温超電導コイル13のクエンチ温度が40K(60K)である場合、永久電流スイッチ14が30K(50K)でクエンチするように設計される。   In the permanent power superconducting magnet 10 of the first embodiment, the quenching temperature of the permanent current switch 14 is adjusted by cutting the conductor width W of the superconducting thin film 27 for the permanent current switch used for the permanent current switch 14 by adjusting the width. Can be set. The permanent current switch 14 is set to a quench temperature so as to be surely quenched at a temperature several degrees to several ten degrees lower than the temperature at which the high-temperature superconducting coil 13 quenches, for example, a temperature 10 K lower. For example, when the quench temperature of the high-temperature superconducting coil 13 is 40K (60K), the permanent current switch 14 is designed to quench at 30K (50K).

この永久電流超電導マグネット10は、高温超電導コイル13がクエンチする温度T1よりも、永久電流スイッチ14がクエンチする温度T2の方が低く(T1>T2)なるように設計されている。ただし、クエンチ温度T1、T2は実際、永久電流超電導マグネット10の運転状況においてクエンチする温度である。高温超電導コイル13や永久電流スイッチ14の冷却状態によっては、クエンチ温度T1、T2は永久電流値が1μV/cmで定義される臨界電流値となる温度とは限らない。   The permanent current superconducting magnet 10 is designed such that the temperature T2 at which the permanent current switch 14 quenches is lower (T1> T2) than the temperature T1 at which the high temperature superconducting coil 13 quenches. However, the quench temperatures T <b> 1 and T <b> 2 are actually temperatures for quenching in the operating state of the permanent current superconducting magnet 10. Depending on the cooling state of the high-temperature superconducting coil 13 and the permanent current switch 14, the quench temperatures T1 and T2 are not necessarily temperatures at which the permanent current value becomes a critical current value defined by 1 μV / cm.

本実施形態の永久電流超電導マグネット10においては、高温超電導コイル13よりも低い温度で永久電流スイッチ14がクエンチするので、高温超電導コイル13の蓄積エネルギは、永久電流スイッチ伝熱手段20を介して、高温超電導コイル13全体を加熱するので、高温超電導コイル13をクエンチさせずに永久電流を減衰させられる永久電流マグネット10を提供することができる。   In the permanent current superconducting magnet 10 of the present embodiment, since the permanent current switch 14 quenches at a temperature lower than that of the high temperature superconducting coil 13, the accumulated energy of the high temperature superconducting coil 13 passes through the permanent current switch heat transfer means 20. Since the entire high-temperature superconducting coil 13 is heated, the permanent current magnet 10 capable of attenuating the permanent current without quenching the high-temperature superconducting coil 13 can be provided.

この永久電流超電導マグネット10によれば、永久電流スイッチ14が、高温超電導コイル13よりも低い温度でクエンチするように設計されているため、高温超電導コイル13の温度が上昇した場合においても、高温超電導コイル13がクエンチしない永久電流超電導マグネット10を提供することができる。   According to the permanent current superconducting magnet 10, the permanent current switch 14 is designed to quench at a temperature lower than that of the high temperature superconducting coil 13. Therefore, even when the temperature of the high temperature superconducting coil 13 rises, the high temperature superconducting magnet 10. The permanent current superconducting magnet 10 in which the coil 13 is not quenched can be provided.

また、永久電流超電導マグネット10は、真空容器11外から熱が侵入したり、冷却手段である冷凍機18に不具合が発生するなどの原因により、高温超電導コイル13の温度が上昇したとしても、永久電流スイッチ14が先にクエンチするため、高温超電導コイル13をクエンチさせずに、永久電流を減衰させることができる。   Further, the permanent current superconducting magnet 10 is permanent even if the temperature of the high-temperature superconducting coil 13 rises due to heat entering from the outside of the vacuum vessel 11 or a malfunction of the refrigerator 18 as a cooling means. Since the current switch 14 is quenched first, the permanent current can be attenuated without quenching the high temperature superconducting coil 13.

図4は、本発明に係る永久電流超電導マグネットの第2実施形態を示す概略的な全体構成図である。   FIG. 4 is a schematic overall configuration diagram showing a second embodiment of the permanent current superconducting magnet according to the present invention.

この実施形態を説明するに当り、図1に示された永久電流超電導マグネット10と同じ構成には同一符号を付して説明を省略する。図4に示された永久電流超電導マグネット10Aは、図1に示された永久電流超電導マグネット10に真空容器11外部の室温部で保護抵抗33を設け、この保護抵抗33を電流リード22に接続し、高温超電導コイル13のコイル保護回路31を構成したものである。この永久電流超電導マグネット10Aにおいても、第1実施形態で示した超電導マグネット10と同等の作用・効果を奏する。   In the description of this embodiment, the same components as those of the permanent current superconducting magnet 10 shown in FIG. The permanent current superconducting magnet 10A shown in FIG. 4 is provided with a protective resistor 33 at the room temperature outside the vacuum vessel 11 in the permanent current superconducting magnet 10 shown in FIG. 1, and this protective resistor 33 is connected to the current lead 22. The coil protection circuit 31 of the high temperature superconducting coil 13 is configured. This permanent current superconducting magnet 10A also has the same operation and effect as the superconducting magnet 10 shown in the first embodiment.

室温部に設置された保護抵抗33を永久電流スイッチ14と並列に接続すると、永久電流モード運転中に永久電流スイッチ14がクエンチした場合に、永久電流スイッチ14に流れていた電流が保護抵抗33に分流し、高温超電導コイル13の蓄積エネルギの大部分を保護抵抗33で消費させることができる。このため、永久電流スイッチ14に対する熱負荷を低減させることができる。保護抵抗33の設置場所は、室温部であれば、真空容器11の外でも内でもよい。   When the protective resistor 33 installed in the room temperature portion is connected in parallel with the permanent current switch 14, when the permanent current switch 14 is quenched during the permanent current mode operation, the current flowing through the permanent current switch 14 is supplied to the protective resistor 33. The protective resistor 33 can consume most of the energy stored in the high-temperature superconducting coil 13. For this reason, the thermal load with respect to the permanent current switch 14 can be reduced. The protective resistor 33 may be installed outside or inside the vacuum vessel 11 as long as it is at room temperature.

また、永久電流スイッチ14が焼損して断線した場合でも、永久電流回路16がオープンにならないという利点もある。ただし、保護抵抗33を永久電流スイッチ14と並列に接続すると、励磁時や消磁時において励磁電源23から流れる電流が、励磁電圧すなわち励磁速度に応じて保護抵抗33のコイル保護回路側に分流し、保護抵抗33が発熱する。保護抵抗33を室温側に設置する理由は、保護抵抗33の発熱の悪影響が高温超電導コイル13に及ばないようにするためである。   In addition, even if the permanent current switch 14 is burned out and disconnected, there is an advantage that the permanent current circuit 16 is not opened. However, if the protection resistor 33 is connected in parallel with the permanent current switch 14, the current flowing from the excitation power source 23 during excitation or demagnetization is shunted to the coil protection circuit side of the protection resistor 33 according to the excitation voltage, that is, the excitation speed. The protective resistor 33 generates heat. The reason for installing the protective resistor 33 on the room temperature side is to prevent the adverse effect of the heat generated by the protective resistor 33 from reaching the high temperature superconducting coil 13.

この永久電流超電導マグネット10Aでは、永久電流スイッチ14に並列に保護抵抗33を接続している。永久に電流スイッチ14がクエンチした際には、保護抵抗33に電流が分流するため、永久電流スイッチ14での発熱を低減させることができる。   In the permanent current superconducting magnet 10 </ b> A, a protective resistor 33 is connected in parallel to the permanent current switch 14. When the current switch 14 is permanently quenched, the current is shunted to the protective resistor 33, so that heat generation in the permanent current switch 14 can be reduced.

図5は、本発明に係る永久電流超電導マグネットの第3実施形態を示す概略的な全体構成図である。   FIG. 5 is a schematic overall configuration diagram showing a third embodiment of the permanent current superconducting magnet according to the present invention.

この実施形態に示された永久電流超電導マグネット10Bは、保護回路35を永久電流回路15に接続(並設)したものであり、他の構成および作用は第1実施形態に示された永久電流超電導マグネット10と異ならないので、同じ構成には同一符号を付して説明を省略する。   The permanent current superconducting magnet 10B shown in this embodiment has a protection circuit 35 connected to the permanent current circuit 15 (in parallel), and the other configuration and operation are the permanent current superconducting shown in the first embodiment. Since it is not different from the magnet 10, the same components are denoted by the same reference numerals and description thereof is omitted.

図5に示された永久電流超電導マグネット10Bは、保護抵抗33と保護リード34を備えたコイル保護回路35を備え、この保護回路35の保護リード34を高温超電導コイル13の高温超電導線15に接続したものである。   The permanent current superconducting magnet 10B shown in FIG. 5 includes a coil protection circuit 35 including a protection resistor 33 and a protection lead 34, and the protection lead 34 of the protection circuit 35 is connected to the high temperature superconducting wire 15 of the high temperature superconducting coil 13. It is a thing.

永久電流超電導マグネット10Bでは、永久電流モード運転を達成した後、輻射シールド12や、高温超電導コイル13への熱負荷を低減させるため、電流リード22を取り外すことがある。この場合、保護抵抗33が接続できなくなるので、永久電力回路16に接続可能なコイル保護回路35を設け、図5に示すように、高温超電導コイル13と保護抵抗33を接続するための保護リード34を設置する。保護リード34は、永久電流スイッチ14がクエンチしても、永久電流を保護抵抗33に転流させることができるが、コイルの蓄積エネルギを熱として消費する間以外は、あまり電流が流れないので、通常の電流リード22より浸入熱を小さくなるように設計することが可能である。   In the permanent current superconducting magnet 10B, the current lead 22 may be removed in order to reduce the thermal load on the radiation shield 12 or the high temperature superconducting coil 13 after achieving the permanent current mode operation. In this case, since the protective resistor 33 cannot be connected, a coil protective circuit 35 that can be connected to the permanent power circuit 16 is provided, and a protective lead 34 for connecting the high-temperature superconducting coil 13 and the protective resistor 33 as shown in FIG. Is installed. Even if the permanent current switch 14 is quenched, the protective lead 34 can commutate the permanent current to the protective resistor 33. However, the current does not flow much except when the stored energy of the coil is consumed as heat. It is possible to design the infiltration heat to be smaller than that of the normal current lead 22.

第3実施形態に示された永久電流超電導マグネット10Bにおいても、第1実施形態で示された超電導マグネット10と同等の作用効果を奏する他、永久電流モード運転達成後に、電流リード22を取り外し、輻射シールド12や高温超電導コイル13への熱負荷を低減させることができる。   In the permanent current superconducting magnet 10B shown in the third embodiment, the same effect as that of the superconducting magnet 10 shown in the first embodiment is obtained, and after the permanent current mode operation is achieved, the current lead 22 is removed and radiation is performed. The heat load on the shield 12 and the high-temperature superconducting coil 13 can be reduced.

この永久電流超電導マグネット10Bでは、高温超電導コイル13を励磁するための電流リード22とは別に、高温超電導コイル13と保護抵抗33を接続するための保護リード34を付設したコイル保護回路35を設けている。浸入熱を低減するために、励磁用電流リード22を取り外したとしても、保護リード34を介して保護抵抗33を常時接続しておくことができ、第2実施形態と同様の作用効果を奏する。   In this permanent current superconducting magnet 10B, in addition to the current lead 22 for exciting the high temperature superconducting coil 13, a coil protection circuit 35 provided with a protective lead 34 for connecting the high temperature superconducting coil 13 and the protective resistor 33 is provided. Yes. Even if the exciting current lead 22 is removed in order to reduce the intrusion heat, the protective resistor 33 can always be connected via the protective lead 34, and the same effect as the second embodiment can be obtained.

図6は、本発明に係る永久電流超電導マグネットの第4実施形態を概略的に示す全体構成図である。   FIG. 6 is an overall configuration diagram schematically showing a fourth embodiment of the permanent current superconducting magnet according to the present invention.

この永久電流超電導マグネット10Cは、保護抵抗33とON−OFFスイッチ36を直列接続したコイル保護回路37を永久電流回路15に接続(並設)して備えたものであり、他の構成および作用は、第1実施形態に示された永久電流超電導マグネット10と異ならないので同じ構成には同一符号を付して説明を省略する。   This permanent current superconducting magnet 10C is provided with a coil protection circuit 37 in which a protection resistor 33 and an ON-OFF switch 36 are connected in series with each other (connected in parallel) to the permanent current circuit 15. Other configurations and functions are as follows. Since it is not different from the permanent current superconducting magnet 10 shown in the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

図6に示された永久電流超電導マグネット10Cは、永久電流回路15に並設されるコイル保護回路37に保護抵抗33とON−OFFスイッチ36とを直列接続して備え、保護抵抗33とON−OFFスイッチ36とを備えた保護リード34を高温超電導コイル13の高温超電導線15に接続したものである。   The permanent current superconducting magnet 10C shown in FIG. 6 includes a protective resistor 33 and an ON-OFF switch 36 connected in series to a coil protection circuit 37 provided in parallel with the permanent current circuit 15, and the protective resistor 33 and the ON- A protection lead 34 provided with an OFF switch 36 is connected to the high temperature superconducting wire 15 of the high temperature superconducting coil 13.

この永久電流超電導マグネット10Cでは、永久電流回路15からコイル保護回路37側に永久電流を分流させることができる。高温超電導コイル13が発熱してしまうことを避けるために、コイル保護回路37をスイッチ手段としてON−OFFするON−OFFスイッチ36を設け、励磁時や消磁時に保護回路37を永久電流回路16から切り離しておく。   In the permanent current superconducting magnet 10C, the permanent current can be shunted from the permanent current circuit 15 to the coil protection circuit 37 side. In order to prevent the high-temperature superconducting coil 13 from generating heat, an ON-OFF switch 36 is provided to turn on and off using the coil protection circuit 37 as a switch means, and the protection circuit 37 is disconnected from the permanent current circuit 16 during excitation and demagnetization. Keep it.

第4実施形態に示された永久電流超電導マグネット10Cは、保護リード34からの潜入熱を低減させることができる他、第1実施形態に示された超電導マグネット10と同等の作用効果を奏する。   The permanent current superconducting magnet 10 </ b> C shown in the fourth embodiment can reduce the intrusion heat from the protective lead 34, and has the same effects as the superconducting magnet 10 shown in the first embodiment.

この永久電流超電導マグネット10Cでは、保護抵抗33を接続する保護回路35等に、保護回路35を入り切りするスイッチ手段としてON−OFFスイッチ36を付設しており、高温超電導コイル13の励磁時や消磁時にこのON−OFFスイッチ36を切ることで、励消磁時に保護抵抗33へ分流させないようにすることができる。   In the permanent current superconducting magnet 10C, an ON-OFF switch 36 is attached to the protective circuit 35 to which the protective resistor 33 is connected as a switching means for turning on and off the protective circuit 35. When the high temperature superconducting coil 13 is excited or demagnetized, By turning off this ON-OFF switch 36, it is possible to prevent the current from being shunted to the protective resistor 33 during excitation and demagnetization.

図7は本発明に係る永久電流超電導マグネットの第5実施形態を示す概略的な全体構成図である。   FIG. 7 is a schematic overall configuration diagram showing a fifth embodiment of a permanent current superconducting magnet according to the present invention.

この実施形態に示された永久電流超電導マグネット10Dは、保護回路を構成する保護抵抗33およびON−OFFスイッチ36を真空容器11内に設置した例を示すものである。他の構成および作用は第4実施形態に示された超電導マグネット10Cと異ならないので、同じ構成には同じ符号を付して説明を省略する。   The permanent current superconducting magnet 10 </ b> D shown in this embodiment shows an example in which a protective resistor 33 and an ON-OFF switch 36 constituting a protective circuit are installed in the vacuum vessel 11. Since other configurations and operations are not different from the superconducting magnet 10C shown in the fourth embodiment, the same components are denoted by the same reference numerals and description thereof is omitted.

この永久電流超電導マグネット10Dにおいて、保護回路37にON−OFFスイッチ36を設置した場合、励磁時や消磁時の保護抵抗33および保護リード34の発熱がなくなるので、図7に示すような、保護抵抗33を輻射シールド12と同じ温度となる部位や、高温超電導コイル13と同じ温度になる部位、すなわち低温部に設置することも可能となる。保護抵抗33を低温部に設置することで、保護リード34からの浸入熱を低減することができる他、第3実施形態で示したものと同等の作用効果を奏することができる。   In the permanent current superconducting magnet 10D, when the ON-OFF switch 36 is installed in the protection circuit 37, the protection resistor 33 and the protection lead 34 are not heated during excitation or demagnetization. It is also possible to install 33 in a part having the same temperature as the radiation shield 12 or a part having the same temperature as the high temperature superconducting coil 13, that is, a low temperature part. By installing the protective resistor 33 in the low temperature part, the intrusion heat from the protective lead 34 can be reduced, and the same effects as those shown in the third embodiment can be achieved.

図8は、本発明に係る永久電流超電導マグネットの第6実施形態を概略的に示す全体構成図である。   FIG. 8 is an overall configuration diagram schematically showing a sixth embodiment of the permanent current superconducting magnet according to the present invention.

この実施形態に示された永久電流超電導マグネット10Eは、高温超電導コイル13の冷却手段40を、冷凍サイクルで構成してもよい。この冷却手段40はHe,Ne等の冷媒を循環させる冷媒流路41を設け、この冷媒流路41を真空容器11および輻射シールド12を貫いて真空容器11内に案内して高温超電導コイル13に付設し、高温超電導コイル13を冷却可能に構成したものである。   In the permanent current superconducting magnet 10E shown in this embodiment, the cooling means 40 of the high temperature superconducting coil 13 may be constituted by a refrigeration cycle. The cooling means 40 is provided with a refrigerant flow path 41 for circulating a refrigerant such as He, Ne, etc., and the refrigerant flow path 41 is guided through the vacuum vessel 11 and the radiation shield 12 into the vacuum vessel 11 so as to be connected to the high-temperature superconducting coil 13. The high temperature superconducting coil 13 is provided so as to be cooled.

図8に示された永久電流超電導マグネット10Eは、高温超電導コイル13の冷却手段40を、冷凍機による伝導冷却ではなく、冷凍サイクルで構成し、高温超電導コイル13に冷凍手段40の冷媒流路41を付設し、この冷媒流路41内に冷媒を循環させて冷却するものである。他の構成および作用は、第3実施形態に示された超電導マグネット10Bと異ならないので、同じ構成には、同一符号を付して説明を省略する。高温超電導コイル13の冷却手段40を除いた永久電流超電導マグネットを、図1,図4,図6および図7に示すように構成してもよい。   In the permanent current superconducting magnet 10E shown in FIG. 8, the cooling means 40 of the high temperature superconducting coil 13 is constituted by a refrigeration cycle instead of conduction cooling by a refrigerator, and the refrigerant flow path 41 of the refrigeration means 40 is connected to the high temperature superconducting coil 13. Is provided, and the refrigerant is circulated in the refrigerant flow path 41 to be cooled. Since other configurations and operations are not different from the superconducting magnet 10B shown in the third embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. The permanent current superconducting magnet excluding the cooling means 40 of the high-temperature superconducting coil 13 may be configured as shown in FIGS. 1, 4, 6 and 7.

第6実施形態に示された永久電流超電導マグネット10Eは、高温超電導コイル13の温度が上昇したとしても、高温超電導コイル13をクエンチさせないで永久電流を減衰させることができるので、冷媒流路41に冷媒を流す冷却手段40や、電流リード23を切り離しての運用が容易になる他、先の実施形態で示した作用効果と同様な作用効果を奏する。   The permanent current superconducting magnet 10E shown in the sixth embodiment can attenuate the permanent current without quenching the high temperature superconducting coil 13 even if the temperature of the high temperature superconducting coil 13 rises. In addition to facilitating operation by separating the cooling means 40 for flowing the refrigerant and the current lead 23, the same effects as the effects described in the previous embodiment are achieved.

この永久電流超電導マグネット10Eでは、第1ないし第5実施形態に示された永久電流超電導マグネット10〜10Dを永久電流モード運転達成後に、冷却手段40および電流リード22を切り離して運転することで、移動などを容易にすることができる。   In the permanent current superconducting magnet 10E, after the permanent current superconducting magnets 10 to 10D shown in the first to fifth embodiments are operated in the permanent current mode, the cooling means 40 and the current lead 22 are separated and operated. Etc. can be facilitated.

図9は、本発明に係る永久電流超電導マグネットの第7実施形態を概略的に示す全体構成図である。   FIG. 9 is an overall configuration diagram schematically showing a seventh embodiment of the permanent current superconducting magnet according to the present invention.

この実施形態に示された永久電流超電導マグネット10Fは、高温超電導コイル13の冷却手段40に冷媒流路着脱部44を設けて冷媒流路41を冷凍サイクルの本体側から切り離し自在にセット可能とするとともに、永久電流回路16からの電流リード引出部にも電流リード着脱部45を設けて励磁電源23と切離し自在に設けたものである。他の構成および作用は、第1実施形態ないし第5実施形態に示されたものと異ならないので、同じ構成にも同一符号を付して説明を省略する。   The permanent current superconducting magnet 10F shown in this embodiment is provided with a refrigerant channel attaching / detaching part 44 in the cooling means 40 of the high temperature superconducting coil 13 so that the refrigerant channel 41 can be set to be freely separated from the main body side of the refrigeration cycle. In addition, a current lead attaching / detaching portion 45 is also provided at a current lead drawing portion from the permanent current circuit 16 so as to be freely separated from the excitation power source 23. Since other configurations and operations are not different from those shown in the first to fifth embodiments, the same components are denoted by the same reference numerals and description thereof is omitted.

図9に示された永久電流超電導マグネット10Fは、高温超電導コイル13の冷却手段40に冷媒流路着脱部44を設け、冷媒流路41を冷凍サイクルの本体側から切り離し、電流リード22を電流リード着脱部45で励磁電源23から切り離し得るようにしたものである。   The permanent current superconducting magnet 10F shown in FIG. 9 is provided with a refrigerant flow channel attaching / detaching portion 44 in the cooling means 40 of the high temperature superconducting coil 13, disconnecting the refrigerant flow channel 41 from the main body side of the refrigeration cycle, and connecting the current lead 22 to the current lead. The detachable portion 45 can be separated from the excitation power source 23.

この永久電流超電導マグネット10Fにおいても、第6実施形態に示された超電導マグネット10Eと同様の作用効果を奏する。   This permanent current superconducting magnet 10F also has the same effects as the superconducting magnet 10E shown in the sixth embodiment.

なお、本発明の実施形態の説明では、真空容器内に収容された高温超電導コイルを冷却手段により伝熱手段あるいは冷媒流路を介して冷却する例を示したが、真空容器内に遮蔽手段を介して密閉容器を収容し、この密閉容器にHe,Ne等の冷媒を収容し、この冷媒を冷却手段で冷却し、密閉容器内に収容された高温超電導コイルおよび永久電流スイッチを冷却してもよい。この場合、永久電流スイッチには特許文献1および2に記載のスイッチ構造を採用してもよい。   In the description of the embodiment of the present invention, the example in which the high-temperature superconducting coil accommodated in the vacuum vessel is cooled by the cooling means via the heat transfer means or the refrigerant flow path is shown. However, the shielding means is provided in the vacuum vessel. A closed container, a refrigerant such as He or Ne is accommodated in the closed container, the refrigerant is cooled by cooling means, and the high-temperature superconducting coil and the permanent current switch accommodated in the sealed container are cooled. Good. In this case, the permanent current switch may employ the switch structure described in Patent Documents 1 and 2.

本発明に係る永久電流超電導マグネットの第1実施形態を示す全体構成図。BRIEF DESCRIPTION OF THE DRAWINGS The whole block diagram which shows 1st Embodiment of the permanent current superconducting magnet which concerns on this invention. 図1に示された永久電流超電導マグネットに用いられる永久電流スイッチを示す図。The figure which shows the permanent current switch used for the permanent current superconducting magnet shown by FIG. 図2に示された永久電流スイッチの変形例を示す断面図。Sectional drawing which shows the modification of the permanent current switch shown by FIG. 本発明に係る永久電流超電導マグネットの第2実施形態を示す全体構成図。The whole block diagram which shows 2nd Embodiment of the permanent current superconducting magnet which concerns on this invention. 本発明に係る永久電流超電導マグネットの第3実施形態を示す全体構成図。The whole block diagram which shows 3rd Embodiment of the permanent current superconducting magnet which concerns on this invention. 本発明に係る永久電流超電導マグネットの第4実施形態を示す全体構成図。The whole block diagram which shows 4th Embodiment of the permanent current superconducting magnet which concerns on this invention. 本発明に係る永久電流超電導マグネットの第5実施形態を示す全体構成図。The whole block diagram which shows 5th Embodiment of the permanent current superconducting magnet which concerns on this invention. 本発明に係る永久電流超電導マグネットの第6実施形態を示す全体構成図。The whole block diagram which shows 6th Embodiment of the permanent current superconducting magnet which concerns on this invention. 本発明に係る永久電流超電導マグネットの第7実施形態を示す全体構成図。The whole block diagram which shows 7th Embodiment of the permanent current superconducting magnet which concerns on this invention.

符号の説明Explanation of symbols

10 永久電流超電導マグネット
11 真空容器
12 輻射シールド
13 高温超電導コイル
14 永久電流スイッチ
15 高温超電導線
16 永久電流回路
18 冷凍機(冷却手段)
19 コイル伝熱手段
20 スイッチ伝熱手段
22 電流リード(通電手段)
23 励磁電源(通電手段)
25 永久電流スイッチ用超電導導体
26 基板
27 高温超電導薄膜
28,29 電極
30 金属保護層
31,35,37 コイル保護回路
33 保護抵抗
34 保護リード
36 ON−OFFスイッチ(スイッチ手段)
DESCRIPTION OF SYMBOLS 10 Permanent current superconducting magnet 11 Vacuum container 12 Radiation shield 13 High temperature superconducting coil 14 Permanent current switch 15 High temperature superconducting wire 16 Permanent current circuit 18 Refrigerator (cooling means)
19 Coil heat transfer means 20 Switch heat transfer means 22 Current lead (energization means)
23 Excitation power supply (energization means)
25 Superconducting conductor for permanent current switch 26 Substrate 27 High-temperature superconducting thin film 28, 29 Electrode 30 Metal protective layer 31, 35, 37 Coil protection circuit 33 Protection resistor 34 Protection lead 36 ON-OFF switch (switch means)

Claims (9)

真空容器内に収納される高温超電導コイルと、
この高温超電導コイルに熱的に接続された永久電流スイッチと、
前記高温超電導コイルおよび永久電流スイッチを外部環境から断熱する断熱手段と、
前記高温超電導コイルおよび永久電流スイッチを冷却する冷却手段と、
電流リードを介して前記高温超電導コイルを励磁する通電手段とを有し、
前記永久電流スイッチのクエンチ温度を高温超電導コイルのクエンチ温度より低く設定したことを特徴とする永久電流超電導マグネット。
A high-temperature superconducting coil housed in a vacuum vessel;
A permanent current switch thermally connected to the high temperature superconducting coil;
Heat insulating means for insulating the high temperature superconducting coil and the permanent current switch from an external environment;
Cooling means for cooling the high temperature superconducting coil and the permanent current switch;
Energizing means for exciting the high-temperature superconducting coil via a current lead;
A permanent current superconducting magnet, wherein a quench temperature of the permanent current switch is set lower than a quench temperature of a high temperature superconducting coil.
前記永久電流スイッチと並列に室温部に保護抵抗を接続し、前記高温超電導コイルの保護回路を設けた請求項1記載の永久電流超電導マグネット。 The permanent current superconducting magnet according to claim 1, wherein a protective resistor is connected to a room temperature portion in parallel with the permanent current switch, and a protection circuit for the high temperature superconducting coil is provided. 前記永久電流回路に保護用リードを介して保護抵抗を設け、この保護用リードを用いて高温超電導コイルとを電気的に接続し、高温超電導コイルの保護回路を設けた請求項1記載の永久電流超電導マグネット。 2. The permanent current according to claim 1, wherein a protective resistor is provided in the permanent current circuit through a protective lead, the high-temperature superconducting coil is electrically connected using the protective lead, and a protective circuit for the high-temperature superconducting coil is provided. Superconducting magnet. 前記高温超電導コイルの保護回路には、保護抵抗をON−OFFできるスイッチ手段を設けた請求項2または3記載の永久電流超電導マグネット。 4. The permanent current superconducting magnet according to claim 2, wherein the protection circuit for the high-temperature superconducting coil is provided with a switch means capable of turning on and off a protective resistance. 前記保護抵抗は、真空容器内の断熱手段と同じ温度となる部位あるいは高温超電導コイルと同じ温度となる部位に設置された請求項3または4記載の永久電流超電導マグネット。 5. The permanent current superconducting magnet according to claim 3, wherein the protective resistance is installed at a part having the same temperature as the heat insulating means in the vacuum vessel or a part having the same temperature as the high temperature superconducting coil. 前記冷却手段および通電手段を着脱自在に設け、冷却手段および通電手段を切り離した状態で運転するように設けた請求項1記載の永久電流超電導マグネット。 The permanent current superconducting magnet according to claim 1, wherein the cooling means and the energization means are provided detachably, and the cooling means and the energization means are operated in a disconnected state. 前記永久電流スイッチは、金属板あるいは絶縁物の基板上に帯状の高温超電導薄膜を形成した超電導導体が用いられ、前記高温超電導薄膜の導体幅を調節設定自在とした請求項1記載の永久電流超電導マグネット。 2. The permanent current superconducting device according to claim 1, wherein the permanent current switch uses a superconducting conductor in which a belt-like high-temperature superconducting thin film is formed on a metal plate or an insulating substrate, and the conductor width of the high-temperature superconducting thin film is adjustable. magnet. 金属板あるいは絶縁物の基板上に帯状の高温超電導薄膜を形成して超電導導体を構成し、この超電導導体は前記高温超電導薄膜の導体幅を調節設定自在とし、クエンチ温度を調節自在としたことを特徴とする永久電流超電導スイッチ。 A superconducting conductor is formed by forming a strip-shaped high-temperature superconducting thin film on a metal plate or an insulating substrate, and the superconducting conductor can adjust the width of the high-temperature superconducting thin film, and the quench temperature can be adjusted. Characteristic permanent current superconducting switch. 前記高温超電導薄膜上に金属保護層を有する請求項8記載の永久電流超電導スイッチ。 9. The permanent current superconducting switch according to claim 8, further comprising a metal protective layer on the high temperature superconducting thin film.
JP2005157926A 2005-05-30 2005-05-30 Permanent current superconducting magnet and permanent current switch used for this magnet Active JP4592498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157926A JP4592498B2 (en) 2005-05-30 2005-05-30 Permanent current superconducting magnet and permanent current switch used for this magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157926A JP4592498B2 (en) 2005-05-30 2005-05-30 Permanent current superconducting magnet and permanent current switch used for this magnet

Publications (2)

Publication Number Publication Date
JP2006332559A true JP2006332559A (en) 2006-12-07
JP4592498B2 JP4592498B2 (en) 2010-12-01

Family

ID=37553891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157926A Active JP4592498B2 (en) 2005-05-30 2005-05-30 Permanent current superconducting magnet and permanent current switch used for this magnet

Country Status (1)

Country Link
JP (1) JP4592498B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147370A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Electromagnet device
JP2015142044A (en) * 2014-01-29 2015-08-03 株式会社東芝 Superconducting magnet device
WO2019150091A1 (en) * 2018-01-30 2019-08-08 Tokamak Energy Ltd Monitoring device for cryogenic system
CN110112283A (en) * 2019-06-05 2019-08-09 西南交通大学 It is a kind of to be switched from the superconducting thin film of triggering self-shield
JP2019161060A (en) * 2018-03-14 2019-09-19 株式会社東芝 Superconducting magnet device
JP2019165034A (en) * 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
US11557893B2 (en) 2015-09-09 2023-01-17 Tokamak Energy Ltd Quench protection in superconducting magnets

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624160U (en) * 1985-06-22 1987-01-12
JPS649605A (en) * 1987-07-02 1989-01-12 Toshiba Corp Superconducting coil apparatus
JPS6411309A (en) * 1987-07-06 1989-01-13 Mitsubishi Electric Corp Superconducting magnet
JPH05304025A (en) * 1992-04-28 1993-11-16 Hitachi Ltd High magnetic field generator and permanent current switch
JPH10125966A (en) * 1996-10-16 1998-05-15 Nippon Steel Corp Oxide superconductor and its manufacture
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus
JPH11162727A (en) * 1997-12-02 1999-06-18 Mitsubishi Electric Corp Superconducting device
JPH11340533A (en) * 1998-05-22 1999-12-10 Sumitomo Electric Ind Ltd High-temperature superconducting coil persistent current switch
JP2003069093A (en) * 2001-08-29 2003-03-07 Central Japan Railway Co Perpetual current switch and superconducting magnet using it
JP2003101089A (en) * 2001-09-21 2003-04-04 Central Japan Railway Co Persistent current switch material and manufacturing method therefor
JP2003151821A (en) * 2001-11-19 2003-05-23 Railway Technical Res Inst Superconductive coil device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624160U (en) * 1985-06-22 1987-01-12
JPS649605A (en) * 1987-07-02 1989-01-12 Toshiba Corp Superconducting coil apparatus
JPS6411309A (en) * 1987-07-06 1989-01-13 Mitsubishi Electric Corp Superconducting magnet
JPH05304025A (en) * 1992-04-28 1993-11-16 Hitachi Ltd High magnetic field generator and permanent current switch
JPH10125966A (en) * 1996-10-16 1998-05-15 Nippon Steel Corp Oxide superconductor and its manufacture
JPH10294213A (en) * 1997-04-22 1998-11-04 Hitachi Ltd Manufacture for oxide based superconducting magnet system and oxide based superconducting magnet system and superconducting magnetic field generation apparatus
JPH11162727A (en) * 1997-12-02 1999-06-18 Mitsubishi Electric Corp Superconducting device
JPH11340533A (en) * 1998-05-22 1999-12-10 Sumitomo Electric Ind Ltd High-temperature superconducting coil persistent current switch
JP2003069093A (en) * 2001-08-29 2003-03-07 Central Japan Railway Co Perpetual current switch and superconducting magnet using it
JP2003101089A (en) * 2001-09-21 2003-04-04 Central Japan Railway Co Persistent current switch material and manufacturing method therefor
JP2003151821A (en) * 2001-11-19 2003-05-23 Railway Technical Res Inst Superconductive coil device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010147370A (en) * 2008-12-22 2010-07-01 Hitachi Ltd Electromagnet device
JP2015142044A (en) * 2014-01-29 2015-08-03 株式会社東芝 Superconducting magnet device
US11557893B2 (en) 2015-09-09 2023-01-17 Tokamak Energy Ltd Quench protection in superconducting magnets
WO2019150091A1 (en) * 2018-01-30 2019-08-08 Tokamak Energy Ltd Monitoring device for cryogenic system
CN111801809A (en) * 2018-01-30 2020-10-20 托卡马克能量有限公司 Monitoring device for a cryogenic system
RU2745295C1 (en) * 2018-01-30 2021-03-23 Токемек Энерджи Лтд Control and measuring device for the cryogenic system
US11114230B2 (en) 2018-01-30 2021-09-07 Tokamak Energy Ltd. Monitoring device for cryogenic device
AU2019214502B2 (en) * 2018-01-30 2022-12-15 Tokamak Energy Ltd Monitoring device for cryogenic system
JP2019161060A (en) * 2018-03-14 2019-09-19 株式会社東芝 Superconducting magnet device
JP2019165034A (en) * 2018-03-19 2019-09-26 株式会社東芝 Superconducting magnet device
CN110112283A (en) * 2019-06-05 2019-08-09 西南交通大学 It is a kind of to be switched from the superconducting thin film of triggering self-shield

Also Published As

Publication number Publication date
JP4592498B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4592498B2 (en) Permanent current superconducting magnet and permanent current switch used for this magnet
JP2011187524A (en) High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet
US8400747B2 (en) Superconducting coil, superconducting magnet, and method of operating superconducting magnet
JP5525810B2 (en) Superconducting magnet device and quench protection method thereof
JP2013251516A (en) Superconducting magnet device
JP2018117042A (en) High-temperature superconducting permanent current switch and high-temperature superconducting magnet device
US8233952B2 (en) Superconducting magnet
US20150111753A1 (en) Superconducting magnet apparatus
JP7110035B2 (en) Superconducting magnet device
JP5255425B2 (en) Electromagnet device
JP2004179413A (en) Cooling type superconducting magnet device
JPH0586052B2 (en)
JP3569997B2 (en) Current leads for superconducting devices
WO2015072001A1 (en) Superconducting magnet
JP2006319139A (en) Superconducting apparatus and quenching protecting method of superconducting portion
JPH04361526A (en) Superconducting magnet device for crystal pullingup device
JP2004111581A (en) Superconducting magnet unit
JP5749126B2 (en) Conduction cooled superconducting magnet system
JP3020140B2 (en) Permanent current switch device for refrigerator cooled superconducting magnet
JP2011029227A (en) Coil device, protecting apparatus and induction voltage suppressing method
JP2016119431A (en) Superconducting magnet device
JP3117173B2 (en) Superconducting magnet device with refrigerator
WO2024048179A1 (en) Superconducting magnet device and nuclear magnetic resonance diagnosis device
JP2012178485A (en) Superconducting electromagnet device
JP5173693B2 (en) Superconducting magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4592498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3