JP2008113893A - Operation method of superconducting apparatus - Google Patents

Operation method of superconducting apparatus Download PDF

Info

Publication number
JP2008113893A
JP2008113893A JP2006300787A JP2006300787A JP2008113893A JP 2008113893 A JP2008113893 A JP 2008113893A JP 2006300787 A JP2006300787 A JP 2006300787A JP 2006300787 A JP2006300787 A JP 2006300787A JP 2008113893 A JP2008113893 A JP 2008113893A
Authority
JP
Japan
Prior art keywords
superconducting
liquid
oxygen
cooling
liquid oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006300787A
Other languages
Japanese (ja)
Inventor
Kazuhiko Hayashi
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2006300787A priority Critical patent/JP2008113893A/en
Publication of JP2008113893A publication Critical patent/JP2008113893A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method of a superconducting apparatus capable of surely cooling a superconducting member even to a cooling temperature range which liquid nitrogen cannot create. <P>SOLUTION: This operation method is for the superconducting apparatus (MRI 1) using the superconducting member (a superconducting magnet 11). Oxygen is used as a refrigerant for cooling the superconducting member 11; liquid oxygen liquified by cooling the oxygen to a range of the boiling point or more of nitrogen and less than the boiling point of oxygen, or a range higher than the temperature of the freezing point of oxygen and the freezing point or less of the nitrogen, is supplied to the superconducting apparatus 1 and to operate the superconducting apparatus 1 while cooling the superconducting member 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超電導機器の運転方法に関するものである。特に、超電導機器に用いる超電導部材を極低温に冷却しながら超電導機器を運転する方法に関するものである。   The present invention relates to a method for operating a superconducting device. In particular, the present invention relates to a method of operating a superconducting device while cooling a superconducting member used in the superconducting device to a cryogenic temperature.

超電導磁石を備えるMRIや超電導モータなどの超電導機器は、超電導部材を冷却するために、液体窒素(凝固点約63K)や、液体ヘリウム(λ点約2.18K)が用いられる。また、液体空気(凝固点約57k)や、液体窒素と液体酸素との混合液冷媒は液体窒素に比べて凝固点が低いと言う特徴があることから超電導部材の冷却用冷媒として用いられている(例えば特許文献1参照。)。   Superconducting devices such as MRI and superconducting motors equipped with superconducting magnets use liquid nitrogen (freezing point of about 63K) and liquid helium (λ point of about 2.18K) to cool the superconducting member. In addition, liquid air (freezing point of about 57k) and a mixed liquid refrigerant of liquid nitrogen and liquid oxygen are used as cooling refrigerants for superconducting members because they have a lower freezing point than liquid nitrogen (for example, (See Patent Document 1).

特開2001−174114号公報JP 2001-174114 A

超電導部材は、冷却温度が低ければ低いほど電流密度が上がり、臨界電流特性が向上することが知られている。また、超電導部材のうち、比較的高温雰囲気での使用でも所望の電流密度が得られるものもあり、このような高温超電導部材であれば、冷却構造である断熱構造を簡単にでき、コストの低廉化が図れる。   It is known that the superconducting member has higher current density and lower critical current characteristics as the cooling temperature is lower. In addition, some superconducting members can obtain a desired current density even when used in a relatively high-temperature atmosphere. With such a high-temperature superconducting member, a heat insulating structure as a cooling structure can be simplified and the cost can be reduced. Can be achieved.

しかし、液体窒素は、凝固点が約63Kと高いため、電流密度が十分に上げられない場合がある。また、液体窒素は、沸点が約77Kと低いため、液体窒素の沸点より高い温度で超電導部材を冷却したい場合には、液体窒素が気化して、冷却能力が低下し、確実に所定の冷却温度が維持できない問題もある。また、窒素が固体冷媒になってしまうと、機器内の小さな隙間に冷媒が入り込んでいかないので、冷却が十分に行えなくなる。   However, since liquid nitrogen has a high freezing point of about 63K, the current density may not be sufficiently increased. Also, since liquid nitrogen has a boiling point as low as about 77K, when it is desired to cool the superconducting member at a temperature higher than the boiling point of liquid nitrogen, the liquid nitrogen is vaporized, the cooling capacity is lowered, and the predetermined cooling temperature is ensured. There are also problems that cannot be maintained. Further, when nitrogen becomes a solid refrigerant, the refrigerant does not enter a small gap in the device, so that cooling cannot be performed sufficiently.

また、液体ヘリウムは、かなり低い温度まで超電導部材を冷却できるが、その温度まで冷却するためにはシステムが大型化し、コストが高くなるなどの問題がある。またヘリウムは、沸点も約4Kとかなり低いので、高温で冷却する場合には、気体での冷却となり、冷却能力が低下してしまう。   Liquid helium can cool a superconducting member to a considerably low temperature, but there are problems such as an increase in system size and cost for cooling to that temperature. In addition, helium has a fairly low boiling point of about 4K, so when it is cooled at a high temperature, it becomes a cooling with a gas and the cooling capacity is lowered.

そして、液体空気や、液体酸素と液体窒素の混合液冷媒は、液体窒素に比べて冷却温度を下げることができるが、液体窒素が先に蒸発して、液体酸素濃度が高くなり、安全性の点から液体酸素濃度の管理が行い難いなどの問題がある。   Liquid air or a mixed liquid refrigerant of liquid oxygen and liquid nitrogen can lower the cooling temperature compared to liquid nitrogen, but the liquid nitrogen evaporates first, resulting in a higher liquid oxygen concentration, which is safer. In view of this, there are problems such as difficulty in managing the liquid oxygen concentration.

また、液体酸素は、凝固点が約54Kと液体窒素の凝固点よりもかなり低く、沸点が約90Kと液体窒素の沸点よりも高いので、液体での温度範囲が広い。しかも、高温超電導部材は、比較的高い温度で冷却しながらでも所望の電流密度が得られる場合もあるし、冷却温度をかなり低くして電流密度を上げて使用する場合もある。従って、液体酸素を超電導部材の冷却に用いることにより目的に応じた使用が可能となるが、液体酸素のみで超電導部材を冷却する場合、従来では、爆発の危険性から実用化には至っていない。   Liquid oxygen has a freezing point of about 54K, which is considerably lower than the freezing point of liquid nitrogen, and its boiling point is about 90K, which is higher than the boiling point of liquid nitrogen. In addition, the high-temperature superconducting member may obtain a desired current density while being cooled at a relatively high temperature, or may be used by raising the current density by considerably reducing the cooling temperature. Therefore, the liquid oxygen can be used for the purpose of cooling the superconducting member. However, when the superconducting member is cooled only by the liquid oxygen, it has not been put into practical use because of the risk of explosion.

しかし、近年、液体酸素は、病院において患者への酸素吸入に用いるために、液体酸素タンクに貯留して、病院内に保管されたり、潜水艦など、長期に亘って密閉される空間で生活するために必要な酸素として、船内に液体酸素タンクを設置して保管されたりしており、これら液体酸素タンクおよび液体酸素供給配管設備は、安全性が確保されてきている。   However, in recent years, liquid oxygen has been stored in a liquid oxygen tank for use in inhaling oxygen to patients in hospitals, and is stored in hospitals or lives in a sealed space such as a submarine for a long time. As a necessary oxygen, a liquid oxygen tank is installed and stored in a ship, and the safety of these liquid oxygen tank and liquid oxygen supply piping equipment has been ensured.

さらに、病院内では、MRIや重イオン照射用小型加速器など超電導部材を備える機器が用いられている。これら超電導機器は、通常は液体ヘリウムで超電導部材を冷却している。しかし、この液体ヘリウムを液体の状態で保持するためには、所定の温度に維持する冷却システムが必要となる。この冷却システムは、断熱構造も複雑となることから、かなり大型化してしまう。   Further, in hospitals, devices equipped with superconducting members such as MRI and a small accelerator for heavy ion irradiation are used. These superconducting devices usually cool the superconducting member with liquid helium. However, in order to hold the liquid helium in a liquid state, a cooling system that maintains a predetermined temperature is required. This cooling system is considerably increased in size because the heat insulation structure is complicated.

また、潜水艦では、艦内に電力を供給するために、小型化できながら出力の大きい超電導発電機を用いて発電したり、推進用モータも超電導モータを用いたりすることが試みられている。しかし、この超電導発電機等は液体窒素または液体水素で通常は冷却する構成となっており、潜水艦などの限られたスペース内に前記した液冷媒を大量に貯留したり、大型の循環型冷凍装置を設けたりするには制約があるし、冷却コストもかかる。   In addition, in order to supply electric power to the ship, it has been attempted to generate power using a superconducting generator that can be downsized but have a large output, and to use a superconducting motor as a propulsion motor. However, this superconducting generator or the like is usually configured to cool with liquid nitrogen or liquid hydrogen, and stores a large amount of the above-described liquid refrigerant in a limited space such as a submarine, or a large circulation refrigeration system There are restrictions on the provision of the heat and cooling costs.

また、製鉄所では、一般に転炉内に酸素を注入して精錬しており、転炉の近くに酸素製造装置が設けられている。この酸素製造装置としては、例えば、液体空気から液体酸素を取り出し、液体酸素をガス化する液体空気分離装置が挙げられる。そして、酸素製造装置で得られた酸素ガスを転炉内に供給するようになっている。酸素製造装置では、圧縮機にモータが使用されており、これらモータを超電導モータとすることにより、小型化が図れ、しかも高効率で、電気容量も大きくできる利点がある。   Also, in steelworks, oxygen is generally refined by injecting it into a converter, and an oxygen production apparatus is provided near the converter. Examples of the oxygen production apparatus include a liquid air separation apparatus that takes out liquid oxygen from liquid air and gasifies the liquid oxygen. And the oxygen gas obtained with the oxygen production apparatus is supplied into the converter. In the oxygen production apparatus, motors are used for the compressors, and by using these motors as superconducting motors, there is an advantage that they can be miniaturized, have high efficiency, and can have a large electric capacity.

本発明は、液体窒素では、対応できない冷却温度範囲でも超電導部材を確実に冷却できる超電導機器の運転方法を提供することを目的とする。また、他の目的として、既存の液体酸素を用いる設備を利用して、この設備で蓄えられる液体酸素を超電導部材の冷却に利用することによりコストを低減しながら、目的に応じた超電導部材の冷却を行う超電導機器の運転方法を提供する。   An object of the present invention is to provide a method of operating a superconducting device that can reliably cool a superconducting member even in a cooling temperature range that cannot be handled by liquid nitrogen. In addition, as another object, using existing liquid oxygen equipment, the liquid oxygen stored in this equipment is used for cooling the superconducting member, while reducing the cost while cooling the superconducting member according to the purpose. The operation method of the superconducting equipment which performs is provided.

本発明の超電導部材を用いた超電導機器の運転方法は、超電導部材を冷却する冷媒として、窒素の沸点以上、酸素の沸点未満の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却して超電導機器を運転することを特徴とする。   The operation method of the superconducting equipment using the superconducting member of the present invention uses liquid oxygen cooled to a range not less than the boiling point of nitrogen and less than the boiling point of oxygen as a refrigerant for cooling the superconducting member, and the superconducting member is cooled with this liquid oxygen. And operating a superconducting device.

また、本発明の超電導部材を用いた超電導機器の他の運転方法は、超電導部材を冷却する冷媒として、酸素の凝固点の温度より高く、窒素の凝固点以下の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却して超電導機器を運転することを特徴とする。   Further, another operation method of superconducting equipment using the superconducting member of the present invention uses liquid oxygen cooled to a temperature higher than the freezing point of oxygen and below the freezing point of nitrogen as a refrigerant for cooling the superconducting member. The superconducting member is cooled with liquid oxygen and the superconducting device is operated.

即ち、本発明は複数の成分が混合された冷媒を用いるのではなく、液体酸素単独で超電導部材を冷却するとともに、この液体酸素の温度を、上記範囲にすることにより、超電導部材の電流密度を上げたいときには、上記低温側の温度範囲で超電導部材を冷却し、比較的高温で超電導部材の冷却が可能な場合には、上記高温側の温度範囲で超電導部材を冷却する。   That is, the present invention does not use a refrigerant in which a plurality of components are mixed, but cools the superconducting member with liquid oxygen alone, and by setting the temperature of the liquid oxygen within the above range, the current density of the superconducting member is reduced. When it is desired to increase the temperature, the superconducting member is cooled in the temperature range on the low temperature side, and when the superconducting member can be cooled at a relatively high temperature, the superconducting member is cooled in the temperature range on the high temperature side.

液体酸素は、例えば、液体空気から窒素とアルゴンと他の不純物を除去することにより得ることができるし、水を分解した後、酸素を液化して得ることもできる。液体酸素を得る方法は、これらに限定されない。   Liquid oxygen can be obtained, for example, by removing nitrogen, argon and other impurities from liquid air, or it can be obtained by decomposing water and then liquefying oxygen. The method of obtaining liquid oxygen is not limited to these.

液体酸素は、液体での温度範囲が広く、液体窒素の凝固点以下の低温で超電導部材を冷却することができる。しかも、液体酸素は、蒸発潜熱と、核沸騰の限界熱流束が液体窒素よりも大きいので、この点においても、液体窒素よりも冷却能力が優れる。さらに、酸素は、常磁性で、磁化率が大きく、高磁場領域に引き付けられるため、超電導部材を冷却する際に、高磁場領域である発熱が大きい部分に液体酸素を集中させて冷却することが可能となるので、部分冷却効果も得られる。   Liquid oxygen has a wide temperature range in liquid and can cool the superconducting member at a low temperature below the freezing point of liquid nitrogen. Moreover, since liquid oxygen has a larger latent heat of vaporization and a limit heat flux of nucleate boiling than liquid nitrogen, the cooling capacity is superior to liquid nitrogen also in this respect. Furthermore, oxygen is paramagnetic, has a high magnetic susceptibility, and is attracted to a high magnetic field region. Therefore, when cooling a superconducting member, liquid oxygen can be concentrated and cooled in a high magnetic field region where heat generation is large. As a result, partial cooling effect can be obtained.

本発明の運転方法で用いる液体酸素として、超電導機器を除く既存の設備で用いられる液体酸素を用いることができる。液体酸素は、液体酸素タンクに貯留しておいて、この液体酸素タンクから液体酸素を超電導機器に供給することが好ましい。   As liquid oxygen used in the operation method of the present invention, liquid oxygen used in existing facilities excluding superconducting equipment can be used. The liquid oxygen is preferably stored in a liquid oxygen tank, and liquid oxygen is preferably supplied from the liquid oxygen tank to the superconducting device.

既存の設備で用いられる液体酸素とは、例えば、病院において、各病室の患者の治療などに用いる酸素を液化して液体酸素タンクに貯留しておく液体酸素や、潜水艦に搭載される液体酸素タンクに貯留される液体酸素などが挙げられる。   Liquid oxygen used in existing facilities means, for example, liquid oxygen that is used in hospitals to liquefy oxygen used for treatment of patients in hospital rooms and stored in the liquid oxygen tank, or liquid oxygen tanks installed in submarines And liquid oxygen stored in the water.

病院に設置される液体酸素タンクに貯留される液体酸素は、病室の患者の治療などに用いる際には、ガス化して用いるため、超電導部材を冷却することにより液体酸素をガス化して治療などに用いることができる。また、潜水艦に搭載する液体酸素タンク内の液体酸素も、ガス化して艦内に供給するので、液体酸素で超電導部材を冷却して液体酸素をガス化させることができる。   Liquid oxygen stored in a liquid oxygen tank installed in a hospital is used as a gas when it is used for treatment of patients in a hospital room, etc., so the liquid oxygen is gasified by cooling the superconducting member for treatment, etc. Can be used. Further, since liquid oxygen in the liquid oxygen tank mounted on the submarine is also gasified and supplied to the ship, the superconducting member can be cooled with liquid oxygen to gasify the liquid oxygen.

このように、既存の液体酸素を、超電導部材を冷却するために用いることにより、超電導機器の冷却コストの低廉化が図れる。   In this way, by using the existing liquid oxygen to cool the superconducting member, the cooling cost of the superconducting equipment can be reduced.

さらに、本発明の超電導部材を用いた超電導機器の運転方法は、超電導部材を冷却する冷媒として、酸素とアルゴンの混合物を用い、酸素とアルゴンの混合物を冷却し、液化した酸素とアルゴンの混合物で超電導部材を冷却して超電導機器を運転することもできる。   Furthermore, the operation method of the superconducting equipment using the superconducting member of the present invention uses a mixture of oxygen and argon as a refrigerant for cooling the superconducting member, cools the mixture of oxygen and argon, and uses a liquefied mixture of oxygen and argon. It is also possible to operate the superconducting equipment by cooling the superconducting member.

液体酸素と液体アルゴンの混合物も、アルゴンの濃度が低い場合は、液体酸素と同程度の凝固点となる。また、液体酸素と液体アルゴンとは、沸点(酸素約90K、アルゴン約87K)が近く、密度差も小さいために分離しにくく、混合液冷媒とし使用しやすい。   A mixture of liquid oxygen and liquid argon also has a freezing point similar to that of liquid oxygen when the concentration of argon is low. Also, liquid oxygen and liquid argon are close to the boiling point (oxygen about 90K, argon about 87K) and have a small density difference, so they are difficult to separate and easy to use as a mixed liquid refrigerant.

液体酸素と液体アルゴンの混合物の混合割合は、液体酸素の濃度が80モル%以上、液体アルゴンの濃度が20モル%以下とすることが好ましい。液体アルゴンの濃度が20モル%超となると、凝固点は上昇する。   The mixing ratio of the mixture of liquid oxygen and liquid argon is preferably such that the concentration of liquid oxygen is 80 mol% or more and the concentration of liquid argon is 20 mol% or less. When the concentration of liquid argon exceeds 20 mol%, the freezing point increases.

液体酸素と液体アルゴンの混合物は、空気を液化して得られた液体空気から窒素と不純物を分離して製造することができる。空気を液化して液体空気を製造した後、不純物を除去し、液体窒素をガス化して分離することにより、液体酸素と液体アルゴンの混合物を簡単に製造することができる。この場合、空気は、窒素78.10体積%、酸素20.9体積%、アルゴン0.94体積%であるので、液体酸素と液体アルゴンの混合物の混合割合は、液体酸素の濃度が95.7モル%、液体アルゴンの濃度が4.3モル%となる。この混合液冷媒の凝固点は、液体酸素と同程度であり、アルゴンを除去することなく液体酸素並の凝固点を得ることができるので、製造コストの低廉化が図れながら、超電導部材の電流密度を上げることができる。   A mixture of liquid oxygen and liquid argon can be produced by separating nitrogen and impurities from liquid air obtained by liquefying air. After producing liquid air by liquefying air, a mixture of liquid oxygen and liquid argon can be easily produced by removing impurities and gasifying and separating liquid nitrogen. In this case, since air is 78.10% by volume of nitrogen, 20.9% by volume of oxygen, and 0.94% by volume of argon, the mixing ratio of the mixture of liquid oxygen and liquid argon is that the concentration of liquid oxygen is 95.7 mol% and the concentration of liquid argon is 4.3 mol%. The freezing point of this mixed liquid refrigerant is about the same as that of liquid oxygen, and a freezing point similar to that of liquid oxygen can be obtained without removing argon. Therefore, the current density of the superconducting member can be increased while reducing the manufacturing cost. be able to.

なお、超電導部材を用いた超電導機器としては、超電導磁石を備えるMRI、リニアモータ、超電導発電機、変圧器、限流器、イオン加速器などが挙げられる。   In addition, as a superconducting apparatus using a superconducting member, an MRI equipped with a superconducting magnet, a linear motor, a superconducting generator, a transformer, a current limiter, an ion accelerator, and the like can be given.

本発明の超電導部材を用いた超電導機器の運転方法は、超電導部材を冷却する冷媒として、窒素の沸点以上、酸素の沸点未満の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却するので、高温超電導部材を超電導機器に用いる場合には、液体窒素では冷却できなかった比較的高温で超電導部材の冷却が可能となる。その結果、上記高温の温度範囲で超電導部材を冷却することにより、冷却構造である断熱構造を簡単にでき、冷却システムのコストの低廉化が図れる。   The operation method of the superconducting equipment using the superconducting member of the present invention uses liquid oxygen cooled to a range not less than the boiling point of nitrogen and less than the boiling point of oxygen as a refrigerant for cooling the superconducting member, and the superconducting member is cooled with this liquid oxygen. Therefore, when the high-temperature superconducting member is used in a superconducting device, the superconducting member can be cooled at a relatively high temperature that could not be cooled with liquid nitrogen. As a result, by cooling the superconducting member in the above high temperature range, the heat insulating structure as a cooling structure can be simplified, and the cost of the cooling system can be reduced.

また、本発明の超電導部材を用いた超電導機器の他の運転方法は、超電導部材を冷却する冷媒として、酸素の凝固点の温度より高く、窒素の凝固点以下の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却するので、超電導部材をかなり低い温度で冷却することが可能となる。そのため、超電導部材の電流密度を上げることができる。   Further, another operation method of superconducting equipment using the superconducting member of the present invention uses liquid oxygen cooled to a temperature higher than the freezing point of oxygen and below the freezing point of nitrogen as a refrigerant for cooling the superconducting member. Since the superconducting member is cooled with liquid oxygen, the superconducting member can be cooled at a considerably low temperature. Therefore, the current density of the superconducting member can be increased.

以下、本発明の超電導機器の運転方法の実施形態を説明する。   Hereinafter, an embodiment of a method for operating a superconducting device of the present invention will be described.

<第1実施形態>
図1は、本発明の超電導機器の運転方法の第1実施形態に係る超電導機器の概略構成図である。
<First Embodiment>
FIG. 1 is a schematic configuration diagram of a superconducting device according to a first embodiment of a method of operating a superconducting device of the present invention.

本実施形態に係る超電導機器は、病院内に配置されるMRI(magnetic
resonance imaging)1であり、MRI1は内部に超電導磁石11を備え、MRI1は供給配管12を介して液体酸素タンク13に連通する一方、排出配管14を介して外部である病室内へ酸素ガスを供給するようになっている。
The superconducting device according to the present embodiment is an MRI (magnetic
resonance imaging) 1, MRI1 has a superconducting magnet 11 inside, and MRI1 communicates with liquid oxygen tank 13 through supply pipe 12, while oxygen gas is supplied to the outside hospital room through discharge pipe 14 It is supposed to be.

液体酸素タンク13内には、患者に供給するために用いる液体酸素が貯留されている。供給配管12は、MRI1の超電導磁石11と液体酸素タンク13とを連通し、この供給配管12の途中にポンプ15が設けられている。   In the liquid oxygen tank 13, liquid oxygen used for supplying to the patient is stored. The supply pipe 12 communicates with the superconducting magnet 11 of the MRI 1 and the liquid oxygen tank 13, and a pump 15 is provided in the middle of the supply pipe 12.

本実施形態では、ポンプ15を駆動することにより、液体酸素タンク13から液体酸素を供給配管12を介して超電導磁石11に供給し、この液体酸素で超電導磁石11を冷却する。そして、この超電導磁石11を冷却する間に液体酸素をガス化させて、排出配管14から病室に酸素ガスを送る。   In the present embodiment, by driving the pump 15, liquid oxygen is supplied from the liquid oxygen tank 13 to the superconducting magnet 11 via the supply pipe 12, and the superconducting magnet 11 is cooled with this liquid oxygen. Then, while this superconducting magnet 11 is cooled, liquid oxygen is gasified and oxygen gas is sent from the discharge pipe 14 to the hospital room.

本実施形態では、液体酸素は、液体窒素では液体の状態で冷却できない範囲、即ち、窒素の沸点以上、酸素の沸点未満の範囲で冷却するか、または、酸素の凝固点の温度より高く、窒素の凝固点以下の範囲に冷却して用いる。   In the present embodiment, the liquid oxygen is cooled in a range that cannot be cooled in a liquid state with liquid nitrogen, that is, in a range that is higher than the boiling point of nitrogen and lower than the boiling point of oxygen, or higher than the temperature of the freezing point of oxygen. Cool to the range below the freezing point.

本実施形態では、液体酸素を、MRI1の超電導磁石11を冷却することに使用し、この冷却でガス化した酸素を患者の治療などに用いる。本実施形態では、病院で保管されている液体酸素を用いてMRI1の超電導磁石11を冷却することができるので、冷却コストの低廉化が図れる。   In this embodiment, liquid oxygen is used for cooling the superconducting magnet 11 of MRI1, and oxygen gasified by this cooling is used for treatment of a patient. In this embodiment, since the superconducting magnet 11 of MRI1 can be cooled using liquid oxygen stored in a hospital, the cooling cost can be reduced.

<第2実施形態>
図2は、本発明の超電導機器の運転方法の第2実施形態に係る超電導機器の概略構成図である。
<Second Embodiment>
FIG. 2 is a schematic configuration diagram of the superconducting device according to the second embodiment of the method of operating the superconducting device of the present invention.

本実施形態に係る超電導機器は、潜水艦の内部に配置される推進用の超電導モータ2であり、超電導モータ2は、超電導磁界コイル21を備え、超電導モータ2は供給配管22を介して液体酸素タンク23に連通する一方、排出配管24を介して船内へ供給するようになっている。   The superconducting device according to this embodiment is a superconducting motor 2 for propulsion arranged inside a submarine, the superconducting motor 2 includes a superconducting magnetic field coil 21, and the superconducting motor 2 is connected to a liquid oxygen tank via a supply pipe 22. While communicating with 23, it is supplied to the ship through the discharge pipe 24.

液体酸素タンク23内には、船内で作業する作業者の呼吸に必要な酸素を液化して貯留している。供給配管22は、超電導モータ2の超電導磁界コイル21と液体酸素タンク23とを連通しており、供給配管22の途中にポンプ25が設けられている。   In the liquid oxygen tank 23, oxygen necessary for respiration of workers working on the ship is liquefied and stored. The supply pipe 22 communicates the superconducting magnetic field coil 21 of the superconducting motor 2 and the liquid oxygen tank 23, and a pump 25 is provided in the middle of the supply pipe 22.

本実施形態も、ポンプ25を駆動することにより、液体酸素タンク23から液体酸素を供給配管22を介して超電導磁界コイル21に供給し、この液体酸素で超電導磁界コイル21を冷却する。そして、この超電導磁界コイル21を冷却する間に液体酸素をガス化させて、排出配管14から潜水艦内に酸素ガスを排出する。   Also in this embodiment, by driving the pump 25, liquid oxygen is supplied from the liquid oxygen tank 23 to the superconducting magnetic field coil 21 via the supply pipe 22, and the superconducting magnetic field coil 21 is cooled with this liquid oxygen. Then, while the superconducting magnetic field coil 21 is cooled, liquid oxygen is gasified, and oxygen gas is discharged from the discharge pipe 14 into the submarine.

本実施形態でも、液体酸素は、液体窒素では液体の状態で冷却できない範囲である、窒素の沸点以上、酸素の沸点未満の範囲で冷却するか、または、酸素の凝固点の温度より高く、窒素の凝固点以下の範囲に冷却して用いる。   Also in this embodiment, liquid oxygen is cooled in a range that cannot be cooled in a liquid state with liquid nitrogen, in a range higher than the boiling point of nitrogen and lower than the boiling point of oxygen, or higher than the temperature of the freezing point of oxygen, Cool to the range below the freezing point.

本実施形態では、液体酸素を、超電導モータ2の超電導磁界コイル21を冷却することに使用し、この冷却でガス化した酸素を船内に供給する。本実施形態では、潜水艦内に保存されている液体酸素を用いてMRI1の超電導磁石11を冷却することができるので、冷却コストの低廉化が図れる。   In the present embodiment, liquid oxygen is used to cool the superconducting magnetic field coil 21 of the superconducting motor 2, and oxygen gasified by this cooling is supplied into the ship. In this embodiment, the superconducting magnet 11 of the MRI 1 can be cooled using liquid oxygen stored in the submarine, so that the cooling cost can be reduced.

また、本実施形態の超電導モータ2は、小型でありながら、大きな出力を得ることができる。超電導モータとしては、例えば、ブレードの回転軸に連結される回転体と、回転体の周りに配設される電機子コイルと、この電機子コイルの外周に配置される磁気シールドとを備え、回転体の内部中心に液冷媒が充填される冷却室を、その冷却室の外周囲に超電導界磁コイルを配置させたものが挙げられる。   In addition, the superconducting motor 2 of the present embodiment can obtain a large output while being small. The superconducting motor includes, for example, a rotating body connected to the rotating shaft of the blade, an armature coil disposed around the rotating body, and a magnetic shield disposed on the outer periphery of the armature coil. A cooling chamber in which a liquid refrigerant is filled in the center of the body and a superconducting field coil is arranged around the outer periphery of the cooling chamber.

<第3実施形態>
図3は、本発明の超電導機器の運転方法の第3実施形態に係る超電導機器の概略構成図である。
<Third Embodiment>
FIG. 3 is a schematic configuration diagram of the superconducting device according to the third embodiment of the method of operating the superconducting device of the present invention.

本実施形態に係る超電導機器は、例えば製鉄所などで設置されている液体空気分離装置3に設ける圧縮機41の超電導モータ41aであり、超電導モータ41aは、図示していないが、超電導磁界コイルを備える。本実施形態では、液体空気分離装置3で製造される液体酸素または液体酸素と液体アルゴンの混合液冷媒を利用して超電導モータ41aを冷却する。   The superconducting device according to the present embodiment is a superconducting motor 41a of a compressor 41 provided in the liquid air separation device 3 installed in, for example, a steel mill, and the superconducting motor 41a is not shown, but includes a superconducting magnetic field coil. Prepare. In the present embodiment, the superconducting motor 41a is cooled using liquid oxygen produced by the liquid air separation device 3 or a mixed liquid refrigerant of liquid oxygen and liquid argon.

液体空気分離装置3は、空気(ガス)を供給する空気供給部42と、この空気を液化するために圧縮する圧縮機41と、液化した液体空気を貯留する液体空気貯留部43と、液体空気から液体窒素が分離された液体酸素と液体アルゴンの混合液冷媒を貯留する混合液冷媒貯留部44と、この混合液冷媒からさらに液体アルゴンを分離して液体酸素を貯留する液体酸素貯留部45とを備える。   The liquid air separation device 3 includes an air supply unit 42 that supplies air (gas), a compressor 41 that compresses the air to liquefy, a liquid air storage unit 43 that stores liquefied liquid air, and liquid air A mixed liquid refrigerant storage unit 44 that stores a mixed liquid refrigerant of liquid oxygen and liquid argon separated from liquid nitrogen, and a liquid oxygen storage unit 45 that further separates liquid argon from the mixed liquid refrigerant and stores liquid oxygen Is provided.

液体空気貯留部43に貯留されている液体空気は、加熱して窒素ガスを先に発生させて液体窒素を分離し、液体酸素と液体アルゴンの混合液冷媒を製造する。そして、この混合液冷媒を混合液冷媒貯留部44に貯留し、さらに、混合液冷媒を加熱して、液体アルゴンのみをガス化させて、液体酸素を得る。この液体酸素は、液体酸素貯留部45に貯留される。   The liquid air stored in the liquid air storage unit 43 is heated to generate nitrogen gas first to separate the liquid nitrogen, thereby producing a mixed liquid refrigerant of liquid oxygen and liquid argon. Then, the mixed liquid refrigerant is stored in the mixed liquid refrigerant storage unit 44, and further, the mixed liquid refrigerant is heated to gasify only liquid argon to obtain liquid oxygen. This liquid oxygen is stored in the liquid oxygen storage unit 45.

前記混合液冷媒または液体酸素は、圧縮機41の超電導モータ41aを冷却するために用いる。超電導モータ41aは第一供給配管51を介して液体酸素貯留部45に、第二供給配管52を介して液体酸素と液体アルゴンの混合液冷媒貯留部44に連通している。第一供給配管51と第二供給配管52の途中にはポンプ55が設けられている。また、超電導モータ41aは、第一排出配管53を介して酸素ガス貯留部46に、第二排出配管54を介して酸素ガスとアルゴンガスの混合ガス冷媒貯留部47に連通している。   The mixed liquid refrigerant or liquid oxygen is used to cool the superconducting motor 41a of the compressor 41. The superconducting motor 41a communicates with the liquid oxygen reservoir 45 via the first supply pipe 51 and with the mixed liquid refrigerant reservoir 44 of liquid oxygen and liquid argon via the second supply pipe 52. A pump 55 is provided in the middle of the first supply pipe 51 and the second supply pipe 52. The superconducting motor 41a communicates with the oxygen gas reservoir 46 through the first exhaust pipe 53 and with the mixed gas refrigerant reservoir 47 of oxygen gas and argon gas through the second exhaust pipe 54.

そして、超電導モータ41aを冷却した後の酸素ガスまたは酸素ガスとアルゴンガスの混合ガス冷媒を再度空気供給部42に供給して、液化する。   Then, the oxygen gas or the mixed gas refrigerant of oxygen gas and argon gas after cooling the superconducting motor 41a is supplied again to the air supply unit 42 to be liquefied.

本第三実施形態では、液体空気分離装置3で得られた液体酸素または前記混合液冷媒を超電導モータ41aの冷却に用いている。また、液体酸素または前記混合液冷媒は、前記した第一実施形態や第二実施形態のように、超電導モータ41aの冷却以外に用いることもできる。   In the third embodiment, liquid oxygen obtained by the liquid air separation device 3 or the mixed liquid refrigerant is used for cooling the superconducting motor 41a. Further, the liquid oxygen or the mixed liquid refrigerant can be used other than the cooling of the superconducting motor 41a as in the first embodiment and the second embodiment described above.

さらに、超電導モータ41aを冷却した後にガス化した酸素ガスと混合ガス冷媒は、再度液化して、超電導モータ41aの冷却や他の用途に用いることができる。また、酸素ガスと混合ガス冷媒も他の用途に用いることができる。   Further, the oxygen gas and the mixed gas refrigerant gasified after cooling the superconducting motor 41a can be liquefied again and used for cooling the superconducting motor 41a and other applications. Also, oxygen gas and mixed gas refrigerant can be used for other applications.

本実施形態では、液体空気分離装置3で製造される液体酸素または液体酸素と液体アルゴンの混合液冷媒を利用して超電導モータ41aを冷却するので、超電導モータ41aを冷却するシステムのコストの低廉化が図れる。   In the present embodiment, the superconducting motor 41a is cooled using the liquid oxygen produced by the liquid air separation device 3 or the liquid refrigerant of liquid oxygen and liquid argon, so the cost of the system for cooling the superconducting motor 41a is reduced. Can be planned.

そして、前記混合液冷媒の凝固点は、液体酸素と同程度であり、アルゴンを除去することなく液体酸素並の凝固点を得ることができるので、混合液冷媒を超電導モータ41aの冷却に用いる場合には、冷媒の製造コストの低廉化が図れながら、超電導部材の電流密度を上げることができる。   And since the freezing point of the mixed liquid refrigerant is about the same as that of liquid oxygen, it is possible to obtain a freezing point similar to liquid oxygen without removing argon, so when using the mixed liquid refrigerant for cooling the superconducting motor 41a. The current density of the superconducting member can be increased while the manufacturing cost of the refrigerant can be reduced.

本実施形態では、液体空気分離装置3に設ける圧縮機41のモータを超電導モータ41aとしているので、軽量・小型化できながら所望の圧縮能力を得ることができる。また、図示していないが、液体空気分離装置3に設けられている各機器に電力を供給する発電機を超電導発電機とし、この発電機の超電導磁気コイルを液体空気分離装置3で分離した液体酸素や混合液冷媒で冷却することもできる。超電導発電機を用いることにより、発電効率が非常に良くなる。   In the present embodiment, since the motor of the compressor 41 provided in the liquid air separation device 3 is the superconducting motor 41a, it is possible to obtain a desired compression capacity while being lightweight and downsized. In addition, although not shown, a generator that supplies power to each device provided in the liquid air separation device 3 is a superconducting generator, and the superconducting magnetic coil of this generator is separated by the liquid air separation device 3. It can also be cooled with oxygen or a mixed liquid refrigerant. By using a superconducting generator, the power generation efficiency is greatly improved.

本発明の超電導機器の運転方法は、既存の液体酸素を用いる設備の近くで超電導機器を用いる場合に好適である。   The method for operating a superconducting device of the present invention is suitable when a superconducting device is used near an existing facility using liquid oxygen.

本発明の超電導機器の運転方法に係る第1実施形態で、超電導機器としてMRIを用い、このMRIの超電導部材を冷却する構成の概略を示す説明図である。FIG. 2 is an explanatory diagram showing an outline of a configuration in which an MRI is used as a superconducting device and a superconducting member of the MRI is cooled in the first embodiment relating to the operation method of the superconducting device of the present invention. 本発明の超電導機器の運転方法に係る第2実施形態で、超電導機器として超電導モータを用い、この超電導モータの超電導部材を冷却する構成の概略を示す説明図である。In 2nd Embodiment which concerns on the operating method of the superconducting apparatus of this invention, it is explanatory drawing which shows the outline of the structure which uses a superconducting motor as a superconducting apparatus and cools the superconducting member of this superconducting motor. 本発明の超電導機器の運転方法に係る第3実施形態で、超電導機器である超電導モータを有する液体空気分離装置の構成の概略を示す説明図である。It is explanatory drawing which shows the outline of a structure of the liquid air separation apparatus which has the superconducting motor which is 3rd Embodiment which concerns on the operating method of the superconducting apparatus of this invention.

符号の説明Explanation of symbols

1 MRI 11 超電導磁石 12 供給配管
13 液体酸素タンク 14 排出配管 15 ポンプ
2 超電導モータ 21 超電導磁界コイル 22 供給配管
23 液体酸素タンク 24 排出配管 25 ポンプ
3 液体空気分離装置
41 圧縮機 41a 超電導モータ
42 空気供給部 43 液体空気貯留部 44 混合液冷媒貯留部
45 液体酸素貯留部 46 酸素ガス貯留部 47 混合ガス冷媒貯留部
51 第一供給配管 52 第二供給配管
53 第一排出配管 54 第二排出配管
55 ポンプ
1 MRI 11 Superconducting magnet 12 Supply piping
13 Liquid oxygen tank 14 Discharge piping 15 Pump
2 Superconducting motor 21 Superconducting magnetic field coil 22 Supply piping
23 Liquid oxygen tank 24 Discharge piping 25 Pump
3 Liquid air separator
41 Compressor 41a Superconducting motor
42 Air supply section 43 Liquid air storage section 44 Mixed liquid refrigerant storage section
45 Liquid oxygen reservoir 46 Oxygen gas reservoir 47 Mixed gas refrigerant reservoir
51 First supply pipe 52 Second supply pipe
53 First discharge pipe 54 Second discharge pipe
55 Pump

Claims (5)

超電導部材を用いた超電導機器の運転方法であって、
超電導部材を冷却する冷媒として、窒素の沸点以上、酸素の沸点未満の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却して超電導機器を運転することを特徴とする超電導機器の運転方法。
A method of operating a superconducting device using a superconducting member,
The superconducting device is characterized in that as a refrigerant for cooling the superconducting member, liquid oxygen cooled to a range not lower than the boiling point of nitrogen and lower than the boiling point of oxygen is used, and the superconducting member is operated by cooling the superconducting member with this liquid oxygen. how to drive.
超電導部材を用いた超電導機器の運転方法であって、
超電導部材を冷却する冷媒として、酸素の凝固点の温度より高く、窒素の凝固点以下の範囲に冷却した液体酸素を用い、この液体酸素で超電導部材を冷却して超電導機器を運転することを特徴とする超電導機器の運転方法。
A method of operating a superconducting device using a superconducting member,
As the refrigerant for cooling the superconducting member, liquid oxygen that is cooled to a temperature higher than the freezing point of oxygen and below the freezing point of nitrogen is used, and the superconducting member is cooled with this liquid oxygen to operate the superconducting device. How to operate superconducting equipment.
超電導機器を除く既存の設備で用いられる液体酸素を用いることを特徴とする請求項1または請求項2に記載の超電導機器の運転方法。   The method for operating a superconducting device according to claim 1 or 2, wherein liquid oxygen used in existing facilities excluding the superconducting device is used. 超電導部材を用いた超電導機器の運転方法であって、
超電導部材を冷却する冷媒として、酸素とアルゴンの混合物を用い、
酸素とアルゴンの混合物を冷却し、液化した酸素とアルゴンの混合物で超電導部材を冷却して超電導機器を運転することを特徴とする超電導機器の運転方法。
A method of operating a superconducting device using a superconducting member,
As a refrigerant for cooling the superconducting member, a mixture of oxygen and argon is used,
A method of operating a superconducting device, wherein a superconducting device is operated by cooling a mixture of oxygen and argon, cooling a superconducting member with a liquefied mixture of oxygen and argon.
液体酸素と液体アルゴンの混合物は、空気を液化して得られた液体空気から窒素と不純物を分離して製造されていることを特徴とする請求項4に記載の超電導機器の運転方法。   The method of operating a superconducting device according to claim 4, wherein the mixture of liquid oxygen and liquid argon is produced by separating nitrogen and impurities from liquid air obtained by liquefying air.
JP2006300787A 2006-11-06 2006-11-06 Operation method of superconducting apparatus Pending JP2008113893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300787A JP2008113893A (en) 2006-11-06 2006-11-06 Operation method of superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300787A JP2008113893A (en) 2006-11-06 2006-11-06 Operation method of superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2008113893A true JP2008113893A (en) 2008-05-22

Family

ID=39500364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300787A Pending JP2008113893A (en) 2006-11-06 2006-11-06 Operation method of superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2008113893A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960006A (en) * 2021-01-26 2021-06-15 中车青岛四方机车车辆股份有限公司 Cooling and oxygen supply system based on phase change heat absorption and vacuum pipeline magnetic suspension train

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936444A (en) * 1995-07-25 1997-02-07 Nippon Steel Corp Cooling method for superconducting coil
JPH11132653A (en) * 1997-10-29 1999-05-21 Kobe Steel Ltd Air separating method and device therefor
JP2002135917A (en) * 2000-10-20 2002-05-10 Toshiba Corp Transmission and transformation facility
JP2004085167A (en) * 2002-07-01 2004-03-18 Fuji Electric Systems Co Ltd Method and apparatus for producing oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936444A (en) * 1995-07-25 1997-02-07 Nippon Steel Corp Cooling method for superconducting coil
JPH11132653A (en) * 1997-10-29 1999-05-21 Kobe Steel Ltd Air separating method and device therefor
JP2002135917A (en) * 2000-10-20 2002-05-10 Toshiba Corp Transmission and transformation facility
JP2004085167A (en) * 2002-07-01 2004-03-18 Fuji Electric Systems Co Ltd Method and apparatus for producing oxygen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112960006A (en) * 2021-01-26 2021-06-15 中车青岛四方机车车辆股份有限公司 Cooling and oxygen supply system based on phase change heat absorption and vacuum pipeline magnetic suspension train

Similar Documents

Publication Publication Date Title
JP5196781B2 (en) Closed loop precooling method and apparatus for equipment cooled to cryogenic temperature
US7764153B2 (en) Magnetic field generator
US20130104570A1 (en) Cryogenic cooling system
JP2011176289A (en) Method for recovering helium
ES2358356T3 (en) REFRIGERATION SYSTEM FOR SUPERCONDUCTING DEVICES.
JP2002208512A (en) High-temperature superconducting coil cooling method and cooling structure
US7935450B2 (en) Method for operation of an energy system, as well as an energy system
JP2011082229A (en) Conduction-cooled superconducting magnet
JP2009243837A (en) Very low temperature cooling device
JP5275957B2 (en) Flywheel power storage device with superconducting magnetic bearing
CN207481632U (en) A kind of dynamical system and the vehicles
JP2008113893A (en) Operation method of superconducting apparatus
JP2015187525A (en) Brayton cycle refrigerator, and method for cooling heat generating part of turbo-compressor
JP2016169880A (en) Superconductive cable cooling device and superconductive cable cooling method
RU2601218C1 (en) Method of inductive accumulator superconducting winding cryostatting and supply and device for its implementation
JP2009183372A (en) Magnetic resonance imaging apparatus
JP2006009917A (en) Apparatus for storing liquid hydrogen
JPH1092627A (en) Superconducting electric power storage system
Oberly Lightweight superconducting generators for mobile military platforms
WO2015110389A1 (en) Cooling device and method for a magnetic resonance imaging system
JP2007225229A (en) Method and device for cooling liquid
JP2005156051A (en) Superconductive member cooling device, and its control method
JP2009172317A (en) Magnetic resonance imaging apparatus
KR101091180B1 (en) Cooling structure of fully superconducting rotating machine
US20220068530A1 (en) Apparatus and System to Maximize Heat Capacity in Cryogenic Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120705