JP2010045267A - Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter - Google Patents

Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter Download PDF

Info

Publication number
JP2010045267A
JP2010045267A JP2008209396A JP2008209396A JP2010045267A JP 2010045267 A JP2010045267 A JP 2010045267A JP 2008209396 A JP2008209396 A JP 2008209396A JP 2008209396 A JP2008209396 A JP 2008209396A JP 2010045267 A JP2010045267 A JP 2010045267A
Authority
JP
Japan
Prior art keywords
current
current value
value
limiter
limiting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008209396A
Other languages
Japanese (ja)
Inventor
Shinji Torii
慎治 鳥居
Ataru Ichinose
中 一瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008209396A priority Critical patent/JP2010045267A/en
Publication of JP2010045267A publication Critical patent/JP2010045267A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Breakers (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To regulate variations of starting current value in a current-limiting operation, that occurs as individual difference in a manufactured SN-transition type superconducting current limiter so that they lie within a range from a non-actuation duty required from a system to actuation duty. <P>SOLUTION: In an SN-transition type superconducting current limiter which houses a superconducting current-limiting element 1 inside a low-temperature container 3 and holds the element in a superconducting state, a freezer 4 is provided in the low-temperature container 3, and while defining as a current-limiting operation starting current value a current value when the resistance is generated, at a fixed ratio with respect to resistance of the SN-transition type superconducting current limiter, just above the critical temperature and defining as a reference a previously measured current-limiting operation starting current value of the current limiter; the temperature of a cooling fluid 9 inside the low-temperature container 3 is controlled by the freezer 4 so as that it makes the current-limiting operation initiation current value lie within a range of actuation duty and non-actuation duty, at a point where the current limiter is introduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超電導導体を用いた超電導限流器の限流動作開始開始電流値の調整方法及び装置に関するものである。   The present invention relates to a method and an apparatus for adjusting a current limiting operation start current value of a superconducting fault current limiter using a superconducting conductor.

限流器に超電導技術を適用することにより、常時の損失を低減するとともに、系統に発生した故障を自ら検出し、第一波から限流することが可能となる。特に超電導−常電導転移を利用したSN転移型超電導限流器は原理と構造が簡単であり、構成が簡素であることから、実現が可能な機器と考えられている。   By applying the superconducting technology to the current limiter, it is possible to reduce the normal loss and to detect the fault occurring in the system by itself and to limit the current from the first wave. In particular, the SN transition type superconducting fault current limiter utilizing the superconducting-normal conducting transition has a simple principle and structure and a simple configuration, and is considered to be a realizable device.

SN転移型超電導限流器としては、金属系超電導線材、高温超電導バルク材料、高温超電導線材および高温超電導薄膜など、これまでに様々な材料で検討されてきた。その中でも、YBaCuO7−y(以下YBCOと呼ぶ)薄膜を用いたSN転移型超電導限流器は、薄膜の高臨界電流密度、常電導転移時の高抵抗の実現等により、適用への期待が高い。しかし、実規模の限流器を構成するためには、現状のYBCO薄膜の製作技術では1素子あたりの電流容量および電圧耐量が小さいため、数多くのYBCO薄膜を多数直並列接続しなければならない。しかも、臨界電流値などの超電導特性を制御できる製造技術が確立していないため、素子ごとに限流動作がばらつき、これを組み合わせて構成する限流器の特性もばらつくことから、同程度の電流値で動作する限流器を複数製作することは困難である。 As the SN transition type superconducting fault current limiter, various materials such as metallic superconducting wires, high temperature superconducting bulk materials, high temperature superconducting wires and high temperature superconducting thin films have been studied so far. Among them, the SN transition type superconducting fault current limiter using a YBa 2 CuO 7-y (hereinafter referred to as YBCO) thin film can be applied due to the high critical current density of the thin film and the realization of high resistance at the normal conducting transition. Expectation is high. However, in order to construct an actual-scale current limiting device, the current YBCO thin film fabrication technology has a small current capacity and voltage withstand capability per element, so a large number of YBCO thin films must be connected in series and parallel. Moreover, since no manufacturing technology has been established that can control the superconducting characteristics such as the critical current value, the current-limiting operation varies from element to element, and the characteristics of the current-limiting device that is configured by combining these elements vary. It is difficult to produce multiple current limiters that operate on values.

加えて、超電導体を用いた限流器は、超電導導体のマトリックスとして高電気抵抗なCu−Ni合金を用いているため、安定性が悪く、少しの導体の動きでもクエンチ(超電導状態から常電導状態への突発的な転移現象)を起こすものであり、動作が不安となる問題を有している。   In addition, current limiters using superconductors use Cu-Ni alloys with high electrical resistance as the matrix of superconducting conductors, so they are not stable and can be quenched even when there is a small amount of conductor movement (from superconducting state to normal conducting state). (Sudden transition phenomenon to the state), and there is a problem that the operation becomes uneasy.

そこで、限流器に用いる超電導導体に密着または隣接するように熱を加える部分を設け、熱により超電導導体の温度を変化させ、超電導導体がクエンチする電流値を任意に低下、制御することで求める所定の限流動作開始電流値を設定することを試みたものもある(特許文献1)。限流器において熱を超電導導体に加える部分を設けることにより、加える熱の影響で限流器に用いた超電導導体のクエンチ電流を低下させ、また、加える熱量を変えることでクエンチ電流を設定通りにしようとしている。   Therefore, a part for applying heat to the superconducting conductor used for the current limiter is provided so that it is in close contact with or adjacent to the superconducting conductor. Some attempt to set a predetermined current-limiting operation start current value (Patent Document 1). By providing a part that applies heat to the superconductor in the current limiter, the quench current of the superconductor used in the current limiter is reduced due to the influence of the applied heat, and the quench current is set as set by changing the amount of heat applied. Trying to.

特開平8−335525JP-A-8-335525

しかしながら、超電導導体部の周りにヒータを埋め込み、加熱してクエンチ電流を調整するものであるため、クエンチ電流値の調整は一方向のみであり、最適値を得られるとは限らないものである。つまり、YBCO薄膜全体の臨界電流も、薄膜内部の各部分における臨界電流密度の分布にもばらつきがあるにもかかわらず、超電導体限流素子の限流動作開始開始電流値を下げる方向にしか調整できないため、限流動作開始開始電流値を系統から要求される不動作責務から動作責務までの範囲内に設定することができない事態を招く虞がある。   However, since the heater is embedded around the superconducting conductor and the quench current is adjusted by heating, the adjustment of the quench current value is only in one direction, and the optimum value is not always obtained. In other words, the critical current of the entire YBCO thin film is adjusted only in the direction of lowering the current limiting start current value of the superconductor current limiting element, although the distribution of the critical current density in each part of the thin film also varies. Therefore, there is a possibility that the current limiting operation start start current value cannot be set within the range from the non-operation duty required by the system to the operation duty.

しかも、この限流動作開始電流値調整方法では、熱量はいつも限流器に投入されているので、ジュール損失として冷媒として用いる液体ヘリウムを気化させ、損失として発生させる。したがって、超電導限流素子全体に適用する場合には損失が無視できないものとなる。他方、損失を低減させるためにヒータでの限流素子の加熱を局部的なものとしても、YBCO薄膜全体が一定の限流動作開始開始電流値に調整されることはないので、YBCO薄膜全体に同時に限流動作が起こらず、限流動作した部分のみで全電圧を分担し限流効果が少ないことから、限流動作している部分に大きな電流が流れ続け、限流動作部を焼損する虞がある。しかも、長さ方向にばらつきがあると、一斉に超電導から常電導に転移することは難しく限流動作が不安定なものとなる。   In addition, in this current limiting operation start current value adjusting method, since the amount of heat is always supplied to the current limiting device, liquid helium used as a refrigerant is vaporized as Joule loss and generated as a loss. Therefore, when applied to the whole superconducting current limiting element, the loss cannot be ignored. On the other hand, even if the current limiting element is heated locally by the heater in order to reduce the loss, the entire YBCO thin film is not adjusted to a constant current limiting operation start current value. At the same time, current-limiting operation does not occur, and since all the voltage is shared only by the current-limiting part and the current-limiting effect is small, a large current continues to flow in the current-limiting part, and the current-limiting part may burn out There is. Moreover, if there are variations in the length direction, it is difficult to transfer from superconductivity to normal conductivity all at once, and the current limiting operation becomes unstable.

さらに、高温超電導体は第2種超電導体に属し、磁場と超電導とが共存する混合状態(下部臨界磁場Hc1と上部臨界磁場Hc2との間)を有することから、臨界電流を超えてもすぐにクエンチせず、臨界電流の150%〜200%の電流でクエンチする。このため、クエンチ電流値即ち臨界電流値を限流動作開始電流値と想定しても、実際には限流動作を安定して起こさせることは難しいものである。このため、これまでに様々な限流器が提案され、原理検証試験等も実施されているが、実系統に導入されているものはほとんどない。   Further, the high-temperature superconductor belongs to the type 2 superconductor, and has a mixed state in which the magnetic field and the superconductivity coexist (between the lower critical magnetic field Hc1 and the upper critical magnetic field Hc2). Quench at a current of 150% to 200% of the critical current without quenching. For this reason, even if the quench current value, that is, the critical current value is assumed to be the current limiting operation start current value, it is actually difficult to cause the current limiting operation stably. For this reason, various current limiters have been proposed so far, and a principle verification test and the like have been carried out, but few have been introduced into actual systems.

実際の電力系統では、負荷や電力機器の他にそれらを保護するためのリレーシステムなどで構成されていることから、限流動作を確実に行う限流器の動作責務や事象によっては動作してはならない不動作責務は電力系統からの要求により細かく設計したり、調整したりする必要がある。つまり、故障などに対する動作責務だけでなく、変圧器励磁突入電流や過負荷運転時などの不動作を維持することが重要である。限流器が不動作責務に対して動作したり、動作責務に対して不動作となった場合、限流器を系統に導入する意味はなくなる。しかも、その要求は限流器が導入された場所に依存する。さらに、限流器の動作責務は保護リレーシステムの変化などに応じて容易に調整できる必要がある。そこで、限流器が導入された場所に応じて、動作開始電流値を調整し、系統から要求される不動作責務から動作責務までの範囲内に設定する技術の確立が望まれる。   The actual power system is composed of a load system and a relay system to protect them in addition to the load and power equipment, so it may operate depending on the duty and event of the current limiter that reliably performs the current limiting operation. Non-operational obligations that must not be made need to be finely designed or adjusted according to the demands of the power system. In other words, it is important to maintain not only the operation responsibility for failure and the like, but also non-operation such as during transformer inrush current and overload operation. If the current limiter operates for a non-operational duty or becomes non-operational for an operation duty, there is no point in introducing the current limiter into the system. Moreover, this requirement depends on where the current limiter is installed. In addition, the operational responsibility of the current limiter must be easily adjustable according to changes in the protection relay system. Therefore, it is desired to establish a technique for adjusting the operation start current value according to the place where the current limiter is introduced and setting it within the range from the non-operation duty to the operation duty required by the system.

本発明は、かかる要望に応えるものであり、製作されたSN転移型超電導限流器の固体差として生ずる限流動作開始電流値のばらつきを、系統から要求される不動作責務から動作責務までの範囲内に収めるように調整する方法及び装置を提供することを目的とする。   The present invention responds to such a demand, and the variation of the current limiting operation start current value generated as a solid difference of the produced SN transition type superconducting fault current limiter, from the non-operation duty required by the system to the operation duty. It is an object of the present invention to provide a method and an apparatus for adjusting to be within a range.

かかる目的を達成するため、本発明者等がYBCO薄膜を用いた限流素子の交流通電時の温度や周波数(電流上昇率)を変えたときの限流動作開始電流値の影響を種々実験・研究した結果、高温超電導体の臨界温度Tc直上の限流素子の抵抗値(R)に対し一定の割合の抵抗(a%R:ノイズと分離できるレベルの抵抗)が発生したときの電流値を限流動作開始電流値と定義し、該限流動作開始電流値の温度依存性を求めたとき、臨界電流値(Ic)の温度変化と同様にほぼ線形に変化し尚かつその温度依存性が高いことが明らかにした(限流動作開始電流値の温度依存性)。そして、この特性を利用することにより、温度を変化させることによって、SN転移型超電導限流器の動作開始電流値を制御できることがわかった。   In order to achieve this object, the present inventors conducted various experiments on the influence of the current-limiting operation starting current value when the temperature and frequency (current increase rate) at the time of AC energization of the current-limiting element using the YBCO thin film were changed. As a result of research, the current value when a certain ratio of resistance (a% R: resistance that can be separated from noise) occurs with respect to the resistance value (R) of the current limiting element immediately above the critical temperature Tc of the high-temperature superconductor. When it is defined as a current limiting operation start current value and the temperature dependency of the current limiting operation start current value is obtained, it changes almost linearly as well as the temperature change of the critical current value (Ic), and the temperature dependency is It was clarified that it was high (temperature dependence of the current limiting operation starting current value). By using this characteristic, it was found that the operation start current value of the SN transition type superconducting current limiter can be controlled by changing the temperature.

また、常電導状態に転移する直前の限流動作開始電流値は、電流上昇率に依存しないことを明らかにした(限流動作開始電流値の電流上昇率依存性)。これは、常電導に転移する主要因が電流に支配されているためと考えられる。このことから、故障時の位相や大きさなどによって電流の上昇率が変わっても、限流動作が開始する電流は影響を受けないことが示唆された。   It was also clarified that the current limiting operation start current value immediately before the transition to the normal conducting state does not depend on the current increase rate (current increase rate dependency of the current limiting operation start current value). This is presumably because the main factor for transition to normal conduction is dominated by current. This suggests that the current at which the current limiting operation is started is not affected even if the rate of increase in current varies depending on the phase and magnitude at the time of failure.

したがって、限流動作開始電流値測定における電流電圧特性から、超電導−常電導転移の初期の低磁束流抵抗領域では発熱による温度上昇がきっかけとなるが、クエンチに至る高磁束流抵抗領域近傍では最終的には電流の大きさに起因して常電導転移して故障電流を限流すると考えられる。つまり、動作責務の電流値よりも小さな不動作責務領域の電流値では、故障時の位相や大きさなどによって電流の上昇率が変わっても、限流動作が開始する電流は影響を受けないが温度の変化に強く影響を受け、不動作責務の電流値より大きな電流値となる動作責務の領域においては電流値の大きさに支配されることが示唆されるものと考えられる。   Therefore, from the current-voltage characteristics in the current-limiting operation start current value measurement, the temperature rise due to heat generation is triggered in the low magnetic flux resistance region at the initial stage of the superconducting-normal conducting transition, but in the vicinity of the high magnetic flux flow resistance region leading to the quench, Therefore, it is considered that the fault current is limited by the normal conduction transition due to the magnitude of the current. In other words, if the current value in the non-operation duty area is smaller than the current value of the operation duty, the current at which the current limiting operation starts is not affected even if the rate of increase of the current changes depending on the phase or magnitude at the time of failure. This is considered to be influenced by the magnitude of the current value in the area of the operation duty which is strongly influenced by the temperature change and becomes a current value larger than the current value of the non-operation duty.

即ち、磁場と超電導とが共存する混合状態(下部臨界磁場Hc1と上部臨界磁場Hc2との間)の低磁束硫抵抗領域に限流動作開始電流値を設定することにより、これまで製膜したYBCO薄膜の臨界電流によって一意的に決まっていた動作開始電流値を調整することが可能であることを知見した。   That is, by setting the current limiting operation starting current value in the low flux flux resistance region in a mixed state (between the lower critical magnetic field Hc1 and the upper critical magnetic field Hc2) in which the magnetic field and the superconductivity coexist, It was found that it was possible to adjust the operation start current value uniquely determined by the critical current of the thin film.

本発明の超電導限流器の限流動作開始電流値の調整方法は、かかる知見に基づくものであり、SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、前記限流器の前記限流動作開始電流値を測定し、該測定値を基準にして低温容器内で当該超電導限流素子を冷却する冷却流体の温度を制御することによって、当該限流器が導入される箇所での動作責務と不動作責務の範囲内に、前記限流動作開始電流値を収めるように調整するものである。   The adjustment method of the current limiting operation start current value of the superconducting fault current limiter of the present invention is based on such knowledge, and generates a certain ratio of resistance to the resistance just above the critical temperature of the SN transition type superconducting current limiter. The current value of the current limiter as a current limiting operation start current value, the current limiting operation start current value of the current limiter is measured, and the cooling fluid that cools the superconducting current limiting element in a cryogenic vessel based on the measured value By controlling the temperature, the current limiting operation start current value is adjusted to be within the range of the operation duty and the non-operation responsibility at the place where the current limiter is introduced.

また、請求項2記載の発明にかかる超電導限流器の限流動作開始電流値調整装置は、超電導体限流素子を低温容器内に収容して超電導状態に保持しているSN転移型超電導限流器において、前記低温容器に冷凍機を備え、当該SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、予め測定された当該限流器の前記限流動作開始電流値を基準にして当該限流器が導入される箇所での動作責務と不動作責務の範囲内に前記限流動作開始電流値を収めるように前記低温容器内の冷却流体の温度を前記冷凍機で制御するものである。   According to a second aspect of the present invention, there is provided a current limiting adjustment device for current limiting operation of a superconducting fault current limiter, wherein the superconducting current limiting element is housed in a cryogenic container and held in a superconducting state. In the flow device, the cryogenic vessel is equipped with a refrigerator, and the current value when a certain percentage of resistance is generated with respect to the resistance just above the critical temperature of the SN transition type superconducting current limiter is defined as a current limiting operation start current value, The current limiting operation start current value is within the range of the operation duty and the non-operation responsibility at the place where the current limiter is introduced with reference to the current limit operation start current value of the current limiter measured in advance. Thus, the temperature of the cooling fluid in the cryogenic container is controlled by the refrigerator.

さらに、請求項3記載の発明にかかる超電導限流器の限流動作開始電流値調整装置は、超電導体限流素子を低温容器内に収容して超電導状態に保持しているSN転移型超電導限流器において、前記低温容器に冷媒ガスの加圧あるいは減圧のための真空ポンプを備え、当該SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、予め測定された当該限流器の前記限流動作開始電流値を基準にして当該限流器が導入される箇所での動作責務と不動作責務の範囲内に前記限流動作開始電流値を収めるように前記低温容器内の冷却流体の温度を前記真空ポンプで制御するものである。   Furthermore, the current limiting operation start current value adjusting device for a superconducting fault current limiter according to the invention of claim 3 is an SN transition type superconducting limit in which a superconducting current limiting element is accommodated in a cryogenic container and held in a superconducting state. In a fluidizer, the cryogenic vessel is provided with a vacuum pump for pressurizing or depressurizing the refrigerant gas, and a current when a certain ratio of resistance is generated with respect to the resistance just above the critical temperature of the SN transition type superconducting fault current limiter Within the range of operational responsibility and non-operational responsibility at the location where the current limiter is introduced with reference to the current limit operation start current value of the current limiter measured in advance as a current limiting operation start current value The temperature of the cooling fluid in the cryogenic vessel is controlled by the vacuum pump so as to contain the current limiting operation start current value.

本発明の超電導限流器の限流動作開始電流値の調整方法並びに装置によれば、限流器を製造したあとでも、超電導導体を冷却する冷却媒体の温度を変化させることにより、超電導導体限流素子全体が限流動作開始する電流値を任意に上昇あるいは低下させることで、当該限流器の動作責務と不動作責務の範囲内に、限流動作開始電流値を収めるように調整することができる。   According to the method and apparatus for adjusting the current limiting operation start current value of the superconducting fault current limiter of the present invention, the temperature of the cooling medium that cools the superconducting conductor is changed even after the current limiting unit is manufactured, thereby limiting the superconducting current limiter. Adjust the current-limiting operation start current value so that it falls within the range of operating responsibility and non-operating responsibility of the current limiter by arbitrarily increasing or decreasing the current value at which the current-limiting element starts current-limiting operation. Can do.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1に本発明の超電導限流器の限流動作開始電流値調整装置の実施の一形態を示す。この超電導限流器の限流動作開始電流値調整装置は、冷凍機を使用して冷媒を冷却する方式のものであり、限流素子1と、該限流素子1を冷却するコールドヘッド部2と、限流素子1とコールドヘッド部2とを収容すると共に冷却流体9を満たして超電導状態に保持している真空容器からなる低温容器3と、コールドヘッド部2を冷却するGM冷凍機4とを備える。そして、製作された限流素子1の限流動作開始電流値を測定するときには、シャント抵抗5と、パワーアンプ6と、任意波形発生装置7とを製作された限流素子1の限流動作開始電流値を測定するための測定機器として準備する。勿論、限流器を系統に導入する前に、基準時例えば冷媒として液体窒素を用いる場合には飽和液体窒素(77.3K)での臨界温度直上の抵抗(R)を求め、その一定割合の抵抗(a%R)時の電流値を限流動作開始電流値として予め測定している場合には、例えば製作時に測定し固有値として明示されている場合などには、任意波形発生装置7などの測定機器は不要である。尚、本発明では冷媒の温度制御により限流動作開始電流値を調整しようとするものであることから、限流素子並びに冷媒を収める低温容器3は、冷媒の温度が変化するのを防ぐために、密閉容器で断熱性に優れるものであると共に温度管理が容易なものであることが望まれる。   FIG. 1 shows an embodiment of a current limiting operation starting current value adjusting device for a superconducting fault current limiter according to the present invention. This current limiting operation start current value adjusting device for a superconducting current limiting device is of a type that cools a refrigerant using a refrigerator, and includes a current limiting element 1 and a cold head portion 2 that cools the current limiting element 1. A cryogenic container 3 comprising a vacuum container that contains the current limiting element 1 and the cold head part 2 and is filled with the cooling fluid 9 and held in a superconducting state, and a GM refrigerator 4 that cools the cold head part 2 Is provided. When the current limiting operation start current value of the manufactured current limiting element 1 is measured, the current limiting operation start of the current limiting element 1 manufactured with the shunt resistor 5, the power amplifier 6, and the arbitrary waveform generator 7 is started. Prepare as a measuring instrument to measure the current value. Of course, before introducing the current limiter into the system, when liquid nitrogen is used as a reference, for example, when the liquid nitrogen is used, the resistance (R) immediately above the critical temperature with saturated liquid nitrogen (77.3 K) is obtained, When the current value at the time of resistance (a% R) is measured in advance as the current-limiting operation start current value, for example, when measured at the time of manufacture and clearly indicated as an eigenvalue, the arbitrary waveform generator 7 or the like No measuring equipment is required. In the present invention, since the current limiting operation start current value is to be adjusted by controlling the temperature of the refrigerant, the low temperature container 3 containing the current limiting element and the refrigerant is used to prevent the refrigerant temperature from changing. It is desired that the sealed container is excellent in heat insulating properties and easy in temperature control.

ここで、コールドヘッド部2は、熱伝導性の良い物質例えば銅などで形成され、GM冷凍機に接続されて冷却流体9例えば液体窒素を冷却可能に構成される。同時に、図示していないが、その内部に監視用の温度センサとヒータとが埋設されており、液体窒素を冷却することは勿論のこと、加熱して77.3K以上の温度に制御することを可能とする構造とされている。そして、冷凍機4による冷却とヒータによる加熱とを組み合わせることにより、指定された温度にコールドヘッド部2が温度調節可能とされると共にその温度に保持される。尚、限流素子1の上には、必要に応じて限流素子1の温度を測定するための温度センサー例えばセルノックス温度素子が限流素子1に接着などにより固定される。また、図中の符号10は電圧タップである。   Here, the cold head unit 2 is made of a material having good thermal conductivity, such as copper, and is connected to the GM refrigerator so as to cool the cooling fluid 9 such as liquid nitrogen. At the same time, although not shown, a monitoring temperature sensor and a heater are embedded in the inside, and not only cooling the liquid nitrogen but also heating to control the temperature to 77.3 K or higher. The structure is made possible. Then, by combining the cooling by the refrigerator 4 and the heating by the heater, the temperature of the cold head unit 2 can be adjusted to the designated temperature and maintained at that temperature. On the current limiting element 1, a temperature sensor for measuring the temperature of the current limiting element 1, for example, a Cellnox temperature element, is fixed to the current limiting element 1 by bonding or the like. Moreover, the code | symbol 10 in a figure is a voltage tap.

冷却流体(冷媒)9としては、高温超電導体の限流素子の場合には、例えば液体窒素の使用が一般的であるが、場合によっては液体水素や液体ネオンなどの使用も可能である。限流素子1の組成に応じてに適したものが使用される。   As the cooling fluid (refrigerant) 9, in the case of a current limiting element of a high-temperature superconductor, for example, liquid nitrogen is generally used, but in some cases, liquid hydrogen, liquid neon, or the like can be used. A device suitable for the composition of the current limiting element 1 is used.

以上のように構成されたSN転移型超電導限流器の限流動作開始電流値調整装置によれば、まず、低温容器3内の限流素子1にシャント抵抗5と、パワーアンプ6と、任意波形発生装置7とを接続し、臨界温度の直上の抵抗値を求める。そして、この臨界温度直上の抵抗(R)に対して一定割合の抵抗(a%R)を発生したときの電流値を限流動作開始電流値Ilsと定める。ここで、本実施形態において、YBCO薄膜を用いたSN転移型超電導限流素子の限流動作開始電流値は、電流電圧特性から発生抵抗を算出し、ノイズと分離できる抵抗のレベルとして臨界温度Tc直上の限流素子の抵抗値の10%の抵抗が発生したときの電流値と定義した。10%という数値そのものには特に絶対的意義はなく、例えばそれよりも小さくともあるいは大きくとも良い。しかし、Tc直上抵抗値の10%よりも過剰に小さい値を採ると、一旦常電導転移しても交流電流のように電流が小さくなれば超電導に復帰してしまうことがことが考えられる。本発明者等の実験によると、Tc直上抵抗値の0.3%程度の小さな値を採ったときには、交流電流の変化に伴って超電導への復帰が起こることが考えられ、本発明者等の実験によると電流上昇率10A/secの上下領域で若干の電流の増加が見られるなどの変化が見られた。また、1%程度では、限流動作開始電流値の温度依存性が10%の場合に比べると低い。そこで、全体の10%程度が常電導転移すれば、限流状態での超電導状態への復帰はしない程度の大きさであると判断できた。つまり、事故継続による限流動作の確実な進展が期待できるという意味がある。尚、本明細書において、インラッシュ電流などの事象に対して、限流器が動作してはならない責務を不動作責務とし、その電流値以下では限流器は不動作が要求される。これに対して、故障電流などに対する限流器が動作しなければならない責務を動作責務と呼ぶ。動作責務の電流値は不動作責務より大きくなる。また、本実施形態において、YBCO薄膜を用いた限流素子の交流通電時の周波数即ち電流上昇率は、図2に示すように正弦波電流の立ち上がりの接線の傾きで定義した。 According to the current limiting operation start current value adjusting device of the SN transition type superconducting fault current limiter configured as described above, first, the shunt resistor 5, the power amplifier 6, and the optional current limiting element 1 in the cryogenic vessel 3. The waveform generator 7 is connected and the resistance value immediately above the critical temperature is obtained. Then, a current value when a certain ratio of resistance (a% R) is generated with respect to the resistance (R) immediately above the critical temperature is defined as a current limiting operation start current value Ils. Here, in the present embodiment, the current limiting operation start current value of the SN transition type superconducting current limiting element using the YBCO thin film is calculated by calculating the generated resistance from the current-voltage characteristics, and the critical temperature Tc as the level of resistance that can be separated from noise. It was defined as the current value when a resistance of 10% of the resistance value of the current limiting element directly above was generated. The numerical value of 10% itself has no absolute significance. For example, it may be smaller or larger. However, if a value that is excessively smaller than 10% of the resistance value immediately above Tc is taken, it may be possible that the current returns to superconductivity if the current becomes small like an alternating current even if the normal conduction transition is made. According to the experiments by the inventors, when a small value of about 0.3% of the resistance value immediately above Tc is taken, it is considered that the return to superconductivity occurs along with the change of the alternating current. According to the experiment, changes such as a slight increase in current were observed in the upper and lower regions where the current increase rate was 10 4 A / sec. Further, at about 1%, the temperature dependency of the current limiting operation start current value is lower than that in the case of 10%. Therefore, it can be determined that if about 10% of the total undergoes normal conduction transition, the size is such that it does not return to the superconducting state in the current limiting state. In other words, it means that a certain progress of the current limiting operation can be expected by continuing the accident. In the present specification, the duty that the current limiter must not operate in response to an event such as an inrush current is regarded as a non-operation duty, and the current limiter is required to be inoperative below the current value. On the other hand, the duty that the current limiter must operate against a fault current or the like is called an operation duty. The current value of the operation duty is larger than the non-operation duty. Further, in the present embodiment, the frequency, that is, the rate of current increase when the current limiting element using the YBCO thin film is energized, is defined by the slope of the tangent of the rising sine wave current as shown in FIG.

次に、予め測定された当該限流器の限流動作開始電流値を基準にして当該限流器が導入される箇所での動作責務と不動作責務の範囲内に限流動作開始電流値を収めるように低温容器内の冷却流体の温度を決定し、低温容器3内がその温度に維持されるように冷凍機4で制御する。ここで、限流動作開始電流値と冷媒温度(換言すれば、限流素子温度)との間には、図8に示す温度依存性を有していることから、限流器が導入される箇所での動作責務と不動作責務の範囲内に限流動作開始電流値が収まるように、動作開始電流値を決定し、それに応じた温度を求める。例えば、実験で用いたYBCO薄膜を利用する限流素子の場合は、図8あるいはこの図から求められる以下の近似式を用いてどの程度の温度変化を与えれば良いかが簡単に得られる。尚、近似式において、Tは温度で、単位はKである。
Ils=−15T+1350 (1)
この近似式によると、1Kの温度変化により15Aの限流動作開始電流値が変化することがわかる。電流上昇率31kA/secにおける限流動作開始電流値の温度依存性を示す結果(図8)からは、85.9Kの時の限流動作開始電流値は70Aであり、89.2Kの時の限流動作開始電流値は20Aであり、1Kの温度調整に対して約20%の幅での限流動作開始電流値の調整が可能であり、限流器が導入されたほとんどの場所で対応が可能と考えられる。そこで、限流器が導入される箇所での動作責務と不動作責務の範囲内に限流動作開始電流値が収まるように、冷却流体9の温度を設定しかつ保持されるように、冷凍機4あるいは図示しないヒータを操作する。これにより、限流器の限流動作開始電流値を、製作後に実際の使用環境に応じた範囲内のもの、即ち導入される箇所での動作責務と不動作責務の範囲内に調整することができる。
Next, the current limiting operation start current value is set within the range of the operation responsibility and the non-operation responsibility at the location where the current limiter is introduced with reference to the current limit operation start current value of the current limiter measured in advance. The temperature of the cooling fluid in the cryogenic container is determined so as to be accommodated, and the refrigerator 4 is controlled so that the inside of the cryogenic container 3 is maintained at that temperature. Here, since the current dependence between the current limiting operation start current value and the refrigerant temperature (in other words, the current limiting element temperature) has the temperature dependence shown in FIG. 8, a current limiting device is introduced. The operation start current value is determined so that the current limiting operation start current value falls within the range of the operation responsibility and the non-operation responsibility at the location, and the temperature corresponding to the operation start current value is obtained. For example, in the case of the current limiting element using the YBCO thin film used in the experiment, it is possible to easily obtain how much temperature change should be given using FIG. 8 or the following approximate expression obtained from this figure. In the approximate expression, T is temperature and the unit is K.
Ils = −15T + 1350 (1)
According to this approximate expression, it can be seen that the current limiting operation start current value of 15 A changes with a temperature change of 1K. From the results showing the temperature dependence of the current limiting operation start current value at a current increase rate of 31 kA / sec (FIG. 8), the current limiting operation start current value at 85.9K is 70A, and at 89.2K. The current limit operation start current value is 20A, and the current limit operation start current value can be adjusted within a range of about 20% for temperature adjustment of 1K, and it can be used in most places where current limiters are installed. Is considered possible. Therefore, the refrigerator is set so that the temperature of the cooling fluid 9 is set and maintained so that the current limiting operation start current value is within the range of the operation duty and the non-operation responsibility at the place where the current limiter is introduced. 4 or a heater (not shown) is operated. As a result, the current limiting operation start current value of the current limiter can be adjusted within the range according to the actual use environment after manufacture, that is, within the range of operation responsibility and non-operation responsibility at the place where it is introduced. it can.

また、冷却流体9の温度制御は、特に上述のコールドヘット2を用いた冷凍機とヒータの組み合わせによらずとも、その他の適宜手段によっても実施可能である。例えば、図示していないが、気密構造の低温容器3に冷媒ガス(例えば窒素ガス)の加圧あるいは減圧のための真空ポンプを備え、冷媒ガスを加熱あるいは減圧するだけで温度調節することができる。この場合には、コールドヘッド部2は必要ない。   Further, the temperature control of the cooling fluid 9 can be performed not only by the combination of the refrigerator and the heater using the above-described cold head 2 but also by other appropriate means. For example, although not shown in the drawing, a vacuum pump for pressurizing or depressurizing the refrigerant gas (for example, nitrogen gas) is provided in the hermetic cryogenic container 3, and the temperature can be adjusted only by heating or depressurizing the refrigerant gas. . In this case, the cold head unit 2 is not necessary.

YBCO薄膜を利用した限流素子の限流動作開始電流値の温度依存性について実験し、限流動作開始電流値の調整が冷媒の温度制御によって制御可能であるかどうかを検討した。   Experiments were conducted on the temperature dependence of the current limiting operation start current value of the current limiting element using the YBCO thin film, and it was examined whether the adjustment of the current limiting operation start current value could be controlled by the temperature control of the refrigerant.

(限流素子と実験装置)
測定に用いた限流素子の試料には、サファイア基板上に蒸着した1cm幅、10cm長さ、0.3μm厚さのYBCO薄膜を用いた。
この限流素子1のYBCO薄膜の臨界電流の温度依存性を、図1に示す装置を用いて測定した。限流素子1を超伝導冷却装置の真空チャンバー3内の銅製のコールドヘッド部2の上に載置し、真空中でコールドヘッド部2の温度を制御し、試料の温度を伝導冷却により変化させて測定を行った。測定のブロック図を図1に示す。温度は、試料にセルノックス温度素子を取り付け、測定した。測定された臨界温度は95Kであった。YBCO薄膜の電圧は四端子法で測定された。任意波形発生装置7で電流波形を作り、直流電源を用いて、パワーアンプ6を通して0から100Aの電流を流した。臨界電流の測定では、一定スイープ速度で電流を通電した。交流通電では交流の正極側のみの半波電流を通電した。周波数としては10から100Hzまでの交流電流を通電し、電流の立ち上がりの接線での電流上昇率dI/dtで評価した。図2にdI/dtの定義を示す。今回は最大で60kA/secまでのdI/dtを印加した。YBCO薄膜の温度はセルノックス抵抗温度センサーを用い、86から90Kの範囲で変化させた。
(Current limiting element and experimental device)
A YBCO thin film having a width of 1 cm, a length of 10 cm and a thickness of 0.3 μm deposited on a sapphire substrate was used as a sample of the current limiting element used for the measurement.
The temperature dependence of the critical current of the YBCO thin film of the current limiting element 1 was measured using the apparatus shown in FIG. The current limiting element 1 is placed on the copper cold head part 2 in the vacuum chamber 3 of the superconducting cooling device, the temperature of the cold head part 2 is controlled in vacuum, and the temperature of the sample is changed by conduction cooling. And measured. A block diagram of the measurement is shown in FIG. The temperature was measured by attaching a Cellnox temperature element to the sample. The critical temperature measured was 95K. The voltage of the YBCO thin film was measured by the four probe method. A current waveform was generated by the arbitrary waveform generator 7, and a current of 0 to 100 A was passed through the power amplifier 6 using a DC power source. In the measurement of critical current, current was applied at a constant sweep rate. In AC energization, a half-wave current was applied only on the positive side of the AC. As the frequency, an alternating current of 10 to 100 Hz was applied, and the current increase rate dI / dt at the tangent line of the rising current was evaluated. FIG. 2 shows the definition of dI / dt. This time, dI / dt up to 60 kA / sec was applied. The temperature of the YBCO thin film was varied in the range of 86 to 90K using a Cellnox resistance temperature sensor.

(限流素子の超電導基本特性測定結果)
まず、本実験で用いる限流素子1に1mAの直流電流を通電したときの抵抗の温度特性を求めた。その結果を図9に示す。この結果から、この限流素子の臨界温度Tcが95K程度であることがわかる。室温における抵抗値は約1.1Ω、Tc直上抵抗は約0.3Ωであった。
(Measurement results of basic characteristics of superconducting current limiting element)
First, the temperature characteristic of the resistance when a current of 1 mA was passed through the current limiting element 1 used in this experiment was obtained. The result is shown in FIG. From this result, it can be seen that the critical temperature Tc of this current limiting element is about 95K. The resistance value at room temperature was about 1.1Ω, and the resistance just above Tc was about 0.3Ω.

(実験結果)
(1)臨界電流の測定
まず、YBCO薄膜の臨界電流の温度依存性を測定した。臨界電流値は、任意波形発生装置7を用い、12 V、100 Aの直流電源を定電流制御し、一定時間で電流を0〜100Aまで上昇させて測定した。電流の上昇は、電流変化に伴う温度上昇の影響が無視できる十分ゆっくりとした時間として、約4秒かけて最大値に到達するようにした。約86Kから90Kの範囲で、電流電界特性を測定した。測定した電流−電圧特性は、図3に示すように、86.1Kから91.3Kの範囲にあり、臨界電流の定義には1μV/cmを用いた。
図3で得られた電流電圧特性から、各温度での臨界電流を図4に示した。図4から、臨界電流は温度の低下とともに直線的に増加することがわかる。1Kの温度変化に対して、約8Aの電流変化が見られる。
(Experimental result)
(1) Measurement of critical current First, the temperature dependence of the critical current of the YBCO thin film was measured. The critical current value was measured by using an arbitrary waveform generator 7, controlling a 12 V, 100 A DC power supply at a constant current, and increasing the current from 0 to 100 A in a fixed time. The rise in current reached a maximum value over about 4 seconds as a sufficiently slow time in which the influence of the temperature rise accompanying the change in current was negligible. The electric field characteristics were measured in the range of about 86K to 90K. As shown in FIG. 3, the measured current-voltage characteristics were in the range of 86.1 K to 91.3 K, and 1 μV / cm was used to define the critical current.
From the current-voltage characteristics obtained in FIG. 3, the critical current at each temperature is shown in FIG. FIG. 4 shows that the critical current increases linearly with decreasing temperature. A current change of about 8 A is observed for a temperature change of 1 K.

(2)動作開始電流値の特性
次に、実際の限流器の使用条件下である過渡特性を把握するために、電流上昇率を変えることを目的として、直流電源の電圧設定を最大電圧12Vにし、任意波形発生装置7を用い、100Aまでの交流半波電流を通電したときの限流動作の10〜50Hzの間で周波数を変えて電圧を測定した。測定したときの温度は87Kである。各周波数での電流電圧波形を図5に示す。
一般に臨界電流値以上でのYBCO薄膜での電圧降下は電流のべき乗に比例する。図5からもそのような特性は見られるが、周波数の違いによる差は見られない。また、図5において、YBCO薄膜全体が常電導転移はしておらず、一部は超電導状態として残っている。そこで、限流動作開始電流値IlsをYBCO薄膜の臨界温度直上の抵抗値の10%の値に到達したときの電流値と定義する。そして、限流動作開始電流値として全抵抗の10%を発生したものを、電流のゼロ−ピークまでの時間で最大電流値を除したときの電流上昇率に換算したときのプロットを図6に示す。
(2) Characteristics of the operation start current value Next, in order to grasp the transient characteristics under actual operating conditions of the current limiter, the voltage setting of the DC power supply is set to the maximum voltage of 12 V for the purpose of changing the current increase rate. Then, using the arbitrary waveform generator 7, the voltage was measured by changing the frequency between 10 to 50 Hz of the current limiting operation when an AC half-wave current of up to 100 A was applied. The measured temperature is 87K. The current voltage waveform at each frequency is shown in FIG.
In general, the voltage drop in the YBCO thin film above the critical current value is proportional to the power of the current. Although such a characteristic is seen also from FIG. 5, the difference by the difference in frequency is not seen. Further, in FIG. 5, the entire YBCO thin film is not in the normal conducting transition, and a part remains in the superconducting state. Therefore, the current limiting operation start current value Ils is defined as a current value when the value reaches 10% of the resistance value immediately above the critical temperature of the YBCO thin film. FIG. 6 shows a plot when the current increase rate is calculated by converting 10% of the total resistance as the current limiting operation starting current value into the current increase rate when the maximum current value is divided by the time until the current zero-peak. Show.

図6から、10から60kA/secの範囲の電流上昇率では限流動作開始電流値に差がないことがわかる。これは限流器の動作が電流の絶対値に支配されることを示している。   From FIG. 6, it can be seen that there is no difference in the current limiting operation start current value at a current increase rate in the range of 10 to 60 kA / sec. This indicates that the operation of the current limiter is dominated by the absolute value of the current.

次に、温度を変えて、31kA/secにおける限流動作を測定した。測定は、任意波形発生装置7を用い、直流電源を定電流制御し、一定時間で電流を0〜100Aまで上昇させて測定した。電流の上昇は、電流変化に伴う温度上昇の影響が無視できる十分ゆっくりとした時間として、約4秒かけて最大値に到達するようにした。約89.2Kから85.9Kの範囲で、電流電界特性を測定した。
各温度での電流電圧特性と限流動作開始電流値の温度依存性を図7と図8に示す。図7から、温度をわずかに変えただけでも限流動作時の電圧の立ち上がり方が大きく変わることがわかる。このことは、限流開始電流値は限流素子の温度を変えることにより、大きく制御できる可能性を示している。また、図8からも、限流開始電流値が強い温度依存性を示していることが明らかであり、図4と同様の傾向を示していることがわかる。そして、限流動作開始電流値は温度の上昇とともにほぼ直線的に減少し、1Kの温度変化に対して約15A変化していた。また、図8から、小さな温度変化により、限流動作開始電流値を大きく変化させることができることがわかる。
Next, the current limiting operation at 31 kA / sec was measured while changing the temperature. The measurement was performed by using the arbitrary waveform generator 7, controlling the DC power supply at a constant current, and increasing the current to 0 to 100 A in a certain time. The rise in current reached a maximum value over about 4 seconds as a sufficiently slow time in which the influence of the temperature rise accompanying the change in current was negligible. Current electric field characteristics were measured in the range of about 89.2K to 85.9K.
FIG. 7 and FIG. 8 show the temperature dependence of the current-voltage characteristics and the current-limiting operation start current value at each temperature. From FIG. 7, it can be seen that how the voltage rises during current limiting operation changes greatly even if the temperature is slightly changed. This indicates the possibility that the current limiting start current value can be largely controlled by changing the temperature of the current limiting element. Also from FIG. 8, it is clear that the current limiting start current value shows a strong temperature dependence, and it can be seen that the same tendency as in FIG. 4 is shown. The current limiting operation start current value decreased almost linearly as the temperature increased, and changed by about 15 A with respect to a 1 K temperature change. Further, it can be seen from FIG. 8 that the current-limiting operation start current value can be greatly changed by a small temperature change.

以上の実験結果から、次のことが判明した。図6に示した電流電圧特性から、限流動作開始電流値は電流上昇率依存性を持たない。これは限流動作開始電流が電流の大きさの絶対値のみで決まることを示しており、故障時の位相などによって変化する電流上昇率の変化に対して変わらないことを示している。さらに、電流−電圧特性は、限流器が超電導状態から常電導状態に転移するまで、臨界電流測定時の低電界領域からクエンチ直前の高電圧領域まで連続的に変化していることがわかる。これによりクエンチ直前までの詳細な限流動作解析モデルの構築に有効な情報が得られた。   From the above experimental results, the following was found. From the current-voltage characteristics shown in FIG. 6, the current-limiting operation start current value does not have a current increase rate dependency. This indicates that the current limiting operation start current is determined only by the absolute value of the current magnitude, and does not change with respect to the change in the current increase rate that changes depending on the phase at the time of failure. Further, it can be seen that the current-voltage characteristics continuously change from the low electric field region at the time of critical current measurement to the high voltage region just before quenching until the current limiter transitions from the superconducting state to the normal conducting state. As a result, useful information was obtained for the construction of a detailed current-limiting motion analysis model up to just before quenching.

図8は限流動作開始電流値の強い温度依存性を示している。臨界電流の強い温度依存性はこれまでに測定されていたが、限流動作開始電流値についての温度依存性は明らかになっていなかった。これは、ほとんどの限流試験が飽和液体窒素(77.3K)でのみで行われてきたためであると考えられる。図8に示すとおり、液体窒素の温度を変えることにより、限流動作開始電流値を調整することの可能性を示した。図8から、例えば以下のような近似式が得られる。Tは温度で、単位はKである。尚、例示した近似式はYBCO薄膜の特性によって変わるものと思われる。
Ils=−15T+1350 (1)
この式から、1Kの温度変化により15Aの限流動作開始電流値が変化することがわかる。85.9Kの時の限流動作開始電流値は70Aであり、1Kの温度調整に対して、限流器が導入されたほとんどの場所で対応が可能と考えられる、20%の幅での限流動作開始電流値の調整が可能である。
FIG. 8 shows the strong temperature dependence of the current limiting operation start current value. The temperature dependence of the critical current has been measured so far, but the temperature dependence of the current limiting operation starting current value has not been clarified. This is probably because most current limiting tests have been performed only with saturated liquid nitrogen (77.3 K). As shown in FIG. 8, the possibility of adjusting the current limiting operation start current value by changing the temperature of liquid nitrogen was shown. From FIG. 8, for example, the following approximate expression is obtained. T is temperature and the unit is K. It should be noted that the approximate expression illustrated may vary depending on the characteristics of the YBCO thin film.
Ils = −15T + 1350 (1)
From this equation, it can be seen that the current limiting operation start current value of 15A changes with a temperature change of 1K. The current-limiting operation start current value at 85.9K is 70A, and it is considered that it can be supported in most places where a current limiter is installed for temperature adjustment of 1K. The operation start current value can be adjusted.

(結論)
以上、様々な温度や電流上昇率での限流動作開始電流値の測定を行った結果、電流上昇率に対しては限流動作開始電流値は特に依存しないことが判明した。電流−電圧特性は、臨界電流測定範囲である低電界領域からクエンチ直前の高電圧領域までほぼ連続的に変化する。これにより、クエンチ直前までの詳細な限流動作解析モデルの作成が可能であることと示した。
(Conclusion)
As described above, as a result of measuring the current limiting operation start current value at various temperatures and current increasing rates, it was found that the current limiting operation starting current value does not particularly depend on the current increasing rate. The current-voltage characteristic changes almost continuously from the low electric field region, which is the critical current measurement range, to the high voltage region immediately before quenching. As a result, it was shown that it is possible to create a detailed current-limiting motion analysis model until just before the quench.

また、YBCO薄膜の臨界電流と限流動作開始電流値には強い温度依存性をもつことが示された。特に、電流上昇率が高くなると臨界電流/限流動作開始電流値の比が若干大きくなることから、低磁束流抵抗発生領域では、限流動作開始電流値が熱の影響を受け易いことを示唆していると考えられる。その反面、クエンチに至る高磁束流抵抗領域近傍では最終的には電流の大きさに起因して常電導転移して故障電流を限流すると予想される。液体窒素温度を1K調整することにより、限流動作開始電流値を15Aの幅で調整が可能であることを示した。これは限流器が導入された系統での調整幅としてはほぼ妥当と考えられる。   It was also shown that the critical current and the current limiting current value of the YBCO thin film have a strong temperature dependence. In particular, as the current rise rate increases, the ratio of critical current / current limiting operation start current value increases slightly, suggesting that the current limiting operation start current value is easily affected by heat in the low flux flow resistance generation region. it seems to do. On the other hand, in the vicinity of the high flux flow resistance region leading to quenching, it is expected that the fault current will be limited due to the normal conduction transition due to the magnitude of the current. It was shown that by adjusting the liquid nitrogen temperature by 1K, the current limiting operation start current value can be adjusted within a range of 15A. This is considered to be almost appropriate as the adjustment range in the system where the current limiter is introduced.

そこで、温度制御による限流動作開始電流値の調整によって、導入された場所毎に求められる限流器の動作責務と不動作責務の範囲内に、限流動作開始電流値を高速かつ簡単に調整することが可能である。これによりSN転移型超電導限流器についても、限流器を製造した後でも動作を制御できる可能性を示すことができた。   Therefore, by adjusting the current limit operation start current value by temperature control, the current limit operation start current value can be adjusted quickly and easily within the range of the current limiter operation responsibility and non-operation responsibility required for each installed location. Is possible. As a result, we were able to demonstrate the possibility of controlling the operation of the SN transition type superconducting fault current limiter even after the current limiter was manufactured.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば本実施形態ではYBCO薄膜を利用した限流素子について主に説明したが、これに特に限定されるものではなく、YBCOのコイル状の限流素子を用いた限流器や、YBCO以外の第2種超電導体を利用した限流器にも適用できるものである。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, the current limiting element using a YBCO thin film has been mainly described in the present embodiment, but the present invention is not particularly limited to this, and a current limiting device using a coil current limiting element of YBCO or a current limiting element other than YBCO. The present invention can also be applied to a current limiting device using two types of superconductors.

本発明の超電導限流器の限流動作開始電流値調整装置の実施の一形態を示すブロック図である。It is a block diagram which shows one Embodiment of the current limiting operation start electric current value adjustment apparatus of the superconducting fault current limiter of this invention. 電流上昇率(dI/dt)の定義を表す図である。It is a figure showing the definition of an electric current increase rate (dI / dt). 各温度での電流−電圧波形図である。It is a current-voltage waveform diagram at each temperature. 臨界電流値と温度との関係(臨界電流の温度依存性)を示すグラフである。It is a graph which shows the relationship (temperature dependence of a critical current) with a critical current value and temperature. 87Kにおける各周波数での電流電圧波形図である。It is a current voltage waveform figure in each frequency in 87K. 87Kにおける限流動作開始電流値の電流上昇率依存性を示すグラフである。It is a graph which shows the electric current increase rate dependence of the current limiting operation start electric current value in 87K. 31kA/secにおける各温度での電流電圧特性図である。It is a current-voltage characteristic figure in each temperature in 31 kA / sec. 31kA/secにおける限流動作開始電流値と温度との関係(限流動作開始電流値の温度依存性)を示すグラフである。It is a graph which shows the relationship between the current limiting operation start current value and temperature (temperature dependence of the current limiting operation start current value) at 31 kA / sec. 抵抗の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of resistance.

符号の説明Explanation of symbols

1 限流素子(試料)
2 コールドヘッド
3 低温容器
4 冷凍機
5 シャント抵抗
6 パワーアンプ
7 任意波形発生装置
8 温度センサー
9 冷却流体(冷媒:液体窒素)
10 電圧タップ
1 Current limiting element (sample)
2 Cold Head 3 Cryogenic Container 4 Refrigerator 5 Shunt Resistance 6 Power Amplifier 7 Arbitrary Waveform Generator 8 Temperature Sensor 9 Cooling Fluid (Refrigerant: Liquid Nitrogen)
10 Voltage tap

Claims (3)

SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、前記限流器の前記限流動作開始電流値を測定し、該測定値を基準にして低温容器内で当該超電導限流素子を冷却する冷却流体の温度を制御することによって、当該限流器が導入される箇所での動作責務と不動作責務の範囲内に、前記限流動作開始電流値を収めるように調整する超電導限流器の限流動作開始電流値の調整方法。 Measure the current-limiting operation start current value of the current limiter with the current value when a certain percentage of resistance is generated relative to the resistance just above the critical temperature of the SN transition type superconducting current limiter as the current-limiting operation start current value Then, by controlling the temperature of the cooling fluid that cools the superconducting current limiting element in the cryogenic vessel on the basis of the measured value, the range of operational responsibility and non-operational responsibility at the location where the current limiter is introduced The adjustment method of the current limiting operation start current value of the superconducting current limiter which adjusts so that the said current limiting operation start current value may be accommodated in the inside. 超電導体限流素子を低温容器内に収容して超電導状態に保持しているSN転移型超電導限流器において、前記低温容器に冷凍機を備え、当該SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、予め測定された当該限流器の前記限流動作開始電流値を基準にして当該限流器が導入される箇所での動作責務と不動作責務の範囲内に前記限流動作開始電流値を収めるように前記低温容器内の冷却流体の温度を前記冷凍機で制御するものである超電導限流器の限流動作開始電流値調整装置。 In the SN transition type superconducting fault current limiter in which the superconducting current limiting element is housed in a cryogenic container and kept in a superconducting state, the cryogenic container is equipped with a refrigerator, and immediately above the critical temperature of the SN transition type superconducting fault current limiter. The current value when a certain percentage of resistance is generated with respect to the resistance of the current limit is set as the current limiting operation start current value, and the current limiter is based on the current limiting operation start current value of the current limiter measured in advance. A superconducting fault current limiter that controls the temperature of the cooling fluid in the cryogenic vessel with the refrigerator so that the current-limiting operation start current value falls within the range of operating duty and non-operating duty at the place of introduction. Current-limiting operation start current value adjustment device. 超電導体限流素子を低温容器内に収容して超電導状態に保持しているSN転移型超電導限流器において、前記低温容器に冷媒ガスの加圧あるいは減圧のための真空ポンプを備え、当該SN転移型超電導限流器の臨界温度直上の抵抗に対して一定割合の抵抗を発生したときの電流値を限流動作開始電流値とし、予め測定された当該限流器の前記限流動作開始電流値を基準にして当該限流器が導入される箇所での動作責務と不動作責務の範囲内に前記限流動作開始電流値を収めるように前記低温容器内の冷却流体の温度を前記真空ポンプで制御するものである超電導限流器の限流動作開始電流値調整装置。 In the SN transition type superconducting fault current limiter, in which the superconducting current limiting element is housed in a cryogenic container and maintained in a superconducting state, the SN container is equipped with a vacuum pump for pressurizing or depressurizing refrigerant gas, and the SN The current value when a constant ratio of resistance is generated with respect to the resistance just above the critical temperature of the transition type superconducting current limiter is defined as the current limiting operation starting current value, and the current limiting operation starting current of the current limiting device measured in advance The temperature of the cooling fluid in the cryogenic vessel is set to the vacuum pump so that the current limiting operation start current value is within the range of the operation duty and the non-operation responsibility at the place where the current limiter is introduced on the basis of the value. The device for adjusting the current limiting operation start current of the superconducting fault current limiter which is controlled by
JP2008209396A 2008-08-17 2008-08-17 Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter Pending JP2010045267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209396A JP2010045267A (en) 2008-08-17 2008-08-17 Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209396A JP2010045267A (en) 2008-08-17 2008-08-17 Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter

Publications (1)

Publication Number Publication Date
JP2010045267A true JP2010045267A (en) 2010-02-25

Family

ID=42016393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209396A Pending JP2010045267A (en) 2008-08-17 2008-08-17 Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter

Country Status (1)

Country Link
JP (1) JP2010045267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975664A (en) * 2019-03-15 2019-07-05 中国电力科学研究院有限公司 It is a kind of for measuring the method and system of the over-current shock characteristic of superconducting cell
CN114024296B (en) * 2021-12-01 2023-10-20 国网江苏省电力有限公司经济技术研究院 Superconducting current limiter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936444A (en) * 1995-07-25 1997-02-07 Nippon Steel Corp Cooling method for superconducting coil
JPH10126960A (en) * 1996-10-16 1998-05-15 Nippon Steel Corp Variable set-value current limiter
JP2003069092A (en) * 2001-08-24 2003-03-07 Japan Magnet Technol Kk Method and device for operating superconducting magnet device and pressure reduction device unit used therefor
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936444A (en) * 1995-07-25 1997-02-07 Nippon Steel Corp Cooling method for superconducting coil
JPH10126960A (en) * 1996-10-16 1998-05-15 Nippon Steel Corp Variable set-value current limiter
JP2003069092A (en) * 2001-08-24 2003-03-07 Japan Magnet Technol Kk Method and device for operating superconducting magnet device and pressure reduction device unit used therefor
JP2007221931A (en) * 2006-02-17 2007-08-30 Toshiba Corp Superconducting current limiter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975664A (en) * 2019-03-15 2019-07-05 中国电力科学研究院有限公司 It is a kind of for measuring the method and system of the over-current shock characteristic of superconducting cell
CN109975664B (en) * 2019-03-15 2023-06-20 中国电力科学研究院有限公司 Method and system for measuring overcurrent impact characteristic of superconducting unit
CN114024296B (en) * 2021-12-01 2023-10-20 国网江苏省电力有限公司经济技术研究院 Superconducting current limiter

Similar Documents

Publication Publication Date Title
JP4081021B2 (en) Superconducting current limiting element
Lacroix et al. Normal zone propagation velocity in 2G HTS coated conductor with high interfacial resistance
JP2009522815A (en) Superconducting high-speed switch
KR20050031750A (en) Resistive type superconducting fault current limiter
US6043731A (en) Current limiting device
Wang et al. Self-field quench behaviour of YBa2Cu3O7− δ coated conductors with different stabilizers
GB2490690A (en) Superconducting magnet with stored energy used to operate ancillary equipment during run-down
Búran et al. Impact of a REBCO coated conductor stabilization layer on the fault current limiting functionality
US20150255200A1 (en) Fast Superconducting Switch for Superconducting Power Devices
JP2010045267A (en) Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter
JP4720902B2 (en) Superconducting coil operation control method
US9638774B2 (en) Discharge controlled superconducting magnet
Iannone et al. Quench propagation in commercial REBCO composite tapes
JP2015175733A (en) Method of evaluating superconducting characteristic, evaluation device thereof, and evaluation program thereof
Song et al. The design, fabrication and testing of a cooling system using solid nitrogen for a resistive high-Tc superconducting fault current limiter
JP6163348B2 (en) Operating method of high temperature superconducting coil
Ye et al. Investigations of current limiting properties of the MgB2 wires subjected to pulse overcurrents in the benchtop tester
Vojenčiak et al. Can resistive-type fault current limiter operate in cryogen-free environment?
JP4664952B2 (en) Superconducting magnet device
JP5548549B2 (en) Superconducting device protection operation method and superconducting device
Alferov et al. Thermal behavior of 2G HTS tape for use in resistive fault current limiters
Choi et al. Electrical contact resistance of multi-contact connector in semi-retractable current lead
WO2014096798A1 (en) Control of a switch for a superconducting magnet
WO2012125540A1 (en) Superconducting fault current limiter
Mader et al. Investigation of the stability behavior of coated conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604