JPH0935868A - Sealing method for organic el element and organic el element - Google Patents

Sealing method for organic el element and organic el element

Info

Publication number
JPH0935868A
JPH0935868A JP7185968A JP18596895A JPH0935868A JP H0935868 A JPH0935868 A JP H0935868A JP 7185968 A JP7185968 A JP 7185968A JP 18596895 A JP18596895 A JP 18596895A JP H0935868 A JPH0935868 A JP H0935868A
Authority
JP
Japan
Prior art keywords
organic
adsorbent
inert liquid
layer
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7185968A
Other languages
Japanese (ja)
Other versions
JP3795556B2 (en
Inventor
Kenichi Fukuoka
賢一 福岡
Masato Fujita
正登 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP18596895A priority Critical patent/JP3795556B2/en
Priority to EP95930701A priority patent/EP0781075B1/en
Priority to US08/793,932 priority patent/US5962962A/en
Priority to PCT/JP1995/001764 priority patent/WO1996008122A1/en
Priority to DE69524429T priority patent/DE69524429T2/en
Publication of JPH0935868A publication Critical patent/JPH0935868A/en
Application granted granted Critical
Publication of JP3795556B2 publication Critical patent/JP3795556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To strongly suppress growth of a dark spot in the organic EL element and to improve an element life by providing a specific seal layer in the periphery of an organic EL element of prescribed constitution. SOLUTION: A seal layer containing 1ppm or less as dissolved O2 concentration 20 and consisting of inert liquid (example: perfluoroalkane) containing an adsorbent 20b is provided in the periphery of an organic EL element 10 laminating an anode 12 and a cathode 16 through at least an emitting layer 14. As the adsorbent 20b, it is preferable to use an inorganic compound selected from active alumina, diatom earth, activated carbon, semihydrate gypsum, P2 O5 , Mg(ClO4 )2 , KOH, CaSO4 , CaBr2 , CaO, ZnCl2 , ZnBr2 and from anhydrous copper sulfate, metal selected from Li, Be, K, Na, Mg, Rb, Sr and from Ca, alloy of the metals selected from these metal groups or (metha) acrylic type water absorbing polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機エレクトロル
ミネッセンス素子(以下、有機EL素子と略記する)の
封止方法と、封止された有機EL素子とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for sealing an organic electroluminescence element (hereinafter abbreviated as an organic EL element) and a sealed organic EL element.

【0002】[0002]

【従来の技術】EL素子は自己発光のため視認性が高
く、また、完全固体素子であるため耐衝撃性に優れてい
る。このような特徴を有していることから、現在では、
発光材料として無機化合物を用いた種々の無機EL素子
や、発光材料として有機化合物(以下、この化合物を有
機発光材料という)を用いた種々の有機EL素子が提案
されており、かつ実用化が試みられている。なかでも有
機EL素子は、無機EL素子に比べて印加電圧を大幅に
低下させることができるため、より高性能の有機EL素
子を得るための開発が活発に進められている。
2. Description of the Related Art EL devices have high visibility due to self-emission, and have excellent impact resistance because they are completely solid devices. Because of these features, at present,
Various inorganic EL devices using an inorganic compound as a light-emitting material and various organic EL devices using an organic compound (hereinafter, this compound is referred to as an organic light-emitting material) as a light-emitting material have been proposed and attempted to be put to practical use. Have been. Among them, the organic EL element can drastically reduce the applied voltage as compared with the inorganic EL element, and therefore, development for obtaining a higher performance organic EL element is being actively pursued.

【0003】有機EL素子の基本構成は陽極、発光層、
陰極が順次積層された構成であり、この有機EL素子は
多くの場合、基板上に形成される。このとき、陽極と陰
極の位置は逆転することもある。また、性能を向上させ
るために、陽極と発光層の間に正孔輸送層を設けたり、
陰極と発光層との間に電子注入層を設けたりする場合が
ある。発光層は、通常、1種または複数種の有機発光材
料により形成するが、有機発光材料と正孔輸送材料およ
び/または電子注入材料との混合物により形成する場合
もある。
The basic structure of an organic EL device is an anode, a light emitting layer,
The cathode has a structure in which the cathodes are sequentially laminated, and in many cases, this organic EL element is formed on a substrate. At this time, the positions of the anode and the cathode may be reversed. Further, in order to improve the performance, a hole transport layer is provided between the anode and the light emitting layer,
An electron injection layer may be provided between the cathode and the light emitting layer. The light emitting layer is usually formed of one or more kinds of organic light emitting materials, but may be formed of a mixture of an organic light emitting material and a hole transporting material and / or an electron injecting material.

【0004】また、有機EL素子を構成する1対の電極
(陽極および陰極)のうち、光取出し面側に位置する電
極は、光の取出し効率を向上させるため、また、面発光
素子としての構成上、透明ないし半透明の薄膜からな
る。一方、光取出し面とは反対の側に位置する電極(以
下、対向電極という)は、特定の金属薄膜(金属、合
金、混合金属等の薄膜)からなる。
Of the pair of electrodes (anode and cathode) forming the organic EL element, the electrode located on the light extraction surface side improves the light extraction efficiency and is also configured as a surface emitting element. Above, it consists of a transparent or translucent thin film. On the other hand, the electrode located on the side opposite to the light extraction surface (hereinafter referred to as the counter electrode) is made of a specific metal thin film (thin film of metal, alloy, mixed metal, etc.).

【0005】上記の構成を有する有機EL素子は電流駆
動型の発光素子であり、発光させるためには陽極と陰極
との間に高電流を流さなければならない。その結果、発
光時において素子が発熱し、素子の周囲に酸素や水分が
あった場合にはこれらの酸素や水分による素子構成材料
の酸化が促進されて素子が劣化する。酸化や水による素
子の劣化の代表的なものはダークスポットの発生および
その成長である。ダークスポットとは発光欠陥点のこと
である。そして、有機EL素子の駆動に伴って当該素子
の構成材料の酸化が進むと、既存のダークスポットの成
長が起こり、ついには発光面全体にダークスポットが拡
がる。
The organic EL element having the above structure is a current-driven type light emitting element, and a high current must be passed between the anode and the cathode in order to emit light. As a result, the element generates heat during light emission, and when oxygen or moisture is present around the element, oxidation of the element constituent material due to the oxygen or moisture is promoted to deteriorate the element. The typical deterioration of the device due to oxidation and water is the generation and growth of dark spots. The dark spot is a light emission defect point. Then, as the constituent material of the organic EL element is oxidized as the organic EL element is driven, the existing dark spots grow, and finally the dark spots spread over the entire light emitting surface.

【0006】上記の劣化を抑えるため、従来より種々の
方法が提案されている。例えば特開平5−41281号
公報には、劣化原因の一つである水分を取り除く方法と
して、液状フッ素化炭素に合成ゼオライト等の脱水剤を
含有させてなる不活性液状化合物中に有機EL素子を保
持する方法が開示されている。また、特開平5−114
486号公報には、陽極と陰極の少なくとも一方の上に
フルオロカーボン油を封入した放熱層を設け、素子駆動
の際に発生する熱を前記の放熱層より放熱することで素
子の発光寿命を長くする方法が開示されている。
In order to suppress the above deterioration, various methods have been conventionally proposed. For example, JP-A-5-41281 discloses a method of removing water, which is one of the causes of deterioration, by forming an organic EL device in an inert liquid compound prepared by adding a dehydrating agent such as synthetic zeolite to liquid fluorinated carbon. A method of retaining is disclosed. In addition, JP-A-5-114
In Japanese Patent Publication No. 486, a heat dissipation layer in which fluorocarbon oil is sealed is provided on at least one of an anode and a cathode, and the heat generated when the device is driven is dissipated from the heat dissipation layer to prolong the light emission life of the device. A method is disclosed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の方法よっても、ダークスポットの生成や成長を
十分に抑えることは困難であった。その理由は次のよう
に推察される。すなわち、有機EL素子の封止過程や封
止後において当該有機EL素子に侵入する水分を脱水剤
によって取り除くことはダークスポットの生成や成長を
抑制するうえから有用な手段の1つであるが、ダークス
ポットの生成や成長の原因は水分の侵入のみにあるので
はなく、液状フッ素化炭素やフルオロカーボン油中に溶
存している酸素の方がむしろ大きく影響している。液状
フッ素化炭素やフルオロカーボン油は非常に良く気体を
溶解し、例えばパーフルオロアミン(住友スリーエム社
製のフロリナートFC−70(商品名))は100ミリ
リットル中に最大22ミリリットルもの空気を溶解する
(溶存酸素濃度63ppm)。
However, even with the above-mentioned conventional method, it is difficult to sufficiently suppress the generation and growth of dark spots. The reason is presumed as follows. That is, removing the water that enters the organic EL element with a dehydrating agent after or during the sealing process of the organic EL element is one of the useful means for suppressing the generation and growth of dark spots. The cause of dark spot formation and growth is not only the invasion of water, but oxygen dissolved in liquid fluorinated carbon or fluorocarbon oil has a greater effect. Liquid fluorinated carbon and fluorocarbon oil dissolve gas very well, for example, perfluoroamine (Sumitomo 3M Fluorinert FC-70 (trade name)) dissolves up to 22 ml of air in 100 ml (dissolved). Oxygen concentration 63 ppm).

【0008】本発明の目的は、有機EL素子におけるダ
ークスポットの成長を強く抑制することができる有機E
L素子の封止方法およびダークスポットの成長が起こり
にくい有機EL素子を提供することにある。
An object of the present invention is to provide an organic EL device capable of strongly suppressing the growth of dark spots in an organic EL device.
An object of the present invention is to provide a method for sealing an L element and an organic EL element in which growth of dark spots is unlikely to occur.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成する本
発明の有機EL素子の封止方法は、陽極と陰極とが少な
くとも発光層を介して積層されてる有機EL素子の外周
に、吸着剤を含有した不活性液体からなる溶存酸素濃度
1ppm以下の封止層を設けることを特徴とするもので
ある。
[Means for Solving the Problems] A method for sealing an organic EL device of the present invention that achieves the above object is to provide an adsorbent on the outer periphery of an organic EL device in which an anode and a cathode are laminated at least with a light emitting layer interposed therebetween. It is characterized in that a sealing layer having an oxygen concentration of 1 ppm or less composed of an inert liquid containing is provided.

【0010】また、上記の目的を達成する本発明の有機
EL素子は、上述した本発明の方法により封止されてい
ることを特徴とするものである。
The organic EL device of the present invention which achieves the above object is characterized by being sealed by the above-mentioned method of the present invention.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。まず、本発明の有機EL素子の封止
方法について説明すると、この方法では上述のように、
有機EL素子の外周に、吸着剤を含有した不活性液体か
らなる溶存酸素濃度1ppm以下の封止層を設ける。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below. First, the method for sealing the organic EL element of the present invention will be described. In this method, as described above,
A sealing layer made of an inert liquid containing an adsorbent and having a dissolved oxygen concentration of 1 ppm or less is provided on the outer periphery of the organic EL element.

【0012】ここで、上記の吸着剤は、有機EL素子の
封止過程や封止後において外部から当該有機EL素子に
酸素や水分が侵入するのを防ぐためのものである。この
吸着剤は、酸素や水を吸着するものであれば特に限定さ
れるものではないが、吸着量が多く、一度吸着した酸素
や水を放出しにくい性質を有しているものが望ましい。
吸着剤の形状は特に限定されるものではないが、粉状の
ものの方が吸着面積が大きくなるので好ましい。
Here, the adsorbent is used to prevent oxygen and moisture from entering the organic EL element from the outside during or after the sealing process of the organic EL element. The adsorbent is not particularly limited as long as it adsorbs oxygen and water, but it is desirable that the adsorbent has a large adsorption amount and has a property of hardly releasing once adsorbed oxygen and water.
The shape of the adsorbent is not particularly limited, but a powdery one is preferable because it has a larger adsorption area.

【0013】本発明の方法で使用することができる吸着
剤の具体例としては、(1) 活性アルミナ,ケイソウ土,
活性炭,半水セッコウ,五酸化リン,過塩素酸マグネシ
ウム,水酸化カリウム,硫酸カルシウム,臭化カルシウ
ム,酸化カルシウム,塩化亜鉛,臭化亜鉛および無水硫
酸銅から選ばれた無機化合物、(2) リチウム,ベリリウ
ム,カリウム,ナトリウム,マグネシウム,ルビジウ
ム,ストロンチウムおよびカルシウムからなる金属群か
ら選ばれた金属、(3) 前記金属群から選ばれた金属同士
の合金、および、(4) アクリル系吸水性ポリマーもしく
はメタアクリル系吸水性ポリマー、が挙げられる。吸着
剤は、1種のみを用いてもよいし、2種以上を併用して
もよい。
Specific examples of adsorbents that can be used in the method of the present invention include (1) activated alumina, diatomaceous earth,
Inorganic compounds selected from activated carbon, hemihydrate gypsum, phosphorus pentoxide, magnesium perchlorate, potassium hydroxide, calcium sulfate, calcium bromide, calcium oxide, zinc chloride, zinc bromide and anhydrous copper sulfate, (2) lithium , A metal selected from the group consisting of beryllium, potassium, sodium, magnesium, rubidium, strontium and calcium, (3) an alloy of metals selected from the above metal group, and (4) an acrylic water-absorbing polymer or And a methacrylic water-absorbing polymer. As the adsorbent, only one kind may be used, or two or more kinds may be used in combination.

【0014】吸着剤は、十分な吸着力を保持した状態下
で使用することが望ましく、そのためには、使用する前
に当該吸着剤に吸着されている酸素や水分を除去してお
くことが好ましい(吸着剤に吸着されている酸素や水分
を除去するための処理を、本発明では「活性化処理」と
いう。)。吸着剤の活性化処理は、吸着剤の種類に応じ
て異なるが、吸着剤を加熱する,吸着剤を真空引きす
る,吸着剤を不活性ガス気流中に放置する,吸着剤の表
面を切削除去する等の方法や、これらの方法の2つ以上
を組み合わせた方法により行うことができる。
It is desirable that the adsorbent is used while maintaining a sufficient adsorption force, and for that purpose, it is preferable to remove oxygen and water adsorbed on the adsorbent before use. (The treatment for removing oxygen and water adsorbed on the adsorbent is referred to as "activation treatment" in the present invention.). The activation process of the adsorbent depends on the type of adsorbent, but it heats the adsorbent, vacuums the adsorbent, leaves the adsorbent in an inert gas stream, and removes the surface of the adsorbent. And the like, or a combination of two or more of these methods.

【0015】吸着剤についての活性化処理は、当該吸着
剤を外気から隔離して行うことが好ましい。また、活性
化処理後の吸着剤についても、その活性が低下するのを
防止するうえから、後述する封止層の形成に使用するま
で外気から隔離しておくことが好ましい。例えば加熱や
真空引きによる活性化処理は、真空コック付きの容器の
ような外気を遮断することができる容器に吸着剤を収納
した状態で行い、活性化処理が終了した後はコックを閉
じて、外気を遮断した状態でその使用時まで当該活性化
処理後の吸着剤を保存することが好ましい。
The activation treatment for the adsorbent is preferably carried out by isolating the adsorbent from the outside air. Further, the adsorbent after the activation treatment is also preferably isolated from the outside air until it is used for forming the sealing layer described later, in order to prevent the activity of the adsorbent from being lowered. For example, activation treatment by heating or vacuuming is performed in a state where the adsorbent is stored in a container capable of blocking outside air such as a container with a vacuum cock, and after the activation treatment is completed, close the cock, It is preferable to store the adsorbent after the activation treatment until the time of use in a state where the outside air is blocked.

【0016】本発明の方法では、上述の吸着剤を含有し
た不活性液体からなる溶存酸素濃度1ppm以下の封止
層を有機EL素子の外周に設けるわけであるが、このと
きの吸着剤の使用量は、その種類に応じて適宜選択可能
である。一般に吸着剤の使用量が多い方が吸着効果が高
いが、吸着剤の使用量が多すぎると、当該吸着剤を後述
する不活性液体に含有させて混合液を調製したときにそ
の流動性が著しく低下して封止層の形成が困難になった
り、吸着剤によって有機EL素子を傷つけることになっ
たりする。
In the method of the present invention, a sealing layer containing the above-described adsorbent and containing an inert liquid and having a dissolved oxygen concentration of 1 ppm or less is provided on the outer periphery of the organic EL element. Use of the adsorbent at this time The amount can be appropriately selected depending on the type. Generally, the larger the amount of the adsorbent used is, the higher the adsorption effect is.However, if the amount of the adsorbent used is too large, the fluidity of the adsorbent when the mixture is prepared by including the adsorbent in an inert liquid described below. It is remarkably lowered and it becomes difficult to form the sealing layer, or the organic EL element is damaged by the adsorbent.

【0017】粒径の小さい吸着剤を使用して上記の混合
液を調製した場合には、重量が同じで粒径がより大きい
吸着剤を使用して上記の混合液を調製した場合よりも当
該混合液の流動性が低下し、その結果として封止層の形
成がより困難になるが、粒径の小さい吸着剤の方が粒径
の大きい吸着剤よりも有効表面積が大きいことから吸着
量も多い。したがって、吸着剤の使用量(重量)が少な
いからといって必ずしも封止効果が小さいという訳では
ない。吸着剤の好ましい使用量は、吸着剤の種類および
粒径にもよるが、後述する不活性液体1ミリリットルに
つき概ね1mg〜10gの範囲内であり、より好ましく
は、後述する不活性液体1ミリリットルにつき概ね30
mg〜3gの範囲内である。
When the above-mentioned mixed solution is prepared using an adsorbent having a small particle size, it is more suitable than when the above-mentioned mixed solution is prepared using an adsorbent having the same weight and a larger particle size. The fluidity of the mixed solution decreases, and as a result, it becomes more difficult to form the sealing layer, but the adsorbent with a smaller particle size also has a larger effective surface area than the adsorbent with a large particle size, so the adsorption amount is also large. Many. Therefore, a small amount (weight) of the adsorbent does not necessarily mean that the sealing effect is small. The preferred amount of the adsorbent used depends on the type and particle size of the adsorbent, but is generally within the range of 1 mg to 10 g per 1 ml of the inert liquid described below, and more preferably per 1 ml of the inert liquid described below. About 30
It is within the range of mg to 3 g.

【0018】本発明の方法において上述した吸着剤とと
もに封止層を構成する不活性液体とは、化学的、物理的
に安定な液体のことであり、例えば他物質と接触しても
化学反応や溶解を起こさない等の安定性を持つ液体を意
味する。このような不活性液体の具体例としてはパーフ
ルオロアルカン,パーフルオロアミン,パーフルオロポ
リエーテル等の液状フッ素化炭素等が挙げられる。液状
フッ素化炭素は、(1)電気絶縁性に優れている(例え
ば後掲の表1に示すデムナムS−20の絶縁破壊電圧は
試料厚が2.5mmの場合72kVである)、(2)水
にも油にも溶解しない性質があることから有機EL素子
を構成している層を溶解することが実質的にない、
(3)金属やガラス表面に対する濡れ性が低いため、有
機EL素子が基板上に設けられている場合でも基板面と
その直上の電極(有機EL素子を構成しているもの)と
の隙間に入り込んで電極の剥離を起こすことが実質的に
ない、等の利点を有していることから、特に好適な不活
性液体である。
In the method of the present invention, the inert liquid which constitutes the sealing layer together with the above-mentioned adsorbent is a chemically and physically stable liquid, for example, a chemical reaction or a chemical reaction even when it is brought into contact with another substance. It means a stable liquid that does not dissolve. Specific examples of such an inert liquid include liquid fluorinated carbon such as perfluoroalkane, perfluoroamine, and perfluoropolyether. Liquid fluorinated carbon is (1) excellent in electrical insulation (for example, the dielectric breakdown voltage of Demnum S-20 shown in Table 1 below is 72 kV when the sample thickness is 2.5 mm), (2) Since it has the property of being insoluble in neither water nor oil, it practically does not dissolve the layers constituting the organic EL element.
(3) Since the wettability to the surface of metal or glass is low, even when the organic EL element is provided on the substrate, it enters the gap between the surface of the substrate and the electrode immediately above it (which constitutes the organic EL element). It is a particularly suitable inert liquid because it has advantages such as substantially no peeling of the electrode.

【0019】上述した不活性液体は市販されているが、
本発明の方法で有機EL素子の外周に設ける封止層は前
述したように溶存酸素濃度1ppm以下のものであり、
市販品の不活性液体の溶存酸素濃度は1ppmより遥か
に高いので、そのままでは本発明の方法に使用すること
ができない。ここで、本発明の方法において封止層の溶
存酸素濃度を1ppm以下に限定する理由は、封止層の
溶存酸素濃度が1ppmを超えるとダークスポットの成
長を強く抑制することが困難になるからである。封止層
の溶存酸素濃度は低ければ低いほど好ましいが、実用上
は0.01〜1ppmの範囲内が好ましく、特に0.1
ppm以下が好ましい。
Although the above-mentioned inert liquid is commercially available,
The sealing layer provided on the outer periphery of the organic EL element by the method of the present invention has a dissolved oxygen concentration of 1 ppm or less as described above,
Since the dissolved oxygen concentration of the commercially available inert liquid is much higher than 1 ppm, it cannot be used as it is in the method of the present invention. Here, the reason for limiting the dissolved oxygen concentration of the sealing layer to 1 ppm or less in the method of the present invention is that it becomes difficult to strongly suppress the growth of dark spots when the dissolved oxygen concentration of the sealing layer exceeds 1 ppm. Is. The lower the dissolved oxygen concentration of the sealing layer is, the more preferable it is, but in practical use, it is preferably in the range of 0.01 to 1 ppm, particularly 0.1
ppm or less is preferred.

【0020】封止層を形成するために使用する不活性液
体は、吸着剤を含有させる前の段階での溶存酸素濃度が
1ppmより高く、吸着剤を含有したことによって溶存
酸素濃度が1ppm以下になるものであってもよいが、
より高い封止効果を有する封止層を形成するうえから
は、吸着剤を含有させる前の段階での溶存酸素濃度が既
に1ppm以下のものが好ましい。したがって、不活性
液体は常温真空脱気法、凍結真空脱気法、不活性ガス置
換法等の方法により溶存酸素濃度を1ppm以下に減じ
てから使用することが好ましい。どのような方法によっ
て溶存酸素濃度を減じるかは、使用する不活性液体の種
類に応じて適宜選択される。
The inert liquid used to form the sealing layer has a dissolved oxygen concentration higher than 1 ppm before the adsorbent is contained, and the dissolved oxygen concentration is 1 ppm or less due to the adsorbent inclusion. May be,
From the standpoint of forming a sealing layer having a higher sealing effect, it is preferable that the dissolved oxygen concentration at the stage before containing the adsorbent is already 1 ppm or less. Therefore, it is preferable to use the inert liquid after reducing the dissolved oxygen concentration to 1 ppm or less by a method such as a room temperature vacuum degassing method, a freeze vacuum degassing method, or an inert gas replacement method. The method of reducing the dissolved oxygen concentration is appropriately selected according to the type of the inert liquid used.

【0021】例えば、パーフルオロアルカンやパーフル
オロアミンでは25℃における蒸気圧が10-2Torrを超
えるものが多いが、25℃における蒸気圧が10-2Torr
を超えるものについて常温真空脱気を行おうとしてもそ
の蒸気圧以下にまで真空度を上げることができず、ま
た、常温下でその蒸発が容易に進行することから、常温
真空脱気法により溶存酸素濃度を減じることは極めて困
難である。したがって、25℃における蒸気圧が10-2
Torrを超えるものについては凍結真空脱気法や不活性ガ
ス置換法により溶存酸素濃度を減じることが好ましい。
For example, most of perfluoroalkanes and perfluoroamines have a vapor pressure of more than 10 -2 Torr at 25 ° C, but the vapor pressure at 25 ° C is 10 -2 Torr.
Even if vacuum deaeration at room temperature is attempted, the degree of vacuum cannot be raised to below its vapor pressure, and since evaporation easily proceeds at room temperature, it will be dissolved by the room temperature vacuum deaeration method. Reducing the oxygen concentration is extremely difficult. Therefore, the vapor pressure at 25 ° C is 10 -2.
For those exceeding Torr, it is preferable to reduce the dissolved oxygen concentration by a freeze vacuum degassing method or an inert gas replacement method.

【0022】凍結真空脱気法により溶存酸素濃度を減じ
る場合には、例えば、液体窒素等を用いて脱気対象物
(溶存酸素濃度を減じようとする不活性液体)を凍結さ
せる工程と、凍結状態にある脱気対象物を10-2Torr以
下で真空引きする工程と、凍結状態にある脱気対象物を
融解させる工程とからなる一連の操作を、脱気対象物中
の溶存酸素濃度が1ppm以下になるまで所望回数行
う。脱気対象物が住友スリーエム社製のフロリナートF
C−72,フロリナートFC−84,フロリナートFC
−77,フロリナートFC−75(いずれも商品名であ
り、これらは全てパーフルオロアルカンの1種であ
る。)や同社のフロリナートFC−40,フロリナート
FC−43,フロリナートFC−70(いずれも商品名
であり、これらは全てパーフルオロアミンの1種であ
る。)である場合には、上記の操作を概ね5回以上繰り
返すことにより目的物が得られる。また、不活性ガス置
換法により溶存酸素濃度を減じる場合には、例えば、脱
気対象物50ccに対して0.1〜1リットル/分の不
活性ガス(アルゴンガス,窒素ガス,ヘリウムガス,ネ
オンガス等)を供給して、脱気対象物中の溶存酸素濃度
が1ppm以下になるまで概ね4〜8時間バブリングす
ることにより目的物を得ることができる。これら2つの
方法の中では、比較的短時間の操作で溶存酸素濃度を減
じることができるという点から、凍結真空脱気法が好ま
しい。
When the dissolved oxygen concentration is reduced by the freezing vacuum degassing method, for example, a step of freezing an object to be degassed (an inert liquid whose dissolved oxygen concentration is to be reduced) using liquid nitrogen, The dissolved oxygen concentration in the degassed object is changed by performing a series of operations including a step of vacuuming the degassed object in the state of 10 −2 Torr or less and a step of melting the degassed object in the frozen state. Perform the desired number of times until it becomes 1 ppm or less. The deaeration target is Fluorinert F manufactured by Sumitomo 3M.
C-72, Fluorinert FC-84, Fluorinert FC
-77, Fluorinert FC-75 (all are trade names, all of which are one type of perfluoroalkane) and the company's Fluorinert FC-40, Fluorinert FC-43, Fluorinert FC-70 (all trade names. And all of these are one kind of perfluoroamine.), The target product can be obtained by repeating the above-mentioned operation approximately 5 times or more. Further, when the dissolved oxygen concentration is reduced by the inert gas replacement method, for example, 0.1 to 1 liter / min of an inert gas (argon gas, nitrogen gas, helium gas, neon gas with respect to the degassing target 50 cc) is used. Etc.) and bubbling is performed for about 4 to 8 hours until the dissolved oxygen concentration in the degassing target becomes 1 ppm or less, whereby the target product can be obtained. Among these two methods, the freeze vacuum degassing method is preferable because the dissolved oxygen concentration can be reduced by a relatively short time operation.

【0023】一方、パーフルオロポリエーテルでは25
℃における蒸気圧が10-2Torr以下のものが多く、25
℃における蒸気圧が10-2Torr以下のものについては常
温下での蒸気圧が低いことと常温下での蒸発量が少ない
こととから、真空凍結脱気法や不活性ガス置換法以外に
常温真空脱気法によっても溶存酸素濃度を減じることが
できる。
On the other hand, with perfluoropolyether, 25
The vapor pressure at ℃ is often less than 10 -2 Torr.
For vapor pressures below 10 -2 Torr at ℃, the vapor pressure at room temperature is low and the amount of evaporation at room temperature is small. The dissolved oxygen concentration can also be reduced by the vacuum degassing method.

【0024】25℃における蒸気圧が10-2Torr以下で
ある不活性液体の溶存酸素濃度を常温真空脱気法により
減じる場合には、例えば、160℃以下に保持した脱気
対象物を当該脱気対象物中の溶存酸素濃度が1ppm以
下になるまで10-2Torr以下で真空引きする。脱気対象
物の動粘度が脱気操作時に65cSt以下であれば比較
的容易に溶存酸素を脱気することができる。脱気操作時
の脱気対象物の動粘度が高いと、酸素や水分が分子間に
強固にかみ込んでいるために十分な脱気が困難になるの
で、加熱する等して脱気対象物の動粘度を低下させるこ
とが好ましいが、この場合には脱気操作が煩雑になる。
また、脱気時には必要に応じて脱気対象物の撹拌および
/または脱気対象物中への沸石の投入を行ってもよい。
沸石を使用する場合、この沸石としては素焼き、ガラ
ス、ポリテトラフルオロエチレン(テフロン)等、多孔
質な材料からなるものを使用することが好ましい。常温
真空脱気法により目的物を得る場合、脱気対象物の動粘
度が脱気操作時に65cSt以下であれば、脱気操作に
要する時間は概ね0.1〜2時間である。
When the dissolved oxygen concentration of an inert liquid having a vapor pressure of 10 -2 Torr or less at 25 ° C is reduced by a vacuum degassing method at room temperature, for example, a degassing target kept at 160 ° C or less is degassed. Evacuation is performed at 10 -2 Torr or less until the dissolved oxygen concentration in the gas target becomes 1 ppm or less. If the kinematic viscosity of the degassed object is 65 cSt or less during the degassing operation, the dissolved oxygen can be degassed relatively easily. When the kinematic viscosity of the degassed object during the degassing operation is high, oxygen and water are firmly entrapped between the molecules, which makes it difficult to degas sufficiently. However, in this case, the degassing operation becomes complicated.
Further, during degassing, stirring of the degassed object and / or addition of zeolite to the degassed object may be carried out as necessary.
When using zeolite, it is preferable to use one made of a porous material such as unglazed glass, glass, and polytetrafluoroethylene (Teflon). When the target product is obtained by the room temperature vacuum degassing method, if the kinematic viscosity of the degassing target is 65 cSt or less during the degassing operation, the time required for the degassing operation is approximately 0.1 to 2 hours.

【0025】また、25℃における蒸気圧が10-2Torr
以下である不活性液体中の溶存酸素濃度を凍結真空脱気
法や不活性ガス置換法により減じる場合には、25℃に
おける蒸気圧が10-2Torrを超えるものに対する操作と
同様の操作を行う。25℃における蒸気圧が10-2Torr
以下である不活性液体につては、上述した3つの方法の
中でも短時間の操作で溶存酸素濃度を減じることがで
き、かつ脱気操作が簡単であるという点から、常温真空
脱気法により溶存酸素濃度を減じることが好ましい。
The vapor pressure at 25 ° C. is 10 -2 Torr.
When reducing the dissolved oxygen concentration in the following inert liquid by the freeze vacuum degassing method or the inert gas replacement method, the same operation as the operation for the one whose vapor pressure at 25 ° C exceeds 10 -2 Torr is performed. . Vapor pressure at 25 ℃ is 10 -2 Torr
Regarding the following inert liquids, the dissolved oxygen concentration can be reduced by the room temperature vacuum degassing method because the dissolved oxygen concentration can be reduced by a short-time operation among the above three methods and the degassing operation is simple. It is preferable to reduce the oxygen concentration.

【0026】常温真空脱気法により溶存酸素濃度が1p
pm以下のものが容易に得られる不活性液体の具体例と
しては、表1に示す各種パーフルオロポリエーテルが挙
げられる。
Dissolved oxygen concentration was 1 p by vacuum degassing at room temperature.
Specific examples of the inert liquid that can easily obtain pm or less include various perfluoropolyethers shown in Table 1.

【表1】 [Table 1]

【0027】なお、上記の表1中のデムナムS−20は
平均分子量が2700であり、絶縁破壊電圧は2.5m
m厚の試料で72kV、体積固有抵抗は約20℃下で1
13Ωcmである。そして、その構造式は下式(1)で
表される。
The Demnum S-20 in Table 1 above has an average molecular weight of 2700 and a dielectric breakdown voltage of 2.5 m.
72kV for m-thick sample, volume resistivity is about 20 ℃ under 1
It is 0 13 Ωcm. The structural formula thereof is expressed by the following formula (1).

【化1】 Embedded image

【0028】また、表1中のフォンブリンZ03の構造
式は下式(2)で表される。
The structural formula of Fomblin Z03 in Table 1 is represented by the following formula (2).

【化2】 Embedded image

【0029】そして、表1中のガルデンH250の構造
式は下式(3)で表される。
The structural formula of Galden H250 in Table 1 is represented by the following formula (3).

【化3】 Embedded image

【0030】本発明の方法では、前述した吸着剤と上述
した不活性液体とを用いて、吸着剤を含有した不活性液
体からなる溶存酸素濃度1ppm以下の封止層を有機E
L素子の外周に設けるわけであるが、前記の封止層は溶
存酸素濃度が1ppm以下であるとともに、水分量が1
0ppm以下であることが特に好ましい。溶存酸素濃度
が1ppm以下であるとともに水分量が10ppm以下
である封止層は、吸着剤と当該吸着剤を含有することに
よって溶存酸素濃度が1ppm以下、水分量が10pp
m以下になる不活性液体とを用いて形成することも可能
であるが、より高い封止効果を有する封止層を形成する
うえからは、吸着剤と当該吸着剤を含有する前の段階で
の溶存酸素濃度が1ppm以下、水分量が10ppm以
下である不活性液体とを用いて形成することが好まし
い。
In the method of the present invention, the above-mentioned adsorbent and the above-mentioned inert liquid are used, and a sealing layer made of an inert liquid containing an adsorbent and having a dissolved oxygen concentration of 1 ppm or less is formed of organic E.
Although it is provided on the outer periphery of the L element, the sealing layer has a dissolved oxygen concentration of 1 ppm or less and a water content of 1
It is particularly preferably 0 ppm or less. The sealing layer having a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less has an adsorbent and a dissolved oxygen concentration of 1 ppm or less and a water content of 10 pp by containing the adsorbent.
Although it can be formed by using an inert liquid having a volume of m or less, from the viewpoint of forming a sealing layer having a higher sealing effect, the adsorbent and the stage before containing the adsorbent are used. It is preferable to use an inert liquid having a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less.

【0031】不活性液体中の溶存酸素濃度を常温真空脱
気法により1ppm以下にする場合には、この方法によ
り溶存酸素濃度を1ppm以下にすると同時に、または
脱気操作を更に繰り返すことにより、溶存酸素濃度が1
ppm以下であるとともに水分量が10ppm以下であ
る不活性液体を得ることができる。また、不活性液体中
の溶存酸素濃度を不活性ガス置換法により1ppm以下
にする場合には、この方法により溶存酸素濃度を1pp
m以下にすると同時に、またはバブリング時間を若干長
めにすことにより、溶存酸素濃度が1ppm以下である
とともに水分量が10ppm以下である不活性液体を得
ることができる。そして、不活性液体中の溶存酸素濃度
を凍結真空脱気法により1ppm以下にする場合には、
この方法により溶存酸素濃度を1ppm以下にする前、
または1ppm以下にした後に、不活性液体を真空中で
蒸留して初留、本留、後留に分け、初留と後留を除くこ
とにより、溶存酸素濃度が1ppm以下であるとともに
水分量が10ppm以下である不活性液体を得ることが
できる。溶存酸素濃度が1ppm以下であるとともに水
分量が10ppm以下である封止層を設けることによ
り、ダークスポットの成長を更に強く抑制することが可
能になる。
When the dissolved oxygen concentration in the inert liquid is set to 1 ppm or less by the room temperature vacuum degassing method, the dissolved oxygen concentration is set to 1 ppm or less by this method, or the degassing operation is further repeated to dissolve the dissolved oxygen. Oxygen concentration is 1
An inert liquid having a water content of not more than 10 ppm and a water content of not more than 10 ppm can be obtained. Further, when the dissolved oxygen concentration in the inert liquid is set to 1 ppm or less by the inert gas substitution method, the dissolved oxygen concentration is set to 1 pp by this method.
At the same time as m or less or by slightly lengthening the bubbling time, an inert liquid having a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less can be obtained. When the dissolved oxygen concentration in the inert liquid is set to 1 ppm or less by the freeze vacuum degassing method,
Before making the dissolved oxygen concentration below 1 ppm by this method,
Alternatively, after adjusting the concentration to 1 ppm or less, the inert liquid is distilled in a vacuum to divide into an initial distillation, a main distillation, and a subsequent distillation. By removing the initial distillation and the subsequent distillation, the dissolved oxygen concentration is 1 ppm or less and the water content is reduced. An inert liquid of 10 ppm or less can be obtained. By providing a sealing layer having a dissolved oxygen concentration of 1 ppm or less and a water content of 10 ppm or less, it becomes possible to further strongly suppress the growth of dark spots.

【0032】封止層を有機EL素子の外周に設けるにあ
たっては、吸着剤を含有した不活性液体を入れた容器に
有機EL素子全体を浸漬することにより当該有機EL素
子の外周に封止層を設けてもよいが、有機EL素子が基
板上に形成されている場合には次のようにして封止層を
設けることがより好ましい。すなわち、基板上に形成さ
れている有機EL素子の外側に、当該有機EL素子との
間に空隙を形成しつつ前記の基板と共同して有機EL素
子を覆うハウジング材を設け、前記の基板と前記のハウ
ジング材とによって形成された空間に封止層を形成する
ことが好ましい。
In providing the sealing layer on the outer circumference of the organic EL element, the entire organic EL element is immersed in a container containing an inert liquid containing an adsorbent to form the sealing layer on the outer circumference of the organic EL element. Although it may be provided, when the organic EL element is formed on the substrate, it is more preferable to provide the sealing layer as follows. That is, a housing material is provided outside the organic EL element formed on the substrate to cover the organic EL element in cooperation with the substrate while forming a gap between the organic EL element and the organic EL element. It is preferable to form a sealing layer in the space formed by the housing material.

【0033】ハウジング材を利用して有機EL素子の外
周に封止層を設ける方法の具体例としては、次の(A)
および(B)の方法が挙げられる。
As a specific example of the method of providing the sealing layer on the outer periphery of the organic EL element using the housing material, the following (A)
And the method (B).

【0034】(A)吸着剤と不活性液体とを混合して混
合液を調製した後、この混合液を、有機EL素子が設け
られている基板と当該基板上の有機EL素子を覆うハウ
ジング材とによって形成された上記の空間に充填するこ
とにより、封止層を形成する方法。この方法により封止
層を設ける場合、上記の混合液の調製は大気中で行うべ
きではなく、乾燥した不活性ガス雰囲気(窒素ガス雰囲
気,アルゴンガス雰囲気等)中、例えば乾燥した不活性
ガスで雰囲気置換したグローブボックス内で行うことが
好ましい。混合液の調製にあたっては、吸着剤を収容し
ている容器に不活性液体を注いでもよいし、不活性液体
を収容している容器に吸着剤を入れてもよい。さらに
は、吸着剤を収容している容器および不活性液体を収容
している容器の他に混合液調製用の容器を別途用意し、
この容器に吸着剤と不活性液体とを同時にまたは別々に
入れてもよい。混合液調製用の容器に吸着剤と不活性液
体とを別々に入れる場合には、どちらを先に入れてもよ
い。
(A) An adsorbent and an inert liquid are mixed to prepare a mixed liquid, and then the mixed liquid is used as a substrate material for covering the substrate on which the organic EL element is provided and the organic EL element on the substrate. A method for forming a sealing layer by filling the space formed by the above. When the sealing layer is provided by this method, the above mixed solution should not be prepared in the air, but in a dry inert gas atmosphere (nitrogen gas atmosphere, argon gas atmosphere, etc.), for example, with a dry inert gas. It is preferable to carry out in a glove box whose atmosphere is replaced. In preparing the mixed liquid, the inert liquid may be poured into the container containing the adsorbent, or the adsorbent may be put into the container containing the inert liquid. Furthermore, in addition to the container containing the adsorbent and the container containing the inert liquid, a container for preparing a mixed solution is separately prepared,
The container may contain the adsorbent and the inert liquid simultaneously or separately. When the adsorbent and the inert liquid are separately put in the container for preparing the mixed liquid, either one may be put first.

【0035】上記の混合液を用いての封止層の形成は、
有機EL素子が設けられている上記の基板または当該基
板上の有機EL素子を覆うハウジング材に予め設けた注
入口から当該混合液を上記の空間に充填し、充填後に前
記の注入口を封止することにより行うことができる。封
止層の形成も、乾燥した不活性ガス雰囲気中で行うこと
が好ましい。この方法は、流動性が高い混合液(吸着剤
を含有した不活性液体)によって封止層を設ける場合に
好適である。
The formation of the sealing layer using the above mixed solution is
The space is filled with the mixed solution from an injection port previously provided in the substrate on which the organic EL element is provided or the housing material covering the organic EL element on the substrate, and the injection port is sealed after the filling. This can be done by The formation of the sealing layer is also preferably performed in a dry inert gas atmosphere. This method is suitable when the sealing layer is provided by a liquid mixture having high fluidity (inert liquid containing an adsorbent).

【0036】(B)有機EL素子が設けられている基板
と当該基板上の有機EL素子を覆うハウジング材とによ
って形成された上記の空間に吸着剤と不活性液体とを別
々に入れて、封止層を形成する方法。この方法は、更に
下記(b1)〜(b3)の3つに別けることができるが、いずれ
においても封止層の形成は乾燥した不活性ガス雰囲気中
で行うことが好ましい。
(B) An adsorbent and an inert liquid are separately put in the space defined by the substrate on which the organic EL element is provided and the housing material covering the organic EL element on the substrate, and sealed. A method of forming a stop layer. This method can be further divided into the following three (b1) to (b3), but in each case, it is preferable that the sealing layer is formed in a dry inert gas atmosphere.

【0037】(b1)有機EL素子上および当該有機EL素
子が設けられている基板上にあって上記の空間に納まる
領域上に吸着剤を設置した後にハウジング材を前記の基
板上に設け、前記の基板または前記のハウジング材に予
め設けた注入口から不活性液体を上記の空間に充填する
ことによって封止層を形成する。注入口は、不活性液体
の充填後に封止する。
(B1) After placing an adsorbent on the organic EL element and on the substrate on which the organic EL element is provided and in the area that fits in the space, a housing material is provided on the substrate. The space is filled with an inert liquid from an inlet provided in the substrate or the housing material in advance to form a sealing layer. The inlet is sealed after filling with the inert liquid.

【0038】(b2)ハウジング材にあって上記の空間の形
成に関与する凹部に吸着剤を入れ、このハウジング材を
有機EL素子が設けられている基板上に設けた後、前記
の基板または前記のハウジング材に予め設けた注入口か
ら不活性液体を上記の空間に充填することによって封止
層を形成する。注入口は、不活性液体の充填後に封止す
る。
(B2) An adsorbent is placed in a recess in the housing material that is involved in the formation of the above space, and the housing material is provided on the substrate on which the organic EL element is provided. The sealing layer is formed by filling the above space with the inert liquid from the inlet provided in the housing material in advance. The inlet is sealed after filling with the inert liquid.

【0039】(b3)有機EL素子が設けられている基板上
にハウジング材を設けて上記の空間を形成し、前記の基
板または前記のハウジング材に予め設けた注入口から吸
着剤と不活性液体とを順不同で上記の空間に入れること
によって封止層を形成する。注入口は、吸着剤および不
活性液体の充填後に封止する。
(B3) A housing material is provided on a substrate on which an organic EL element is provided to form the above space, and an adsorbent and an inert liquid are introduced from an injection port previously provided in the substrate or the housing material. The sealing layer is formed by putting and in the above-mentioned space in no particular order. The inlet is sealed after filling with adsorbent and inert liquid.

【0040】ハウジング材を利用して有機EL素子の外
周に封止層を設ける場合、前記のハウジング材は封止し
ようとする有機EL素子の外寸よりも内寸が大きい凹部
を有するキャップ状物、板状物(例えば座ぐり基板)、
シート状物あるいはフィルム状物であり、このハウジン
グ材は前記の基板と共同して実質的な密閉空間を形成す
るようにして基板上に固着される。このとき、封止対象
の有機EL素子は前記の凹部内に収納された状態とな
る。基板上に複数個の有機EL素子が形成されている場
合、前記のハウジング材は有機EL素子毎に設けてもよ
いし、全ての有機EL素子に共通するものを1つのみ設
けてもよいし、全ての有機EL素子のうちの複数個に共
通するものを複数設けてもよい。同様に、ハウジング材
に形成される前記の凹部は、個々の有機EL素子に対応
したものであってもよいし、全ての有機EL素子を収納
し得る大きさのものであってもよいし、全ての有機EL
素子のうちの複数個を収納し得る大きさのものであって
もよい。
When a sealing layer is provided on the outer periphery of an organic EL element by using a housing material, the housing material is a cap-shaped article having a recess whose inner dimension is larger than the outer dimension of the organic EL element to be sealed. , Plate-shaped objects (eg counterbore substrate),
The housing material is a sheet or a film, and the housing material is fixed on the substrate so as to form a substantially closed space together with the substrate. At this time, the organic EL element to be sealed is in a state of being housed in the recess. When a plurality of organic EL elements are formed on the substrate, the housing material may be provided for each organic EL element, or only one common to all organic EL elements may be provided. It is also possible to provide a plurality of common elements among all the organic EL elements. Similarly, the recess formed in the housing material may correspond to each organic EL element, or may have a size capable of accommodating all the organic EL elements, All organic EL
It may be of a size capable of accommodating a plurality of elements.

【0041】基板上へのハウジング材の配設は、エポキ
シ樹脂系接着剤やアクリレート樹脂系接着剤等、種々の
接着剤を用いて固着させることにより行うことができ
る。背着材は水や酸素を透しにくいものが好ましく、そ
の具体例としてはアラルダイトAR−R30(チバガイ
ギー社製のエポキシ樹脂系接着剤の商品名)が挙げられ
る。また、熱硬化性樹脂や光硬化性樹脂等、種々の樹脂
を上記の接着剤の代わりに用いることもできる。
The housing material can be arranged on the substrate by fixing it with various adhesives such as epoxy resin adhesives and acrylate resin adhesives. The backing material is preferably one that is less likely to allow water and oxygen to pass through, and specific examples thereof include Araldite AR-R30 (trade name of epoxy resin adhesive manufactured by Ciba-Geigy). In addition, various resins such as thermosetting resins and photocurable resins may be used instead of the above adhesive.

【0042】ハウジング材の材質はガラス、ポリマー等
の電気絶縁性物質であることが好ましく、その具体例と
してはソーダ石灰ガラス,硼硅酸塩ガラス,硅酸塩ガラ
ス,シリカガラス,無蛍光ガラス,石英,アクリル系樹
脂,スチレン系樹脂,ポリカーボネート系樹脂,エポキ
シ系樹脂,ポリエチレン,ポリエステル,シリコーン系
樹脂等が挙げられる。また、封止対象の有機EL素子が
絶縁被覆された電極線を電極取出しに使用したものであ
る場合や、基板上へのハウジング材の固着を電気絶縁性
の接着剤あるいは電気絶縁性の樹脂により行った場合に
は、ハウジング材としてステンレス鋼やアルミニウム合
金等の導電性金属からなるものを用いてもよい。
The material of the housing material is preferably an electrically insulating substance such as glass or polymer, and specific examples thereof include soda lime glass, borosilicate glass, silicate glass, silica glass, non-fluorescent glass, Examples thereof include quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, and silicone resin. In addition, when the organic EL element to be sealed is one in which an insulating coated electrode wire is used for electrode extraction, or when the housing material is fixed on the substrate by an electrically insulating adhesive or an electrically insulating resin. If done, the housing material may be made of a conductive metal such as stainless steel or aluminum alloy.

【0043】上述のようにして有機EL素子の外周に所
定の封止層を設けることにより、目的とする本発明の封
止を行うことができる。また同時に、目的とする本発明
の有機EL素子を得ることができる。
By providing a predetermined sealing layer on the outer periphery of the organic EL element as described above, the intended sealing of the present invention can be performed. At the same time, the target organic EL device of the present invention can be obtained.

【0044】本発明の方法で封止の対象となる有機EL
素子の素子構成は特に限定されるものではなく、種々の
素子構成の有機EL素子を対象とすることができる。し
たがって、本発明の有機EL素子の素子構成も種々の構
成をとる。
Organic EL to be sealed by the method of the present invention
The element configuration of the element is not particularly limited, and it is possible to target organic EL elements having various element configurations. Therefore, the device configuration of the organic EL device of the present invention also takes various configurations.

【0045】基板側を光の取り出し面とするタイプの有
機EL素子の層構成の具体例としては、基板表面上の積
層順が下記(1)〜(4)のものが挙げられる。 (1)陽極/発光層/陰極 (2)陽極/発光層/電子注入層/陰極 (3)陽極/正孔輸送層/発光層/陰極 (4)陽極/正孔輸送層/発光層/電子注入層/陰極
Specific examples of the layer structure of the organic EL element of the type in which the substrate side is the light extraction surface include the following (1) to (4) in the stacking order on the substrate surface. (1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron injection layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Injection layer / cathode

【0046】ここで、発光層は通常1種または複数種の
有機発光材料により形成されるが、有機発光材料と正孔
注入材料および/または電子注入材料との混合物により
形成される場合もある。また、前述した層構成の素子の
外周に当該素子を覆うようにして素子への水分の侵入を
防止するための保護層が設けられる場合もある。
Here, the light emitting layer is usually formed of one or more kinds of organic light emitting materials, but it may be formed of a mixture of an organic light emitting material and a hole injecting material and / or an electron injecting material. In addition, a protective layer may be provided on the outer periphery of the element having the above-mentioned layer structure so as to cover the element and prevent moisture from entering the element.

【0047】基板側を光の取り出し面とする場合、前記
の基板は少なくとも有機EL素子からの発光(EL光)
に対して高い透過性(概ね80%以上)を与える物質か
らなり、具体的には透明ガラス、透明プラスチック、石
英等からなる板状物やシート状物、あるいはフィルム状
物が利用される。
When the substrate side is used as the light extraction surface, at least the substrate emits light (EL light).
It is made of a substance that gives a high transparency (about 80% or more) to, and specifically, a plate-like material, a sheet-like material, or a film-like material made of transparent glass, transparent plastic, quartz or the like is used.

【0048】陽極、陰極、発光層、正孔輸送層、電子注
入層、保護層の材料としては、それぞれ種々の材料を用
いることができる。例えば、陽極材料としては仕事関数
が大きい(例えば4eV以上)金属,合金,電気伝導性
化合物、またはこれらの混合物が好ましく用いられる。
具体例としては金,ニッケル等の金属や、CuI,IT
O,SnO2 ,ZnO等の誘電性透明材料等が挙げられ
る。特に、生産性や制御性の点からITOが好ましい。
陽極の膜厚は材料にもよるが、通常10nm〜1μmの
範囲内で適宜選択可能である。
Various materials can be used as the materials for the anode, the cathode, the light emitting layer, the hole transport layer, the electron injection layer and the protective layer. For example, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (for example, 4 eV or more) is preferably used as the anode material.
Specific examples are metals such as gold and nickel, CuI, and IT.
Examples include dielectric transparent materials such as O, SnO 2 , and ZnO. In particular, ITO is preferable in terms of productivity and controllability.
Although the film thickness of the anode depends on the material, it can be appropriately selected usually within the range of 10 nm to 1 μm.

【0049】また、陰極材料としては仕事関数の小さい
(例えば4eV以下)金属,合金,電気伝導性化合物,
またはこれらの混合物等が好ましく用いられる。具体例
としてはナトリウム,ナトリウム−カリウム合金,マグ
ネシウム,リチウム,マグネシウムと銀との合金または
混合金属,アルミニウム,Al/AlO2 ,インジウ
ム,イッテルビウム等の希土類金属等が挙げられる。陽
極の膜厚は材料にもよるが、通常10nm〜1μmの範
囲内で適宜選択可能である。陽極および陰極のいずれに
おいても、そのシート抵抗は数百Ω/□以下が好まし
い。なお、陽極材料および陰極材料を選択する際に基準
とする仕事関数の大きさは4eVに限定されるものでは
ない。
As the cathode material, a metal, an alloy, an electrically conductive compound having a small work function (for example, 4 eV or less),
Alternatively, a mixture thereof or the like is preferably used. Specific examples include sodium, sodium-potassium alloys, magnesium, lithium, alloys or mixed metals of magnesium and silver, rare earth metals such as aluminum, Al / AlO 2 , indium and ytterbium. Although the film thickness of the anode depends on the material, it can be appropriately selected usually within the range of 10 nm to 1 μm. The sheet resistance of both the anode and the cathode is preferably several hundreds Ω / □ or less. Note that the size of the work function used as a reference when selecting the anode material and the cathode material is not limited to 4 eV.

【0050】発光層の材料(有機発光材料)は、有機E
L素子用の発光層、すなわち電界印加時に陽極または正
孔輸送層から正孔を注入することができると共に陰極ま
たは電子注入層から電子を注入することができる注入機
能や、注入された電荷(電子と正孔の少なくとも一方)
を電界の力で移動させる輸送機能、電子と正孔の再結合
の場を提供してこれを発光につなげる発光機能等を有す
る層を形成することができるものであればよい。その具
体例としては、ベンゾチアゾール系,ベンゾイミダゾー
ル系,ベンゾオキサゾール系等の系の蛍光増白剤や、金
属キレート化オキシノイド化合物、スチリルベンゼン系
化合物、ジスチリルピラジン誘導体、ポリフェニル系化
合物、12−フタロペリノン、1,4−ジフェニル−
1,3−ブタジエン、1,1,4,4−テトラフェニル
−1,3−ブタジエン、ナフタルイミド誘導体、ペリレ
ン誘導体、オキサジアゾール誘導体、アルダジン誘導
体、ピラジリン誘導体、シクロペンタジエン誘導体、ピ
ロロピロール誘導体、スチリルアミン誘導体、クマリン
系化合物、芳香族ジメチリディン化合物、8−キノリノ
ール誘導体の金属錯体等が挙げられる。発光層の厚さは
特に限定されるものではないが、通常は5nm〜5μm
の範囲内で適宜選択される。
The material of the light emitting layer (organic light emitting material) is organic E
A light emitting layer for an L element, that is, an injection function capable of injecting holes from an anode or a hole transporting layer when an electric field is applied and electrons from a cathode or an electron injecting layer, and injected charges (electrons). And / or holes)
Any layer can be formed as long as it can form a layer having a transporting function of moving an electron by an electric field and a light emitting function of providing a field for recombination of electrons and holes and connecting it to light emission. Specific examples thereof include benzothiazole-based, benzimidazole-based, and benzoxazole-based fluorescent whitening agents, metal chelated oxinoid compounds, styrylbenzene-based compounds, distyrylpyrazine derivatives, polyphenyl-based compounds, 12- Phthaloperinone, 1,4-diphenyl-
1,3-butadiene, 1,1,4,4-tetraphenyl-1,3-butadiene, naphthalimide derivative, perylene derivative, oxadiazole derivative, aldazine derivative, pyrazirine derivative, cyclopentadiene derivative, pyrrolopyrrole derivative, styryl Examples thereof include amine derivatives, coumarin-based compounds, aromatic dimethylidin compounds, and metal complexes of 8-quinolinol derivatives. The thickness of the light emitting layer is not particularly limited, but is usually 5 nm to 5 μm.
Is appropriately selected within the range.

【0051】正孔輸送層の材料(正孔輸送材料)は正孔
の輸送性と電子の障壁性のいづれかを有しているもので
あればよい。その具体例としては、トリアゾール誘導
体、オキサジアゾール誘導体、イミダゾール誘導体、ポ
リアリールアルカン誘導体、ピラゾリン誘導体、ピラゾ
ロン誘導体、フェニレンジアミン誘導体、アリールアミ
ン誘導体、アミノ置換カルコン誘導体、オキサゾール誘
導体、スチリルアントラセン誘導体、フルオレノン誘導
体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘
導体、ポリシラン系化合物、アニリン系共重合体、チオ
フェンオリゴマー等の導電性高分子オリゴマー、ポルフ
ィリン化合物、芳香族第三級アミン化合物、スチリルア
ミン化合物、芳香族ジメチリディン系化合物等が挙げら
れる。正孔輸送層の厚さも特に限定されるものではない
が、通常は5nm〜5μmの範囲内で適宜選択される。
正孔輸送層は上述した材料の1種または2種以上からな
る一層構造であってもよいし、同一組成または異種組成
の複数層からなる複数層構造であってもよい。
The material for the hole-transporting layer (hole-transporting material) may be any material having either a hole-transporting property or an electron-blocking property. Specific examples thereof include triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, and fluorenone derivatives. , Hydrazone derivatives, stilbene derivatives, silazane derivatives, polysilane compounds, aniline copolymers, conductive polymer oligomers such as thiophene oligomers, porphyrin compounds, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds Etc. Although the thickness of the hole transport layer is not particularly limited, it is usually appropriately selected within the range of 5 nm to 5 μm.
The hole transport layer may have a single-layer structure made of one or more of the above-mentioned materials, or a multi-layer structure made of a plurality of layers having the same composition or different compositions.

【0052】電子注入層は陰極から注入された電子を発
光層に伝達する機能を有していればよく、その材料(電
子注入材料)の具体例としては、ニトロ置換フルオレノ
ン誘導体、アントラキノジメタン誘導体、ジフェニルキ
ノン誘導体、チオピランジオキシド誘導体、ナフタレン
ペリレン等の複素環テトラカルボン酸無水物、カルボジ
イミド、フレオレニリデンメタン誘導体、アントラキノ
ジメタン誘導体、アントロン誘導体、オキサジアゾール
誘導体、8−キノリノール誘導体の金属錯体、メタルフ
リーフタロシアニンやメタルフタロシアニンあるいはこ
れらの末端がアルキル基やスルホン基等で置換されてい
るもの、ジスチリルピラジン誘導体等が挙げられる。電
子注入層の厚さも特に限定されるものではないが、通常
は5nm〜5μmの範囲内で適宜選択される。電子注入
層は上述した材料の1種または2種以上からなる一層構
造であってもよいし、同一組成または異種組成の複数層
からなる複数層構造であってもよい。
The electron injection layer has only to have a function of transmitting electrons injected from the cathode to the light emitting layer. Specific examples of the material (electron injection material) include nitro-substituted fluorenone derivatives and anthraquinodimethane. Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, heterocyclic tetracarboxylic acid anhydrides such as naphthalene perylene, carbodiimides, phenylenylidene methane derivatives, anthraquinodimethane derivatives, anthrone derivatives, oxadiazole derivatives, 8-quinolinol derivatives And metal-free phthalocyanines, metal phthalocyanines, those in which the ends thereof are substituted with alkyl groups, sulfone groups, etc., and distyrylpyrazine derivatives. Although the thickness of the electron injection layer is not particularly limited, it is usually appropriately selected within the range of 5 nm to 5 μm. The electron injection layer may have a single-layer structure made of one or more of the above-mentioned materials, or a multi-layer structure made of a plurality of layers having the same composition or different compositions.

【0053】そして、保護層の材料の具体例としては、
テトラフルオロエチレンと少なくとも1種のコモノマー
とを含むモノマー混合物を共重合させて得られる共重合
体、共重合主鎖に環状構造を有する含フッ素共重合体、
ポリエチレン、ポリプロピレン、ポリメチルメタクリレ
ート、ポリイミド、ポリユリア、ポリテトラフルオロエ
チレン、ポリクロロトリフルオロエチレン、ポリジクロ
ロジフルオロエチレン、クロロトリフルオロエチレンと
ジクロロジフルオロエチレンとの共重合体、吸水率1%
以上の吸水性物質および吸水率0.1%以下の防湿性物
質、In,Sn,Pb,Au,Cu,Ag,Al,T
i,Ni等の金属、MgO,SiO,SiO2 ,Al2
3 ,GeO,NiO,CaO,BaO,Fe2 3
2 3 ,TiO2 等の金属酸化物、MgF2 ,Li
F,AlF3 ,CaF2 等の金属フッ化物等が挙げられ
る。
As a specific example of the material of the protective layer,
A copolymer obtained by copolymerizing a monomer mixture containing tetrafluoroethylene and at least one comonomer, a fluorine-containing copolymer having a cyclic structure in the copolymer main chain,
Polyethylene, polypropylene, polymethylmethacrylate, polyimide, polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, copolymer of chlorotrifluoroethylene and dichlorodifluoroethylene, water absorption 1%
The above water-absorbing substance and moisture-proof substance having a water absorption rate of 0.1% or less, In, Sn, Pb, Au, Cu, Ag, Al, T
Metals such as i and Ni, MgO, SiO, SiO 2 , Al 2
O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 ,
Metal oxides such as Y 2 O 3 and TiO 2 , MgF 2 and Li
Examples thereof include metal fluorides such as F, AlF 3 , and CaF 2 .

【0054】また、封止対象の有機EL素子を構成する
各層(陽極および陰極を含む)の形成方法についても特
に限定されるものではない。陽極、陰極、発光層、正孔
輸送層、電子注入層の形成方法としては、例えば真空蒸
着法、スピンコート法、キャスト法、スパッタリング
法、LB法等を適用することができるが、発光層につい
てはスパッタリング法以外の方法(真空蒸着法、スピン
コート法、キャスト法、LB法等)を適用することが好
ましい。発光層は、特に分子堆積膜であることが好まし
い。ここで分子堆積膜とは、気相状態の材料化合物から
沈着され形成された薄膜や、溶液状態または液相状態の
材料化合物から固化され形成された膜のことであり、通
常この分子堆積膜は、LB法により形成された薄膜(分
子累積膜)とは凝集構造、高次構造の相違や、それに起
因する機能的な相違により区分することができる。スピ
ンコート法等により発光層を形成する場合には、樹脂等
の結着剤と材料化合物とを溶剤に溶かすことによりコー
ティング溶液を調製する。
Further, the method for forming each layer (including the anode and the cathode) constituting the organic EL element to be sealed is not particularly limited. As a method for forming the anode, the cathode, the light emitting layer, the hole transporting layer, and the electron injecting layer, for example, a vacuum vapor deposition method, a spin coating method, a casting method, a sputtering method, an LB method or the like can be applied. It is preferable to apply a method other than the sputtering method (vacuum vapor deposition method, spin coating method, casting method, LB method, etc.). The light emitting layer is preferably a molecular deposition film. Here, the molecular deposition film is a thin film formed by depositing a material compound in a vapor phase state, or a film formed by solidifying a material compound in a solution state or a liquid phase state. , A thin film (molecular cumulative film) formed by the LB method can be classified according to a difference in agglomeration structure, a higher-order structure, or a functional difference due to the difference. When the light emitting layer is formed by spin coating or the like, a coating solution is prepared by dissolving a binder such as a resin and a material compound in a solvent.

【0055】保護層については真空蒸着法、スピンコー
ト法、スパッタリング法、キャスト法、MBE(分子線
エピタキシ)法、クラスターイオンビーム法、イオンプ
レーティング法、プラズマ重合法(高周波励起イオンプ
レーティング法)、反応性スパッタリング法、プラズマ
CVD法、レーザーCVD法、熱CVD法、ガスソース
CVD法等を適用することができる。
For the protective layer, vacuum deposition method, spin coating method, sputtering method, casting method, MBE (molecular beam epitaxy) method, cluster ion beam method, ion plating method, plasma polymerization method (high frequency excitation ion plating method) A reactive sputtering method, a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, or the like can be applied.

【0056】各層の形成方法は、使用する材料に応じて
適宜変更可能である。有機EL素子を構成する各層の形
成にあたって真空蒸着法を用いれば、この真空蒸着法だ
けによって有機EL素子を形成することができるため、
設備の簡略化や生産時間の短縮を図るうえで有利であ
る。
The method of forming each layer can be appropriately changed depending on the material used. If a vacuum vapor deposition method is used for forming each layer constituting the organic EL element, the organic EL element can be formed only by this vacuum vapor deposition method.
This is advantageous in simplifying equipment and shortening production time.

【0057】上述した封止対象の有機EL素子の外周に
前述した封止層を設けることにより封止してなる本発明
の有機EL素子では、封止層の存在によりダークスポッ
トの発生やダークスポットの成長が強く抑制されるの
で、素子寿命が長い。
In the organic EL element of the present invention which is sealed by providing the above-mentioned sealing layer on the outer periphery of the above-mentioned organic EL element to be sealed, the presence of the sealing layer causes the generation of dark spots or dark spots. Growth is strongly suppressed, resulting in a long device life.

【0058】[0058]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら説明するが、各実施例および各比較例で封止の対象と
して用いた有機EL素子の製造方法を予め説明してお
く。封止対象の有機EL素子を作製するにあたっては、
まず、25mm×75mm×1.1mmのガラス基板上
に膜厚100nmのITO膜を蒸着法により成膜したも
のを透明支持基板として用意した。この基板の光透過率
を島津製作所社製のUV−3100PCで測定したとこ
ろ、400〜600nmの波長域で約80%であった。
この基板をイソプロピルアルコール中で5分間、次いで
純水中で5分間、それぞれ超音波洗浄し、さらに、
(株)サムコインターナショナル研究所製の装置用いて
UVオゾン洗浄を10分間行った。
EXAMPLES Hereinafter, examples of the present invention will be described in comparison with comparative examples. A method for manufacturing an organic EL element used as a sealing target in each example and each comparative example will be described in advance. When manufacturing the organic EL element to be sealed,
First, a transparent support substrate was prepared by depositing an ITO film having a film thickness of 100 nm on a glass substrate of 25 mm × 75 mm × 1.1 mm by a vapor deposition method. When the light transmittance of this substrate was measured by UV-3100PC manufactured by Shimadzu Corporation, it was about 80% in the wavelength range of 400 to 600 nm.
The substrate is ultrasonically cleaned in isopropyl alcohol for 5 minutes and then in pure water for 5 minutes, and further,
UV ozone cleaning was performed for 10 minutes using an apparatus manufactured by Samco International Laboratories Inc.

【0059】次に、この基板を市販の蒸着装置(日本真
空技術(株)製)の基板ホルダーに固定する一方で、モ
リブデン製の抵抗加熱ボートにN,N′−ビス(3−メ
チルフェニル−N,N′−ジフェニル[1,1′−ビフ
ェニル]−4,4′−ジアミン(以下、TPDと略記す
る)を200mg入れ、また、違うモリブデン製の抵抗
加熱ボートに4,4′−ビス(2,2′−ジフェニルビ
ニル)ビフェニル(以下、DPVBiと略記する)を2
00mg入れた後、真空槽を1×10-4Paまで減圧し
た。
Next, while fixing this substrate to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Nippon Vacuum Technology Co., Ltd.), N, N'-bis (3-methylphenyl-) was placed in a resistance heating boat made of molybdenum. 200 mg of N, N'-diphenyl [1,1'-biphenyl] -4,4'-diamine (hereinafter abbreviated as TPD) was put, and 4,4'-bis (was added to a different molybdenum resistance heating boat. 2,2′-diphenylvinyl) biphenyl (hereinafter abbreviated as DPVBi)
After adding 00 mg, the pressure in the vacuum chamber was reduced to 1 × 10 −4 Pa.

【0060】この後、TPD入りの前記ボートを215
〜220℃まで加熱し、TPDを蒸着速度0.1〜0.
3nm/sで前記ITO膜上に蒸着させて、膜厚60n
mの正孔輸送層を形成した。このときの基板温度は室温
であった。これを真空槽より取り出すことなく、正孔輸
送層の成膜に引き続きDPVBi入りの前記ボートを2
40℃まで加熱し、DPVBiを蒸着速度0.1〜0.
3nm/sで前記正孔輸送層上に蒸着させて、膜厚40
nmの発光層を形成した。このときの基板温度も室温で
あった。
After that, the boat with TPD is loaded with 215
Up to 220 ° C. to deposit TPD at a deposition rate of 0.1 to 0.1 ° C.
Deposited on the ITO film at 3 nm / s to a film thickness of 60 n
m of the hole transport layer was formed. At this time, the substrate temperature was room temperature. Without removing this from the vacuum chamber, the boat containing DPVBi was placed in the boat for 2 hours after the formation of the hole transport layer.
Heat to 40 ° C. to deposit DPVBi at a deposition rate of 0.1 to 0.1.
The film is deposited on the hole transport layer at 3 nm / s to have a thickness of 40 nm.
A light emitting layer of nm was formed. The substrate temperature at this time was also room temperature.

【0061】これを真空槽より取出し、上記発光層の上
にステンレススチール製のマスクを設置し、再び基板ホ
ルダーに固定した。次いで、モリブデン製ボートにトリ
ス(8−キノリノール)アルミニウム(以下、Alq3
と略記する)を200mg入れ、また、違うモリブデン
製ボートにマグネシウムリボン1gを入れ、さらに、タ
ングステン製バスケットに銀ワイヤー500mgを入れ
て、これらのボートを真空槽に装着した。
This was taken out from the vacuum chamber, a stainless steel mask was placed on the above light emitting layer, and it was fixed to the substrate holder again. Next, tris (8-quinolinol) aluminum (hereinafter referred to as Alq 3
200 mg), 1 g of magnesium ribbon in a different molybdenum boat, and 500 mg of silver wire in a tungsten basket, and these boats were mounted in a vacuum tank.

【0062】次に、真空槽を1×10-4Paまで減圧し
てからAlq3 入りの前記ボートを230℃まで加熱
し、Alq3 を蒸着速度0.01〜0.03nm/sで
前記発光層上に蒸着させて、膜厚20nmの電子注入層
を形成した。さらに、銀を蒸着速度0.1nm/sで前
記接着層上に蒸着させると同時に、マグネシウムを蒸着
速度1.4nm/sで前記接着層上に蒸着させて、マグ
ネシウムと銀の混合金属からなる膜厚150nmの対向
電極を形成した。この対向電極の反射率を島津製作所社
製のUV−3100PCで測定したところ、400〜6
00nmの波長域で80%であった。
Next, the vacuum chamber was decompressed to 1 × 10 −4 Pa, and the boat containing Alq 3 was heated to 230 ° C. to emit Alq 3 at a vapor deposition rate of 0.01 to 0.03 nm / s. An electron injection layer having a film thickness of 20 nm was formed by vapor deposition on the layer. Further, silver is vapor-deposited on the adhesive layer at a vapor deposition rate of 0.1 nm / s, and at the same time, magnesium is vapor-deposited on the adhesive layer at a vapor deposition rate of 1.4 nm / s to form a film of a mixed metal of magnesium and silver. A counter electrode having a thickness of 150 nm was formed. When the reflectance of this counter electrode was measured by Shimadzu Corporation UV-3100PC, it was 400-6.
It was 80% in the wavelength range of 00 nm.

【0063】上述のようにして対向電極まで形成するこ
とにより、目的とする封止対象の有機EL素子が得られ
た。この有機EL素子は、ガラス基板の一主表面上に陽
極としてのITO膜、正孔輸送層としてのTPD層、発
光層としてのDPVBi層、電子注入層としてのAlq
3 層、および対向電極としてのマグネシウム−銀混合金
属層が順次積層されてなるものである。ITO膜の一部
とマグネシウム−銀混合金属層の一部はそれぞれ電極取
り出し用の電極線を兼ねており、発光層の平面視上の大
きさは6mm×10mmである。
By forming the counter electrode as described above, the intended organic EL element to be sealed was obtained. In this organic EL device, an ITO film as an anode, a TPD layer as a hole transport layer, a DPVBi layer as a light emitting layer, and an Alq as an electron injection layer are formed on one main surface of a glass substrate.
Three layers and a magnesium-silver mixed metal layer as a counter electrode are sequentially laminated. Part of the ITO film and part of the magnesium-silver mixed metal layer also serve as electrode wires for extracting electrodes, and the size of the light emitting layer in plan view is 6 mm × 10 mm.

【0064】実施例1 (1)溶存酸素濃度が1ppm以下の不活性液体の調製 まず、溶存酸素濃度を調整する前の不活性液体としてパ
ーフルオロポリエーテル(ダイキン工業株式会社製のデ
ムナムS−20(商品名;25℃における蒸気圧10-6
Torr,25℃における動粘度53cSt))を用意し、
このデムナムS−20の適当量を真空コック付きガラス
製試料容器に入れ、この試料容器と拡散ポンプ付き真空
ポンプ(日本真空技術(株)製のULVAC VPC−
050)とをフランジを用いて接続した。次に、上記の
試料容器に入ったデムナムS−20中にポリテトラフル
オロエチレン(テフロン)製の沸石を挿入し、常温にて
撹拌しながら当該試料容器内を10-4Torrにまで真空引
きして、発泡がなくなるまで約30分間、常温真空脱気
法により溶存酸素を排出した。この後、真空コックを閉
じて保存した。
Example 1 (1) Preparation of Inert Liquid with Dissolved Oxygen Concentration of 1 ppm or Less First, as an inert liquid before adjusting the dissolved oxygen concentration, perfluoropolyether (Demnum S-20 manufactured by Daikin Industries, Ltd.) was used. (Product name: vapor pressure at 25 ° C 10 -6
Torr, kinematic viscosity at 25 ° C. 53 cSt)) is prepared,
An appropriate amount of this Demnum S-20 was placed in a glass sample container with a vacuum cock, and this sample container and a vacuum pump with a diffusion pump (ULVAC VPC-manufactured by Nippon Vacuum Technology Co., Ltd.)
050) and was connected using a flange. Next, insert a zeolite made of polytetrafluoroethylene (Teflon) into the demnum S-20 contained in the above sample container, and evacuate the sample container to 10 -4 Torr while stirring at room temperature. Then, the dissolved oxygen was discharged by the vacuum degassing method at room temperature for about 30 minutes until foaming disappeared. After this, the vacuum cock was closed and stored.

【0065】このようにして調製された不活性液体の一
部をサンプリングし、溶存酸素濃度および水分量を測定
したところ、溶存酸素濃度は0.05ppm、水分量は
5ppmであった。なお、溶存酸素濃度の測定にはセン
トラル科学株式会社製のSUD−1(測定装置の商品
名)を使用し、雰囲気を窒素ガスで置換したグローブボ
ックス中で前記の装置のセンサー部分に不活性液体を5
0ミリリットル/分の一定流量で流し、約20秒後、表
示数値が安定した後に測定値を読み取った。また、不活
性液体中の水分量の測定は、カールフィッシャー滴定法
により行った。
A part of the thus prepared inert liquid was sampled and the dissolved oxygen concentration and the water content were measured. As a result, the dissolved oxygen concentration was 0.05 ppm and the water content was 5 ppm. In addition, SUD-1 (trade name of measuring device) manufactured by Central Science Co., Ltd. was used for measuring the dissolved oxygen concentration, and an inert liquid was used for the sensor part of the device in a glove box whose atmosphere was replaced with nitrogen gas. 5
Flowing at a constant flow rate of 0 ml / min, and after about 20 seconds, the measured value was read after the displayed numerical value became stable. Further, the water content in the inert liquid was measured by the Karl Fischer titration method.

【0066】(2)吸着剤の活性化処理 吸着剤として活性アルミナ(広島和光純薬(株)製:粒
径約300メッシュ)を用意し、この活性アルミナの適
当量を真空コック付のガラス製試料容器に入れて、当該
試料容器と真空ポンプとをフランジを用いて接続した。
次に、上記の試料容器内を常温下にて10-4Torrまで真
空引きし、当該試料容器において活性アルミナを溜めて
いる部分をヒーターにより280℃に加熱しながら更に
真空引きを行った。活性アルミナからのガスの発生がな
くなって真空度が安定するまで、加熱しながらの前記真
空引きを5時間続け、この後に真空コックを閉じて保存
した。
(2) Activation treatment of adsorbent Activated alumina (made by Hiroshima Wako Pure Chemical Industries, Ltd .: particle size of about 300 mesh) was prepared as an adsorbent, and an appropriate amount of this activated alumina was made of glass with a vacuum cock. It was put in a sample container and the sample container and the vacuum pump were connected using a flange.
Next, the inside of the sample container was evacuated to 10 −4 Torr at room temperature, and the part in which the activated alumina was stored was heated to 280 ° C. by a heater and further evacuated. The vacuum evacuation while heating was continued for 5 hours until no gas was generated from the activated alumina and the degree of vacuum became stable, after which the vacuum cock was closed and stored.

【0067】(3)封止 まず、ガラス製のキャップ型ハウジング材(豊和産業社
製の座グリ基板)を用意した。このハウジング材は、内
寸が13mm×13mm×1mmの凹部を1個有し、そ
の外寸は15mm×15mm×1.8mmである。この
ハウジング材の凹部の底には、不活性液体等を注入する
ための注入口が設けられている。次に、封止対象の有機
EL素子が前記の凹部内に納まるようにして、前記の有
機EL素子が形成されているガラス基板と上記のハウジ
ング材とをエポキシ樹脂系接着剤(チバガイギー社製の
アラルダイトAR−R30)により貼り合わせた。この
とき、有機EL素子はハウジング材の凹部と基板とによ
って形成された空間内に在り、有機EL素子とハウジン
グ材とは非接触の状態にある。
(3) Sealing First, a cap-type housing material made of glass (a spot facing substrate manufactured by Howa Sangyo Co., Ltd.) was prepared. This housing material has one recess having an inner dimension of 13 mm × 13 mm × 1 mm, and the outer dimension thereof is 15 mm × 15 mm × 1.8 mm. An injection port for injecting an inert liquid or the like is provided at the bottom of the recess of the housing material. Next, the glass substrate on which the organic EL element is formed and the housing material are covered with an epoxy resin adhesive (made by Ciba-Geigy Co., Ltd.) so that the organic EL element to be sealed is housed in the recess. It was pasted by Araldite AR-R30). At this time, the organic EL element is in the space formed by the recess of the housing material and the substrate, and the organic EL element and the housing material are not in contact with each other.

【0068】3時間放置して接着剤を固化させた後、真
空デシケータを用いて真空乾燥した。真空乾燥後のもの
を、乾燥した窒素ガスで雰囲気置換したグローブボック
ス内に移した。また、上記(1)で調製した不活性液体
が入っている前記の試料容器と、上記(2)で活性化処
理を施した吸着剤が入っている前記の試料容器とを、上
記のグローブボックス内に移した。そして、不活性液体
が入っている試料容器内に吸着剤の所定量を添加し、撹
拌して、吸着剤を含有した不活性液体(以下「混合液」
という。)を調製した。この混合液は、不活性液体1ミ
リリットルにつき吸着剤を500mg含有しており、そ
の溶存酸素濃度は1ppm以下である。この後、前記の
混合液を上記のハウジング材に設けられている注入口か
ら注入して、ハウジング材の凹部と基板とによって形成
されている空間に前記の混合液を充填した。
After being left for 3 hours to solidify the adhesive, it was vacuum dried using a vacuum desiccator. The material after vacuum drying was transferred into a glove box whose atmosphere was replaced with dry nitrogen gas. In addition, the sample container containing the inert liquid prepared in the above (1) and the sample container containing the adsorbent activated in the above (2) Moved inside. Then, a predetermined amount of the adsorbent is added to the sample container containing the inert liquid, and the mixture is stirred, and the inert liquid containing the adsorbent (hereinafter referred to as "mixed liquid") is added.
Say. ) Was prepared. This mixed liquid contains 500 mg of the adsorbent per milliliter of the inert liquid, and the dissolved oxygen concentration is 1 ppm or less. Then, the mixed solution was injected from an injection port provided in the housing material to fill the space defined by the recess of the housing material and the substrate with the mixed solution.

【0069】混合液の充填後、上記のグローブボックス
内において前記の注入口をエポキシ系接着剤(チバガイ
ギー社製のアラルダイトAR−R30)により塞ぎ、接
着剤が固化するまで3時間ほどグローブボックス中に放
置した。
After filling the mixed solution, the inlet was closed in the glove box with an epoxy adhesive (Araldite AR-R30 manufactured by Ciba-Geigy), and the mixture was placed in the glove box for about 3 hours until the adhesive solidified. I left it.

【0070】ハウジング材の凹部と基板とによって形成
されている空間に上記の混合液を充填したことにより封
止対象の有機EL素子の外周には封止層が形成され、こ
れにより目的とする封止がなされた。また同時に、目的
とする有機EL素子が得られた。この有機EL素子(封
止されたもの)の断面の概略を図1に示す。図1に示し
たように、上で得られた封止後の有機EL素子1は、封
止対象の有機EL素子10の外周に、上記(1)で調製
した不活性液体20aと上記(2)で活性化処理を施し
た吸着剤20bとの混合液(吸着剤を含有した不活性液
体)からなる封止層20を設けてなる。
The space formed by the recess of the housing material and the substrate is filled with the above-mentioned mixed liquid, so that a sealing layer is formed on the outer periphery of the organic EL element to be sealed, whereby the desired sealing is achieved. It was stopped. At the same time, the target organic EL device was obtained. A schematic cross section of this organic EL element (sealed) is shown in FIG. As shown in FIG. 1, the above-obtained organic EL device 1 after encapsulation has the inert liquid 20a prepared in (1) above and (2) above the outer periphery of the organic EL device 10 to be encapsulated. ), The sealing layer 20 made of a mixed liquid (inert liquid containing an adsorbent) with the adsorbent 20b that has been subjected to the activation treatment is provided.

【0071】封止対象の有機EL素子10は、ガラス基
板11上に陽極としてのITO膜12、正孔輸送層とし
てのTPD層13、発光層としてのDPVBi層14、
電子注入層としてのAlq3 層15、および対向電極
(陰極)としてのマグネシウム−銀混合金属層16を順
次積層したものである。そして、ITO膜12の一部1
2aとマグネシウム−銀混合金属層16の一部16aは
それぞれ電極取り出し用の電極線となっている。この有
機EL素子10は、ガラス基板11上にエポキシ樹脂系
17によって固着されたハウジング材18の凹部と前記
のガラス基板11とによって形成された空間内に在り、
この空間には上記の混合液が充填されている。その結果
として、有機EL素子10の外周には封止層20が形成
されている。封止層20は、上記(1)で調製した不活
性液体20aと上記(2)で活性化処理を施した吸着剤
20bとを混合して得た混合液をハウジング材18に設
けられていた注入口19から注入することによって形成
されたものであり、前記の注入口19は封止層20の形
成後にエポキシ樹脂系接着剤17aにより封止されてい
る。
The organic EL element 10 to be sealed has an ITO film 12 as an anode, a TPD layer 13 as a hole transport layer, a DPVBi layer 14 as a light emitting layer, on a glass substrate 11.
An Alq 3 layer 15 as an electron injection layer and a magnesium-silver mixed metal layer 16 as a counter electrode (cathode) are sequentially laminated. Then, a part 1 of the ITO film 12
2a and a part 16a of the magnesium-silver mixed metal layer 16 are electrode wires for extracting electrodes. The organic EL element 10 is present in the space formed by the concave portion of the housing material 18 fixed on the glass substrate 11 by the epoxy resin system 17 and the glass substrate 11,
This space is filled with the above mixed liquid. As a result, the sealing layer 20 is formed on the outer periphery of the organic EL element 10. The sealing layer 20 was provided in the housing member 18 with a mixed liquid obtained by mixing the inert liquid 20a prepared in (1) above and the adsorbent 20b activated in (2) above. It is formed by injecting from the injection port 19, and the injection port 19 is sealed with the epoxy resin adhesive 17a after the sealing layer 20 is formed.

【0072】(4)封止効果の評価 上記(3)で得られた有機EL素子(封止されたもの)
に当該有機EL素子の2つの電極線を介して直流定電流
電源を接続し、25℃、大気圧下で初期輝度が100c
d/m2 になるように通電した。このときの電流値は
0.56mA、電圧値は9Vであった。なお、輝度の測
定はミノルタカメラ社製の色彩色差計(商品名CS−1
00)を用いて行った。上記の通電に引き続いて発光面
の拡大写真(倍率10倍)を撮影し、この写真から発光
面の平面視上の面積に対するダークスポットの平面視上
の総面積の比(以下「無発光面積比」という。)を求め
たところ、0.20%であった。また、ある1つのダー
クスポットの直径を求めたところ15μmであった。次
に、通電開始から5日後および30日後に上記と同一手
法で無発光面積比を求め、同時に上記のものと同じダー
クスポットの直径を求めた。これらの結果を表2に示
す。
(4) Evaluation of sealing effect Organic EL element obtained in (3) above (sealed)
A DC constant current power supply is connected to the organic EL device via two electrode wires of the organic EL device, and the initial brightness is 100 c at 25 ° C. under atmospheric pressure.
Electricity was applied so that the pressure would be d / m 2 . At this time, the current value was 0.56 mA and the voltage value was 9V. The brightness is measured by a color difference meter (trade name CS-1 manufactured by Minolta Camera Co., Ltd.).
00). Subsequent to the above energization, an enlarged photograph of the light emitting surface (magnification 10 times) was taken, and from this photograph, the ratio of the total area of the dark spot in plan view to the area of the light emitting surface in plan view (hereinafter referred to as “non-light emitting area ratio It was 0.20%. Further, the diameter of a certain dark spot was 15 μm. Next, 5 and 30 days after the start of energization, the non-emission area ratio was determined by the same method as above, and at the same time, the diameter of the same dark spot as above was determined. Table 2 shows the results.

【0073】実施例2 吸着剤としてMg粉末((株)高純度化学研究所製:粒
径80メッシュ以下)を用意し、次のようにして当該M
g粉末に活性化処理を施した。先ず、適当量のMg粉末
をビーカーに入れ、このビーカーに1M塩酸水溶液を入
れて数分間放置した後に濾過し、残渣(Mg粉末)を十
分な量の無水エタノールで濯ぐ。濯いだ後の残渣(Mg
粉末)を真空コック付きのガラス製試料容器に移し、当
該試料容器のコックを閉じる。ここまでの操作は全て、
乾燥窒素ガスをフローした状態のグローブボックス内で
行う。コックを閉じた後の上記試料容器(残渣(Mg粉
末)が入ったもの)をグローブボックスから取り出し、
当該試料容器内のMg粉末について、エタノールの蒸発
が無くなって真空度が安定するまで実施例1と同様にし
て真空引きを行う。このときの真空引きは、上記の試料
容器においてMg粉末を溜めている部分をヒーターによ
って加熱することなく、室温下で行う。
Example 2 As an adsorbent, Mg powder (manufactured by Kojundo Chemical Laboratory Co., Ltd .: particle size of 80 mesh or less) was prepared, and the M
The g powder was activated. First, an appropriate amount of Mg powder is put in a beaker, 1M hydrochloric acid aqueous solution is put in this beaker, left for several minutes and then filtered, and the residue (Mg powder) is rinsed with a sufficient amount of absolute ethanol. Residue after rinsing (Mg
Powder) is transferred to a glass sample container with a vacuum cock, and the cock of the sample container is closed. All the operations up to here,
It is carried out in a glove box with a flow of dry nitrogen gas. Remove the sample container (containing the residue (Mg powder)) after closing the cock from the glove box,
The Mg powder in the sample container is evacuated in the same manner as in Example 1 until ethanol is evaporated and the degree of vacuum is stabilized. The evacuation at this time is performed at room temperature without heating the portion of the sample container accumulating the Mg powder with a heater.

【0074】上述のようにして活性化処理を施したMg
粉末を吸着剤として用いた以外は実施例1と同様にして
有機EL素子を封止し、同時に目的とする有機EL素子
を得た。このときの封止層は、不活性液体1ミリリット
ルにつき吸着剤を500mg含有するものであり、その
溶存酸素濃度は1ppm以下である。封止後の有機EL
素子について実施例1(4)と同様にして封止効果の評
価を行った。この結果を表2に示す。
Mg which has been activated as described above
The organic EL device was sealed in the same manner as in Example 1 except that the powder was used as the adsorbent, and at the same time, the desired organic EL device was obtained. At this time, the sealing layer contains 500 mg of the adsorbent per 1 ml of the inert liquid, and the dissolved oxygen concentration is 1 ppm or less. Organic EL after sealing
The element was evaluated for sealing effect in the same manner as in Example 1 (4). The results are shown in Table 2.

【0075】実施例3 吸着剤としてCaSO4・1/2H2O(和光純薬工業
(株)製:焼きセッコウ)の粉末(粒径300メッシュ
以下)を用い、当該吸着剤に活性化処理を施すにあたっ
てのヒーターによる加熱温度を240℃とし、かつ、不
活性液体1ミリリットルにつき吸着剤を200mg含有
させて混合液(吸着剤を含有した不活性液体)を調製し
た以外は実施例1と同様にして有機EL素子を封止し、
同時に目的とする有機EL素子を得た。このときの封止
層の溶存酸素濃度は1ppm以下である。封止後の有機
EL素子について実施例1(4)と同様にして封止効果
の評価を行った。この結果を表2に示す。
Example 3 As an adsorbent, CaSO 4 .1 / 2H 2 O (Wako Pure Chemical Industries, Ltd .: Baked Gypsum) powder (particle size 300 mesh or less) was used, and the adsorbent was activated. In the same manner as in Example 1 except that the heating temperature by the heater for application was 240 ° C., and 200 mg of the adsorbent was added to 1 ml of the inert liquid to prepare a mixed liquid (inert liquid containing the adsorbent). To seal the organic EL device,
At the same time, the target organic EL device was obtained. The dissolved oxygen concentration of the sealing layer at this time is 1 ppm or less. The sealing effect of the sealed organic EL element was evaluated in the same manner as in Example 1 (4). The results are shown in Table 2.

【0076】比較例1 吸着剤を用いなかった以外は実施例1と同様にして有機
EL素子を封止した。そして、封止後の有機EL素子に
ついて実施例1(4)と同様にして封止効果の評価を行
った。この結果を表2に示す。
Comparative Example 1 An organic EL device was sealed in the same manner as in Example 1 except that no adsorbent was used. Then, the sealing effect of the sealed organic EL element was evaluated in the same manner as in Example 1 (4). The results are shown in Table 2.

【0077】比較例2 パーフルオロポリエーテル(ダイキン工業株式会社製の
デムナムS−20(商品名))を真空脱気せずにそのま
ま不活性液体として用いた以外は実施例1と同様にし
て、有機EL素子を封止した。そして、封止後の有機E
L素子について実施例1(4)と同様にして封止効果の
評価を行った。この結果を表2に示す。
Comparative Example 2 In the same manner as in Example 1 except that perfluoropolyether (Demnum S-20 (trade name) manufactured by Daikin Industries, Ltd.) was used as an inert liquid without vacuum degassing. The organic EL device was sealed. And the organic E after sealing
The sealing effect of the L element was evaluated in the same manner as in Example 1 (4). The results are shown in Table 2.

【0078】比較例3 活性アルミナ(広島和光純薬(株)製:粒径約300メ
ッシュ)を一度大気に曝し、この後に活性化処理を施す
ことなく吸着剤として使用した以外は実施例1と同様に
して、有機EL素子を封止した。封止層の形成に用いた
混合液(吸着剤を含有した不活性液体)の溶存酸素濃度
は、吸着剤に吸着していた酸素が不活性液体中に溶け出
したことから、5.0ppmであった。そして、封止後
の有機EL素子について実施例1(4)と同様にして封
止効果の評価を行った。この結果を表2に示す。
Comparative Example 3 As in Example 1 except that activated alumina (manufactured by Hiroshima Wako Pure Chemical Industries, Ltd .: particle size of about 300 mesh) was once exposed to the atmosphere and then used as an adsorbent without activation treatment. Similarly, the organic EL element was sealed. The dissolved oxygen concentration of the mixed liquid (inert liquid containing an adsorbent) used for forming the sealing layer was 5.0 ppm because the oxygen adsorbed in the adsorbent was dissolved in the inert liquid. there were. Then, the sealing effect of the sealed organic EL element was evaluated in the same manner as in Example 1 (4). The results are shown in Table 2.

【0079】[0079]

【表2】 [Table 2]

【0080】表2から明らかなように、実施例1〜実施
例3で封止した各有機EL素子においては、無発光面積
比の経時的な増大およびダークスポットの経時的な成長
がともに強く抑制された。一方、比較例1で封止した有
機EL素子においては、無発光面積比の経時的な増大お
よびダークスポットの経時的な成長が比較的抑制されて
はいるものの、実施例1〜実施例3で封止した有機EL
素子と比べると、その封止効果は低い。また、比較例2
で封止した有機EL素子においては、無発光面積比の経
時的な増大およびダークスポットの経時的な成長がとも
に大きく、その封止効果は低い。そして、吸着剤を一度
大気に曝した後に活性化処理を施さずに使用して溶存酸
素濃度が5.0ppmの封止層を形成した比較例3にお
いては、吸着剤を使用しなかった比較例2で封止した有
機EL素子と同様に、無発光面積比の経時的な増大およ
びダークスポットの経時的な成長が大きく、吸着剤を使
用した効果が認められなかった。
As is clear from Table 2, in each of the organic EL devices sealed in Examples 1 to 3, both the increase in the non-light emitting area ratio with time and the growth of dark spots with time are strongly suppressed. Was done. On the other hand, in the organic EL device sealed in Comparative Example 1, although the increase in the non-light emitting area ratio with time and the growth of dark spots with time were relatively suppressed, in Examples 1 to 3 Sealed organic EL
The sealing effect is lower than that of the device. Comparative Example 2
In the organic EL element sealed with, the non-light emitting area ratio increases with time and the dark spots grow with time, and the sealing effect is low. Then, in Comparative Example 3 in which the adsorbent was once exposed to the atmosphere and then used without activation treatment to form a sealing layer having a dissolved oxygen concentration of 5.0 ppm, Comparative Example in which no adsorbent was used Similar to the organic EL device sealed with 2, the non-light emitting area ratio increased with time and the growth of dark spots with time was large, and the effect of using the adsorbent was not observed.

【0081】[0081]

【発明の効果】以上説明したように、本発明の方法によ
れば有機EL素子におけるダークスポットの成長を強く
抑制することができる。したがって、本発明を実施する
ことにより素子寿命の長い有機EL素子を提供すること
が可能になる。
As described above, according to the method of the present invention, the growth of dark spots in the organic EL device can be strongly suppressed. Therefore, by implementing the present invention, it becomes possible to provide an organic EL element having a long element life.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得た有機EL素子(封止されたも
の)の断面の概略図である。
FIG. 1 is a schematic view of a cross section of an organic EL element (sealed) obtained in Example 1.

【符号の説明】[Explanation of symbols]

1 封止後の有機EL素子 10 封止対象の有機EL素子 11 ガラス基板 17 エポキシ樹脂系接着剤 17a エポキシ樹脂系接着剤 18 ハウジング材 19 注入口 20 封止層 20a 不活性液体 20b 吸着剤 1 Organic EL Element after Encapsulation 10 Organic EL Element to be Encapsulated 11 Glass Substrate 17 Epoxy Resin Adhesive 17a Epoxy Resin Adhesive 18 Housing Material 19 Injection Port 20 Encapsulation Layer 20a Inert Liquid 20b Adsorbent

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 陽極と陰極とが少なくとも発光層を介し
て積層されてる有機EL素子の外周に、吸着剤を含有し
た不活性液体からなる溶存酸素濃度1ppm以下の封止
層を設けることを特徴とする有機EL素子の封止方法。
1. A sealing layer made of an inert liquid containing an adsorbent and having a dissolved oxygen concentration of 1 ppm or less is provided on the outer periphery of an organic EL element in which an anode and a cathode are laminated with at least a light emitting layer interposed therebetween. And a method for sealing an organic EL element.
【請求項2】 吸着剤として、(1) 活性アルミナ,ケイ
ソウ土,活性炭,半水セッコウ,五酸化リン,過塩素酸
マグネシウム,水酸化カリウム,硫酸カルシウム,臭化
カルシウム,酸化カルシウム,塩化亜鉛,臭化亜鉛およ
び無水硫酸銅から選ばれた無機化合物、(2) リチウム,
ベリリウム,カリウム,ナトリウム,マグネシウム,ル
ビジウム,ストロンチウムおよびカルシウムからなる金
属群から選ばれた金属、(3) 前記金属群から選ばれた金
属同士の合金、または、(4) アクリル系吸水性ポリマー
もしくはメタアクリル系吸水性ポリマー、を用いる、請
求項1に記載の方法。
2. As an adsorbent, (1) activated alumina, diatomaceous earth, activated carbon, gypsum hemihydrate, phosphorus pentoxide, magnesium perchlorate, potassium hydroxide, calcium sulfate, calcium bromide, calcium oxide, zinc chloride, Inorganic compounds selected from zinc bromide and anhydrous copper sulfate, (2) lithium,
A metal selected from the group of metals consisting of beryllium, potassium, sodium, magnesium, rubidium, strontium and calcium, (3) an alloy of metals selected from the group of metals, or (4) an acrylic water-absorbing polymer or meta The method according to claim 1, wherein an acrylic water-absorbing polymer is used.
【請求項3】 吸着剤として活性化処理を施した吸着剤
を用いる、請求項1または請求項2に記載の方法。
3. The method according to claim 1, wherein an activated adsorbent is used as the adsorbent.
【請求項4】 不活性液体1ミリリットルにつき吸着剤
を1mg〜10g含有させる、請求項1〜請求項3のい
ずれか1項に記載の方法。
4. The method according to claim 1, wherein 1 mg to 10 g of the adsorbent is contained in 1 ml of the inert liquid.
【請求項5】 不活性液体として溶存酸素濃度が1pp
m以下の不活性液体を用いる、請求項1〜請求項4のい
ずれか1項に記載の方法。
5. An inert liquid having a dissolved oxygen concentration of 1 pp.
The method according to any one of claims 1 to 4, wherein m or less of an inert liquid is used.
【請求項6】 不活性液体として、25℃における蒸気
圧が10-2Torr以下の液状フッ素化炭素を用いる、請求
項1〜請求項5のいずれか1項に記載の方法。
6. The method according to claim 1, wherein liquid fluorocarbon having a vapor pressure at 25 ° C. of 10 −2 Torr or less is used as the inert liquid.
【請求項7】 不活性液体として、水分量が10ppm
以下の不活性液体を用いる、請求項1〜請求項6のいず
れか1項に記載の方法。
7. An inert liquid having a water content of 10 ppm
The method according to claim 1, wherein the following inert liquids are used.
【請求項8】 基板上に形成されている有機EL素子の
外側に、前記有機EL素子との間に空隙を形成しつつ前
記基板と共同して前記有機EL素子を覆うハウジング材
を設け、前記基板と前記ハウジング材とによって形成さ
れた空間に封止層を形成する、請求項1〜請求項7のい
ずれか1項に記載の方法。
8. A housing member is provided outside the organic EL element formed on the substrate to cover the organic EL element in cooperation with the substrate while forming a gap between the organic EL element and the organic EL element, The method according to any one of claims 1 to 7, wherein a sealing layer is formed in a space formed by the substrate and the housing material.
【請求項9】 請求項1〜請求項8のいずれか1項に記
載の方法により封止されていることを特徴とする有機E
L素子。
9. An organic E, which is sealed by the method according to any one of claims 1 to 8.
L element.
JP18596895A 1994-09-08 1995-07-21 Organic EL element sealing method and organic EL element Expired - Fee Related JP3795556B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18596895A JP3795556B2 (en) 1995-07-21 1995-07-21 Organic EL element sealing method and organic EL element
EP95930701A EP0781075B1 (en) 1994-09-08 1995-09-05 Method for sealing organic el element and organic el element
US08/793,932 US5962962A (en) 1994-09-08 1995-09-05 Method of encapsulating organic electroluminescence device and organic electroluminescence device
PCT/JP1995/001764 WO1996008122A1 (en) 1994-09-08 1995-09-05 Method for sealing organic el element and organic el element
DE69524429T DE69524429T2 (en) 1994-09-08 1995-09-05 METHOD FOR SEALING AN ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT ELEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18596895A JP3795556B2 (en) 1995-07-21 1995-07-21 Organic EL element sealing method and organic EL element

Publications (2)

Publication Number Publication Date
JPH0935868A true JPH0935868A (en) 1997-02-07
JP3795556B2 JP3795556B2 (en) 2006-07-12

Family

ID=16180034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18596895A Expired - Fee Related JP3795556B2 (en) 1994-09-08 1995-07-21 Organic EL element sealing method and organic EL element

Country Status (1)

Country Link
JP (1) JP3795556B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121167A (en) * 1997-10-16 1999-04-30 Tdk Corp Organic electroluminescent element
US6144157A (en) * 1998-05-18 2000-11-07 Motorola, Inc. Organic EL device with fluorocarbon liquid and UV epoxy layers and method
KR20010039830A (en) * 1999-08-19 2001-05-15 가네꼬 히사시 Organic thin-film device
JP2005243801A (en) * 2004-02-25 2005-09-08 Toshiba Corp Led device
US6956323B2 (en) 2003-02-20 2005-10-18 Fuji Electric Co., Ltd. Color conversion filter substrate and organic multicolor light emitting device
US7112115B1 (en) 1999-11-09 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
KR100838073B1 (en) * 2005-12-30 2008-06-13 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
KR100840117B1 (en) * 2007-09-05 2008-06-19 삼성에스디아이 주식회사 Light emitting display device and fabrication method for the same
US7446472B2 (en) 2002-07-15 2008-11-04 Fuji Electric Holdings Co., Ltd. Organic multicolor emission and display device and method for manufacturing same
JP2012099503A (en) * 2012-02-21 2012-05-24 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2013038069A (en) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd Light-emitting module, light-emitting device and light-emitting module manufacturing method
US8853940B2 (en) 2001-04-23 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Display device with seal member
DE102015209342A1 (en) 2014-05-22 2015-11-26 Futaba Corporation CONNECTION, DRYER, SEALING STRUCTURE AND ORGANIC EL-ELEMENT

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121167A (en) * 1997-10-16 1999-04-30 Tdk Corp Organic electroluminescent element
US6144157A (en) * 1998-05-18 2000-11-07 Motorola, Inc. Organic EL device with fluorocarbon liquid and UV epoxy layers and method
US7449725B2 (en) 1998-10-13 2008-11-11 Semiconductor Energy Laboratory Co., Ltd. Active matrix EL device with sealing structure housing the device
US8969906B2 (en) 1998-10-13 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Active matrix electroluminescent device within resin sealed housing
US8421114B2 (en) 1998-10-13 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Active matrix electroluminescent device within resin sealed housing
US8148743B2 (en) 1998-10-13 2012-04-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor circuit made from semiconductor element and manufacturing method thereof
US7126161B2 (en) 1998-10-13 2006-10-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having El layer and sealing material
US7629624B2 (en) 1998-10-13 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Active matrix EL device with sealing structure housing the device and the peripheral driving circuits
KR20010039830A (en) * 1999-08-19 2001-05-15 가네꼬 히사시 Organic thin-film device
US7977876B2 (en) 1999-11-09 2011-07-12 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7112115B1 (en) 1999-11-09 2006-09-26 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8853940B2 (en) 2001-04-23 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Display device with seal member
US7446472B2 (en) 2002-07-15 2008-11-04 Fuji Electric Holdings Co., Ltd. Organic multicolor emission and display device and method for manufacturing same
US6956323B2 (en) 2003-02-20 2005-10-18 Fuji Electric Co., Ltd. Color conversion filter substrate and organic multicolor light emitting device
JP2005243801A (en) * 2004-02-25 2005-09-08 Toshiba Corp Led device
KR100838073B1 (en) * 2005-12-30 2008-06-13 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
US8569950B2 (en) 2007-09-05 2013-10-29 Samsung Display Co., Ltd. Light emitting display device and method for fabricating the same
KR100840117B1 (en) * 2007-09-05 2008-06-19 삼성에스디아이 주식회사 Light emitting display device and fabrication method for the same
JP2013038069A (en) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd Light-emitting module, light-emitting device and light-emitting module manufacturing method
JP2017103258A (en) * 2011-07-08 2017-06-08 株式会社半導体エネルギー研究所 Display device
US9966560B2 (en) 2011-07-08 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting module, light-emitting device, and method for manufacturing the light-emitting module
JP2012099503A (en) * 2012-02-21 2012-05-24 Semiconductor Energy Lab Co Ltd Semiconductor device
DE102015209342A1 (en) 2014-05-22 2015-11-26 Futaba Corporation CONNECTION, DRYER, SEALING STRUCTURE AND ORGANIC EL-ELEMENT
US9376456B2 (en) 2014-05-22 2016-06-28 Futaba Corporation Compound, drying agent, sealing structure, and organic EL element
DE102015209342B4 (en) 2014-05-22 2024-10-24 Futaba Corporation COMPOUND, DESICCANT, SEALING STRUCTURE AND ORGANIC ELECTRONIC ELEMENT

Also Published As

Publication number Publication date
JP3795556B2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US5962962A (en) Method of encapsulating organic electroluminescence device and organic electroluminescence device
JP3254335B2 (en) Method for sealing organic EL element and organic EL element
US6284342B1 (en) Organic EL display assembly
JP3942017B2 (en) Light emitting element
JP3977669B2 (en) Organic EL device
JP3795556B2 (en) Organic EL element sealing method and organic EL element
JP3919583B2 (en) Organic light emitting device
JPH11329719A (en) Organic electroluminescence element
KR20010092414A (en) Organic el element and method of manufacturing the same
JP3963712B2 (en) Organic EL element structure
JP2004014511A (en) Organic light-emitting diode device
JP2003109770A (en) Organic light-emitting diode device and its manufacturing method
WO2002069412A1 (en) An encapsulated electrode
JP3411864B2 (en) Organic EL display
JP2000113976A (en) Organic el element
JP3640512B2 (en) Vapor deposition method and organic electroluminescence device manufacturing method
EP0880306A1 (en) Organic el element and method of producing the same
JP2000048966A (en) Organic electroluminescent element
JP4109979B2 (en) Organic light emitting device
JPH11242994A (en) Light emitting element and its manufacture
JP4394639B2 (en) Laminate of semiconductor thin film and method for producing laminate
JP2000223265A (en) Light-emitting device
JP2001068271A (en) Light-emitting element
JP3972584B2 (en) Organic electroluminescent device and manufacturing method thereof
JP2006278068A (en) Method for manufacturing organic electroluminescent element and organic electroluminescent element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060413

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees