JPH0936323A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0936323A
JPH0936323A JP7187148A JP18714895A JPH0936323A JP H0936323 A JPH0936323 A JP H0936323A JP 7187148 A JP7187148 A JP 7187148A JP 18714895 A JP18714895 A JP 18714895A JP H0936323 A JPH0936323 A JP H0936323A
Authority
JP
Japan
Prior art keywords
film
oxide film
groove
insulating film
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7187148A
Other languages
Japanese (ja)
Other versions
JP3226761B2 (en
Inventor
Shinya Takahashi
真也 高橋
Hitoshi Ito
仁 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18714895A priority Critical patent/JP3226761B2/en
Publication of JPH0936323A publication Critical patent/JPH0936323A/en
Application granted granted Critical
Publication of JP3226761B2 publication Critical patent/JP3226761B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrain the etching of an element isolation oxide film or the like, and improve element characteristics, by eliminating an insulating film containing impurities by using heated hydrogen fluoride water vapor. SOLUTION: An element isolation oxide film 11, and a thermal oxidation layer 2 and a nitride film 3 which are used as etching protection films when a trench is formed are formed on a substrate 1. The trench has an aperture in the boundary part between the element isolation oxide film 11 and the oxide film 2 on an element region. A PSG film 6 of an SiO2 film containing phosphorus is deposited. Resist is spread on the PSG film 6, and exposure is performed without interposing a pattern mask. Resist having a specified depth is left in the trench, and the exposed part of the PSG film 6 is eliminated. After the resist is eliminated, an oxide film 8 is formed. By the heat treatment in an N2 atmospher, phosphorus is diffused in the substrate 1 from the PSG film 6 left in the trench, and a diffusion layer 9 is formed. Further by V-HF treatment, the PSG film is eliminated, and a desired impurity diffusion layer 9 is formed on the inner wall of the trench.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関するもので、特に選択的に不純物拡散を行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for selectively performing impurity diffusion.

【0002】[0002]

【従来の技術】半導体装置の高集積化に伴い、DRAM
(Dynamic Random Access Memory)のようなメモリ−装
置は小さいセル面積を実現する必要がある。このため、
メモリ−容量を確保するために、半導体基板中に形成さ
れた溝の内部にキャパシタを形成することにより、キャ
パシタ面積を増加させている。このキャパシタは、たと
えば、溝の内壁に形成された不純物拡散層と、溝の内壁
上に形成された絶縁膜と、溝の内部に埋め込まれた多結
晶シリコン膜とにより構成される。したがって、このよ
うな構造のキャパシタを形成するためには、溝の内壁に
所望の不純物を制御性良く拡散させる必要がある。
2. Description of the Related Art As semiconductor devices become highly integrated, DRAM
A memory device such as (Dynamic Random Access Memory) needs to realize a small cell area. For this reason,
In order to secure the memory capacity, the capacitor area is increased by forming the capacitor inside the groove formed in the semiconductor substrate. This capacitor is composed of, for example, an impurity diffusion layer formed on the inner wall of the groove, an insulating film formed on the inner wall of the groove, and a polycrystalline silicon film embedded inside the groove. Therefore, in order to form a capacitor having such a structure, it is necessary to diffuse desired impurities into the inner wall of the groove with good controllability.

【0003】溝の内壁に不純物拡散を行う従来の方法
を、図5乃至図8を用いて説明する。リソグラフィ−法
および異方性エッチング技術を用いて、Si基板1に例
えば深さ9μmの溝10を形成する。基板1上には、素
子分離のための酸化膜11と、溝10を形成する時のエ
ッチング保護膜として、例えば50nm以下の膜厚を有
する熱酸化膜(SiO2 )2と膜厚100〜400nm
の窒化膜(SiN)3が形成されており、溝10はこの
例では図5に示すように、素子分離酸化膜11と素子領
域上の酸化膜2の境界部分に開口される。
A conventional method of diffusing impurities on the inner wall of the groove will be described with reference to FIGS. A groove 10 having a depth of 9 μm, for example, is formed in the Si substrate 1 by using the lithography method and the anisotropic etching technique. On the substrate 1, an oxide film 11 for element isolation, a thermal oxide film (SiO2) 2 having a film thickness of, for example, 50 nm or less, and a film thickness of 100 to 400 nm are used as an etching protection film when forming the groove 10.
In this example, the trench 10 is opened at the boundary between the element isolation oxide film 11 and the oxide film 2 on the element region, as shown in FIG.

【0004】この後、減圧CVD法により、例えばリン
(P)を1021〜1022cm-3含むSiO2 膜(以降P
SGとする)6を堆積し、リソグラフィ−法を用いて、
PSG膜6上にレジスト7を塗布してパタ−ンマスクを
介せずに露光を行い、窒化膜3上のレジスト7と、溝1
0の内部のレジスト7のうち基板1表面より1〜8μm
の深さまでを除去して、溝10の内部にレジスト7を残
存させる(図6)。
Thereafter, a SiO 2 film containing phosphorus (P) of 10 21 to 10 22 cm -3 (hereinafter referred to as P) is formed by a low pressure CVD method.
6) is deposited, and a lithographic method is used to
A resist 7 is applied on the PSG film 6 and exposed without passing through a pattern mask to form the resist 7 on the nitride film 3 and the groove 1.
0 to 1 μm from the surface of the substrate 1 in the resist 7 inside
To a depth of 10 to leave the resist 7 inside the groove 10 (FIG. 6).

【0005】NH4 Fエッチングにより、PSG膜6の
露出している部分を除去する。レジスト7を除去した後
に、酸化膜8を10nm形成する。この後、例えば温度
800℃のN2 雰囲気中において熱処理を行い、溝10
の内部に残存させたPSG膜6より基板1中へリンを拡
散させて拡散層9を形成する(図7)。
The exposed portion of the PSG film 6 is removed by NH 4 F etching. After removing the resist 7, an oxide film 8 is formed to a thickness of 10 nm. Then, heat treatment is performed in an N 2 atmosphere at a temperature of 800 ° C. to form the groove 10
Phosphorus is diffused from the PSG film 6 left inside the substrate into the substrate 1 to form a diffusion layer 9 (FIG. 7).

【0006】さらに、NH4 Fエッチングにより、PS
G膜6を除去し、溝10の側面に所望の不純物拡散層9
の形成された構造が完成する(図8)。しかし、このよ
うな不純物拡散層の形成方法では、PSG膜6を除去す
るためのNH4 Fエッチングが、熱酸化膜もエッチング
してしまうために様々な弊害を生じる。すなわち、溝1
0は素子分離領域に重なるように開口されるため、図8
に示すように、素子分離酸化膜11が露出している側面
部分よりエッチングされて後退し、素子分離耐圧の劣化
を招いてしまう。また、同様に、酸化膜2もエッチング
されて後退してしまう。例えば、その後にこの酸化膜を
通してイオン注入することにより拡散層を形成する時
に、この酸化膜2の後退している部分において不純物が
深く注入されることにより、拡散層が深く拡散して拡散
層9と導通してしまう可能性がある。
[0006] Further, by NH 4 F etching, PS
The G film 6 is removed, and the desired impurity diffusion layer 9 is formed on the side surface of the groove 10.
The formed structure of is completed (FIG. 8). However, in such a method of forming the impurity diffusion layer, NH 4 F etching for removing the PSG film 6 also causes various problems because the thermal oxide film is also etched. That is, groove 1
Since 0 is opened so as to overlap the element isolation region,
As shown in FIG. 3, the element isolation oxide film 11 is etched and recedes from the exposed side surface portion, which causes deterioration of the element isolation withstand voltage. Similarly, the oxide film 2 is also etched and recedes. For example, when the diffusion layer is formed by ion-implanting through the oxide film thereafter, impurities are deeply implanted in the recessed portion of the oxide film 2, so that the diffusion layer is deeply diffused and the diffusion layer 9 is formed. There is a possibility that it will be conducted with.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の半
導体装置の製造方法では、不純物を溝の内壁に拡散する
ために堆積されたPSG膜を除去する時に、熱酸化膜と
選択比のないエッチング方法を用いるために、素子分離
酸化膜等の酸化膜がともにエッチングされ、素子特性を
劣化させるという問題があった。
As described above, in the conventional method of manufacturing a semiconductor device, when the PSG film deposited for diffusing impurities into the inner wall of the groove is removed, there is no selectivity with respect to the thermal oxide film. Since the etching method is used, an oxide film such as an element isolation oxide film is etched together, which causes a problem that element characteristics are deteriorated.

【0008】本発明の目的は、選択的に不純物拡散を行
う方法において、素子分離酸化膜等のエッチングを抑制
し、素子特性の向上を図ることができる半導体装置の製
造方法を提供することである。
An object of the present invention is to provide a method of manufacturing a semiconductor device which can suppress the etching of an element isolation oxide film or the like and improve element characteristics in a method of selectively diffusing impurities. .

【0009】[0009]

【課題を解決するための手段】上記課題を解決し目的を
達成するための手段は、従来使用されているNH4 Fエ
ッチングに代えて加熱された弗化水素水蒸気を使用して
不純物含有絶縁膜を除去するものである。
Means for solving the above problems and achieving the object are to use an insulating film containing impurities by using heated hydrogen fluoride vapor instead of the conventionally used NH 4 F etching. Is to be removed.

【0010】すなわち、本発明による半導体装置の製造
方法は、半導体基板に溝を形成する工程と、前記溝およ
び前記半導体基板上に所望の不純物を含有した絶縁膜を
堆積する工程と、前記溝の内部の前記絶縁膜上に保護膜
を形成する工程と、30℃以上の弗化水素水蒸気中にお
いて処理を行い前記保護膜に被覆されていない部分の前
記絶縁膜を除去する工程と、前記保護膜を除去する工程
と、800℃以上の熱処理により前記絶縁膜中の前記不
純物を前記半導体基板中に拡散させる工程とを具備し、
前記保護膜は前記弗化水素水蒸気処理に対してエッチン
グ耐性を有することを特徴とする。
That is, in the method of manufacturing a semiconductor device according to the present invention, a step of forming a groove in a semiconductor substrate, a step of depositing an insulating film containing a desired impurity on the groove and the semiconductor substrate, and a step of forming the groove Forming a protective film on the insulating film inside, removing the insulating film in a portion not covered with the protective film by performing treatment in steam of hydrogen fluoride at 30 ° C. or higher, and the protective film And a step of diffusing the impurities in the insulating film into the semiconductor substrate by heat treatment at 800 ° C. or higher,
The protective film has etching resistance against the hydrogen fluoride steam treatment.

【0011】[0011]

【発明の実施の形態】上記手段に示すように、本発明に
よる半導体装置の製造方法では、絶縁膜を除去するため
に30℃以上の弗化水素水蒸気中における処理を行って
いる。この処理は、不純物を含有した絶縁膜をエッチン
グし、熱酸化膜をほとんどエッチングしない性質を有す
るため、この処理により例えば素子分離酸化膜がエッチ
ングされることを抑制することができる。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in the above means, in the method of manufacturing a semiconductor device according to the present invention, a treatment in steam of hydrogen fluoride at 30 ° C. or higher is performed to remove the insulating film. Since this treatment has a property of etching the insulating film containing impurities and hardly etching the thermal oxide film, it is possible to prevent the element isolation oxide film from being etched by this treatment.

【0012】以下、本発明の実施の形態について図面を
参照して説明する。図1〜図4は本発明による不純物拡
散層の形成方法を示す。従来と同様の方法を用いて、S
i基板1に例えば深さ9μmの溝10を形成する。基板
1上には、素子分離酸化膜11と、溝10を形成する時
のエッチング保護膜として、例えば50nm以下の膜厚
を有する熱酸化膜(SiO2 )2と、例えば減圧CVD
法により形成された膜厚100〜400nmの窒化膜
(SiN)3が形成されており、溝10はこの例では図
1に示すように、素子分離酸化膜11と素子領域上の酸
化膜2の境界部分に開口される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 4 show a method of forming an impurity diffusion layer according to the present invention. Using the same method as before, S
A groove 10 having a depth of 9 μm, for example, is formed in the i substrate 1. On the substrate 1, an element isolation oxide film 11, a thermal oxide film (SiO2) 2 having a film thickness of, for example, 50 nm or less as an etching protection film when forming the groove 10, and, for example, low pressure CVD
A nitride film (SiN) 3 having a film thickness of 100 to 400 nm formed by the method is formed. In this example, the trench 10 includes an element isolation oxide film 11 and an oxide film 2 on the element region as shown in FIG. It is opened at the boundary.

【0013】さらに、従来と同様に、減圧CVD法によ
り、例えばリン(P)を1021〜1022cm-3含むSi
2 膜(PSG膜)6を堆積する。この後、リソグラフ
ィ−法を用いて、PSG膜6上にレジスト7を塗布して
パタ−ンマスクを介せずに露光を行い、窒化膜3上のレ
ジスト7と、溝10の内部のレジスト7のうち基板1表
面より1〜8μmの深さまでを除去して、溝10の内部
にレジスト7を残存させる(図2)。
Further, as in the prior art, Si containing 10 21 to 10 22 cm -3 of phosphorus (P), for example, is formed by the low pressure CVD method.
An O 2 film (PSG film) 6 is deposited. After that, a resist 7 is applied on the PSG film 6 by a lithography method and exposed without using a pattern mask to remove the resist 7 on the nitride film 3 and the resist 7 inside the groove 10. Of this, the resist 7 is removed from the surface of the substrate 1 to a depth of 1 to 8 μm to leave the resist 7 inside the groove 10 (FIG. 2).

【0014】この後、従来のNH4 Fを用いたエッチン
グと異なり、例えば80℃に加熱した弗化水素水蒸気中
において処理を行い(以下V−HF処理という)、PS
G膜6の露出している部分を除去する。
After this, unlike the conventional etching using NH 4 F, a treatment is carried out in steam of hydrogen fluoride heated to 80 ° C. (hereinafter referred to as V-HF treatment) to obtain PS.
The exposed portion of the G film 6 is removed.

【0015】この後、従来と同様にレジスト7を除去し
た後に、酸化膜8を10nm形成し、例えば温度800
℃のN2 雰囲気中において熱処理を行い、溝10の内部
に残存させたPSG膜6より基板1中へリンを拡散させ
て拡散層9を形成する(図3)。
Thereafter, after removing the resist 7 as in the conventional case, an oxide film 8 is formed to a thickness of 10 nm, and the temperature is set to 800, for example.
A heat treatment is performed in a N 2 atmosphere at a temperature of 0 ° C. to diffuse phosphorus from the PSG film 6 left inside the groove 10 into the substrate 1 to form a diffusion layer 9 (FIG. 3).

【0016】さらに、従来のNH4 Fを用いたエッチン
グと異なり、V−HF処理により、PSG膜6を除去
し、溝10の内壁に所望の不純物拡散層9の形成された
構造が完成する(図5)。
Further, unlike the conventional etching using NH 4 F, the PSG film 6 is removed by V-HF treatment, and the structure in which the desired impurity diffusion layer 9 is formed on the inner wall of the groove 10 is completed ( Figure 5).

【0017】このように、本発明による実施の形態によ
れば、PSG膜を除去するために、従来のNH4 Fによ
るエッチングと異なり、例えば80℃に加熱したV−H
F中において処理を行う。このV−HF処理によるPS
Gのエッチングレ−トは400nm/分であり、これに
対して熱酸化膜のエッチングレ−トはわずかに0.1n
m/分しかない。このため、PSGと熱酸化膜に対する
エッチングレ−トに差のない従来のNH4 Fによるエッ
チングように、素子分離酸化膜等がエッチングされるこ
とを防止することができる。
As described above, according to the embodiment of the present invention, in order to remove the PSG film, unlike the conventional etching with NH 4 F, for example, V-H heated to 80 ° C. is used.
Perform processing in F. PS by this V-HF treatment
The etching rate of G is 400 nm / min, whereas the etching rate of the thermal oxide film is only 0.1 n.
There is only m / minute. Therefore, it is possible to prevent the element isolation oxide film and the like from being etched, unlike the conventional etching with NH 4 F, which has no difference in the etching rate for the PSG and the thermal oxide film.

【0018】なお、V−HF中における処理によるエッ
チングレ−トの選択比(熱酸化膜のエッチングレ−トに
対するPSGのエッチングレ−ト)は、30℃以上にお
いて得ることができ、温度と共に上昇し、前述のように
80℃において選択比4000が得られる。さらに高温
においては選択比が飽和する。また、特に800℃以上
の温度においては、窒化膜3のストレスに起因した基板
1の結晶欠陥が発生したり、拡散層9が過剰に拡散して
素子分離耐圧が劣化する可能性があるため、このような
高温処理を行うことは好ましくない。
The selectivity of the etching rate by the treatment in V-HF (PSG etching rate with respect to the thermal oxide film etching rate) can be obtained at 30 ° C. or higher and increases with temperature. However, a selection ratio of 4000 is obtained at 80 ° C. as described above. The selection ratio saturates at higher temperatures. Further, especially at a temperature of 800 ° C. or higher, crystal defects of the substrate 1 due to the stress of the nitride film 3 may occur, or the diffusion layer 9 may excessively diffuse to deteriorate the element isolation breakdown voltage. It is not preferable to perform such high temperature treatment.

【0019】[0019]

【発明の効果】以上のように、本発明による半導体装置
の製造方法によれば、選択的に不純物拡散を行う方法に
おいて、素子分離酸化膜等のエッチングを抑制し、素子
特性の向上を図ることができる。
As described above, according to the method for manufacturing a semiconductor device of the present invention, in the method of selectively diffusing impurities, it is possible to suppress the etching of the element isolation oxide film and improve the element characteristics. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体装置の製造方法を示す図。FIG. 1 is a diagram showing a method for manufacturing a semiconductor device according to the present invention.

【図2】本発明による半導体装置の製造方法を示す図。FIG. 2 is a diagram showing a method for manufacturing a semiconductor device according to the present invention.

【図3】本発明による半導体装置の製造方法を示す図。FIG. 3 is a diagram showing a method for manufacturing a semiconductor device according to the present invention.

【図4】本発明による半導体装置の製造方法を示す図。FIG. 4 is a diagram showing a method for manufacturing a semiconductor device according to the present invention.

【図5】従来の半導体装置の製造方法を示す図。FIG. 5 is a diagram showing a conventional method for manufacturing a semiconductor device.

【図6】従来の半導体装置の製造方法を示す図。FIG. 6 is a diagram showing a conventional method for manufacturing a semiconductor device.

【図7】従来の半導体装置の製造方法を示す図。FIG. 7 is a diagram showing a conventional method for manufacturing a semiconductor device.

【図8】従来の半導体装置の製造方法を示す図。FIG. 8 is a diagram showing a conventional method for manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1…Si基板、2、8、11…酸化膜、3…窒化膜、6
…PSG膜、7…レジスト、9…拡散層、10…溝
1 ... Si substrate, 2, 8, 11 ... Oxide film, 3 ... Nitride film, 6
... PSG film, 7 ... resist, 9 ... diffusion layer, 10 ... groove

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板に溝を形成する工程と、前記
溝および前記半導体基板上に所望の不純物を含有した絶
縁膜を堆積する工程と、前記溝の内部の前記絶縁膜上に
保護膜を形成する工程と、30℃以上の弗化水素水蒸気
中において処理を行い前記保護膜に被覆されていない部
分の前記絶縁膜を除去する工程と、前記保護膜を除去す
る工程と、800℃以上の熱処理により前記絶縁膜中の
前記不純物を前記半導体基板中に拡散させる工程とを具
備し、前記保護膜は前記弗化水素水蒸気処理に対してエ
ッチング耐性を有することを特徴とする半導体装置の製
造方法。
1. A step of forming a groove in a semiconductor substrate, a step of depositing an insulating film containing a desired impurity on the groove and the semiconductor substrate, and a protective film on the insulating film inside the groove. A step of forming, a step of removing the insulating film in a portion not covered with the protective film by performing a treatment in steam of hydrogen fluoride at 30 ° C. or higher, a step of removing the protective film, and a temperature of 800 ° C. or higher. A step of diffusing the impurities in the insulating film into the semiconductor substrate by heat treatment, wherein the protective film has etching resistance to the hydrogen fluoride steam treatment. .
【請求項2】 半導体基板に溝を形成する工程と、前記
溝および前記半導体基板上に所望の不純物を含有した絶
縁膜を堆積する工程と、前記溝の内部の前記絶縁膜上に
保護膜を形成する工程と、30℃以上の弗化水素水蒸気
中において処理を行い前記保護膜に被覆されていない部
分の前記絶縁膜を除去する工程と、前記保護膜を除去す
る工程と、800℃以上の熱処理により前記絶縁膜中の
前記不純物を前記半導体基板中に拡散させる工程と、3
0℃以上の弗化水素水蒸気中において処理を行い前記絶
縁膜を除去する工程とを具備し、前記保護膜は前記弗化
水素水蒸気処理に対してエッチング耐性を有することを
特徴とする半導体装置の製造方法。
2. A step of forming a groove in a semiconductor substrate, a step of depositing an insulating film containing a desired impurity on the groove and the semiconductor substrate, and a protective film on the insulating film inside the groove. A step of forming, a step of removing the insulating film in a portion not covered with the protective film by performing a treatment in steam of hydrogen fluoride at 30 ° C. or higher, a step of removing the protective film, and a temperature of 800 ° C. or higher. Diffusing the impurities in the insulating film into the semiconductor substrate by heat treatment;
And a step of removing the insulating film by performing a treatment in hydrogen fluoride vapor at 0 ° C. or higher, wherein the protective film has etching resistance against the hydrogen fluoride vapor treatment. Production method.
【請求項3】 前記不純物は周期律表のIII 族、V族元
素のグル−プから選ばれた1つ以上の元素であり、前記
絶縁膜は酸化膜である前記請求項1および請求項2記載
の半導体装置の製造方法。
3. The method according to claim 1, wherein the impurities are one or more elements selected from a group of group III and group V elements of the periodic table, and the insulating film is an oxide film. A method for manufacturing a semiconductor device as described above.
JP18714895A 1995-07-24 1995-07-24 Method for manufacturing semiconductor device Expired - Fee Related JP3226761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18714895A JP3226761B2 (en) 1995-07-24 1995-07-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18714895A JP3226761B2 (en) 1995-07-24 1995-07-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0936323A true JPH0936323A (en) 1997-02-07
JP3226761B2 JP3226761B2 (en) 2001-11-05

Family

ID=16200966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18714895A Expired - Fee Related JP3226761B2 (en) 1995-07-24 1995-07-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3226761B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780774B2 (en) 2001-09-28 2004-08-24 Hynix Semiconductor Inc. Method of semiconductor device isolation
US7553740B2 (en) 2005-05-26 2009-06-30 Fairchild Semiconductor Corporation Structure and method for forming a minimum pitch trench-gate FET with heavy body region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780774B2 (en) 2001-09-28 2004-08-24 Hynix Semiconductor Inc. Method of semiconductor device isolation
US7553740B2 (en) 2005-05-26 2009-06-30 Fairchild Semiconductor Corporation Structure and method for forming a minimum pitch trench-gate FET with heavy body region

Also Published As

Publication number Publication date
JP3226761B2 (en) 2001-11-05

Similar Documents

Publication Publication Date Title
JP2605594B2 (en) Method for manufacturing semiconductor device
JPH05102427A (en) Manufacture of semiconductor memory element
JPH0661446A (en) Manufacture of semiconductor memory device
JP2802600B2 (en) Method for manufacturing semiconductor device
JPH07202028A (en) Manufacture of capacitor for dram cell
JPH1012716A (en) Method for manufacturing semiconductor device
JPH0936323A (en) Manufacture of semiconductor device
JPH0897202A (en) Manufacture of semiconductor device
KR100226729B1 (en) Method of forming a device isolation film of semiconductor device
JPH065805A (en) Manufacture of semiconductor device
JP2651044B2 (en) Method for manufacturing semiconductor memory device
JP3127866B2 (en) Method for manufacturing semiconductor device
JPH03227024A (en) Manufacture of semiconductor device
JPS63228732A (en) Manufacture of semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPH0521592A (en) Manufacture of semiconductor device and semiconductor device
JPS62286221A (en) Manufacture of semiconductor device
KR0143579B1 (en) Forming method element isolation film on the semiconductor device
JP3196373B2 (en) Method for manufacturing semiconductor device
JPS59103357A (en) Manufacture of semiconductor device
JPS5923515A (en) Impurity diffusion method
JPH0117256B2 (en)
JPH05326880A (en) Manufacture of dram
JPS594079A (en) Manufacture of semiconductor device
JPH02106934A (en) Method of forming capacitive insulating film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees