JPH10126960A - Variable set-value current limiter - Google Patents

Variable set-value current limiter

Info

Publication number
JPH10126960A
JPH10126960A JP8293142A JP29314296A JPH10126960A JP H10126960 A JPH10126960 A JP H10126960A JP 8293142 A JP8293142 A JP 8293142A JP 29314296 A JP29314296 A JP 29314296A JP H10126960 A JPH10126960 A JP H10126960A
Authority
JP
Japan
Prior art keywords
current
temperature
cooling
current limiter
current limiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8293142A
Other languages
Japanese (ja)
Inventor
Mitsuru Morita
充 森田
Keiichi Kimura
圭一 木村
Hidekazu Tejima
英一 手嶋
Mitsuru Sawamura
充 澤村
Hiroshi Tanemoto
啓 種本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8293142A priority Critical patent/JPH10126960A/en
Publication of JPH10126960A publication Critical patent/JPH10126960A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the degree of freedom of cooling temperature setting by a method wherein a mechanism by which the cooling temperature of an oxide current limiting element can be varied is provided. SOLUTION: An oxide superconducting current limiter system has a mechanism which controls a temperature by using a plurality of cooling media or cooling device to vary the current limiting characteristics. Liquefied argon is used as coolant and the temperature of the coolant is controlled by adjusting the temperature of the cooling unit of a refrigerator within a range of 86K-78K. As for the current limiting characteristics, Ic is about 450A at 86K and Ic is 1500A at 78K. Then, if the cooling temperature is 81K, Ic can be 1000A. By this system, a current limiter by which Ic can be set arbitrarily within a range of 450A-1500A can be manufactured. With this constitution, a current value at which a current limiting operation is started can be set arbitrarily.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は酸化物超電導体を用
いた超電導・常伝導転移型限流器に関する物である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting-normal conduction type current limiter using an oxide superconductor.

【0002】[0002]

【従来の技術】電力回路で短絡事故が発生すると、極め
て大きな短絡電流が流れる。短絡電流は遮断機によって
遮断されるが、短絡電流によって強い電磁力と多量のジ
ュール熱が発生し、電力機器や電路が大きな機械的・熱
的損傷を受ける。このような事故発生時の短絡電流を抑
えて、遮断機の責務を軽減する事故時限流器(限流器)
の開発が望まれている。また、このような限流器は各種
送配電系統の安定化に帰する効果は極めて大きく限流器
の早期実現が期待されている。
2. Description of the Related Art When a short circuit occurs in a power circuit, an extremely large short circuit current flows. The short-circuit current is interrupted by the circuit breaker, but the short-circuit current generates a strong electromagnetic force and a large amount of Joule heat, and the power equipment and the electric circuit are greatly damaged mechanically and thermally. Accident fault current limiters (current limiters) that reduce the short circuit current in the event of such an accident and reduce the duty of the circuit breaker
The development of is desired. Further, such a current limiter has an extremely large effect attributable to stabilization of various power transmission and distribution systems, and early realization of the current limiter is expected.

【0003】限流器には多くの方式のものが提案されて
いるが、現状では実用性の高いものは少ない。比較的広
く用いられているものに限流リアクトル、永久ヒュー
ズ、限流電線、アーク式限流器があるが、負荷電流通電
時の電気抵抗が高く発熱が多いあるいは、応答が遅いた
め限流性能が低いという問題点がある。
[0003] Many types of current limiters have been proposed, but at present there are few which have high practicality. Current limiting reactors, permanent fuses, current limiting wires, and arc current limiters are relatively widely used, but current limiting performance is high due to high electrical resistance when load current is applied and high heat generation or slow response. Is low.

【0004】限流器に要求される事項として、正常負荷
通電時には電気抵抗が低く発熱が少ないこと、短絡事故
時には応答が早くかつ電気抵抗が高くなることなどが挙
げられる。この点で超電導体を用いた限流器は理想的な
ものと考えられる。超電導限流器には超電導・常伝導転
移型、リアクトル型、整流型、コイル型等が提案されて
いる。この中で超電導・常伝導転移型限流器は超電導体
の超電導・常伝導転移を最も直接的に利用したものであ
る。負荷電流通電時には、超電導体には臨界電流以下の
電流しか流れていないので、超電導体の抵抗は極めて小
さい。しかし、短絡事故が発生した場合には、超電導体
には臨界電流以上の電流が流れ、超電導体が超電導状態
から常伝導状態に転移して電気抵抗が発生する。この抵
抗により短絡電流が限流される。この超電導・常伝導転
移型限流器は他の方式の超電導限流器に比べて、構造が
簡単で小型であるという特徴を持つ。
[0004] Items required for the current limiter include low electric resistance and low heat generation when a normal load is applied, and quick response and high electric resistance when a short circuit occurs. In this regard, a current limiter using a superconductor is considered to be ideal. As a superconducting current limiter, a superconducting-normal conduction transition type, a reactor type, a rectifying type, a coil type, and the like have been proposed. Among them, the superconducting / normal conduction transition type current limiter most directly utilizes the superconducting / normal conduction transition of the superconductor. When a load current is applied, only a current equal to or less than the critical current flows through the superconductor, so that the resistance of the superconductor is extremely small. However, when a short circuit accident occurs, a current equal to or greater than the critical current flows through the superconductor, and the superconductor transitions from the superconducting state to the normal conducting state, generating electric resistance. This resistance limits the short-circuit current. This superconducting / normal-conducting transition type current limiter has a feature that its structure is simpler and smaller than those of other types of superconducting current limiters.

【0005】上記超電導限流器には、金属系超電導体と
酸化物系超電導体を用いたものがある。金属系超電導体
は、常伝導状態での電気抵抗が低く、装置全体が大型化
してしまうことや液体ヘリウム温度近傍で使用する必要
があるため運転コストが大きくなり、さらには断熱の点
からも装置が大型化してしまうという問題があった。そ
のため、常伝導状態での電気抵抗が高く、比較的高温で
超電導状態を維持できる酸化物超電導体を用いた限流器
の開発が期待されている。
[0005] Some of the superconducting current limiters use a metal-based superconductor and an oxide-based superconductor. Metal-based superconductors have low electrical resistance in the normal conduction state, which increases the size of the entire apparatus, requires use near the temperature of liquid helium, and increases operating costs. However, there is a problem that the size of the device increases. Therefore, development of a current limiter using an oxide superconductor that has a high electric resistance in a normal conduction state and can maintain a superconducting state at a relatively high temperature is expected.

【0006】[0006]

【発明が解決しようとする課題】限流器は設置される電
力系統の定格電圧や定格電流値によって限流動作を開始
する電流値等を設定する必要がある。このとき設置され
る電力系統にあった限流特性が得られるように限流特性
を可変する機構が必要になる。
In a current limiter, it is necessary to set a current value or the like at which a current limiting operation is started based on a rated voltage and a rated current value of an installed power system. At this time, a mechanism for changing the current limiting characteristic is required so that the current limiting characteristic suitable for the installed power system is obtained.

【0007】また、酸化物超電導材料を用いた超電導限
流器は冷却温度によって、限流動作を開始する電流値お
よび限流動作速度が変化し、また交流通電時損失にも影
響を与える。そのため酸化物超電導限流器の冷却温度
は、その仕様にあった最適な温度にする必要がある。し
かしながら従来のように1種類の冷媒の沸点に冷却する
方法または、冷凍機による伝熱のみによる冷却方法で
は、冷却温度の自由度が限定されたりまた冷却温度の均
一性や理想的な温度分布の設計は困難であった。
Further, in a superconducting current limiter using an oxide superconducting material, a current value at which a current limiting operation is started and a current limiting operation speed change depending on a cooling temperature, and also affects an AC conduction loss. Therefore, it is necessary to set the cooling temperature of the oxide superconducting current limiter to an optimum temperature that meets the specifications. However, in the conventional method of cooling to the boiling point of one kind of refrigerant or in the cooling method using only heat transfer by a refrigerator, the degree of freedom of the cooling temperature is limited, and the uniformity of the cooling temperature and the ideal temperature distribution are not obtained. Design was difficult.

【0008】[0008]

【課題を解決するための手段】そこで、本願発明は複数
の冷却媒体または冷却装置を用い温度制御し、限流特性
を可変する機構を有する酸化物超電導限流器システムを
提供するものである。90K級のYおよび希土類系やBi系超
電導体が超伝導状態を維持できる比較的高温の温度領域
に沸点を有する冷媒には 液体アルゴン、液体窒素およ
び液体酸素がある。これらをその沸点以下に冷凍機を用
い任意に温度を設定することは均一な冷却温度を得易
い。
Accordingly, an object of the present invention is to provide an oxide superconducting current limiting system having a mechanism for controlling the temperature by using a plurality of cooling media or cooling devices and varying the current limiting characteristics. Liquid argon, liquid nitrogen and liquid oxygen include refrigerants having boiling points in a relatively high temperature range where a 90K-class Y and rare-earth or Bi superconductor can maintain a superconducting state. It is easy to obtain a uniform cooling temperature by arbitrarily setting the temperature of these to below their boiling points using a refrigerator.

【0009】また、液体アルゴン、液体窒素および液体
酸素などの冷媒の中から複数の冷媒を選んで所望の温度
分布を得ることもできる。
A desired temperature distribution can be obtained by selecting a plurality of refrigerants from among refrigerants such as liquid argon, liquid nitrogen, and liquid oxygen.

【0010】さらに、超電導導体同士および超電導体と
常電導体との接続部は接触抵抗があるため発熱しやす
く、超電導導体同士および超電導体と常電導体との接続
部を超電導体の冷却温度よりも低くなるように設定され
ていることがのぞましい。
Further, the superconducting conductors and the connection between the superconductor and the normal conductor have a contact resistance and thus easily generate heat, and the connection between the superconductors and the connection between the superconductor and the normal conductor are controlled by the cooling temperature of the superconductor. Is also set to be low.

【0011】また、限流動作をより短い時間で行うに
は、冷媒が直接超電導導体に接していない方がよく、電
極部分以外を絶縁体の容器中に収納してあることが望ま
しい場合もある。
In order to perform the current limiting operation in a shorter time, it is preferable that the refrigerant is not in direct contact with the superconducting conductor, and it is sometimes desirable that the portion other than the electrode portion is housed in an insulating container. .

【0012】[0012]

【作用】酸化物超電導材料には温度によって、実質的に
ゼロ抵抗状態(交流通電では完全なゼロ抵抗状態にはな
らない)で流すことができる電流の限界値(Jc:臨界
電流密度)が存在する。このJcは冷却温度によって大
きく変化する。そのため正常通電時の電流値よりも高い
価に超電導体の臨界電流(Ic)を設定する必要があ
る。(IcはJcと断面積の積で見積もられる)そのた
め冷却温度は、その仕様にあった最適な温度にする必要
がある。そこで複数の冷媒または冷凍機により冷却する
ことにより、冷却温度設定の自由度を広げることができ
る。
The oxide superconducting material has a limit value (Jc: critical current density) of a current that can flow in a substantially zero-resistance state (it does not become a completely zero-resistance state by alternating current) depending on the temperature. . This Jc changes greatly depending on the cooling temperature. Therefore, it is necessary to set the critical current (Ic) of the superconductor to a value higher than the current value during normal energization. (Ic is estimated by the product of Jc and the cross-sectional area.) Therefore, it is necessary to set the cooling temperature to an optimum temperature according to the specification. Therefore, by cooling with a plurality of refrigerants or refrigerators, the degree of freedom in setting the cooling temperature can be increased.

【0013】超電導導体同士および超電導体と常電導体
との接続部は接触抵抗があるため発熱しやすく、超電導
導体同士および超電導体と常電導体との接続部を超電導
体の冷却温度よりもある程度低くなるように設定するこ
とで電極からのクエンチ発生を抑制し超電導導体部分か
らのクエンチの伝搬により素子全体を抵抗状態にするこ
と、すなわち素子全体のクエンチ特性の均一性を上げる
ことで、素早い限流動作を実現することが可能になる。
The superconducting conductors and the connection between the superconductor and the normal conductor have a contact resistance and thus easily generate heat, and the connection between the superconductors and the connection between the superconductor and the normal conductor is somewhat lower than the cooling temperature of the superconductor. By setting it to be low, the occurrence of quench from the electrode is suppressed, and the entire device is put into a resistance state by the propagation of quench from the superconducting conductor part, that is, by increasing the uniformity of the quench characteristics of the entire device, a quick limit Flow operation can be realized.

【0014】[0014]

【実施例】【Example】

実施例1 図2のように形状付与したQMG(Physica C 235-240
(1994)209-212を参照)を用い、図1の様な冷却系を有
する1000A以上の電流値で限流動作を行う限流システム
を作製した。冷媒には液体アルゴンを用い、冷凍機の冷
却部の温度を86Kから78Kまで調整することで冷媒
の温度を制御した。まず、86Kでの限流特性について、
Icは約450Aであり、また78KではIcは1500Aであっ
た。そこで冷却温度を81KにしたところIcが1000Aと
することができた。このシステムにより450Aから1500A
の範囲でIcを任意に設定できる限流器を作製すること
ができた。
Example 1 QMG (Physica C 235-240) shaped as shown in FIG.
(1994) 209-212), a current limiting system having a cooling system as shown in FIG. 1 and performing a current limiting operation at a current value of 1000 A or more was manufactured. Liquid argon was used as the refrigerant, and the temperature of the refrigerant was controlled by adjusting the temperature of the cooling unit of the refrigerator from 86K to 78K. First, regarding the current limiting characteristics at 86K,
Ic was about 450A, and at 78K Ic was 1500A. Then, when the cooling temperature was set to 81K, Ic could be set to 1000A. 450A to 1500A with this system
The current limiter which can set Ic arbitrarily in the range of was able to be manufactured.

【0015】実施例2 図3のように液体窒素漕の液面を制御することによって
液体アルゴン漕の液体アルゴンの温度を制御し、1000A
以上の電流値で限流動作を行う限流システムを作製し
た。液体アルゴンの温度を86Kから78Kまで調整す
ることで限流素子の特性を制御した。まず、86Kでの限
流特性について、Icは約450Aであり、また78KではI
cは1500Aであった。そこで液体窒素の液面を調整し
て、冷却温度を81KにしたところIcが1000Aとするこ
とができた。このシステムにより450Aから1500Aの範囲
でIcを任意に設定できる限流器を作製することができ
た。
Embodiment 2 As shown in FIG. 3, by controlling the liquid level of the liquid nitrogen tank, the temperature of the liquid argon in the liquid argon tank was controlled to 1000 A.
A current limiting system that performs a current limiting operation with the above current values was manufactured. The characteristics of the current limiting element were controlled by adjusting the temperature of the liquid argon from 86K to 78K. First, regarding the current limiting characteristics at 86K, Ic is about 450A, and at 78K, Ic is
c was 1500A. Then, when the liquid surface of liquid nitrogen was adjusted and the cooling temperature was set to 81K, Ic was able to be set to 1000A. With this system, a current limiter capable of arbitrarily setting Ic in the range of 450A to 1500A could be manufactured.

【0016】実施例3 図4の様に液体窒素漕の液面を制御することによって液
体アルゴン漕の液体アルゴンの温度を制御し、1000A以
上の電流値で限流動作を行う限流システムを作製した。
限流素子の電極部分は液体窒素漕から冷熱を伝える銅の
ブロックと絶縁を取るための窒化アルミを介して接触し
てある。液体アルゴンの温度を86Kから78Kまで調
整することで限流素子の特性を制御した。まず、86Kで
の限流特性について、Icは約500Aであり、また78Kで
はIcは1700Aであった。これらの結果は電極部を特に
冷却しなかった場合より幾分高くなっている。このこと
は、電極部分の発熱により超電導導体の臨界電流Icが
幾分低下していることが示唆される。そこで液体窒素の
液面を調整して、冷却温度を81.5KにしたところIcが
1000Aとすることができた。このシステムにより500Aか
ら1700Aの範囲でIcを任意に設定できる限流器を作製
することができた。
Embodiment 3 As shown in FIG. 4, a temperature-limiting system for controlling the liquid level of a liquid nitrogen tank to control the temperature of liquid argon in a liquid argon tank and performing a current limiting operation at a current value of 1000 A or more. did.
The electrode portion of the current limiting element is in contact with a copper block that transmits cold heat from the liquid nitrogen tank via aluminum nitride for insulation. The characteristics of the current limiting element were controlled by adjusting the temperature of the liquid argon from 86K to 78K. First, with respect to the current limiting characteristics at 86K, Ic was about 500A, and at 78K, Ic was 1700A. These results are somewhat higher than when the electrode section was not particularly cooled. This suggests that the critical current Ic of the superconducting conductor has decreased somewhat due to heat generation at the electrode portion. Then, when the liquid temperature of liquid nitrogen was adjusted and the cooling temperature was set to 81.5K, Ic became
It was able to be 1000A. With this system, it was possible to fabricate a current limiter capable of setting Ic arbitrarily in the range of 500A to 1700A.

【0017】実施例4 図5の様に冷凍機により液体アルゴン漕の液体アルゴン
の温度を制御し、1000A以上の電流値で限流動作を行う
限流システムを作製した。液体アルゴンの温度を86K
から78Kまで調整することで限流素子の特性を制御し
た。まず、86Kでの限流特性について、Icは約400Aで
あり、また78KではIcは1300Aであった。これらの結果
は超電導体を冷媒によって冷やした場合より幾分低くな
っている。このことは、超電導体の冷却効率の低下によ
り超電導導体の臨界電流Icが幾分低下していることが
示唆される。そこで冷凍機により、冷媒の温度を79.8K
にしたところIcが1000Aとすることができた。このシ
ステムにより400Aから1300Aの範囲でIcを任意に設定
できる限流器を作製することができた。
Embodiment 4 As shown in FIG. 5, a current limiting system was prepared in which the temperature of liquid argon in a liquid argon tank was controlled by a refrigerator to perform a current limiting operation at a current value of 1000 A or more. 86K liquid argon
To 78K to control the characteristics of the current limiting element. First, regarding the current limiting characteristics at 86K, Ic was about 400A, and at 78K, Ic was 1300A. These results are somewhat lower than when the superconductor was cooled by the refrigerant. This suggests that the critical current Ic of the superconducting conductor is somewhat reduced due to a decrease in the cooling efficiency of the superconductor. Therefore, the refrigerator temperature was reduced to 79.8K
As a result, Ic was able to be set to 1000A. With this system, it was possible to fabricate a current limiter capable of setting Ic arbitrarily in the range of 400A to 1300A.

【0018】[0018]

【発明の効果】以上述べたように、本願発明は限流動作
を開始する電流値を任意に設定できることを特徴とする
限流器システムを提供するものであり、そのその工業的
効果は甚大である。
As described above, the present invention provides a current limiter system characterized in that the current value for starting the current limiting operation can be arbitrarily set, and its industrial effect is enormous. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】液体アルゴンを冷凍機を用い冷却することで臨
界電流値を制御する冷却システムを有する限流器
FIG. 1 is a current limiter having a cooling system for controlling a critical current value by cooling liquid argon using a refrigerator.

【図2】超電導限流素子の形状FIG. 2 Shape of superconducting current limiting element

【図3】液体窒素と液体アルゴンとを組み合わせた冷却
系を有する限流器システム
FIG. 3 is a current limiter system having a cooling system combining liquid nitrogen and liquid argon.

【図4】電極部分がより低温に冷却される限流器システ
FIG. 4 shows a current limiter system in which an electrode part is cooled to a lower temperature.

【図5】超電導限流素子が直接液体アルゴンに触れない
構造を有する限流器システム
FIG. 5 is a current limiter system having a structure in which a superconducting current limiting element does not directly touch liquid argon.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤村 充 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 種本 啓 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mitsuru Sawamura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Nippon Steel Corporation Advanced Technology Research Laboratory (72) Inventor Kei Kei Tanemoto 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Prefecture Address Nippon Steel Corporation Advanced Technology Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸化物限流素子の冷却温度を可変する機
構を有することを特徴とする限流器。
1. A current limiter having a mechanism for varying a cooling temperature of an oxide current limiting element.
【請求項2】 請求項1において、該素子の冷却温度を
可変する機構が複数の冷却媒体または冷却装置を用いた
機構である酸化物超電導限流器。
2. The current limiting device according to claim 1, wherein the mechanism for varying the cooling temperature of the element is a mechanism using a plurality of cooling media or cooling devices.
【請求項3】 請求項1または請求項2において、液体
アルゴン、液体窒素および液体酸素のいずれか1つをそ
の沸点以下に冷凍機を用い任意に温度を設定する機構を
有することを特徴とする酸化物超電導限流器。
3. The method according to claim 1, further comprising a mechanism for arbitrarily setting the temperature of any one of liquid argon, liquid nitrogen, and liquid oxygen to a temperature lower than its boiling point by using a refrigerator. Oxide superconducting current limiter.
【請求項4】 請求項1または請求項2において、液体
アルゴン、液体窒素および液体酸素の中から2つ以上を
組み合わせて用いたことを特徴とする限流器。
4. The current limiter according to claim 1, wherein two or more of liquid argon, liquid nitrogen, and liquid oxygen are used in combination.
【請求項5】 請求項1、2、3、または4において、
超電導導体同士および超電導体と常電導体との接続部
が、通常運転時において、超電導体の中央部の冷却温度
よりも低い温度になるように設定する機構を有すること
を特徴とする限流器。
5. The method according to claim 1, 2, 3, or 4,
A current limiter having a mechanism for setting the connection between superconductors and the connection between the superconductor and the normal conductor to be lower than the cooling temperature of the central portion of the superconductor during normal operation. .
【請求項6】 請求項5において接続部が冷凍機の低温
端または、超電導体が浸されている冷媒以外の冷媒から
の電熱用銅ブロックに絶縁体を介し接触していることを
特徴とする限流器。
6. The connecting part according to claim 5, wherein the connecting part is in contact with a low-temperature end of the refrigerator or an electric heating copper block from a refrigerant other than the refrigerant in which the superconductor is immersed, via an insulator. Current limiter.
【請求項7】 請求項5において限流動作を行う超電導
体が直接液体の冷媒に触れないように電極部分以外を絶
縁体の容器中に収納してあることを特徴とする限流器。
7. The current limiter according to claim 5, wherein the portion other than the electrode portion is housed in an insulating container so that the superconductor performing the current limiting operation does not directly contact the liquid refrigerant.
JP8293142A 1996-10-16 1996-10-16 Variable set-value current limiter Pending JPH10126960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8293142A JPH10126960A (en) 1996-10-16 1996-10-16 Variable set-value current limiter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8293142A JPH10126960A (en) 1996-10-16 1996-10-16 Variable set-value current limiter

Publications (1)

Publication Number Publication Date
JPH10126960A true JPH10126960A (en) 1998-05-15

Family

ID=17790974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8293142A Pending JPH10126960A (en) 1996-10-16 1996-10-16 Variable set-value current limiter

Country Status (1)

Country Link
JP (1) JPH10126960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites
JP2010045267A (en) * 2008-08-17 2010-02-25 Central Res Inst Of Electric Power Ind Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002540565A (en) * 1999-03-22 2002-11-26 アメリカン スーパーコンダクター コーポレイション Current limiting composites
JP2010045267A (en) * 2008-08-17 2010-02-25 Central Res Inst Of Electric Power Ind Method and apparatus for regulating current-limiting operation starting current value of superconducting current limiter

Similar Documents

Publication Publication Date Title
US4994932A (en) Superconducting current limiting apparatus
KR100662754B1 (en) Resistive type superconducting fault current limiter
KR20050031750A (en) Resistive type superconducting fault current limiter
JPH10501120A (en) Current limiting device
US6344956B1 (en) Oxide bulk superconducting current limiting element current
US4184042A (en) Multisection superconducting cable for carrying alternating current
JPH02174523A (en) Fault current limiter
Lindmayer et al. Current limiting properties of YBCO-films on sapphire substrates
Tixador et al. Operation of an SCFCL at 65 K
JPH10126960A (en) Variable set-value current limiter
JPH10285792A (en) Current limiter
Qian et al. Electromagnetic and thermal design of superconducting fault current limiters for DC electric systems using superconducting
JPH10136563A (en) Current-limiting element using oxide superconductor and its manufacturing method
Liang et al. The impact of critical current inhomogeneity in HTS coated conductors on the quench process for SFCL application
Kozak et al. Design Considerations on a Resistive Superconducting Fault Current Limiter
JP5039985B2 (en) Transformer type superconducting fault current limiter
JP3450318B2 (en) Thermoelectric cooling type power lead
JP4131769B2 (en) Superconducting current limiting fuse and overcurrent control system using the same
JP3699487B2 (en) Superconducting / normal conducting transition type fault current limiter
Lebedev Powerful nanographite fault current limiter for smart grid
Kudymow et al. Experimental investigation of parallel connected YBCO coated conductors for resistive fault current limiters
Lindmayer High temperature superconductors as current limiters-an alternative to contacts and arcs in circuit breakers?
JPH08191538A (en) Superconductive current limiter
JPS617610A (en) Superconductive device
Tixador et al. Current limitation using high T/sub c/materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629