JPS594079A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS594079A
JPS594079A JP11296982A JP11296982A JPS594079A JP S594079 A JPS594079 A JP S594079A JP 11296982 A JP11296982 A JP 11296982A JP 11296982 A JP11296982 A JP 11296982A JP S594079 A JPS594079 A JP S594079A
Authority
JP
Japan
Prior art keywords
film
oxide film
silicon
forming
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11296982A
Other languages
Japanese (ja)
Inventor
Kikuo Yamabe
紀久夫 山部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP11296982A priority Critical patent/JPS594079A/en
Publication of JPS594079A publication Critical patent/JPS594079A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce the defect density of a gate oxide film by treating an Si substrate at a specified temperature or above so as to remove the distortion of a crystal lattice near the surface of the substrate and to prevent the outward diffusion of impurities at the time of treatment. CONSTITUTION:A P type Si substrate 1 doped with B is treated at the temperature of 1,000 deg.C for one hour in an Ar gas containing a very small quantity of H2O to form an SiO2 film 2 of about 1,000Angstrom , and subsequently, a poly Si film 3 of about 3,000Angstrom is superposed thereon by a CVD method. Next, after the film 3 is doped with B, a treatment is applied for two hours at the temperature of 1,100 deg.C (a temperature of not less than 1,050 deg.C is sufficient) in the Ar gas containing O2 of 10% partial pressure, poly Si 3 is removed by a dry chemical etchihg method, and the SiO2 film 2 is removed by a buffer fluoric acid. Then, a gate oxide film 4 is formed on the Si substrate 1 in dried O2, a poly Si gate electrode 5 is attached thereto, and thereby MOS capacity is completed. This constitution enables the removal of the distortion of a crystal lattice without alteration of the distribution of an impurity density in the vicinity of the surface of the substrate, and the reduction of the defect density of the gate oxide film, and thus the characteristics of the device can be improved.

Description

【発明の詳細な説明】 本発明は、半導体製造技術に係わり、特に10 0 0
 CX]以下の薄いr−)酸化膜を必要とする半導体装
置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor manufacturing technology, and particularly to semiconductor manufacturing technology.
The present invention relates to a method for manufacturing a semiconductor device that requires a thin r-) oxide film of less than CX].

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置の製造方法としては、シリコン基板上
に酸化膜を形成した後核酸化膜に耐酸化性マスクとして
作用するシリコンり化膜を形成し、このシリコン窒化膜
を写真食刻法によシ・母ターニングし、その後シリコン
窒化膜が除去された領域に比較的肉厚の酸化膜(フィー
ルド酸化膜)を形成する。続いて、シリコン窒化膜及び
その下の酸化膜を除去してシリコン基板を露出させ再び
酸化膜を形成する、所謂選択酸化法の工程が採用されて
いる。そして、この選択酸化法は高密度集積回路に欠か
せぬ技術として注目されている。
Conventionally, the method for manufacturing semiconductor devices is to form an oxide film on a silicon substrate, then form a silicon nitride film that acts as an oxidation-resistant mask on the nuclear oxide film, and then photoetch this silicon nitride film. After that, a relatively thick oxide film (field oxide film) is formed in the area where the silicon nitride film has been removed. Subsequently, a so-called selective oxidation process is employed in which the silicon nitride film and the oxide film thereunder are removed to expose the silicon substrate and an oxide film is formed again. This selective oxidation method is attracting attention as an indispensable technology for high-density integrated circuits.

ところで、上記方法にあっては剛酸化性マスクとして用
いたシリコン窒化膜を水蒸気を含む雰囲気中で酸化処理
すると、水蒸気とシリコン窒化膜とが反応してアンモニ
アを発生する。このアンモニアはシリコン窒化)1ウ1
下のシリコン酸化膜中を拡散し、その下のシリコン基板
表面に到達してその表面を窒化する。この表面の輩化物
はその後の工程で再び耐酸化性マスクとなるため、例え
ばこの領域にy−ト酸化fl!!を形成すると、酸化膜
自体の耐圧が極端に低下することになる。
By the way, in the above method, when the silicon nitride film used as a rigid oxidation mask is oxidized in an atmosphere containing water vapor, the water vapor and the silicon nitride film react to generate ammonia. This ammonia is silicon nitride)1U1
It diffuses through the underlying silicon oxide film, reaches the underlying silicon substrate surface, and nitrides that surface. This surface compound becomes an oxidation-resistant mask again in the subsequent process, so for example, y-to oxidation fl! ! If this happens, the withstand voltage of the oxide film itself will be extremely reduced.

そこで最近、上記酸化物耐圧の劣化を防ぐため、ダート
酸化前に一層シリコン表面を酸化しダート酸化のマスク
となる販窒化膜を除去する方法が一般に採られている。
Recently, in order to prevent the deterioration of the oxide breakdown voltage, a method has generally been adopted in which the silicon surface is further oxidized before dirt oxidation and the nitride film that serves as a mask for dirt oxidation is removed.

しかし、このような手段をとってもなおかつ、選択酸化
法によるダート酸化膜の酸化膜欠陥密度を高密度集積回
路で使用できる程十分なレベルまで低下させることはで
きなかった。
However, even with such measures, it has not been possible to reduce the oxide film defect density of the dirt oxide film by selective oxidation to a level sufficient for use in high-density integrated circuits.

この原因は次のように考えられる。すなわち、従来の集
積回路製造技術では、シリコンのインゴットをウェハ状
に切り出し表面研摩を施こした後、集積回路製造プロセ
スに投入していた。
The reason for this is thought to be as follows. That is, in the conventional integrated circuit manufacturing technology, a silicon ingot is cut into wafer shapes, the surfaces of which are polished, and then the wafers are introduced into the integrated circuit manufacturing process.

そして、上記集積回路製造プロセスでは] 000〔℃
〕を上限とした工程が一般に採用されており、また最近
では、微細化の要求により製造プロセスの低温化が検討
されている。しかし、1(10(+〔℃]以下の前記工
程ではS′lウエノ・に起因する酸化膜耐圧不良を回避
できず生産性を著しく低下していた。つ壕り、インゴッ
トからウェハを切り出番 す工程および表面を研摩する工程において、シリコン表
面近傍に導入された結晶格子歪層に重金属等の不純物が
捕獲される。シリコン表面近傍に捕獲されている重金属
等の不純物が酸化膜中に取り込まれると、酸化膜欠陥と
なり耐圧不良を生ずる。前記シリコン表面近傍の結晶格
子歪層を除去する目的の1050〔℃〕以上の高温熱処
理があるが、シリコン基板を直接高温熱処理或いは高温
酸化すると、St表面近傍の不純物濃度分布が変化し、
後に形成される素子の閾値電圧等が変化してしまうとい
う欠点があった。捷た、前記重金属等の不純物を選択酸
化工程以前に裏面にダッタリングしても選択酸化工程或
いはダート酸化工程中に導入される重金属等の不純物を
防ぐことはできないという欠点があった。
In the above integrated circuit manufacturing process] 000[℃
] is generally adopted as an upper limit, and recently, due to the demand for miniaturization, lowering the temperature of the manufacturing process is being considered. However, in the above process at temperatures below 1 (10 (+ [℃)], it was not possible to avoid oxide film breakdown voltage defects caused by S'l wafer, resulting in a significant decrease in productivity. In the process of polishing and polishing the surface, impurities such as heavy metals are captured in the strained crystal lattice layer introduced near the silicon surface. Impurities such as heavy metals captured near the silicon surface are incorporated into the oxide film. If the silicon substrate is directly subjected to high-temperature heat treatment or high-temperature oxidation, the St surface will be damaged. The impurity concentration distribution in the vicinity changes,
There was a drawback that the threshold voltage and the like of elements formed later changed. Even if the broken impurities such as heavy metals are dattered onto the back surface before the selective oxidation step, there is a drawback that impurities such as heavy metals introduced during the selective oxidation step or the dirt oxidation step cannot be prevented.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、シリコン基板表面近傍の主要不純物の
濃度分布変化を招くことなくシリコン基板表面の結晶格
子歪層を除去することができ、ダート酸化膜の欠陥密度
の低減化ひいては筒密度集積回路の素子特性向上に寄与
し得る半導体装置の製造方法を提供することにある。
An object of the present invention is to be able to remove a strained crystal lattice layer on the surface of a silicon substrate without causing a change in the concentration distribution of major impurities near the surface of the silicon substrate, and to reduce the defect density of a dirt oxide film, thereby achieving a cylindrical density integrated circuit. An object of the present invention is to provide a method for manufacturing a semiconductor device that can contribute to improving device characteristics.

〔発明の概要〕[Summary of the invention]

本発明の沓子は、シリコン調板をHl50[℃]以上の
高温で熱処理することによりシリコン基板表面近傍の結
晶格子歪層を除去すると共妬、この熱処理時にシリコン
基板の主たる不純物が外方拡散するのを防いだことにあ
る。
According to the present invention, the strained crystal lattice layer near the surface of the silicon substrate is removed by heat-treating the silicon plate at a high temperature of H150 [°C] or higher, and during this heat treatment, the main impurities in the silicon substrate diffuse outward. The reason lies in the fact that it was prevented from happening.

すなわち本発明は、半導体装置を製造するに際し、シリ
コン基板表面に熱酸化法によシリコン酸化膜を形成した
のち、このシリコン酸化lIv上に上記シリコン基板の
主たる不純物と同種の不純物を同程度の濃度以上含む多
結晶シリコン膜を形成し、次いで低分圧の酸化剤を含む
不活性ガス中1050C℃〕以上の高温で上記シリコン
基板を熱処理し、しかるのち素子形成工程を施すように
した方法である。
That is, in manufacturing a semiconductor device, the present invention forms a silicon oxide film on the surface of a silicon substrate by a thermal oxidation method, and then impurities of the same type as the main impurity of the silicon substrate are added to the same concentration on this silicon oxide lIv. In this method, a polycrystalline silicon film containing the above is formed, and then the silicon substrate is heat-treated at a high temperature of 1050°C or higher in an inert gas containing an oxidizing agent at a low partial pressure, and then an element forming process is performed. .

゛まだ、本発明は上記熱処理工程の後、前記シリコン基
板の裏面を露出させ該裏面に不純物濃度10 〔α 〕
以上の燐拡散層を形成[2、しかるのち素子形成工程を
施すようにした方法である。
゛However, in the present invention, after the above heat treatment step, the back surface of the silicon substrate is exposed and the impurity concentration is 10 [α] on the back surface.
This is a method in which the above phosphorus diffusion layer is formed [2], and then an element forming step is performed.

゛まだ本発明は、シリコン基板表面に熱酸化法圧よシ第
1のシリコン酸化膜を形成したのち、この第1のシリコ
ン酸化膜上に上記シリコン基板の主たる不純物と同種の
不純物を同程度の濃度以上含む第1の多結晶シリコン膜
を形成し、次いで低努圧の酸化剤を含む不活性力゛ス中
1050〔℃〕以上の品温で上記シリコン基板を熱処理
し、次いで前記第1の多結晶シリコン脇を除去したのち
前記第1のシリコン酸化11史上に素子形成領域をマス
クするよう耐酸化性膜を形成し、次いで熱酸化法によシ
フイールド酵化膜を形成し、次いで前記第1のシリコン
酸化膜および耐酸化性膜を除去したのち前記半導体基板
表面に第2のシリコン酸化膜および第2の多結晶シリコ
ン膜を形成し、次いで上記シリコン基板の裏面を露出さ
せ該裏面に不純物一度1− (l  Ctyn  :]
以上の燐拡散層を形成し、しかるのち素子形成工程を施
すようにした方法である。
゛However, in the present invention, after forming a first silicon oxide film on the surface of a silicon substrate by thermal oxidation method, the same kind of impurity as the main impurity of the silicon substrate is added to the same degree on this first silicon oxide film. A first polycrystalline silicon film containing a polycrystalline silicon film having a concentration higher than or equal to the concentration of polycrystalline silicon is formed, and then the silicon substrate is heat-treated at a temperature of 1050 [°C] or higher in an inert force containing a low stress oxidizing agent. After removing the side of the polycrystalline silicon, an oxidation-resistant film is formed to mask the element forming region in the first silicon oxidation layer, and then a Sifield fermentation film is formed by a thermal oxidation method. After removing the silicon oxide film and the oxidation-resistant film, a second silicon oxide film and a second polycrystalline silicon film are formed on the surface of the semiconductor substrate, and then the back surface of the silicon substrate is exposed and impurities are once applied to the back surface. 1- (lCtyn:]
This is a method in which the above phosphorus diffusion layer is formed and then an element forming step is performed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、シリコン基板表面の主髪不純物の濃度
分布の変化を抑えて高温熱処理を行うことができるので
、シリコン基板表面近傍の結晶格子歪層を除去し、ケ゛
−ト酸化膜の欠陥密度度低減化をはかシ得る。さらに、
裏面燐拡散層を形成すると表によシ、不純物ダッタリン
グを効果的に行うことができ、ダート酸化膜の欠陥密度
をよシ低減させることも可能である。したがって、尚’
M 置県積回路の生産性向上に効果的である。また、2
00 [X:]以下の薄いシリコン酸化膜についても欠
陥密度を下げることができるだめ薄いシリコン酸化膜の
用途を著しく拡大することができ、その波及効果は極め
て大きい。
According to the present invention, it is possible to perform high-temperature heat treatment while suppressing changes in the concentration distribution of main hair impurities on the surface of the silicon substrate, thereby removing the strained crystal lattice layer near the surface of the silicon substrate and eliminating defects in the substrate oxide film. Achieves density reduction. moreover,
By forming a back surface phosphorus diffusion layer, impurity duttering can be effectively performed on the front surface, and it is also possible to significantly reduce the defect density of the dirt oxide film. Therefore, still
M It is effective in improving the productivity of prefectural product circuits. Also, 2
Since the defect density can be lowered even for thin silicon oxide films of 00 [X:] or less, the applications of thin silicon oxide films can be significantly expanded, and the ripple effect is extremely large.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図(IL) (b)は本発明の第1の実施例に係わ
るMOSキャパシタ製造工程を示す断面図である。
FIG. 1 (IL) (b) is a cross-sectional view showing the manufacturing process of a MOS capacitor according to the first embodiment of the present invention.

まず、第1図(a)に示す如くチ言りラルスキ−(cz
)法によシ得らり、fc約I X I 016[m−3
]のボロンドーグのP形(100)Si基板1を用意し
、その表面を微量の水蒸気を含むArガス中温度10(
JO〔℃〕テ1時間酸化し1ooo[X) (7)第1
のシリコン酸化膜2を形成する。続いて、LPCVD法
によシリコン基板1上に3ooo[X]程度の第1の多
結晶シリコン膜3を形成する。その後、イオン注入によ
り多結晶シリコンllQ、9Vc3X10”〔crn−
2〕のボロンをドーフ0する。次いで、岐51圧が10
 C%]のArガス中11(10[℃:]の温度で2時
間熱処理する。続いて、多結晶シリコン膜3をケミカル
ドライエツチング法でエツチング除去した後、シリコン
酸化膜2を緩衝弗酸で除去する。
First, as shown in Figure 1(a),
) obtained by law, fc about I X I 016[m-3
] A boron doug P-type (100) Si substrate 1 is prepared, and its surface is heated at a temperature of 10 (
Oxidize at JO[℃] for 1 hour to 1ooo[X] (7) 1st
A silicon oxide film 2 is formed. Subsequently, a first polycrystalline silicon film 3 having a thickness of about 300[X] is formed on the silicon substrate 1 by the LPCVD method. Then, by ion implantation, polycrystalline silicon llQ, 9Vc3X10'' [crn-
2] Dorf 0 boron. Then, the branch 51 pressure is 10
C%] in Ar gas at a temperature of 11 (10° C.) for 2 hours. Subsequently, after removing the polycrystalline silicon film 3 by chemical dry etching, the silicon oxide film 2 is etched with buffered hydrofluoric acid. Remove.

次に、第1図(b)に示す如くシリコン基板1上に乾燥
酸素中で400 [X]のダート酸化膜4を形成し、こ
のケ9−ト酸化膜4上にCVD法により燐添加多結晶シ
リコン膜を堆積する。そして、写真食刻法によシ燐添加
多結晶シリコン膜を・ぐターニングしてダート電極5を
形成することによシ、MOSキャパシタが作成される。
Next, as shown in FIG. 1(b), a dirt oxide film 4 of 400 [X] is formed on the silicon substrate 1 in dry oxygen, and a phosphorus-doped oxide film 4 is formed on this dirt oxide film 4 by the CVD method. Deposit a crystalline silicon film. Then, a MOS capacitor is fabricated by turning the phosphorous-doped polycrystalline silicon film by photolithography to form a dirt electrode 5.

第2図は上記高温熱処理を行なわないで形成された従来
のMOSキャパシタの耐圧ヒストグラムを示す特性図で
、また第3図は上記高温熱処理を施した後形成された上
施例?V10sキャパシタの耐圧ヒストグラムを示す特
性図である。これらの図から本実施例では、酸化膜欠陥
に起因する7 [MV/m]以下の耐圧を示す不良頻度
が著しく減少していることが判る。まだ、第4図はシリ
コン基板表面近傍の不純物濃度分布を示す特性用OO〔
℃〕2時間乾燥酸素中で熱処理して得られた基板の場合
を示している。この図から、本実施例方法により、筒温
熱処理時のシリコン基板1の主要不純物の外方拡散が抑
えられていることが判る。かくして本実施例によれば、
シリコン基板10表面の主要不純物の濃度分布変化を招
くことなく、ケ°−ト酸化膜4の欠陥密度の低減化をは
かることができる。
FIG. 2 is a characteristic diagram showing the withstand voltage histogram of a conventional MOS capacitor formed without performing the above-mentioned high-temperature heat treatment, and FIG. FIG. 3 is a characteristic diagram showing a breakdown voltage histogram of a V10s capacitor. From these figures, it can be seen that in this example, the frequency of defects exhibiting a withstand voltage of 7 [MV/m] or less due to oxide film defects is significantly reduced. However, Figure 4 shows the characteristic OO showing the impurity concentration distribution near the surface of the silicon substrate.
℃] The case of a substrate obtained by heat treatment in dry oxygen for 2 hours is shown. From this figure, it can be seen that the method of this example suppresses the outward diffusion of the main impurities of the silicon substrate 1 during the tube temperature heat treatment. Thus, according to this embodiment,
The defect density of the keto oxide film 4 can be reduced without causing a change in the concentration distribution of main impurities on the surface of the silicon substrate 10.

第5図(a)〜(d)は第2の実施例に係わるMOSキ
ャパシタ製造工程を示す断面図である。なお、8T! 
]図(、) (b)と同一部分には同一符号を付して、
その詳しい説明は省略する。この実施例が先に説明した
実施例と異なる点は、シリコン基板1の裏面に燐拡散層
を設け、重金属等をダウタリングすることにある。すな
わち、第5図(a)に示す如くシリコン基板1の表裏面
にシリコン酸化膜2および多結晶シリコン膜3を形成す
る。次いで、イオン注入により多結晶シリコン膜3に3
×1011〔Crn−2〕のボロンをドープし、続いて
酸素分圧が10 C%]のArガス中中玉10)〔℃〕
の温度で2時間熱処理する。ここまでは、先の実施例と
同様である。
FIGS. 5(a) to 5(d) are cross-sectional views showing the manufacturing process of a MOS capacitor according to the second embodiment. In addition, 8T!
] Figure (,) The same parts as in (b) are given the same symbols,
A detailed explanation thereof will be omitted. This embodiment differs from the previously described embodiments in that a phosphorus diffusion layer is provided on the back surface of the silicon substrate 1 and heavy metals are doubled therein. That is, as shown in FIG. 5(a), a silicon oxide film 2 and a polycrystalline silicon film 3 are formed on the front and back surfaces of a silicon substrate 1. Next, by ion implantation, the polycrystalline silicon film 3 is
×1011 [Crn-2] doped with boron, followed by a medium ball in Ar gas with an oxygen partial pressure of 10 C%] [°C]
Heat treatment at a temperature of 2 hours. The process up to this point is the same as the previous embodiment.

次に、シリコン基板1の裏面に形成された多結晶シリコ
ン膜3およびシリコン酸化膜2を除去し、シリコン基板
1の裏面を露出せしめる。
Next, polycrystalline silicon film 3 and silicon oxide film 2 formed on the back surface of silicon substrate 1 are removed to expose the back surface of silicon substrate 1.

次いで、シリコン基板10表面に残ったシリコン酸化膜
2および多結晶シリコン膜3をマスクしてPOCt3拡
散を1(+00[℃]で30分行ない、第5図(b)に
示す如く基板裏面に高濃度燐拡散層6を形成する。続い
て、第5図(C)に示す如く多結晶シリコン膜3および
該シリコン酸化11* 2をエツチング除去する。この
後は先の実施例と同様に乾燥酸素中900 [’C)の
温度で200 〔X)のケ9−ト酸化膜4を形成し、こ
のダート酸化膜4上にCVD法【よシ燐添加多結晶シリ
コン膜5を堆積する。そして、写真食刻法によシ燐“添
加多結晶シリコン膜5を・ンターニングしてダート電極
6を形成することによシ、第5図(d)に示す如きMO
Sキャパシタが作成されることになる。
Next, the silicon oxide film 2 and polycrystalline silicon film 3 remaining on the surface of the silicon substrate 10 are masked, and POCt3 is diffused at 1 (+00[°C] for 30 minutes, as shown in FIG. 5(b). A phosphorous-concentrated diffusion layer 6 is formed.Next, the polycrystalline silicon film 3 and the silicon oxide 11*2 are removed by etching as shown in FIG. A dirt oxide film 4 of 200°C is formed at a temperature of 900°C, and a phosphorous-doped polycrystalline silicon film 5 is deposited on this dirt oxide film 4 by CVD. Then, by turning the phosphorus-doped polycrystalline silicon film 5 by photolithography to form a dirt electrode 6, an MO as shown in FIG. 5(d) is formed.
An S capacitor will be created.

第6図は本実施例で示した高温熱処理および裏面燐拡散
処理を施こした後形成された膜厚20(l [i]のケ
9−ト酸化膜4の耐圧ヒストグラムを示す特性図である
。この図から酸化膜欠陥に起因する8 [+1/IV/
cn]以下の耐圧不良の頻度が著しく減少し、さらに前
記第3図に示した第1の実施例における耐圧ヒストグラ
ムに比しても、よシ優れているととが判る。したがって
本実施例によれば、先の第1の実施例と同様な効果を奏
するのは勿論、ゲート酸化膜4の欠陥密度のよシ一層の
低減化をはかシ得る。
FIG. 6 is a characteristic diagram showing the withstand voltage histogram of the keto oxide film 4 with a film thickness of 20 (l [i]) formed after performing the high temperature heat treatment and backside phosphorus diffusion treatment shown in this example. From this figure, 8[+1/IV/
It can be seen that the frequency of breakdown voltage failures below [cn] has been significantly reduced, and is also much better than the breakdown voltage histogram of the first embodiment shown in FIG. Therefore, according to this embodiment, not only the same effects as the first embodiment described above can be achieved, but also the defect density of the gate oxide film 4 can be further reduced.

第7図(、)〜(g)は第3の実施例圧係わるMOS 
)ランジスタ製造工程を示す断面図である。なお、第1
図(、) (b)および第2図(、)〜(c)と同一部
分には同一符号を付して、その詳しい説明は省略する。
Figures 7(,) to (g) are MOSs related to the pressure of the third embodiment.
) is a sectional view showing the transistor manufacturing process. In addition, the first
The same parts as in Figures (,) (b) and Figures 2 (,) to (c) are designated by the same reference numerals, and detailed explanation thereof will be omitted.

まず、先に説明した第1および第2の実施例と同様に、
第7図(、)に示す如くシリコン基板10表裏面に第1
のシリコン酸化膜々2および第1の多結晶シリコン膜3
を形成する。さらに、イオン注入により多結晶シリコン
11Q3中に3X10”[cm −2のポロンをドープ
し、続いて酸素の分圧がlO〔チ〕のArガス中110
0[℃]の酌、温で2時間酸化する。
First, similar to the first and second embodiments described above,
As shown in FIG.
silicon oxide films 2 and first polycrystalline silicon film 3
form. Furthermore, polycrystalline silicon 11Q3 was doped with 3×10" [cm -2 of poron by ion implantation, and then 110 cm -2 of poron was doped into polycrystalline silicon 11Q3 in Ar gas with an oxygen partial pressure of 1O [chi].
Oxidize at 0 [℃] temperature for 2 hours.

次に、多結晶シリコン膜3をエツチングした後、LPC
VD法により第7図(b)に示す如< 2on、。
Next, after etching the polycrystalline silicon film 3, the LPC
< 2on, as shown in Figure 7(b), by the VD method.

〔X〕程度のシリコン窒化11に、 (制酸化性膜)7
を堆積し、写真食刻法によシリコン酸化膜7をパターニ
ングする。次いで、フィールド領域のシリコン基板1に
?ロンイオンをイオン注入しイオン注入層8を形成する
。統いて、シリコン窒化膜7をマスクとして10(lo
t:℃〕水素燃貌法によシ第7図(C)に示す如く厚さ
10〔μm〕のフィールド酸化膜9を形成する。次いで
、シリコン窒化膜7およびシリコン酸化膜2をエツチン
グ除去する。続いて、1000〔℃〕で微量の水蒸気を
含む7 Arガス中で1時間酸化し、第4図(d)に示す如く基
板1の表面に1ooo[X]の第2のシリコン酸化膜1
0を形成し、その後酸化膜9,10上にLPCVD法に
より3000[久]程度の第2の多結晶シリコン膜ノー
を形成する。
[X] grade silicon nitride 11, (antioxidizing film) 7
is deposited, and the silicon oxide film 7 is patterned by photolithography. Next, on the silicon substrate 1 in the field area? An ion implantation layer 8 is formed by implanting ion ions. 10 (lo) using the silicon nitride film 7 as a mask.
t:° C.] A field oxide film 9 having a thickness of 10 μm is formed as shown in FIG. 7(C) by the hydrogen combustion method. Next, silicon nitride film 7 and silicon oxide film 2 are removed by etching. Subsequently, oxidation was performed at 1000[° C.] in 7 Ar gas containing a trace amount of water vapor for one hour, and a second silicon oxide film 1 of 100[X] was formed on the surface of the substrate 1 as shown in FIG. 4(d).
0 is formed, and then a second polycrystalline silicon film NO having a thickness of about 3000 [kilometers] is formed on the oxide films 9 and 10 by the LPCVD method.

次に、第2の多結晶シリコン膜1ノ上にレジスト(図示
せず)を塗布し150〔℃〕で固化し、裏面の酸化膜9
をエツチングしシリコン基板1の裏面を露出させる。レ
ジスト剥離後、100(+〔℃〕で30分燐拡散し、シ
リコン基板1の裏面に高濃度の燐拡散層6を形成する。
Next, a resist (not shown) is applied on the second polycrystalline silicon film 1 and solidified at 150 [°C], and the oxide film 9 on the back side is coated with a resist (not shown).
The back surface of the silicon substrate 1 is exposed by etching. After removing the resist, phosphorus is diffused at 100° C. for 30 minutes to form a highly concentrated phosphorus diffusion layer 6 on the back surface of the silicon substrate 1.

次いで、シリコン基板1の表面上に形成された多結晶シ
リコン1lIi!!ノーおよびシリコン酸化膜10をエ
ツチング除去したのち、第7図(e)に示す如く乾燥酸
素中で400 (z)のダート酸化膜(第3のシリコン
酸化膜)12を形成する。続いて、このダート酸化膜1
2上に厚さ30(10CX)の燐添加多結晶シリコン膜
(第3の多結晶シリコン膜)をCVD法によって堆積し
たのち写真食刻法によりパターニングしてダート電極1
3を形成する。その後、ケ゛−ト電極13をマスクとし
てダート酸化膜12をエツチングする。そして、前記フ
ィールド酸孔膜9およびケ゛−ト電極13をマスクドし
てAsイオン注入を行ない、n形の高濃度不純物層トし
ての深さ0.6〔μ+711]のソース・ドレイン14
a、14bを形成する。次いで、第7図(f)に示す如
く全面に厚さ30 (10CA〕ノCVD −SiO2
膜15および厚さ4000[X]の燐硅化ガラス膜(P
SG膜)16を堆積させる。これ以降は、通常の工程に
ヨt)CVD −sio2Mz 5およびPSG膜16
、にコンタクトホールを開孔し、At配線膜17をスノ
jツタ法により蒸着し、写真食刻法によりAt配線膜1
7のパターニングを行なウコ、LICより第7図(g)
に示す如きMOSトランジスタが作成されることによる
Next, polycrystalline silicon 1lIi! is formed on the surface of silicon substrate 1. ! After etching and removing the silicon oxide film 10, a dirt oxide film (third silicon oxide film) 12 of 400 (z) is formed in dry oxygen as shown in FIG. 7(e). Next, this dirt oxide film 1
A phosphorous-doped polycrystalline silicon film (third polycrystalline silicon film) with a thickness of 30 (10CX) is deposited on the dirt electrode 1 by CVD and then patterned by photolithography.
form 3. Thereafter, the dirt oxide film 12 is etched using the gate electrode 13 as a mask. Then, As ions are implanted while masking the field acid hole film 9 and the gate electrode 13, and an n-type high concentration impurity layer is formed into the source/drain 14 with a depth of 0.6 [μ+711].
a, 14b are formed. Next, as shown in FIG. 7(f), a CVD-SiO2 film with a thickness of 30 (10 CA) was applied to the entire surface.
Film 15 and a phosphorus silicide glass film (P
SG film) 16 is deposited. After this, proceed to the normal process)CVD-sio2Mz 5 and PSG film 16
, a contact hole is opened in , an At interconnection film 17 is deposited by the snow jitter method, and an At interconnection film 1 is formed by photolithography.
Figure 7 (g) from LIC after patterning step 7.
This is because a MOS transistor as shown in FIG.

かくして本実施例によれば、先の実施例と同様にダート
酸化膜12の欠陥密度の低減をはかり得、MOSトラン
ジスタの菓子特性を向上させることができる。
Thus, according to this embodiment, the defect density of the dirt oxide film 12 can be reduced as in the previous embodiment, and the confectionery characteristics of the MOS transistor can be improved.

なお、本発明は上述した各実施例に限定されるものでは
ない。例えば、前記第1の酸化膜の酸化源JfはIO’
flOc辷〕に限らず、900〔℃〕でもよく、オた膜
厚も](1(10[X]に限定されない。要は、高温熱
処理時における局所的に進む不純物拡散が起こらないよ
うに欠陥の充分少ない膜厚であればよい。また、前記第
1の多結晶シリコン膜の膜厚はウェハ洗浄工程での緩衝
弗酸処理中における第1のシリコン酸化膜のエツチング
を防ぐだめ、少なくとも2ooo[X)あシ、かつ茜温
熱処理時及び裏面リン拡散時に第1の多結晶シリコン全
体が酸化されてしまわないだけの膜厚があればよい。さ
らに、第1の多結晶シリコン膜へのピロンの添加量は3
 X 10”[cnl−” 13としだが、これはシリ
コン基板の不純物濃度と同程度もしくは数倍の範囲であ
ればよい。すなわち、高温熱処理中に、シリコン基板と
多結晶シリコンの間で見かけ上不純物のやりとりがない
程度であればよい。また、裏面燐拡散のマスクとした第
2の多結晶シリコン膜を肉厚のCVD −8102等に
代わってもよい。要は裏面リン拡散時に表面にリンが拡
散しないだめのマスクとしての働きをすればよい。また
、前記紀1図(a)、第5図(a)および第7図(、)
の工程で行なわflだ高湿熱処理としては酸素分圧10
〔チ〕のArガス中3100〔℃〕の高温で2時間とし
たが、何らこれらIc限定されるものではない。要は第
1の多結晶シリコン膜がすべて酸化されなければ]U3
O[℃〕以上のいかなる温度でもよく、いかなる酸化剤
分圧でもよく、まだ不活性ガスはArでなくN2でもよ
いことは勿論である。また、MOSキャ/Eシタおよび
MOS )ランジスタに限らず、薄いr−)酸化膜を必
要とする各種の半導体装置に適用することが可能である
。その他、本発明の要旨を逸脱しない範囲で、種々変形
して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the oxidation source Jf of the first oxide film is IO'
The film thickness is not limited to 1 (10[ The film thickness of the first polycrystalline silicon film may be at least 200 mm to prevent etching of the first silicon oxide film during the buffered hydrofluoric acid treatment in the wafer cleaning process. X) It is sufficient that the film is thick enough to prevent the entire first polycrystalline silicon from being oxidized during madder temperature heat treatment and back surface phosphorus diffusion. The amount added is 3
X 10''[cnl-'' 13, however, this may be in a range of the same level or several times the impurity concentration of the silicon substrate. That is, it is sufficient that there is no apparent exchange of impurities between the silicon substrate and polycrystalline silicon during the high-temperature heat treatment. Further, the second polycrystalline silicon film used as a mask for rear surface phosphorus diffusion may be replaced with a thick CVD-8102 film or the like. In short, it is sufficient to act as a mask to prevent phosphorus from diffusing to the front surface when phosphorus is diffused to the back surface. Also, Figure 1 (a), Figure 5 (a), and Figure 7 (,)
The high humidity heat treatment is carried out in the process of 10% oxygen partial pressure.
[H] In Ar gas at a high temperature of 3100 [° C.] for 2 hours, the Ic is not limited in any way. In short, if the first polycrystalline silicon film is not completely oxidized] U3
The temperature may be any temperature higher than O [° C.], any partial pressure of the oxidizing agent may be used, and it goes without saying that the inert gas may be N2 instead of Ar. Further, the present invention can be applied not only to MOS capacitors and MOS transistors, but also to various semiconductor devices that require a thin r-) oxide film. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の第1の実施例に係わる
MOSキャノンシタ製造工程を示す断面図、第2図乃至
第4図は上記実施例の作用を説明するだめのもので第2
図は従来方法によるケ゛−ト酸化騰の耐圧ヒストグラム
を示す特性図、第3図は上記実施例方法によるダート酸
化膜の耐圧ヒストグラムを示す特性図、第4図はシリコ
ン基板の表面不純物濃度分布を示す特性図、第5図(、
)〜(d)は第2の実施例に係わるMOSキャパシタ製
造工程を示す断面図、第6図は上記第2の実施例方法に
よるダート酸化膜の耐圧ヒストグラムを示す特性図、第
7図(、)〜(g)は第3の実施例に係わるMOSトラ
ンジスタ製造工程を示す断面図である。 1・・・シリコン基板、2・・・第1のシリコン酸化膜
、3・・・第1の多結晶シリコン膜、4・・・ダート酸
化膜、5・・・ダート電極、6・・・燐拡散層、7・・
・シリコン窒化膜(耐酸化性膜)、8・・・イオン注入
層、9・・・フィールド酸化膜、10・・・第2のシリ
ラン酸化膜、1ノ・・・第2の多結晶シリコン膜、12
・・・第3のシリコン酸化8tA(ダート酸化膜)、1
3・・・第3の多結晶シリコン膜(ダート電極)、14
 a * 14 b・・・ソース・ドレイン、15・・
・CV D −5in2膜、16 ・・・PSG膜、1
7 ・At配線膜。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図      第3図 ■  384− 第5図 第6図 超嚇棗遺也界四〇−
FIGS. 1(a) and (b) are cross-sectional views showing the manufacturing process of a MOS cannon according to the first embodiment of the present invention, and FIGS. 2 to 4 are only for explaining the operation of the above embodiment. Second
The figure is a characteristic diagram showing the withstand voltage histogram of the rise in the oxidation of the substrate according to the conventional method, FIG. 3 is the characteristic diagram showing the withstand voltage histogram of the dirt oxide film according to the method of the above embodiment, and FIG. The characteristic diagram shown in Fig. 5 (,
) to (d) are cross-sectional views showing the MOS capacitor manufacturing process according to the second embodiment, FIG. 6 is a characteristic diagram showing the withstand voltage histogram of the dirt oxide film according to the method of the second embodiment, and FIG. ) to (g) are cross-sectional views showing the MOS transistor manufacturing process according to the third embodiment. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... First silicon oxide film, 3... First polycrystalline silicon film, 4... Dirt oxide film, 5... Dirt electrode, 6... Phosphorus Diffusion layer, 7...
・Silicon nitride film (oxidation resistant film), 8... Ion implantation layer, 9... Field oxide film, 10... Second silylan oxide film, 1... Second polycrystalline silicon film , 12
...Third silicon oxide 8tA (dirt oxide film), 1
3...Third polycrystalline silicon film (dart electrode), 14
a * 14 b...source/drain, 15...
・CV D-5in2 film, 16...PSG film, 1
7 ・At wiring film. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  シリコン基板表面に熱酸化法によりシリコン
酸化膜を形成する工程と、上記シリコン酸化膜上に上記
シリコン基板の主たる不純物と同種の不純物を同程度の
濃度以上含む多結晶シリコン膜を形成する工程と、次い
で一イ戊分圧の酸化剤を含む不活性ガス中1050[℃
]以」二の高温で上記シリコン基鈑を熱処理する工程と
、しかるのち上記シリコン基板上に所望の素子を形成す
る工程とを具備したことを特徴とする半導体装置の製造
方法。
(1) Forming a silicon oxide film on the surface of a silicon substrate by thermal oxidation, and forming a polycrystalline silicon film containing the same type of impurity as the main impurity of the silicon substrate at a similar concentration or higher on the silicon oxide film. step and then at 1050°C in an inert gas containing an oxidizing agent at a partial pressure of
] A method for manufacturing a semiconductor device, comprising the following steps: heat-treating the silicon substrate at a high temperature; and then forming a desired element on the silicon substrate.
(2)  シリコン基板表面に熱酸化法によりシリ。 コン酸化膜を形成する工程と、上記シリコン酸化膜上に
上記シリコン基板の主たる不純物と同種の不純物を同程
度の濃度以上含む多結晶シリコン膜を形成する工程と、
次いで低分圧の酸化剤を含む不活性ガス中1050〔℃
〕以上の高温で上記シリコン基板を熱処理する工程と、
次いで前記シリコン基板の裏面を露出させ該裏面に不純
物濃度I Q19[crn’:]以上の隣拡散層を形成
する工程と、しかるのち上記シリコン基板上に所望の素
子を形成する工程−とを具備したことを特徴とする半導
体装置の製造方法。
(2) Silicon substrate surface is siliconized by thermal oxidation method. a step of forming a silicon oxide film, and a step of forming a polycrystalline silicon film containing impurities of the same kind as the main impurities of the silicon substrate at a similar concentration or higher on the silicon oxide film;
The temperature was then heated to 1050°C in an inert gas containing an oxidizing agent at a low partial pressure.
] a step of heat-treating the silicon substrate at a high temperature above;
Next, the step of exposing the back surface of the silicon substrate and forming an adjacent diffusion layer with an impurity concentration of IQ19[crn':] or more on the back surface, and then the step of forming a desired element on the silicon substrate. A method for manufacturing a semiconductor device, characterized in that:
(3) シリコン基板表面に熱酸化法により第1のシリ
コン酸化膜を形成する工程と、上記第1のシリコン酸化
股上に上記シリコン基板の主たる不純物と同種の不純物
を同程度の濃度以上含む第1の多結晶シリコン腓を形成
する工程と、次いで低分圧の酸化剤を含む不活性ガス中
1050〔℃〕以上の高温で上記シリコン基板を熱処理
する工程と、次いで前記第1の多結晶シリコン膜を除去
したのち、前記第1のシリコン酸化膜上に素子形成領域
をマスクするよう耐酸化性膜を・形成する工程と、次い
で熱酸化法によりフィールド酸化膜を形成する工程と、
次いで前記第1のシリコン酸化膜および耐酸化性膜を除
去したのち前記半導体基板表面に第2のシリコン酸化膜
および第2の多結晶シリコン膜を形成する工程と、次い
で上記シリコン基板の裏面を露出さ°′せ該裏面に不純
物濃度1019[z−’]以上の燐拡散層を形成する工
程と、しかるのち上記シリコン基板上に所望の素子を形
成する工程とを具備したことを特徴とする半導体装置の
製造方法。
(3) forming a first silicon oxide film on the surface of the silicon substrate by a thermal oxidation method; a step of forming a polycrystalline silicon film, a step of heat-treating the silicon substrate at a high temperature of 1050 [° C.] or higher in an inert gas containing an oxidizing agent at a low partial pressure, and then a step of forming the first polycrystalline silicon film. a step of forming an oxidation-resistant film on the first silicon oxide film so as to mask an element formation region, and then a step of forming a field oxide film by a thermal oxidation method;
Next, a step of forming a second silicon oxide film and a second polycrystalline silicon film on the surface of the semiconductor substrate after removing the first silicon oxide film and the oxidation-resistant film, and then exposing the back surface of the silicon substrate. A semiconductor characterized by comprising the steps of forming a phosphorus diffusion layer with an impurity concentration of 1019 [z-'] or more on the back surface, and then forming a desired element on the silicon substrate. Method of manufacturing the device.
JP11296982A 1982-06-30 1982-06-30 Manufacture of semiconductor device Pending JPS594079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11296982A JPS594079A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11296982A JPS594079A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS594079A true JPS594079A (en) 1984-01-10

Family

ID=14600078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11296982A Pending JPS594079A (en) 1982-06-30 1982-06-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS594079A (en)

Similar Documents

Publication Publication Date Title
JPS607389B2 (en) Manufacturing method of semiconductor device
JP3206921B2 (en) Method for forming ultra-thin gate oxide
JP3417665B2 (en) Method for manufacturing semiconductor device
TWI224362B (en) Method for making silicon oxide/silicon nitride/silicon oxide structure
JPS594079A (en) Manufacture of semiconductor device
JP3074156B2 (en) Method for forming field oxide film of semiconductor device
JPS59165434A (en) Manufacture of semiconductor device
JPS58138035A (en) Semiconductor device and manufacture thereof
JPS5922342A (en) Manufacture of semiconductor device
JPS6120337A (en) Manufacture of semiconductor device
JPS58220443A (en) Manufacture of semiconductor device
KR0179555B1 (en) Isolation method of semiconductor device
JP3211232B2 (en) Method for manufacturing semiconductor device
JPS58102528A (en) Treatment of semiconductor wafer
JP3226761B2 (en) Method for manufacturing semiconductor device
KR0162138B1 (en) Element isolation method of semiconductor apparatus
KR100390909B1 (en) Method for gettering semiconductor device
JP3121777B2 (en) Method for manufacturing semiconductor device
JP3128904B2 (en) Method of forming polycrystalline silicon pattern
KR0167600B1 (en) Element isolation method of semiconductor apparatus
KR0167599B1 (en) Element isolation method of semiconductor apparatus
JPS61154132A (en) Manufacture of semiconductor device
JP3196373B2 (en) Method for manufacturing semiconductor device
JP3270187B2 (en) Method for forming element isolation film in semiconductor integrated circuit device
JPH05109736A (en) Manufacture of semiconductor device