JP2012099503A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2012099503A
JP2012099503A JP2012035093A JP2012035093A JP2012099503A JP 2012099503 A JP2012099503 A JP 2012099503A JP 2012035093 A JP2012035093 A JP 2012035093A JP 2012035093 A JP2012035093 A JP 2012035093A JP 2012099503 A JP2012099503 A JP 2012099503A
Authority
JP
Japan
Prior art keywords
film
light emitting
substrate
organic light
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035093A
Other languages
Japanese (ja)
Other versions
JP5409830B2 (en
JP2012099503A5 (en
Inventor
Rumo Satake
瑠茂 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2012035093A priority Critical patent/JP5409830B2/en
Publication of JP2012099503A publication Critical patent/JP2012099503A/en
Publication of JP2012099503A5 publication Critical patent/JP2012099503A5/en
Application granted granted Critical
Publication of JP5409830B2 publication Critical patent/JP5409830B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a structure capable of ensuring excellent display performance by preventing the occurrence of, for example, point defect and capable of improving long-term reliability, in a display device using an organic light-emitting element.SOLUTION: The distance between an organic light-emitting element 106 and a sealing substrate 101 is controlled by the top edge of a bank 107 provided in a pixel portion 120 and the top edge of an insulating film 108 provided in a driving circuit portion. A gap is provided between the organic light-emitting element and the sealing substrate to prevent a damage of the organic light-emitting element. Additionally, since an element substrate and the sealing substrate can be adjacent to each other as close as possible, moisture infiltration from the side surfaces of a display device can be kept low.

Description

本発明は、有機発光素子を用いた表示装置及びその作製方法に関し、さらに詳細には有
機発光素子を封止する構造に関する。
The present invention relates to a display device using an organic light emitting element and a manufacturing method thereof, and more particularly to a structure for sealing an organic light emitting element.

近年、有機発光素子を用いた表示装置が研究されている。有機発光素子で画素部を構成
した表示装置は自発光型であり、液晶表示装置のようにバックライトなどの光源を必要と
しない。このため表示装置の軽量化や薄型化を実現する手段として有望視されており、携
帯電話や個人向け携帯型情報端末(Personal Digital Assistant : PDA)などに用いるこ
とが期待されている。
In recent years, display devices using organic light-emitting elements have been studied. A display device in which a pixel portion is formed of an organic light emitting element is a self-luminous type and does not require a light source such as a backlight unlike a liquid crystal display device. For this reason, it is considered promising as a means for realizing a lighter and thinner display device, and is expected to be used for a mobile phone, a personal digital assistant (PDA) for personal use, and the like.

有機発光素子とは、有機化合物層が二つの電極に挟まれたダイオード構造を有し、一方
の電極から正孔が注入されるとともに、他方の電極から電子が注入されることにより、有
機化合物層の内部で電子と正孔とが結合して発光をする発光体をいう。有機発光素子とし
て、有機発光ダイオード(Organic Light Emitting Diode : OLED)が挙げられる。
An organic light-emitting device has a diode structure in which an organic compound layer is sandwiched between two electrodes, and holes are injected from one electrode and electrons are injected from the other electrode, whereby an organic compound layer A light emitter that emits light by combining electrons and holes inside. An organic light emitting diode (OLED) is mentioned as an organic light emitting element.

図12の断面図は、従来の、有機発光素子を用いたアクティブマトリクス方式の表示装
置である。基板500、511は透光性である。有機発光素子を有する基板を素子基板と
いう。有機発光素子513は画素電極503、有機化合物層504、対向電極505から
なる。有機発光素子の画素電極は層間絶縁膜502の上面と、層間絶縁膜を貫通し制御回
路501に達するコンタクトホールの側面とに接して形成される。TFT(Thin Film Tr
ansistor : 薄膜トランジスタ)からなる制御回路501は、駆動回路の出力に応じて導
通、非導通を切り換えるスイッチング用TFTと、画素電極503に駆動回路の出力に応
じた電圧を印加して、対向電極と画素電極との間に電流を流す電流制御用TFTとを有す
る。有機化合物層504が発光する光の強度は、画素電極と対向電極との間に流れる電流
の量に依存する。
The cross-sectional view of FIG. 12 is a conventional active matrix display device using an organic light emitting element. The substrates 500 and 511 are translucent. A substrate having an organic light emitting element is referred to as an element substrate. The organic light emitting element 513 includes a pixel electrode 503, an organic compound layer 504, and a counter electrode 505. The pixel electrode of the organic light emitting element is formed in contact with the upper surface of the interlayer insulating film 502 and the side surface of the contact hole that penetrates the interlayer insulating film and reaches the control circuit 501. TFT (Thin Film Tr
The control circuit 501 including an anistor (thin film transistor) applies a voltage corresponding to the output of the drive circuit to the pixel TFT 503 and a switching TFT that switches between conduction and non-conduction according to the output of the drive circuit. A current control TFT for passing a current between the electrode and the electrode; The intensity of light emitted from the organic compound layer 504 depends on the amount of current flowing between the pixel electrode and the counter electrode.

封止基板512は素子基板と対向して設けられ、シール材506を用いて貼り合わせら
れる。画素電極が光反射性、対向電極が透光性であれば発光する光は断面図上方向に透光
性を有する封止基板を透過して視認される。TFTの反対の側から有機発光素子の発光す
る光を取り出すことができるため、画素の開口率に関わらず、高輝度、高精細な表示を実
現できる。
The sealing substrate 512 is provided to face the element substrate, and is bonded using a sealant 506. If the pixel electrode is light-reflective and the counter electrode is light-transmitting, the emitted light is visible through the light-transmitting sealing substrate in the upper direction of the cross-sectional view. Since light emitted from the organic light-emitting element can be extracted from the opposite side of the TFT, high-luminance and high-definition display can be realized regardless of the aperture ratio of the pixel.

カラー表示をするときは、カラーフィルターと白色発光ダイオードとを組み合わせるこ
とができる。この場合、封止基板はカラーフィルターを有し、封止基板と素子基板とがシ
ール材を用いて貼り合わせられる。白色ダイオードがカラーフィルターと接触するように
貼り合せる構造もある。封止基板は基板511、カラーフィルター、遮光部507からな
る。カラーフィルターは、白色発光ダイオードと接触させて形成してもよい。カラーフィ
ルターは、第1の分光フィルター508、第2の分光フィルター509、第3の分光フィ
ルター510からなる。各々の分光フィルターは、赤色、青色又は緑色の光のうち、いず
れか一色を透過するようにして、加法混色の三原色を用いたカラー表示をする。各々の分
光フィルターの間隙には遮光部507を設けて光を遮断する。この構造は、例えば特開平
12−173766号公報に記載されている。
For color display, a color filter and a white light emitting diode can be combined. In this case, the sealing substrate has a color filter, and the sealing substrate and the element substrate are bonded together using a sealing material. There is also a structure in which the white diode is bonded so as to contact the color filter. The sealing substrate includes a substrate 511, a color filter, and a light shielding portion 507. The color filter may be formed in contact with the white light emitting diode. The color filter includes a first spectral filter 508, a second spectral filter 509, and a third spectral filter 510. Each spectral filter transmits one of red, blue, and green light, and performs color display using the three primary colors of additive color mixture. A light shielding part 507 is provided in the gap between the spectral filters to block light. This structure is described in, for example, JP-A-12-173766.

このように、有機発光素子を用いた表示装置において、高輝度化やカラー化などにより
高品位な画質を実現すべく開発が進められている。しかしながら、有機化合物層は蒸着法
により形成するために、TFTの配線等に起因する突出部や画素電極の側面へ膜が成長し
ずらい。有機化合物層が突出部などで断線すると、断線箇所で画素電極と対向電極とが短
絡し、有機発光層に電界が加わらない非発光の画素ができてしまう。
As described above, in a display device using an organic light emitting element, development has been advanced in order to realize high quality image quality by increasing brightness or color. However, since the organic compound layer is formed by a vapor deposition method, it is difficult for the film to grow on the protruding portion or the side surface of the pixel electrode due to the wiring of the TFT or the like. When the organic compound layer is disconnected at the protruding portion or the like, the pixel electrode and the counter electrode are short-circuited at the disconnected portion, and a non-light emitting pixel in which an electric field is not applied to the organic light emitting layer is formed.

そこで、バンク(bank : 土手)と呼ばれる構造が提案されている。画素が発光しないこ
とによる点欠陥を防止するために、TFTに起因する突出部や画素電極の周縁部を覆うよ
うに絶縁膜を設け、次いで、絶縁膜の上面や絶縁膜のなだらかな側面に沿って有機化合物
層、対向電極を設ける構成が提案されており、このような構造は例えば特開平9−134
787号公報に記載されている。またバンクは、バンクの上端がバンクの下端に対してせ
りだしたオーバーハング形状とする構造もあり、このような構造は例えば特開平8−31
5981号公報、特開平9−102393号公報に記載されている。
Therefore, a structure called a bank has been proposed. In order to prevent point defects due to the pixel not emitting light, an insulating film is provided so as to cover the protruding portion due to the TFT and the peripheral edge of the pixel electrode, and then along the upper surface of the insulating film and the gentle side surface of the insulating film. A structure in which an organic compound layer and a counter electrode are provided has been proposed.
No. 787. The bank also has an overhang shape in which the upper end of the bank protrudes from the lower end of the bank. Such a structure is disclosed in, for example, Japanese Patent Laid-Open No. 8-31.
No. 5981 and JP-A-9-102393.

しかしながら、有機発光素子を用いた表示装置を製造するには、さらに解決しなければ
いけない課題がある。
However, in order to manufacture a display device using an organic light emitting element, there is a problem that must be further solved.

例えば、上述した封止基板、有機発光素子が接触する構成は、封止基板上に硬度の高い異
物、傷があると、これら異物等により有機発光素子の断線が発生するおそれがある。する
と、有機化合物膜を貫通して対向電極と画素電極とが短絡し非発光な画素が生じ、歩留ま
りの低下につながる。
For example, in the configuration in which the sealing substrate and the organic light emitting element are in contact with each other, if there is a foreign matter or scratch having high hardness on the sealing substrate, the organic light emitting element may be disconnected due to the foreign matter or the like. Then, the counter electrode and the pixel electrode are short-circuited through the organic compound film to generate a non-light emitting pixel, which leads to a decrease in yield.

断線の原因になりやすい異物は、封止基板を洗浄しても除去しきれなかったごみ、カラ
ーフィルターの製造時に混入してしまったごみなどのうち硬質なものである。また、素子
基板の製造工程において装置内部や周囲の環境に存在するごみが有機発光素子上に混入す
ることもある。
The foreign matter that is likely to cause disconnection is hard among the dust that could not be removed even by cleaning the sealing substrate, and the dust that was mixed during the manufacture of the color filter. In addition, in the manufacturing process of the element substrate, dust existing inside the apparatus or in the surrounding environment may be mixed into the organic light emitting element.

断線は、素子基板と封止基板との間にあるシール材を硬化して、二枚の基板を貼り合せ
る時に起こりやすい。貼り合わせ時は、基板面に垂直に強い圧力が加わるため、有機発光
素子上に硬質なごみがあると、局所的に強い力が加わり有機発光素子の断線が発生する。
さらに、貼り合わせ時に、基板面に平行な力が加わったときに、突起状の硬質なごみがあ
るとずり応力によって有機発光素子が損傷する。そこで、有機発光素子と封止基板とが接
触しないように間隙を空けることで、ごみによる断線を防ぐことが考えられる。
The disconnection is likely to occur when the sealing material between the element substrate and the sealing substrate is cured and the two substrates are bonded together. At the time of bonding, a strong pressure is applied perpendicularly to the substrate surface. Therefore, if there is a hard dust on the organic light emitting element, a strong force is locally applied and the organic light emitting element is disconnected.
Further, when a force parallel to the substrate surface is applied during bonding, the organic light emitting device is damaged by shear stress if there is a hard protrusion like protrusion. Therefore, it is conceivable to prevent disconnection due to dust by providing a gap so that the organic light emitting element and the sealing substrate do not contact each other.

しかしながら、有機発光素子と封止基板との間隔を広げると、表示装置の側面から水分
、酸素が浸入しやすくなる。表示装置の前面、背面は無機材料からなるガラスや、金属か
らなる基板で構成されるため、水蒸気、酸素透過性が低く、水分、酸素が表示装置の前面
、背面から侵入することはほとんどない。ただし表示装置の側面の、基板に挟まれた部分
は、有機樹脂からなるシール材が設けられている。シール材は透湿度が高いため、シール
材を通過して封止空間に浸入する水分の量は無視することができない。このため、基板の
厚みを除く表示装置の側面の厚さはできるだけ小さくする方が良い。
However, when the interval between the organic light emitting element and the sealing substrate is widened, moisture and oxygen easily enter from the side surface of the display device. Since the front and back surfaces of the display device are made of a glass made of an inorganic material or a substrate made of a metal, water vapor and oxygen permeability are low, and moisture and oxygen hardly enter from the front and back surfaces of the display device. However, a sealing material made of an organic resin is provided on the side surface of the display device between the substrates. Since the sealing material has high moisture permeability, the amount of moisture that passes through the sealing material and enters the sealed space cannot be ignored. For this reason, it is better to make the thickness of the side surface of the display device excluding the thickness of the substrate as small as possible.

有機発光素子は、水分により陰極が酸化したり、有機化合物層と陰極との間で剥離が生
じるなどしてダークスポット(非発光画素)が発生し、表示品質が著しく低下する。ダー
クスポットは進行型の欠陥であり有機発光素子を動作させなくても進行するといわれてい
る。これは、陰極がAlLi、MgAgなどからなり、陰極に含有されるアルカリ金属、
アルカリ土類金属が水分に対して高い反応性を持つためである。
In the organic light emitting device, the cathode is oxidized by moisture, or a dark spot (non-light emitting pixel) is generated due to peeling between the organic compound layer and the cathode, and the display quality is remarkably deteriorated. The dark spot is a progressive defect and is said to proceed without operating the organic light emitting device. This is because the cathode is made of AlLi, MgAg, etc., and the alkali metal contained in the cathode,
This is because alkaline earth metals have high reactivity to moisture.

また、有機発光素子上方に間隙をおいて封止基板を設けると、有機発光素子と封止基板
との間隔を制御するものがないため、この間隔が表示領域において不均一になる。すると
、有機発光素子が放射する光を封止基板の側から取り出す表示装置にあっては、干渉によ
る縞状のむらができ、視認性が低下する。
In addition, when a sealing substrate is provided with a gap above the organic light emitting element, there is no one that controls the distance between the organic light emitting element and the sealing substrate, so that this gap becomes non-uniform in the display region. Then, in a display device that extracts light emitted from the organic light emitting element from the sealing substrate side, stripe-like unevenness due to interference is generated, and visibility is deteriorated.

つまり、有機発光素子と封止基板とが接触していると、硬質な突起状の異物によって有
機発光素子の断線が発生し、歩留まりが低下するという問題がある。しかしながら、有機
発光素子と封止基板とが離れていると、側面から浸入する水分が増大し有機発光素子の劣
化が進行しやすくなるといった問題がある。加えて、封止基板の側から有機発光素子の放
射する光を取り出す構成にあっては、有機発光素子と封止基板とが離れていると、干渉に
よる明暗のむらが生じるという問題がある。
That is, when the organic light emitting element and the sealing substrate are in contact with each other, there is a problem in that the organic light emitting element is disconnected due to the hard protrusion-like foreign matter and the yield is reduced. However, when the organic light emitting element and the sealing substrate are separated from each other, there is a problem in that moisture entering from the side surface increases and deterioration of the organic light emitting element easily proceeds. In addition, in the configuration in which light emitted from the organic light emitting element is extracted from the sealing substrate side, there is a problem that unevenness in brightness due to interference occurs when the organic light emitting element and the sealing substrate are separated from each other.

そこで本発明は、歩留まりを向上でき、有機発光素子の劣化を防止するような表示装置
及びその作製方法を提供することを課題とする。さらに、封止基板の側から有機発光素子
の発光する光を取り出す構成の表示装置にあっては、歩留まりが向上するだけでなく、有
機発光素子の劣化を防ぎ、輝度の均一性を高めることが可能となる構成の表示装置及びそ
の作製方法を提供することを課題とする。
Accordingly, it is an object of the present invention to provide a display device and a manufacturing method thereof that can improve yield and prevent deterioration of an organic light emitting element. Further, in a display device configured to extract light emitted from the organic light emitting element from the sealing substrate side, not only the yield is improved, but also the deterioration of the organic light emitting element is prevented and the luminance uniformity is improved. It is an object of the present invention to provide a display device having a structure and a manufacturing method thereof.

本発明では素子基板は、画素電極、画素電極の端部を覆うバンク、有機化合物層、対向
電極を有する。ここで有機化合物層、対向電極はバンクの表面のうち側面にのみ沿って設
けられ、バンクの上端には形成されない。封止基板はバンクの上端に接して設けられる。
素子基板と封止基板とは、シール材で貼り合わせられる。
In the present invention, the element substrate includes a pixel electrode, a bank covering an end portion of the pixel electrode, an organic compound layer, and a counter electrode. Here, the organic compound layer and the counter electrode are provided only along the side surface of the bank surface, and are not formed at the upper end of the bank. The sealing substrate is provided in contact with the upper end of the bank.
The element substrate and the sealing substrate are bonded together with a sealing material.

まず、有機発光素子と封止基板とがバンクによって離れていると、封止基板に硬質なご
みがあっても、このごみが有機発光素子に接触することはなく、有機発光素子の損傷が抑
えられ、歩留まりが向上する。また、貼り合わせ時に素子基板及び封止基板の前面に強い
圧力を加えても、有機発光素子と封止基板との間隔は画素部において高密度に形成された
バンクで保たれるため、封止基板や、封止基板にある突起状の異物が有機発光素子に接触
することはない。
First, when the organic light emitting device and the sealing substrate are separated by a bank, even if there is hard dust on the sealing substrate, the dust does not contact the organic light emitting device, and damage to the organic light emitting device is suppressed. , Improve the yield. In addition, even when a strong pressure is applied to the element substrate and the front surface of the sealing substrate at the time of bonding, the spacing between the organic light emitting element and the sealing substrate is maintained in a bank formed with high density in the pixel portion. Protruding foreign substances on the substrate or the sealing substrate do not come into contact with the organic light emitting element.

かつ、バンクによって有機発光素子と封止基板との間隔が均一に保たれているので、封
止基板の界面と有機発光素子の界面とで反射し干渉する光は干渉光の強度が一定になり、
表示される画像は輝度の均一性が高まる。
In addition, since the distance between the organic light emitting device and the sealing substrate is kept uniform by the bank, the intensity of the interference light is constant for the light reflected and interfered at the interface between the sealing substrate and the organic light emitting device. ,
The displayed image is more uniform in luminance.

さらに、バンクによって素子基板と対向基板との間隔を保持するので、基板の厚みを除
く表示装置の側面の厚さを薄く保つことができる。このため、表示装置の側面から浸入す
る水分によって生じる有機発光素子の劣化反応が防止される。
Further, since the interval between the element substrate and the counter substrate is held by the bank, the thickness of the side surface of the display device excluding the thickness of the substrate can be kept thin. For this reason, the deterioration reaction of the organic light emitting element caused by moisture entering from the side surface of the display device is prevented.

本発明では、バンクと同時に絶縁膜を形成し、この絶縁膜をシール材をと画素部との間
に設けても良い。絶縁膜は上端を封止基板に接触させる。つまり、バンクの上端と、絶縁
膜の上端とが封止基板に接する構成となる。有機発光素子と封止基板との間隔は、バンク
と絶縁膜とを組み合わせて制御されることで、より均一になる。
In the present invention, an insulating film may be formed simultaneously with the bank, and this insulating film may be provided between the sealing material and the pixel portion. The insulating film is brought into contact with the sealing substrate at the upper end. That is, the upper end of the bank and the upper end of the insulating film are in contact with the sealing substrate. The distance between the organic light emitting element and the sealing substrate is more uniform by being controlled by combining the bank and the insulating film.

もちろん、保護膜を有機発光素子やバンクを覆うように設けて、有機発光素子を水分か
ら保護してもよい。この場合、封止基板はこのバンクの上端に形成された保護膜に接して
設けられる。保護膜は複数の薄膜を積層して形成してもよい。
Of course, a protective film may be provided so as to cover the organic light emitting element and the bank to protect the organic light emitting element from moisture. In this case, the sealing substrate is provided in contact with the protective film formed on the upper end of the bank. The protective film may be formed by stacking a plurality of thin films.

シール材を、バンクの上端や、バンクと同一工程にて形成される絶縁膜の上端に設ける
と、シール材を設けた部分のみ局所的にバンク又は絶縁膜の上端と封止基板との間隔が広
がり、画素部において封止基板と有機発光素子との間隔が不均一になる。そこで、シール
材は、バンクの上端にこないように配置する。
When the sealing material is provided at the upper end of the bank or the upper end of the insulating film formed in the same process as the bank, only the portion where the sealing material is provided has a local gap between the upper end of the bank or the insulating film and the sealing substrate. As a result, the spacing between the sealing substrate and the organic light emitting element becomes non-uniform in the pixel portion. Therefore, the sealing material is arranged so as not to reach the upper end of the bank.

ここで、所定のパターン上だけにバンクと同一工程にて形成される絶縁膜を設けるよう
にすると、封止基板と有機発光素子との間隔の均一性をより高めることができる。所定の
パターンについて以下に説明する。
Here, if an insulating film formed in the same process as the bank is provided only on a predetermined pattern, the uniformity of the interval between the sealing substrate and the organic light emitting element can be further improved. The predetermined pattern will be described below.

画素部、駆動回路部のように配線、電極が微細パターンで形成されている構成では、配
線、電極の厚みによる凹凸は、配線、電極上に有機樹脂膜を設けることで平坦化すること
ができる。平坦化の度合いは、有機樹脂膜の厚さや、配線、電極の厚さに依存するが、例
えば、配線、電極の厚みによる凹凸が数100nmであったとしても、有機樹脂膜を塗布
した後は有機樹脂膜の表面にある凹凸の厚さはその半分以下くらいになる。
In a configuration in which wirings and electrodes are formed in a fine pattern like a pixel portion and a drive circuit portion, unevenness due to the thickness of the wirings and electrodes can be flattened by providing an organic resin film on the wirings and electrodes. . The degree of planarization depends on the thickness of the organic resin film, the thickness of the wiring, and the electrode. For example, even if the unevenness due to the thickness of the wiring and the electrode is several hundred nm, after the organic resin film is applied, The thickness of the unevenness on the surface of the organic resin film is less than half that.

しかし、端子部などのように配線、電極が広い幅で形成されている構成は、配線、電極
上に有機樹脂膜を塗布しても、配線、電極の厚みによる凹凸はほとんど平坦化されない。
例えば、配線、電極上の有機樹脂膜の表面と、配線、電極の周囲の有機樹脂膜の表面とで
は、ほぼ配線、電極の厚さに相当する高さの差ができる。
However, in the configuration in which the wiring and the electrode are formed with a wide width such as the terminal portion, unevenness due to the thickness of the wiring and the electrode is hardly flattened even when an organic resin film is applied on the wiring and the electrode.
For example, a difference in height substantially corresponding to the thickness of the wiring and electrode can be made between the surface of the organic resin film on the wiring and electrode and the surface of the organic resin film around the wiring and electrode.

平坦化の度合いは有機樹脂膜の厚さや、配線、電極の厚さに依存するが、それでも画素
部、駆動回路部のように配線、電極の幅が50μm以下、微細パターンの画素を画素部に
有するときは配線、電極の幅が10μm以下と小さければ、端子部に比べて配線、電極の
厚みは平坦化されやすい。
The degree of planarization depends on the thickness of the organic resin film, the wiring, and the thickness of the electrode. However, the width of the wiring and the electrode is 50 μm or less as in the pixel portion and the drive circuit portion, and a fine pattern pixel is used in the pixel portion. If the width of the wiring and the electrode is as small as 10 μm or less, the thickness of the wiring and the electrode is easily flattened as compared with the terminal portion.

図11(A)の断面図は、有機樹脂膜を塗布したときの膜厚の分布を示す。導電体膜と
してソース電極116、ドレイン電極117、配線124、125がある。配線124、
125は、外部信号を入力する端子であり、配線抵抗を下げるために100μm〜100
0μmくらいの幅がある。これら配線、電極を覆うように有機樹脂膜を塗布すると、配線
124、125の上方だけは平坦化がされず、端子部122などに形成された有機樹脂膜
の上端は、画素部121、駆動回路部120に比べて高くなる。有機発光素子と封止基板
との間隔を均一にするためには、図11(B)の断面図のように配線124〜125上の
有機樹脂膜は除去した方が良い。除去後の有機樹脂膜127、128の上端はほぼ同じ高
さになる。
The cross-sectional view of FIG. 11A shows the distribution of film thickness when an organic resin film is applied. There are a source electrode 116, a drain electrode 117, and wirings 124 and 125 as conductor films. Wiring 124,
Reference numeral 125 denotes a terminal for inputting an external signal, and 100 μm to 100 in order to reduce the wiring resistance.
There is a width of about 0 μm. When an organic resin film is applied so as to cover these wirings and electrodes, the upper portions of the wirings 124 and 125 are not flattened, and the upper end of the organic resin film formed on the terminal portion 122 and the like is connected to the pixel portion 121 and the drive circuit. It becomes higher than the part 120. In order to make the distance between the organic light emitting element and the sealing substrate uniform, it is preferable to remove the organic resin film on the wirings 124 to 125 as shown in the cross-sectional view of FIG. The upper ends of the organic resin films 127 and 128 after the removal are almost the same height.

図6の上面図に画素部の配線の例を示し、配線の幅を説明する。電源供給配線420を
例にとる。電源供給配線は配線の幅438が1〜10μmの幅である。
配線の幅は配線の端から端までの距離をいい、配線の幅が広いほど配線抵抗が低下する。
なお、配線の長さは引きめぐらされた配線において、信号が伝達される距離をいい、配線
の長さが長いほど配線抵抗が増大する。
An example of the wiring of the pixel portion is shown in the top view of FIG. 6, and the width of the wiring will be described. Take the power supply wiring 420 as an example. The power supply wiring has a wiring width 438 of 1 to 10 μm.
The width of the wiring means the distance from end to end of the wiring. The wider the width of the wiring, the lower the wiring resistance.
Note that the length of the wiring refers to a distance through which a signal is transmitted in the drawn wiring, and the wiring resistance increases as the wiring length increases.

なお、バンクとなる膜は、1.5μm以上10μm以下の厚さにすることが好ましい。
膜が薄いときは、封止基板上の異物の厚さが断面方向に厚い場合に、有機発光素子が破損
する恐れがある。かつ、封止基板の界面と、有機発光素子の界面で反射する光の光路長の
差が小さいため、可視光の特定波長が干渉により強め合う色づきが生じやすい。厚いとき
は、保護膜等をバンク上に形成するときに、カバレッジが悪く、均一な被覆が困難になる
Note that the film serving as the bank preferably has a thickness of 1.5 μm to 10 μm.
When the film is thin, the organic light emitting element may be damaged when the thickness of the foreign matter on the sealing substrate is thick in the cross-sectional direction. And since the difference in the optical path length of the light reflected by the interface of a sealing substrate and the interface of an organic light emitting element is small, the coloring which the specific wavelength of visible light strengthens by interference tends to arise. When it is thick, when a protective film or the like is formed on the bank, the coverage is poor and uniform coating becomes difficult.

本発明の表示装置は、以下の構成を有する。
有機発光素子を有する素子基板と、素子基板と対向して設けられる封止基板と、前記素子
基板と前記封止基板とを貼り合わせるシール材とを有する表示装置において、前記素子基
板にバンクが設けられ、前記バンクの上端と、前記シール材の上端とが前記封止基板に接
することを特徴とする表示装置。
The display device of the present invention has the following configuration.
In a display device having an element substrate having an organic light emitting element, a sealing substrate provided facing the element substrate, and a sealing material for bonding the element substrate and the sealing substrate, a bank is provided in the element substrate And the upper end of the bank and the upper end of the sealing material are in contact with the sealing substrate.

有機発光素子を有する素子基板と、前記素子基板と対向して設けられる封止基板と、前
記素子基板と封止基板とを貼り合わせるシール材とを有する表示装置において、前記素子
基板はバンクと、前記バンクと同一工程にて設けられる絶縁膜とを有し、前記バンクの上
端と、前記絶縁膜の上端と、前記シール材の上端とが前記封止基板に接することを特徴と
する表示装置。
In a display device having an element substrate having an organic light emitting element, a sealing substrate provided opposite to the element substrate, and a sealing material for bonding the element substrate and the sealing substrate, the element substrate includes a bank, A display device comprising an insulating film provided in the same process as the bank, wherein an upper end of the bank, an upper end of the insulating film, and an upper end of the sealing material are in contact with the sealing substrate.

前記各構成において、前記シール材の下端は、前記バンク下に積層される膜と同一工程
で形成される膜に接することを特徴とする表示装置。
In each of the above structures, the lower end of the sealing material is in contact with a film formed in the same process as the film stacked under the bank.

または、有機発光素子を有する素子基板と、素子基板と対向して設けられる封止基板と
、素子基板と封止基板とを貼り合わせるシール材とを有する表示装置において、素子基板
はバンクと、バンクと同一工程にて設けられる絶縁膜と、少なくともバンクの上端を覆っ
て形成される保護膜とを有し、前記バンクの上端に設けられる前記保護膜と、前記シール
材の上端とが封止基板に接することを特徴とする表示装置。
Alternatively, in a display device including an element substrate having an organic light-emitting element, a sealing substrate provided opposite to the element substrate, and a sealing material for bonding the element substrate and the sealing substrate, the element substrate includes a bank and a bank And a protective film formed to cover at least the upper end of the bank, and the protective film provided on the upper end of the bank and the upper end of the sealing material are sealing substrates. A display device which is in contact with

有機発光素子を有する素子基板と、前記素子基板と対向して設けられる封止基板と、前
記素子基板と前記封止基板とを貼り合わせるシール材とを有する表示装置において、前記
素子基板はバンクと、前記バンクと同一工程にて設けられる絶縁膜と、少なくとも前記バ
ンクの上端と前記絶縁膜の上端とを覆って形成される保護膜とを有し、前記バンクの上端
に設けられる前記保護膜と、前記絶縁膜の上端に設けられる前記保護膜と前記シール材の
上端とが封止基板に接することを特徴とする表示装置。
In a display device having an element substrate having an organic light emitting element, a sealing substrate provided opposite to the element substrate, and a sealing material for bonding the element substrate and the sealing substrate, the element substrate includes a bank, And an insulating film provided in the same process as the bank, and a protective film formed to cover at least the upper end of the bank and the upper end of the insulating film, and the protective film provided on the upper end of the bank; The display device, wherein the protective film provided on the upper end of the insulating film and the upper end of the sealing material are in contact with a sealing substrate.

前記各構成のうち保護膜を有する構成において、前記保護膜は、前記バンク下に積層さ
れる膜と同一工程で形成される膜と、前記シール材の下端とに挟まれていることを特徴と
する表示装置。
In the configuration having a protective film among the respective configurations, the protective film is sandwiched between a film formed in the same process as a film stacked under the bank and a lower end of the sealing material, Display device.

前記各構成のうち、前記バンクの下端及び前記絶縁膜の下端に接して導電体膜があると
きは、前記導電体膜の幅は50μm以下であることを特徴とする表示装置。
The display device according to any one of the above-mentioned structures, wherein when there is a conductor film in contact with the lower end of the bank and the lower end of the insulating film, the width of the conductor film is 50 μm or less.

前記各構成のうち保護膜を有する構成において、前記素子基板は画素電極と、前記画素
電極の端部を覆って設けられる前記バンクと、前記画素電極上にあり前記バンクの表面の
うち側面に接する有機化合物層と、前記有機化合物層上にあり前記バンクの表面のうち側
面に接する対向電極とが設けられることを特徴とする表示装置。
In the configuration having a protective film among the respective configurations, the element substrate is provided with a pixel electrode, the bank provided so as to cover an end portion of the pixel electrode, and the side surface of the surface of the bank on the pixel electrode. A display device comprising: an organic compound layer; and a counter electrode on the organic compound layer and in contact with a side surface of the surface of the bank.

前記構成のうち、画素電極と対向電極を有する構成において、前記画素電極は光反射性
を有する材料からなり、前記対向電極は透光性を有する材料からなることを特徴とする表
示装置。
The display device according to claim 1, wherein the pixel electrode is made of a light-reflective material, and the counter electrode is made of a light-transmitting material.

前記各構成において、前記素子基板と前記第封止基板と前記シール材とで囲まれた空隙
が真空状態であることを特徴とする表示装置。
The display device according to any one of the above structures, wherein a space surrounded by the element substrate, the first sealing substrate, and the sealing material is in a vacuum state.

前記各構成のうち保護膜を有する構成において、前記保護膜は複数の膜からなることを
特徴とする表示装置。
In the configuration having a protective film among the respective configurations, the protective film includes a plurality of films.

前記各構成において、前記封止基板のうち前記素子基板に対向する面は分光フィルター
を有し、前記分光フィルターの下方に前記有機化合物層があることを特徴とする表示装置
In each of the above structures, the surface of the sealing substrate that faces the element substrate has a spectral filter, and the organic compound layer is below the spectral filter.

本発明の表示装置の作製方法は、以下のようにまとめられる。
有機発光素子は、画素電極と、対向電極と、前記画素電極と前記対向電極とに挟まれた有
機化合物層とから設けられ、前記有機発光素子を有する素子基板と、前記素子基板と対向
して設けられる封止基板とをシール剤を用いて貼り合せる表示装置の作製方法において、
前記画素電極の端部を覆ってバンクを形成する第1工程と、前記画素電極上に前記有機化
合物層を形成する第2工程と、前記有機化合物層上に前記対向電極を形成する第3工程と
、シール材を前記封止基板の周縁部に相当する位置に設ける第4工程と、前記バンクの上
端に前記封止基板を接して貼り合せ、前記シール材を硬化する第5工程とからなることを
特徴とする表示装置の作製方法。
The manufacturing method of the display device of the present invention can be summarized as follows.
The organic light emitting element is provided with a pixel electrode, a counter electrode, and an organic compound layer sandwiched between the pixel electrode and the counter electrode, and an element substrate having the organic light emitting element, and the element substrate. In a method for manufacturing a display device in which a sealing substrate provided is bonded using a sealant,
A first step of forming a bank covering the edge of the pixel electrode; a second step of forming the organic compound layer on the pixel electrode; and a third step of forming the counter electrode on the organic compound layer. And a fourth step of providing a sealing material at a position corresponding to the peripheral edge of the sealing substrate, and a fifth step of bonding the sealing substrate in contact with the upper end of the bank and curing the sealing material. A method for manufacturing a display device.

前記構成において、前記第1工程において前記バンクと同時に絶縁膜を形成し、前記第
5工程において前記バンクの上端と前記絶縁膜の上端とに前記封止基板を接して貼り合せ
ることを特徴とする表示装置の作製方法。
In the above structure, an insulating film is formed simultaneously with the bank in the first step, and the sealing substrate is bonded to the upper end of the bank and the upper end of the insulating film in the fifth step. A method for manufacturing a display device.

前記各構成において、前記第3工程と前記第4工程との間に少なくとも前記バンク上及
び前記対向電極上に保護膜を設ける工程を有し、前記第5工程において少なくとも前記バ
ンクの上端に設けられた前記保護膜が前記封止基板と接することを特徴とする表示装置の
作製方法。
In each of the above configurations, a protective film is provided on at least the bank and the counter electrode between the third step and the fourth step. In the fifth step, the protective film is provided at least on the upper end of the bank. A method for manufacturing a display device, wherein the protective film is in contact with the sealing substrate.

前記各構成のうち、バンク及び絶縁膜を有する構成において、請求項14又は15にお
いて、導電体膜の幅が50μm以下である領域に前記バンク及び前記絶縁膜を設けること
を特徴とする表示装置の作製方法。
The display device according to claim 14 or 15, wherein the bank and the insulating film are provided in a region where the width of the conductor film is 50 μm or less. Manufacturing method.

上記各構成の表示装置及びその作製方法でなる本発明によれば、有機発光素子を用いた
表示装置において、有機発光素子の劣化を防止すること、歩留まりを向上することが可能
になる。
According to the present invention including the display device having the above-described configuration and the manufacturing method thereof, in the display device using the organic light-emitting element, it is possible to prevent deterioration of the organic light-emitting element and improve the yield.

加えて、上記各構成の表示装置及びその作製方法でなる本発明によれば、封止基板の側
から有機発光素子の放射する光を取り出す構成にあって、高輝度、高精細な表示を行うと
ともに、有機発光素子の劣化を防止すること、歩留まりを向上すること、輝度の均一性を
高め良好な表示性能を得ることが可能になる。
In addition, according to the present invention comprising the display device having the above-described configuration and the method for manufacturing the display device, the light emitted from the organic light-emitting element is extracted from the sealing substrate side, and high-luminance and high-definition display is performed. At the same time, it is possible to prevent the deterioration of the organic light emitting element, improve the yield, increase the uniformity of luminance, and obtain good display performance.

以上の構成でなる本発明を、以下の実施形態、実施例によって詳細に説明する。実施形
態、実施例は適宜に組み合わせて用いることができる。
The present invention configured as described above will be described in detail by the following embodiments and examples. Embodiments and examples can be used in appropriate combinations.

画素部に設けられたバンク、バンクと同一工程にて形成された絶縁膜によって素子基板
と封止基板との間隔を制御することで、基板の間隔を狭く保ち、表示装置の側面から浸入
する水蒸気による有機発光素子の劣化を防げる。
By controlling the distance between the element substrate and the sealing substrate by a bank provided in the pixel portion and an insulating film formed in the same process as the bank, water vapor that enters from the side surface of the display device while keeping the distance between the substrates narrow. Deterioration of the organic light-emitting element due to.

さらに、バンク等の上端と封止基板とが接しているため、有機発光素子の上方に間隙を
おいて封止基板がある。よって、封止基板上にあるごみなどの突起上の異物によって有機
発光素子が断線することを防止することが可能となり、点欠陥等の不良を低減し、歩留ま
りを高めることができる。
Further, since the upper end of the bank or the like is in contact with the sealing substrate, there is a sealing substrate with a gap above the organic light emitting element. Therefore, it is possible to prevent the organic light emitting element from being disconnected by foreign matters on protrusions such as dust on the sealing substrate, and defects such as point defects can be reduced and the yield can be increased.

また、有機発光素子の放射する光を封止基板の側から取り出す表示装置においては、画
素部に設けられたバンクやバンクと同一工程にて形成される絶縁膜によって、有機発光素
子と封止基板との間隔を均一に保つことが可能となり、干渉縞の発現を防ぎ、コントラス
ト、輝度の均一性の高い良好な表示性能を確保することができる。
Further, in a display device that extracts light emitted from an organic light emitting element from the sealing substrate side, the organic light emitting element and the sealing substrate are provided by a bank provided in the pixel portion or an insulating film formed in the same process as the bank. Can be kept uniform, interference fringes can be prevented, and good display performance with high uniformity of contrast and brightness can be ensured.

さらに、カラーフィルターを封止基板上に設けて、カラー表示をする表示装置にあって
は、カラーフィルターの製造工程においてカラーフィルターに含まれる異物により有機発
光素子が断線することが防止できる。
Furthermore, in a display device in which a color filter is provided on a sealing substrate to perform color display, the organic light emitting element can be prevented from being disconnected by a foreign substance contained in the color filter in the color filter manufacturing process.

実施形態1の有機発光素子を用いた表示装置の断面図。Sectional drawing of the display apparatus using the organic light emitting element of Embodiment 1. FIG. 実施形態2の有機発光素子を用いた表示装置の断面図。Sectional drawing of the display apparatus using the organic light emitting element of Embodiment 2. FIG. 実施形態3の有機発光素子を用いた表示装置の断面図。Sectional drawing of the display apparatus using the organic light emitting element of Embodiment 3. FIG. 実施形態4の有機発光素子を用いた表示装置の断面図。Sectional drawing of the display apparatus using the organic light emitting element of Embodiment 4. FIG. 実施形態1の有機発光素子を用いた表示装置の外観を示す上面図。FIG. 2 is a top view illustrating an appearance of a display device using the organic light emitting element according to the first embodiment. 実施例1のアクティブマトリクス基板の断面図。1 is a cross-sectional view of an active matrix substrate of Example 1. FIG. 実施例1の画素部の上面図。2 is a top view of a pixel portion according to Embodiment 1. FIG. 実施例1の画素部の等価回路。2 is an equivalent circuit of a pixel portion according to the first embodiment. 実施例2の電子装置の一例を説明する斜視図。FIG. 6 is a perspective view illustrating an example of an electronic device according to a second embodiment. 実施例2の電子装置の一例を説明する斜視図。FIG. 6 is a perspective view illustrating an example of an electronic device according to a second embodiment. 有機樹脂膜を塗布したときの膜厚分布を示す断面図。Sectional drawing which shows film thickness distribution when apply | coating an organic resin film. 従来の有機発光素子を用いた表示装置の断面図。Sectional drawing of the display apparatus using the conventional organic light emitting element.

[実施形態1]
本実施形態では、画素部のバンクや、バンクと同一工程にて設けられる絶縁膜により基
板間の間隔を制御する構成を示す。この絶縁膜は駆動回路部上にのみ設ける。
[Embodiment 1]
In the present embodiment, a configuration in which the interval between substrates is controlled by a bank of a pixel portion or an insulating film provided in the same process as the bank is shown. This insulating film is provided only on the drive circuit portion.

図1で示すのは有機発光素子を用いたアクティブマトリクス型の表示装置の断面図であ
る。図1の表示装置の構成要素を、順次説明する。
FIG. 1 is a cross-sectional view of an active matrix display device using an organic light emitting element. The components of the display device of FIG. 1 will be described sequentially.

基板100は、コーニング社の#7059ガラスや#1737ガラスなどに代表される
バリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラスからなる基板を用い
る。また、石英基板やシリコン基板又はステンレス基板の表面に絶縁膜を形成したものを
用いても良い。また、本実施形態の処理温度に耐え得る耐熱性を有するプラスチック基板
を用いても良い。
As the substrate 100, a substrate made of glass such as barium borosilicate glass or aluminoborosilicate glass represented by Corning # 7059 glass or # 1737 glass is used. Alternatively, a quartz substrate, a silicon substrate, or a stainless steel substrate with an insulating film formed on the surface thereof may be used. Further, a plastic substrate having heat resistance that can withstand the processing temperature of the present embodiment may be used.

下地膜として、酸化シリコン膜、窒化シリコン膜又は酸化窒化シリコン膜などの絶縁膜
を用いることができる。本実施形態では下地膜として二層構造を用いるが、前記絶縁膜の
単層膜又は二層以上積層させた構造を用いても良い。本実施形態では下地膜118は膜厚
が10nm〜100nmの酸化窒化シリコン膜を形成する。下地膜119は膜厚が20n
m〜200nmの酸化シリコン膜を形成する。
As the base film, an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film can be used. In this embodiment, a two-layer structure is used as the base film, but a single-layer film of the insulating film or a structure in which two or more layers are stacked may be used. In this embodiment, the base film 118 is a silicon oxynitride film having a thickness of 10 nm to 100 nm. The base film 119 has a thickness of 20n.
A silicon oxide film of m to 200 nm is formed.

半導体膜110として膜厚が10〜150nmのシリコン膜、ゲート絶縁膜111とし
て膜厚が20〜300nmの窒化膜を形成する。ゲート電極112〜113として第1の
導電体膜に膜厚が30〜60nmの窒化タンタル膜、第2の導電体膜に膜厚が370〜4
00nmのタングステン膜を形成する。第1の導電体膜上に第2の導電体膜を積層する。
第1の層間絶縁膜114として膜厚が50nm〜150nmの酸化窒化シリコン膜を形成
する。第2の層間絶縁膜115として膜厚が1〜3μmのアクリル樹脂膜を形成する。
A silicon film having a thickness of 10 to 150 nm is formed as the semiconductor film 110, and a nitride film having a thickness of 20 to 300 nm is formed as the gate insulating film 111. As the gate electrodes 112 to 113, a tantalum nitride film having a thickness of 30 to 60 nm is formed on the first conductor film, and a film thickness of 370 to 4 is formed on the second conductor film.
A 00 nm tungsten film is formed. A second conductor film is stacked on the first conductor film.
A silicon oxynitride film with a thickness of 50 nm to 150 nm is formed as the first interlayer insulating film 114. An acrylic resin film having a thickness of 1 to 3 μm is formed as the second interlayer insulating film 115.

第1の層間絶縁膜114は酸化窒化シリコン膜だけでなく、窒化シリコン膜を酸化窒化
シリコン膜の代わりに用いることができる。窒化シリコン膜や酸化窒化シリコン膜は、後
述する有機発光素子の陰極に含まれるLi、Mgなどのアルカリ成分が溶出し、TFTの
電気特性を劣化させることを抑える。
As the first interlayer insulating film 114, not only a silicon oxynitride film but also a silicon nitride film can be used instead of the silicon oxynitride film. The silicon nitride film or the silicon oxynitride film suppresses the deterioration of the electrical characteristics of the TFT due to the elution of alkaline components such as Li and Mg contained in the cathode of the organic light emitting element described later.

ドレイン電極117及びソース電極116は、膜厚が50nm〜800nmのチタン膜
と、膜厚が350〜400nmのアルミ合金膜と、膜厚が100nm〜1600nmのチ
タン膜とからなる積層構造である。アルミ合金膜はアルミを主成分としシリコンが不純物
元素として添加された材料を用いる。本実施形態ではドレイン電極、ソース電極として導
電体膜を三層積層した構造を用いるが、単層又は二層に積層した構造を用いてもよい。導
電体膜123、配線124、125はドレイン電極及びソース電極と同一の層で形成され
る。こうして、画素部、駆動回路部にTFTが形成される。
The drain electrode 117 and the source electrode 116 have a stacked structure including a titanium film with a thickness of 50 nm to 800 nm, an aluminum alloy film with a thickness of 350 to 400 nm, and a titanium film with a thickness of 100 nm to 1600 nm. For the aluminum alloy film, a material in which aluminum is the main component and silicon is added as an impurity element is used. In this embodiment, a structure in which three conductor films are stacked as a drain electrode and a source electrode is used, but a structure in which a single layer or two layers are stacked may be used. The conductor film 123 and the wirings 124 and 125 are formed of the same layer as the drain electrode and the source electrode. Thus, TFTs are formed in the pixel portion and the drive circuit portion.

画素電極103は、仕事関数の小さいマグネシウム(Mg)、リチウム(Li)若しく
はカルシウム(Ca)を含む材料を用いて、蒸着法により形成する。好ましくはMgAg
(MgとAgをMg:Ag=10:1で混合した材料)でなる電極を用いれば良い。他に
もMgAgAl電極、LiAl電極、また、LiFAl電極が挙げられる。本実施形態で
は、画素電極はMgAgやLiFなどの材料を用いて陰極として形成する。画素電極の厚
さは100nm〜200nmの範囲にする。画素電極はソース電極116に一部を重ねて
形成する。
The pixel electrode 103 is formed by an evaporation method using a material containing magnesium (Mg), lithium (Li), or calcium (Ca) having a low work function. Preferably MgAg
An electrode made of (a material in which Mg and Ag are mixed at Mg: Ag = 10: 1) may be used. Other examples include MgAgAl electrodes, LiAl electrodes, and LiFAl electrodes. In this embodiment, the pixel electrode is formed as a cathode using a material such as MgAg or LiF. The thickness of the pixel electrode is in the range of 100 nm to 200 nm. The pixel electrode is formed so as to partially overlap the source electrode 116.

バンク107は、TFTの配線を覆うようにアクリル樹脂膜やポリイミド樹脂膜などの
有機樹脂膜を用いて形成する。有機樹脂膜は1.5〜10μmの厚さで用いる。絶縁膜1
08は、バンクと同一の工程にて形成する。絶縁膜108は駆動回路のTFTを覆い、T
FTを外部衝撃から保護する。
The bank 107 is formed using an organic resin film such as an acrylic resin film or a polyimide resin film so as to cover the TFT wiring. The organic resin film is used with a thickness of 1.5 to 10 μm. Insulating film 1
08 is formed in the same process as the bank. The insulating film 108 covers the TFT of the drive circuit, and T
Protect the FT from external impact.

有機化合物層104は、バンクのなだらかな傾斜面に沿って蒸着法により形成する。バ
ンクは、赤、青、緑の各色を発光する発光層を蒸着するときに、蒸着する材料を画素毎に
分離して混色を防ぐ隔壁となる。また電極、配線に起因する突出部をバンクで覆うことで
、有機化合物層の断線を防ぎ、ひいては画素電極と対向電極との短絡を防止する。
The organic compound layer 104 is formed by a vapor deposition method along the gentle inclined surface of the bank. The bank serves as a partition wall for preventing color mixing by separating the deposited material for each pixel when the light emitting layer emitting light of each color of red, blue, and green is deposited. Further, by covering the projecting portion due to the electrode and wiring with a bank, disconnection of the organic compound layer is prevented, and as a result, a short circuit between the pixel electrode and the counter electrode is prevented.

有機化合物層は、電子輸送層/発光層/正孔輸送層/正孔注入層の順に積層されるが、
電子輸送層/発光層/正孔輸送層、または電子注入層/電子輸送層/発光層/正孔輸送層
/正孔注入層のような構造としてもよい。本発明では公知のいずれの構造を用いても良い
The organic compound layer is laminated in the order of electron transport layer / light emitting layer / hole transport layer / hole injection layer,
A structure such as an electron transport layer / light-emitting layer / hole transport layer or an electron injection layer / electron transport layer / light-emitting layer / hole transport layer / hole injection layer may be employed. In the present invention, any known structure may be used.

具体的な有機化合物層としては、赤色に発光する発光層にはシアノポリフェニレン、緑
色に発光する発光層にはポリフェニレンビニレン、青色に発光する発光層にはポリフェニ
レンビニレンまたはポリアルキルフェニレンを用いれば良い。
発光層の厚さは30〜150nmの範囲にする。
As a specific organic compound layer, cyanopolyphenylene may be used for a light emitting layer emitting red light, polyphenylene vinylene may be used for a light emitting layer emitting green light, and polyphenylene vinylene or polyalkylphenylene may be used for a light emitting layer emitting blue light.
The thickness of the light emitting layer is in the range of 30 to 150 nm.

上記の例は発光層として用いることのできる材料の一例であり、これに限定されるもの
ではない。発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層を形成するための
材料は、その可能な組合せにおいて自由に選択することができる。
The above example is an example of a material that can be used for the light emitting layer, and is not limited thereto. The materials for forming the light emitting layer, the hole transport layer, the hole injection layer, the electron transport layer, and the electron injection layer can be freely selected in the possible combinations.

対向電極105は、ITO(Indium Tin Oxide:酸化インジウム錫)膜をスパッタ法によ
り形成する。対向電極の厚さは100nm〜200nmの範囲にする。
対向電極は互いに隣接するバンクの側面に接して形成する。図示してはいないが表示部外
で対向電極が短絡され共通電極となっている。
The counter electrode 105 is formed by sputtering an ITO (Indium Tin Oxide) film. The thickness of the counter electrode is in the range of 100 nm to 200 nm.
The counter electrode is formed in contact with the side surfaces of the banks adjacent to each other. Although not shown in the figure, the counter electrode is short-circuited outside the display unit to be a common electrode.

保護膜109は窒化シリコン膜、酸化窒化シリコン膜、DLC(Diamond Like Carbon
)膜を好適に用いる。保護膜を通過して発光が取り出されるため、可視光領域において高
い透過率が得られるように保護膜の材料、膜厚を選択する必要がある。絶縁物のエネルギ
ー帯は価電子帯、禁止帯、伝導帯があり、光の吸収は、電子が価電子帯から伝導帯へと遷
移することに起因する。このため禁止帯のエネルギー幅、つまりバンドギャップから光の
吸収端を求めて、可視光の透過率との相関性を見出すことができる。バンドギャップは、
窒化シリコン膜が5eVであり、酸化窒化シリコン膜が膜質に依存して5eV〜8eVの
範囲であり、DLC膜が3eVである。光速、プランク定数を用いて計算すると光の吸収
端は、窒化シリコン膜が248nm、酸化窒化シリコン膜が155nm〜248nm、D
LC膜が413nmとなる。つまり、窒化シリコン膜や酸化窒化シリコン膜は可視光領域
での光の吸収がない。DLC膜は可視光領域で紫色の光を吸収し茶色がかる。本実施形態
では、DLC膜を用いて有機発光素子を水分から保護する。ただし、DLC膜の膜厚は1
00nm〜200nmと薄くして、可視光における短波長の光の吸収を抑える。
The protective film 109 is a silicon nitride film, a silicon oxynitride film, or DLC (Diamond Like Carbon).
) A membrane is preferably used. Since light emission is extracted through the protective film, it is necessary to select a material and a film thickness of the protective film so that high transmittance can be obtained in the visible light region. The energy band of an insulator includes a valence band, a forbidden band, and a conduction band, and light absorption is caused by the transition of electrons from the valence band to the conduction band. For this reason, the light absorption edge is obtained from the energy width of the forbidden band, that is, the band gap, and the correlation with the visible light transmittance can be found. Band gap is
The silicon nitride film is 5 eV, the silicon oxynitride film is in the range of 5 eV to 8 eV depending on the film quality, and the DLC film is 3 eV. When calculated using the speed of light and Planck's constant, the absorption edge of light is 248 nm for the silicon nitride film, 155 nm to 248 nm for the silicon oxynitride film, D
The LC film becomes 413 nm. That is, the silicon nitride film and the silicon oxynitride film do not absorb light in the visible light region. The DLC film absorbs purple light in the visible light region and turns brown. In the present embodiment, the DLC film is used to protect the organic light emitting element from moisture. However, the thickness of the DLC film is 1
The thickness is reduced to 00 nm to 200 nm to suppress absorption of short-wavelength light in visible light.

以上の構成によりなる基板を本実施形態では素子基板と呼ぶ。上述の素子基板において
、画素電極上に、有機化合物膜、対向電極を積層した構成を示したが、両電極の短絡を防
ぐため、絶縁材料からなる数nm〜数10nmの厚さの薄膜を画素電極と有機化合物との
間、または、対向電極と有機化合物膜の間に形成してもよい。画素電極がAlLi、Mg
Agで構成される陰極であるため、画素電極上に設けられた絶縁材料からなる薄膜は、陰
極を水分や酸素から保護する保護膜としての機能を持つ。
In the present embodiment, the substrate having the above configuration is referred to as an element substrate. In the above-described element substrate, a configuration in which an organic compound film and a counter electrode are stacked on the pixel electrode is shown. You may form between an electrode and an organic compound or between a counter electrode and an organic compound film | membrane. Pixel electrode is AlLi, Mg
Since the cathode is made of Ag, a thin film made of an insulating material provided on the pixel electrode functions as a protective film that protects the cathode from moisture and oxygen.

封止基板101は、コーニング社の#7059ガラスや#1737ガラスなどに代表さ
れるバリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラスからなる基板を
用いる。また、石英基板や本実施形態の処理温度に耐え得る耐熱性を有するプラスチック
基板を用いても良い。
As the sealing substrate 101, a substrate made of glass such as barium borosilicate glass or alumino borosilicate glass represented by Corning # 7059 glass or # 1737 glass is used. Further, a quartz substrate or a plastic substrate having heat resistance that can withstand the processing temperature of this embodiment may be used.

封止基板にガラスからなる基板を用いたときは、素子基板の基板もガラスからなる基板
を用いると良い。パネルを使用する環境の温度が急激に変化したときに、素子基板と封止
基板との熱膨張係数が同じであれば、熱衝撃による基板の破損を防ぐことができる。基板
を薄型化すると基板の機械的強度が低下し、熱衝撃によって基板が破損しやすくなるため
、基板の熱膨張係数をそろえることが特に有効になる。
When a glass substrate is used as the sealing substrate, the element substrate may be a glass substrate. If the thermal expansion coefficient of the element substrate and the sealing substrate is the same when the temperature of the environment in which the panel is used changes rapidly, the substrate can be prevented from being damaged by thermal shock. When the substrate is thinned, the mechanical strength of the substrate is lowered, and the substrate is easily damaged by thermal shock. Therefore, it is particularly effective to align the thermal expansion coefficients of the substrate.

シール材102はエポキシ系の材料を用いる。シール材は紫外線硬化型樹脂を用いるこ
とも可能であるし、熱硬化型樹脂を用いることも可能である。有機発光素子の耐熱温度以
下で硬化が可能なシール材を選択することが好ましい。シール材はチッソ社が販売してい
るLIXSON BOND LX‐0001を用いることもできる。LX‐0001は二
液性のエポキシ樹脂である。封止基板の周縁部にLX‐0001を塗布後、素子基板と封
止基板とを貼り合わせ、この一対の基板の両面に基板面に垂直な圧力をかけながら100
℃で2時間硬化する。硬化後のシール材の厚さは、圧力や塗布量を調節することで0.2
μm〜10μmの厚さにすることができる。シール材の一部に間隙を開けて排気口を形成
する。
As the sealing material 102, an epoxy material is used. As the sealing material, an ultraviolet curable resin can be used, or a thermosetting resin can be used. It is preferable to select a sealing material that can be cured at a temperature lower than the heat resistant temperature of the organic light emitting device. As the sealing material, LIXSON BOND LX-0001 sold by Chisso Corporation may be used. LX-0001 is a two-part epoxy resin. After applying LX-0001 to the peripheral edge of the sealing substrate, the element substrate and the sealing substrate are bonded together, and a pressure perpendicular to the substrate surface is applied to both surfaces of the pair of substrates.
Cure at 2 ° C for 2 hours. The thickness of the sealing material after curing is 0.2 by adjusting the pressure and the coating amount.
The thickness can be from 10 μm to 10 μm. An exhaust port is formed by opening a gap in a part of the sealing material.

なお、導電体膜123はシール材102下の積層膜の膜厚をシール材が設けられる領域
下で等しくし、素子基板と封止基板との間隔を均一にするために補助的に用いる。導電体
膜123は後述する外部入力端子が形成される部分を除いて、有機樹脂膜からなる第2の
層間絶縁膜の上面及び側面を覆うように設ける。
Note that the conductor film 123 is used supplementarily to make the thickness of the laminated film under the sealant 102 equal in the region where the sealant is provided and to make the distance between the element substrate and the sealing substrate uniform. The conductor film 123 is provided so as to cover the upper surface and side surfaces of the second interlayer insulating film made of an organic resin film, except for a portion where an external input terminal to be described later is formed.

真空容器に、シール材で貼り合せられた素子基板と封止基板とからなるパネルを入れて
、パネルの排気口から空気を抜いて真空状態にする。次ぎに、この状態のまま、パネル内
を真空状態に保って、排気口を封止する。こうしてパネル内を真空状態に保つ。
A panel made of an element substrate and a sealing substrate bonded together with a sealing material is put in a vacuum container, and air is extracted from an exhaust port of the panel to make a vacuum state. Next, in this state, the inside of the panel is kept in a vacuum state, and the exhaust port is sealed. Thus, the inside of the panel is kept in a vacuum state.

端子部122には、外部入力端子が設けられる。パネル端部に設けられる外部入力端子
に異方性導電フィルムを介してFPC(Flexible Print Circuit : フレキシブルプリン
ト配線板)が接続される。外部回路から外部入力端子に画像データ信号や各種タイミング
信号及び電源を入力する。外部入力端子から入力されたスタートパルス、クロックパルス
などの画像データ信号、タイミング信号は駆動回路に出力される。
The terminal portion 122 is provided with an external input terminal. An FPC (Flexible Print Circuit) is connected to an external input terminal provided at the end of the panel via an anisotropic conductive film. An image data signal, various timing signals, and a power source are input from an external circuit to an external input terminal. An image data signal such as a start pulse and a clock pulse and a timing signal input from an external input terminal are output to a driving circuit.

異方性導電フィルムは、樹脂のフィルムの中に、ニッケルやカーボン等の金属でコーテ
ィングした微細粒子が分散しており、外部入力端子とFPCの間には電気を流すが、外部
入力端子間には電気を流さない性質を有する。
In the anisotropic conductive film, fine particles coated with a metal such as nickel or carbon are dispersed in a resin film, and electricity flows between the external input terminal and the FPC. Has the property of not passing electricity.

図4の上面図はこのような表示装置の外観である。図4を鎖線A−A’、鎖線B−B’
、鎖線C−C’で切断した断面が図1である。鎖線A−A’は画素部やパネルの周縁部を
、鎖線B−B’は外部入力端子の配線124と対向電極105との接続構造を、鎖線C−
C’は駆動回路のTFTと外部入力端子の配線125との接続構造を示す。
The top view of FIG. 4 shows the appearance of such a display device. FIG. 4 shows a chain line AA ′ and a chain line BB ′.
FIG. 1 shows a cross section taken along the chain line CC ′. A chain line AA ′ is a peripheral portion of the pixel portion or the panel, a chain line BB ′ is a connection structure between the wiring 124 of the external input terminal and the counter electrode 105, and a chain line C-
C ′ shows a connection structure between the TFT of the driving circuit and the wiring 125 of the external input terminal.

有機発光素子の放射する光が出射する方向は有機発光素子の構成によって異なるが、こ
こでは画素電極は光反射性を有する陰極とし、対向電極は透光性を有する陽極とし、封止
基板を透光性とし、有機発光素子から放射される光を封止基板の側へと出射させる。
The direction in which the light emitted from the organic light-emitting element is emitted varies depending on the configuration of the organic light-emitting element. Here, the pixel electrode is a light-reflective cathode, the counter electrode is a light-transmitting anode, and the sealing substrate is transparent. Light is emitted, and light emitted from the organic light emitting element is emitted to the sealing substrate side.

画素部120、駆動回路部121a〜121c、端子部122は各々点線で囲まれた領
域である。端子部は外部入力端子の配線122、配線124(配線124は図示しない)
が形成され、異方性導電フィルムを介して外部入力端子にFPC200が貼りつけられる
The pixel portion 120, the drive circuit portions 121a to 121c, and the terminal portion 122 are regions surrounded by dotted lines. Terminal portions are wiring 122 and wiring 124 of external input terminals (wiring 124 is not shown).
Is formed, and the FPC 200 is attached to the external input terminal via the anisotropic conductive film.

駆動回路部は、第1の走査側駆動回路部120a、第2の走査側駆動回路部120b、
信号側駆動回路部120cがある。駆動回路部の回路構成は、走査側駆動回路部と信号側
駆動回路部とで異なるがここでは省略する。駆動回路部はnチャネル型TFTとpチャネ
ル型TFTからなるCMOS回路を基本回路として構成される。これらのTFTを用いて
、シフトレジスタやラッチ回路、バッファ回路などが形成される。また、絶縁膜108は
駆動回路のTFTを覆うように形成する。この絶縁膜は、バンクと同一工程で形成される
The driving circuit unit includes a first scanning side driving circuit unit 120a, a second scanning side driving circuit unit 120b,
There is a signal side drive circuit section 120c. The circuit configuration of the drive circuit unit differs between the scanning side drive circuit unit and the signal side drive circuit unit, but is omitted here. The drive circuit section is configured with a CMOS circuit composed of an n-channel TFT and a p-channel TFT as a basic circuit. Using these TFTs, a shift register, a latch circuit, a buffer circuit and the like are formed. The insulating film 108 is formed so as to cover the TFT of the driver circuit. This insulating film is formed in the same process as the bank.

バンク107は画素部に列方向にストライプ状に設けられている。対向電極105は共
通電極であり、バンクの側面に沿ってストライプ状に設けられ、バンクの形成されていな
い表示領域外で短絡している。
The banks 107 are provided in a stripe shape in the column direction in the pixel portion. The counter electrode 105 is a common electrode, is provided in a stripe shape along the side surface of the bank, and is short-circuited outside the display area where the bank is not formed.

基板100、101、シール材102に囲まれる封止空間は、封止空間内の水分、酸素
濃度を低くして、有機発光素子の劣化、例えばダークスポットの発生を防止するように真
空状態に保たれる。
The sealing space surrounded by the substrates 100 and 101 and the sealing material 102 is kept in a vacuum state so that the moisture and oxygen concentrations in the sealing space are lowered to prevent deterioration of the organic light emitting element, for example, generation of dark spots. Be drunk.

封止空間を真空状態に保てば、大気圧と真空圧との圧力の差から、外気から両基板に強
い圧力が加わる。しかしながら、有機発光素子と封止基板との間隔は、画素部に高密度で
形成されたバンクで保持されるため、封止基板が有機発光素子に接して、有機発光素子を
損傷することが防げる。
If the sealed space is kept in a vacuum state, a strong pressure is applied to both substrates from the outside air due to the difference in pressure between the atmospheric pressure and the vacuum pressure. However, since the interval between the organic light emitting element and the sealing substrate is held by a bank formed at a high density in the pixel portion, the sealing substrate can be prevented from coming into contact with the organic light emitting element and damaging the organic light emitting element. .

駆動回路部の絶縁膜108は、弾力性を有する有機樹脂膜が広い面積で形成されている
ため、外部から機械的衝撃が加わったときに圧力を分散しTFTの損傷を防ぐ緩衝材とし
て働く。かつ、バンクとともに絶縁膜108を用いることで、有機発光素子と封止基板と
の間隔を均一にし画素部の干渉縞の発現を防止するギャップ制御材として働く。
The insulating film 108 of the driving circuit portion is formed of a flexible organic resin film with a wide area, and thus acts as a buffer material that disperses pressure and prevents damage to the TFT when mechanical shock is applied from the outside. In addition, by using the insulating film 108 together with the bank, the gap between the organic light emitting element and the sealing substrate is made uniform, and serves as a gap control material that prevents the occurrence of interference fringes in the pixel portion.

[実施形態2]
本実施形態では、封止基板がカラーフィルターを有し、カラーフィルターと白色発光ダ
イオードを組み合わせてカラー表示をする表示装置について説明する。
[Embodiment 2]
In this embodiment, a display device in which a sealing substrate has a color filter and performs color display by combining a color filter and a white light emitting diode will be described.

図2は、有機発光素子を用いた表示装置の断面を示す。図1と同等機能を有する部位は
同じ符号を付す。図1と異なる点を中心に説明する。有機発光素子は、白色発光ダイオー
ドを用いる。白色光を発光させるためには、有機化合物膜の発光層にZnBTZ錯体を用
いたり、あるいは芳香族ジアミン(TPD)\1,2,4−トリアゾール誘導体(p−E
tTAZ)\Alq(ただし、Alqは赤色発光色素であるニールレッドで部分的にドー
プすることを意味する。)の積層体を用いたりする。
FIG. 2 shows a cross section of a display device using an organic light emitting element. Parts having the same functions as those in FIG. A description will be given centering on differences from FIG. A white light emitting diode is used as the organic light emitting element. In order to emit white light, a ZnBTZ complex is used for the light emitting layer of the organic compound film, or an aromatic diamine (TPD) \ 1,2,4-triazole derivative (p-E) is used.
A laminate of tTAZ) \ Alq (where Alq means that it is partially doped with Neil Red, which is a red luminescent dye), is used.

有機発光素子106を有する素子基板と、封止基板130とはシール材102を用いて
貼り合わせられる。封止基板130は透光性を有する基板129と、基板129上のカラ
ーフィルターと、カラーフィルターを覆う平坦化膜128とからなる。カラーフィルター
は、第1の分光フィルターと、第2の分光フィルターと、第3の分光フィルターとからな
る。例えば、第1の分光フィルターは赤色を選択的に透過するフィルターとし、第2の分光
フィルターは緑色を選択的に透過するフィルターとし、第3の分光フィルターは青色を選
択的に透過するフィルターとする。平坦化膜128は、互いに隣接する分光フィルターの
重なりや間隙を平坦化する。
The element substrate having the organic light-emitting element 106 and the sealing substrate 130 are bonded using the sealant 102. The sealing substrate 130 includes a light-transmitting substrate 129, a color filter on the substrate 129, and a planarization film 128 that covers the color filter. The color filter includes a first spectral filter, a second spectral filter, and a third spectral filter. For example, the first spectral filter is a filter that selectively transmits red, the second spectral filter is a filter that selectively transmits green, and the third spectral filter is a filter that selectively transmits blue. . The planarizing film 128 planarizes the overlap or gap between adjacent spectral filters.

それぞれの分光フィルターは、画素ごとに設けられる。例えば、第1の分光フィルター
126が有機発光素子上方に設けられる。カラーフィルター、例えば第2の分光フィルタ
ー127をシール材を設ける部分の内側の領域で、かつ画素部の外側の領域に設ける。絶
縁膜108と封止基板130とが広い面積で接するため、有機発光素子と封止基板との間
隔の均一性を高めることができる。
Each spectral filter is provided for each pixel. For example, the first spectral filter 126 is provided above the organic light emitting element. A color filter, for example, a second spectral filter 127 is provided in a region inside the portion where the sealant is provided and in a region outside the pixel portion. Since the insulating film 108 and the sealing substrate 130 are in contact with each other over a wide area, the uniformity of the distance between the organic light emitting element and the sealing substrate can be improved.

アルゴン、ヘリウムなどの不活性ガスや窒素雰囲気下で、素子基板と封止基板とを封止
すると、水分、酸素から有機発光素子を保護し、陰極の酸化反応や陰極と有機化合物層と
の剥離を抑えることができる。不活性ガスは充分に乾燥させたものを用いる。
Sealing the element substrate and the sealing substrate in an inert gas such as argon or helium or a nitrogen atmosphere protects the organic light emitting element from moisture and oxygen, and oxidizes the cathode and peels off the cathode and the organic compound layer. Can be suppressed. An inert gas that is sufficiently dried is used.

カラーフィルター、例えば第1の分光フィルター126と有機発光素子106との距離は、
バンクの膜厚で決定される。バンクの膜厚は1.5〜10μmのため、カラーフィルター
と有機発光素子とを10μm以下と近接して設けることができる。カラーフィルターと発
光体とが近接しているため、ユーザーの視角の変化にともなう色ずれを防止でき、明瞭な
表示が得られる。
The distance between the color filter, for example, the first spectral filter 126 and the organic light emitting element 106 is
It is determined by the film thickness of the bank. Since the bank has a film thickness of 1.5 to 10 μm, the color filter and the organic light-emitting element can be provided close to 10 μm or less. Since the color filter and the illuminant are close to each other, it is possible to prevent a color shift associated with a change in the viewing angle of the user and to obtain a clear display.

[実施形態3]
本実施形態は、乾燥剤をシール材に分散させた例を示す。
[Embodiment 3]
This embodiment shows an example in which a desiccant is dispersed in a sealing material.

本実施形態を図3の断面図を用いて説明する。図2と同等機能を有する部位は同じ符号
を付す。図2と異なる点のみを説明する。シール材102は内部に乾燥剤131を有する。乾
燥剤の粒径は直径が1.0μm以下好ましくは0.2μm以下と細かく粉砕されたものを
用いる。乾燥剤は酸化カルシウム、酸化バリウムなどを用いることができる。シール材と
乾燥剤とが混合されたものをシリンジに充填する。公知のディスペンサ方式にてシリンジ
の上端から所定値のガス圧力を加え、シリンジの下端の細いノズルから、シール材と乾燥
剤とを吐出し、シール材を封止基板130の周縁部に形成する。
This embodiment will be described with reference to the cross-sectional view of FIG. Parts having the same functions as those in FIG. Only differences from FIG. 2 will be described. The sealing material 102 has a desiccant 1311 inside. The desiccant has a particle size of 1.0 μm or less, preferably 0.2 μm or less, and is finely pulverized. As the desiccant, calcium oxide, barium oxide, or the like can be used. A syringe is filled with a mixture of a sealing material and a desiccant. A gas pressure of a predetermined value is applied from the upper end of the syringe by a known dispenser method, and a sealing material and a desiccant are discharged from a thin nozzle at the lower end of the syringe to form the sealing material on the peripheral edge of the sealing substrate 130.

乾燥材がシール材に充填され、吸湿性、防湿性を持たせているため、カラーフィルター
上の平坦化膜127は、シール材が設けられる部分は除去し、表示装置の側面においてシー
ル材の占める割合を高める。
Since the desiccant is filled in the sealing material to provide moisture absorption and moisture proofing, the planarizing film 127 on the color filter removes the portion where the sealing material is provided, and the sealing material occupies the side of the display device. Increase the rate.

また、封止空間内を、封止基板と屈折率の近い絶縁材料、例えば絶縁性のオイルで満た
す。封止基板と、絶縁性のオイル等との屈折率差が小さいと、表面反射が低減され、有機
発光素子から放射される光の利用効率を向上させることができる。有機発光素子の長期信
頼性を高めるために、絶縁性のオイルは充分に脱泡、脱水し酸素、水分の混入を防ぐこと
が好ましい。
Further, the sealed space is filled with an insulating material having a refractive index close to that of the sealing substrate, for example, insulating oil. When the difference in refractive index between the sealing substrate and insulating oil or the like is small, surface reflection is reduced, and the utilization efficiency of light emitted from the organic light emitting element can be improved. In order to increase the long-term reliability of the organic light-emitting element, it is preferable that the insulating oil is sufficiently defoamed and dehydrated to prevent mixing of oxygen and moisture.

なお、封止空間内を絶縁性のオイルで満たす方法は、公知の技術を用いることができる
。例えば、真空容器に、シール材で貼り合せられた素子基板と封止基板とからなるパネル
と、絶縁性オイルを満たした容器を入れて、パネルの排気口から素子基板と封止基板との
間隙の空気を抜いて真空状態にする。次ぎに、この状態のまま、パネルの排気口をこの絶
縁性オイルに浸漬して、真空容器内を大気圧に戻す。その結果、絶縁性オイル液面に大気
圧がかかり、真空状態にある素子基板と封止基板との間隙に、絶縁性オイルが注入される
。次ぎに、この状態のまま排気口を封止する。
In addition, a well-known technique can be used for the method of filling the sealed space with insulating oil. For example, a panel composed of an element substrate and a sealing substrate bonded together with a sealing material and a container filled with insulating oil are placed in a vacuum container, and the gap between the element substrate and the sealing substrate is discharged from the exhaust port of the panel. Vent the air to create a vacuum. Next, in this state, the exhaust port of the panel is immersed in this insulating oil to return the inside of the vacuum vessel to atmospheric pressure. As a result, atmospheric pressure is applied to the surface of the insulating oil, and the insulating oil is injected into the gap between the element substrate and the sealing substrate in a vacuum state. Next, the exhaust port is sealed in this state.

乾燥剤により外気から浸入する水蒸気を、封止空間に入り込む前に捕獲でき、防湿性、
吸湿性が向上し、有機発光素子の長寿命化を図ることができる。
Water vapor entering from the outside air by the desiccant can be captured before entering the sealed space, moisture-proof,
Hygroscopicity is improved, and the lifetime of the organic light emitting device can be extended.

[実施形態4]
本発明は、素子基板の側から有機発光素子の放射する光を取り出す表示装置に適用して
もよい。図4は有機発光素子を用いたアクティブマトリクス方式の表示装置であり、有機
発光素子の放射する光を素子基板の側から取り出す構成である。放射される光は断面図下
方向に出射する。図4は、図1と同等機能を有する部位は同じ符号を用いている。実施形
態1との同異を以下に説明する。
[Embodiment 4]
The present invention may be applied to a display device that extracts light emitted from an organic light emitting element from the element substrate side. FIG. 4 shows an active matrix type display device using an organic light emitting element, which is configured to extract light emitted from the organic light emitting element from the element substrate side. The emitted light is emitted downward in the sectional view. In FIG. 4, parts having the same functions as those in FIG. Differences from the first embodiment will be described below.

下地膜118、119、半導体膜110、ゲート絶縁膜111、ゲート電極112、1
13、第1の層間絶縁膜114、第2の層間絶縁膜115の膜厚や材料は実施形態1と同
じである。
Base films 118 and 119, semiconductor film 110, gate insulating film 111, gate electrode 112, 1
13. The film thickness and materials of the first interlayer insulating film 114 and the second interlayer insulating film 115 are the same as those in the first embodiment.

第2の層間絶縁膜115を貫通し、半導体膜110に達するコンタクトホールを形成す
る。そして、コンタクトホールの側壁、第2の層間絶縁膜の表面に接して、ソース電極1
16、ドレイン電極117とを形成する。配線124〜125、導電体膜123も、ソー
ス電極やドレイン電極と同時に形成する。
A contact hole that penetrates the second interlayer insulating film 115 and reaches the semiconductor film 110 is formed. The source electrode 1 is in contact with the side wall of the contact hole and the surface of the second interlayer insulating film.
16 and the drain electrode 117 are formed. The wirings 124 to 125 and the conductor film 123 are formed simultaneously with the source electrode and the drain electrode.

次いで、画素電極103をドレイン電極117の端部に重ねて設ける。本実施例では、
透明電極としてITO膜や酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した
透明導電膜を用いる。透明導電膜は正孔注入電極、つまり陽極として用いる。
Next, the pixel electrode 103 is provided to overlap the end portion of the drain electrode 117. In this example,
As the transparent electrode, an ITO film or a transparent conductive film in which indium oxide is mixed with 2 to 20% zinc oxide (ZnO) is used. The transparent conductive film is used as a hole injection electrode, that is, an anode.

次いで、3.0μmの膜厚のポリイミド樹脂膜を用いて、バンク107と駆動回路のT
FTを覆う絶縁膜108とを設ける。次に、有機化合物層104、対向電極105を蒸着
法により形成する。このとき有機化合物層104を形成する前に画素電極103に対して
熱処理を施し、水分を完全に除去しておくことが好ましい。なお、本実施例では有機発光
素子の対向電極を陰極とし、AlLi電極を用いるが、公知の他の材料であっても良い。
なお、有機化合物層104は、発光層の他に正孔注入層、正孔輸送層、電子輸送層、電子
注入層といった複数の層を組み合わせて積層することにより形成されている。
Next, using a polyimide resin film having a thickness of 3.0 μm, the bank 107 and the drive circuit T
An insulating film 108 covering the FT is provided. Next, the organic compound layer 104 and the counter electrode 105 are formed by an evaporation method. At this time, before the organic compound layer 104 is formed, it is preferable to perform heat treatment on the pixel electrode 103 to completely remove moisture. In this embodiment, the counter electrode of the organic light emitting element is used as a cathode and an AlLi electrode is used. However, other known materials may be used.
Note that the organic compound layer 104 is formed by stacking a plurality of layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer in addition to the light emitting layer.

以上のようにして基板100上に有機発光素子を形成する。なお、本実施例では下側の
電極が透光性の陽極となっているため、有機化合物層で発生した光は下面(基板100)
へ放射される。
An organic light emitting element is formed on the substrate 100 as described above. In this embodiment, since the lower electrode is a light-transmitting anode, the light generated in the organic compound layer is on the lower surface (substrate 100).
To be emitted.

保護膜109を設けることで有機化合物層104や対向電極(陰極)105を水分や酸
素から保護することは可能である。なお、本実施例では保護膜109として300nm厚
の窒化珪素膜を設ける。この保護膜109は陰極を形成した後に大気解放しないで連続的
に形成しても構わない。
By providing the protective film 109, the organic compound layer 104 and the counter electrode (cathode) 105 can be protected from moisture and oxygen. In this embodiment, a 300 nm thick silicon nitride film is provided as the protective film 109. The protective film 109 may be formed continuously after the cathode is formed without being released to the atmosphere.

次いで、シール材102が封止基板の周縁部に設けられ、封止基板と素子基板とが貼り
合わせられる。封止基板はコーニング社の#7059ガラスや#1737ガラスなどに代
表されるバリウムホウケイ酸ガラス、アルミノホウケイ酸ガラスなどのガラスからなる基
板を用いる。封止基板は石英基板、シリコン基板、金属基板又はステンレス基板の表面に
絶縁膜を形成したものを用いても良い。また、本実施形態の処理温度に耐え得る耐熱性を
有するプラスチック基板を用いても良い。
Next, the sealing material 102 is provided on the peripheral edge of the sealing substrate, and the sealing substrate and the element substrate are bonded to each other. As the sealing substrate, a substrate made of glass such as barium borosilicate glass or aluminoborosilicate glass represented by Corning # 7059 glass or # 1737 glass is used. As the sealing substrate, a quartz substrate, a silicon substrate, a metal substrate, or a stainless substrate on which an insulating film is formed may be used. Further, a plastic substrate having heat resistance that can withstand the processing temperature of the present embodiment may be used.

本実施形態によれば、素子基板と封止基板とを近接して設けることができるため、表示
装置の側面からの水分の浸入を減らせる。かつ、素子基板と封止基板とを近接して設けて
も、封止基板上のごみなどの異物に起因した有機発光素子の断線を防止でき、点欠陥の発
生を防止できる。
According to this embodiment, since the element substrate and the sealing substrate can be provided close to each other, the intrusion of moisture from the side surface of the display device can be reduced. Moreover, even if the element substrate and the sealing substrate are provided close to each other, disconnection of the organic light emitting element due to foreign matters such as dust on the sealing substrate can be prevented, and occurrence of point defects can be prevented.

本発明は有機発光素子を用いたあらゆる表示装置に適用することができる。図6はその
一例であり、TFTを用いて作製されるアクティブマトリクス型の表示装置の例を示す。
実施例のTFTはチャネル形成領域を形成する半導体膜の材質により、アモルファスシリ
コンTFTやポリシリコンTFTと区別されることがあるが、本発明はそのどちらにも適
用することができる。
The present invention can be applied to any display device using an organic light emitting element. FIG. 6 shows an example thereof, which shows an example of an active matrix display device manufactured using TFTs.
The TFT of the embodiment may be distinguished from the amorphous silicon TFT and the polysilicon TFT depending on the material of the semiconductor film forming the channel formation region, but the present invention can be applied to either of them.

基板401は、石英やコーニング社の#7059ガラスや#1737ガラスなどに代表
されるバリウムホウケイ酸ガラス、またはアルミノホウケイ酸ガラスなどのガラスからな
る基板を用いる。
As the substrate 401, a substrate made of glass such as quartz, barium borosilicate glass typified by Corning # 7059 glass or # 1737 glass, or aluminoborosilicate glass is used.

次いで、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの絶縁膜から
なる下地膜402が設けられる。例えば、プラズマCVD法でSiH4、NH3、N2Oか
ら作製される酸化窒化シリコン膜402aを10〜200nm(好ましくは50〜100nm
)形成し、同様にSiH4、N2Oから作製される酸化窒化シリコン膜402bを50〜2
00nm(好ましくは100〜150nm)の厚さに積層形成する。本実施例では下地膜4
02を2層構造として示したが、前記絶縁膜の単層膜または2層以上積層させた構造とし
て形成してもよい。
Next, a base film 402 made of an insulating film such as a silicon oxide film, a silicon nitride film, or a silicon oxynitride film is provided. For example, a silicon oxynitride film 402a formed from SiH 4 , NH 3 , and N 2 O by a plasma CVD method is 10 to 200 nm (preferably 50 to 100 nm).
) And a silicon oxynitride film 402b made of SiH 4 and N 2 O in the same manner as described above.
The layers are stacked to a thickness of 00 nm (preferably 100 to 150 nm). In this embodiment, the base film 4
Although 02 is shown as a two-layer structure, a single-layer film of the insulating film or a structure in which two or more layers are stacked may be formed.

次いで、島状半導体層403〜407、ゲート絶縁膜408、ゲート電極409〜41
2を形成する。島状半導体膜403〜407は厚さを10〜150nm、ゲート絶縁膜は
厚さを50〜200nm、ゲート電極は厚さを50〜800nmとする。
Next, island-like semiconductor layers 403 to 407, a gate insulating film 408, and gate electrodes 409 to 41
2 is formed. The island-like semiconductor films 403 to 407 have a thickness of 10 to 150 nm, the gate insulating film has a thickness of 50 to 200 nm, and the gate electrode has a thickness of 50 to 800 nm.

次いで、層間絶縁膜413を形成する。例えば、プラズマCVD法でSiH4、NH3
2Oから作製される酸化窒化シリコン膜を第1の層間絶縁膜413aとして10〜20
0nm(好ましくは50〜100nm)形成する。第1の層間絶縁膜として酸化窒化膜を形成
することも可能である。さらに、有機樹脂膜からなる第2の層間絶縁膜413bを0.5
〜10μm(好ましくは1〜3μm)形成する。第2の層間絶縁膜はアクリル樹脂膜、ポ
リイミド樹脂膜などを好適に用いることができる。第2の層間絶縁膜は島状半導体膜40
3〜407、ゲート電極409〜412に起因する凹凸を平坦化するに充分な厚さとする
ことが望ましい。
Next, an interlayer insulating film 413 is formed. For example, SiH 4 , NH 3 ,
A silicon oxynitride film made of N 2 O is used as the first interlayer insulating film 413a, and 10 to 20
It is formed to 0 nm (preferably 50 to 100 nm). It is also possible to form an oxynitride film as the first interlayer insulating film. Further, the second interlayer insulating film 413b made of an organic resin film is changed to 0.5.
10 μm (preferably 1 to 3 μm) is formed. As the second interlayer insulating film, an acrylic resin film, a polyimide resin film, or the like can be preferably used. The second interlayer insulating film is an island-shaped semiconductor film 40.
3 to 407 and a thickness sufficient to flatten the unevenness caused by the gate electrodes 409 to 412.

さらに、プラズマCVD法でSiH4、NH3、N2Oから作製される酸化窒化シリコン膜
を第1の保護膜437cとして10〜200nm(好ましくは50〜100nm)形成する。
第1の保護膜は、後述する有機発光素子の陰極に含まれるLi、Mgなどのアルカリ成分
が溶出し、TFTの電気特性を劣化させることを抑える。本実施例では第1の保護膜を酸
化窒化シリコン膜で形成したが、酸化窒化シリコン膜の代わりに酸化シリコン膜を用いて
もよい。
Further, a silicon oxynitride film formed from SiH 4 , NH 3 , and N 2 O by plasma CVD is formed as a first protective film 437 c with a thickness of 10 to 200 nm (preferably 50 to 100 nm).
The first protective film prevents alkaline components such as Li and Mg contained in the cathode of the organic light emitting element described later from eluting, and deterioration of the electrical characteristics of the TFT. In this embodiment, the first protective film is formed of a silicon oxynitride film, but a silicon oxide film may be used instead of the silicon oxynitride film.

次いで、島状半導体膜403〜407の表面に達するコンタクトホールを形成するため
のパターニングを行う。
Next, patterning for forming contact holes reaching the surfaces of the island-shaped semiconductor films 403 to 407 is performed.

そして、駆動回路部435において、島状半導体膜403〜404のソース領域に接続
するソース配線414〜415と、ドレイン領域に接続するドレイン配線416〜417
とを形成する。なお、これらの配線は、膜厚50nmのTi膜と、膜厚500nmの合金
膜(AlとTiとの合金膜)との積層膜をパターニングして形成する。
In the driver circuit portion 435, source wirings 414 to 415 connected to the source regions of the island-shaped semiconductor films 403 to 404 and drain wirings 416 to 417 connected to the drain regions are used.
And form. Note that these wirings are formed by patterning a laminated film of a Ti film having a thickness of 50 nm and an alloy film (alloy film of Al and Ti) having a thickness of 500 nm.

また、画素部においては、データ配線418、ドレイン側の配線419、電源供給配線
420、ドレイン側の電極421を形成する。スイッチング用TFT428のドレインに
データ配線418が接続し、ソースにソース側の配線419が接続する。ソース側の配線
419は電流制御用TFT430のゲート電極411と接続する。電流制御用TFT43
6のドレインに電源供給配線420が接続し、ソースにソース側の電極421が接続する
。対向電極とソース側の電極421とが接続している。
In the pixel portion, a data wiring 418, a drain side wiring 419, a power supply wiring 420, and a drain side electrode 421 are formed. A data wiring 418 is connected to the drain of the switching TFT 428, and a source-side wiring 419 is connected to the source. The source-side wiring 419 is connected to the gate electrode 411 of the current control TFT 430. Current control TFT 43
The power supply wiring 420 is connected to the drain 6 and the source-side electrode 421 is connected to the source. The counter electrode and the source-side electrode 421 are connected.

以上のようにして、nチャネル型TFT429、pチャネル型TFT430を有する駆
動回路部と、スイッチング用TFT431、リセット用TFT432、保持容量433、
電流制御用TFT434を有する画素部とを同一基板上に形成することができる。
As described above, the driver circuit portion including the n-channel TFT 429 and the p-channel TFT 430, the switching TFT 431, the reset TFT 432, the storage capacitor 433,
The pixel portion having the current control TFT 434 can be formed over the same substrate.

次いで、有機発光素子の対向電極423を形成する。対向電極は陰極とし、MgAgや
LiFなどの光反射性の材料を用いる。陰極の厚さは100nm〜200nmとする。次
いで、1.5〜10μmの厚さのアクリル樹脂膜からバンク422を画素部436に形成
する。バンクを形成すると同時に駆動回路部に絶縁膜428を形成する。
Next, a counter electrode 423 of the organic light emitting element is formed. The counter electrode is a cathode, and a light reflective material such as MgAg or LiF is used. The thickness of the cathode is 100 nm to 200 nm. Next, a bank 422 is formed in the pixel portion 436 from an acrylic resin film having a thickness of 1.5 to 10 μm. At the same time as forming the bank, an insulating film 428 is formed in the driver circuit portion.

次いで、有機発光素子の有機化合物層424を形成する。有機化合物層は、単層又は積
層構造で用いられるが、積層構造で用いた方が発光効率は良い。一般的には陽極上に正孔
注入層/正孔輸送層/発光層/電子輸送層の順に形成されるが、正孔輸送層/発光層/電
子輸送層、または正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層のような構
造でも良い。本発明では公知のいずれの構造を用いても良い。
Next, an organic compound layer 424 of the organic light emitting element is formed. The organic compound layer is used in a single layer or a stacked structure, but the light emission efficiency is better when used in a stacked structure. Generally, the hole injection layer / hole transport layer / light emitting layer / electron transport layer are formed on the anode in this order, but the hole transport layer / light emitting layer / electron transport layer, or hole injection layer / hole are formed. A structure such as a transport layer / a light emitting layer / an electron transport layer / an electron injection layer may be used. In the present invention, any known structure may be used.

なお、本実施例ではRGBに対応した三種類の発光層を蒸着する方式でカラー表示を行
う。具体的な発光層としては、赤色に発光する発光層にはシアノポリフェニレン、緑色に
発光する発光層にはポリフェニレンビニレン、青色に発光する発光層にはポリフェニレン
ビニレンまたはポリアルキルフェニレンを用いれば良い。発光層の厚さは30〜150n
mとすれば良い。上記の例は発光層として用いることのできる有機化合物の一例であり、
これに限定されるものではない。
In this embodiment, color display is performed by depositing three types of light emitting layers corresponding to RGB. As a specific light emitting layer, cyanopolyphenylene may be used for a light emitting layer that emits red light, polyphenylene vinylene may be used for a light emitting layer that emits green light, and polyphenylene vinylene or polyalkylphenylene may be used for a light emitting layer that emits blue light. The thickness of the light emitting layer is 30-150n
m may be used. The above example is an example of an organic compound that can be used as the light emitting layer.
It is not limited to this.

なお、本実施例で示す有機化合物は、発光層とPEDOT(ポリチオフェン)
またはPAni(ポリアニリン)からなる正孔注入層を積層した構造とする。
Note that the organic compound shown in this example includes a light-emitting layer and PEDOT (polythiophene).
Or it is set as the structure which laminated | stacked the positive hole injection layer which consists of PAni (polyaniline).

次いで、ITO(酸化インジウム・スズ)で形成される画素電極425を形成する。I
TOは仕事関数が4.5〜5.0eVと高く、正孔を効率良く有機発光層に注入すること
ができる。ITOは陽極となる。以上により、MgAgやLiFなどの材料を用いて形成
される陰極、発光層と正孔輸送層とを積層した有機化合物、ITOで形成される陽極とか
らなる有機発光素子が設けられる。なお、陽極に透明電極を用いることで、図6において
矢印で示す方向に光を放射させることができる。
Next, a pixel electrode 425 made of ITO (indium tin oxide) is formed. I
TO has a high work function of 4.5 to 5.0 eV, and can efficiently inject holes into the organic light emitting layer. ITO becomes the anode. As described above, an organic light emitting element including a cathode formed using a material such as MgAg or LiF, an organic compound in which a light emitting layer and a hole transport layer are stacked, and an anode formed of ITO is provided. Note that by using a transparent electrode for the anode, light can be emitted in a direction indicated by an arrow in FIG.

次いで、第2の保護膜438としてDLC膜を形成し、シール部分から水蒸気や酸素な
どが浸入し、有機発光素子が劣化することを防ぐ。DLC膜を成膜するとき、端子部のう
ち、FPCを設ける部分ははマスクを用いて、予め被覆しておく。
Next, a DLC film is formed as the second protective film 438 to prevent water vapor, oxygen, or the like from entering from the seal portion to deteriorate the organic light emitting element. When the DLC film is formed, a portion of the terminal portion where the FPC is provided is covered in advance using a mask.

図6の断面図に示した画素部の上面図が図7である。図6と共通する要素は同じ符号を
用いて示している。また、図7において、鎖線G−G'及び鎖線H−H'線で切断した断面
が図6において示されている。図7の点線で囲まれた領域の外側にバンクが設けられてい
る。また、点線で囲まれた領域の内側に赤色、緑色、青色の画素に対応した発光色を発光
する発光層と、陽極とが設けられる。
FIG. 7 is a top view of the pixel portion shown in the cross-sectional view of FIG. Elements common to FIG. 6 are denoted by the same reference numerals. Moreover, in FIG. 7, the cross section cut | disconnected by the chain line GG 'and the chain line HH' line is shown in FIG. A bank is provided outside the area surrounded by the dotted line in FIG. In addition, a light emitting layer that emits light emission colors corresponding to red, green, and blue pixels and an anode are provided inside a region surrounded by a dotted line.

図8ではこのような画素部の等価回路を示し、図5と共通する要素は同じ符号を用いて
示している。スイッチング用TFT431をマルチゲート構造とし、電流制御用TFT4
11にはゲート電極とオーバーラップするLDDを設けている。ポリシリコンを用いたT
FTは、高い動作速度を示すが故にホットキャリア注入などの劣化も起こりやすい。その
ため、画素内において機能に応じて構造の異なるTFT(オフ電流の十分に低いスイッチ
ング用TFTと、ホットキャリア注入に強い電流制御用TFT)を形成することは、高い
信頼性を有し、且つ、良好な画像表示が可能な(動作性能の高い)表示装置を作製する上
で非常に有効である。
FIG. 8 shows an equivalent circuit of such a pixel portion, and elements common to FIG. 5 are denoted by the same reference numerals. The switching TFT 431 has a multi-gate structure, and the current control TFT 4
11 is provided with an LDD overlapping the gate electrode. T using polysilicon
Since FT exhibits a high operation speed, it is easy to cause deterioration such as hot carrier injection. Therefore, it is highly reliable to form TFTs with different structures (switching TFTs with sufficiently low off-state current and TFTs for current control strong against hot carrier injection) having different structures depending on functions in the pixels, and This is very effective in manufacturing a display device capable of displaying a good image (high operation performance).

本実施例では、電流制御用TFT434にnチャネル型TFTを用い、電流制御用TF
Tのソースに有機発光素子の陰極(画素電極)を接続する。こうして、陽極(対向電極)
側から陰極側に電流が流れるように制御することにより、陰極から注入された電子と、陽
極から注入された正孔が発光層で結合し、有機発光素子が発光する。なお、電流制御用T
FTに陽極が接続した構成であれば、電流制御用TFTをpチャネル型とし、電流制御用
TFTのドレインに有機発光素子の陽極を接続し、陽極から陰極に電流が流れるように制
御する。
In this embodiment, an n-channel TFT is used as the current control TFT 434 and the current control TF is used.
The cathode (pixel electrode) of the organic light emitting device is connected to the source of T. Thus, anode (counter electrode)
By controlling the current to flow from the cathode side to the cathode side, the electrons injected from the cathode and the holes injected from the anode are combined in the light emitting layer, and the organic light emitting device emits light. Current control T
In the configuration in which the anode is connected to the FT, the current control TFT is a p-channel type, the anode of the organic light emitting element is connected to the drain of the current control TFT, and the current is controlled to flow from the anode to the cathode.

なお、バンクは、封止基板の近傍にあるバンクの上端が、第2の層間絶縁膜に接するバ
ンクの下端に対してせりだしたオーバーハング形状の構成を採用してもよい。この構成で
も、バンクにより有機発光素子と封止基板との接触を防ぐ効果、有機発光素子と封止基板
との間隔を画素部において一定に保つ効果、素子基板と封止基板とを近接させて設けるこ
とができる効果を得ることができる。
Note that the bank may adopt an overhang configuration in which the upper end of the bank in the vicinity of the sealing substrate protrudes from the lower end of the bank in contact with the second interlayer insulating film. Even in this configuration, the bank prevents the contact between the organic light emitting element and the sealing substrate, the effect of keeping the distance between the organic light emitting element and the sealing substrate constant in the pixel portion, and the element substrate and the sealing substrate are close to each other. The effect which can be provided can be acquired.

本発明を実施して形成された発光装置は様々な電気器具に内蔵され、画素部は映像表示
部として用いられる。本発明の電子装置としては、携帯電話、PDA、電子書籍、ビデオ
カメラ、ノート型パーソナルコンピュータ、記録媒体を備えた画像再生装置、例えばDV
D(Digital Versatile Disc)プレーヤー、デジタルカメラ、などが挙げられる。それら
電子装置の具体例を図9、図10に示す。
A light-emitting device formed by implementing the present invention is incorporated in various electric appliances, and a pixel portion is used as an image display portion. Examples of the electronic apparatus of the present invention include a mobile phone, a PDA, an electronic book, a video camera, a notebook personal computer, and an image reproducing apparatus including a recording medium, such as a DV
Examples include D (Digital Versatile Disc) players and digital cameras. Specific examples of these electronic devices are shown in FIGS.

図9(A)は携帯電話であり、表示用パネル9001、操作用パネル9002、接続部
9003からなり、表示用パネル9001には表示装置9004、音声出力部9005、
アンテナ9009などが設けられている。操作パネル9002には操作キー9006、電
源スイッチ9007、音声入力部9008などが設けられている。本発明は表示装置90
04に適用することができる。
FIG. 9A illustrates a mobile phone, which includes a display panel 9001, an operation panel 9002, and a connection portion 9003. The display panel 9001 includes a display device 9004, an audio output portion 9005,
An antenna 9009 and the like are provided. The operation panel 9002 is provided with operation keys 9006, a power switch 9007, a voice input unit 9008, and the like. The present invention provides a display device 90.
04 can be applied.

図9(B)はモバイルコンピュータ或いは携帯型情報端末であり、本体9201、カメ
ラ部9202、受像部9203、操作スイッチ9204、表示装置9205で構成されて
いる。本発明は表示装置9205に適用することができる。このような電子装置には、3
インチから5インチクラスの表示装置が用いられるが、本発明の表示装置を用いることに
より、携帯型情報端末の軽量化を図ることができる。
FIG. 9B illustrates a mobile computer or a portable information terminal, which includes a main body 9201, a camera portion 9202, an image receiving portion 9203, an operation switch 9204, and a display device 9205. The present invention can be applied to the display device 9205. Such electronic devices include 3
A display device of inch to 5 inch class is used. By using the display device of the present invention, the weight of the portable information terminal can be reduced.

図9(C)は携帯書籍であり、本体9301、表示装置9202〜9303、記憶媒体
9304、操作スイッチ9305、アンテナ9306から構成されており、ミニディスク
(MD)やDVDに記憶されたデータや、アンテナで受信したデータを表示するものであ
る。本発明は表示装置9302〜9303に用いることができる。携帯書籍は、4インチ
から12インチクラスの表示装置が用いられるが、本発明の表示装置を用いることにより
、携帯書籍の軽量化と薄型化を図ることができる。
FIG. 9C illustrates a portable book, which includes a main body 9301, display devices 9202 to 9303, a storage medium 9304, operation switches 9305, and an antenna 9306, and data stored in a minidisc (MD) or DVD, The data received by the antenna is displayed. The present invention can be used for the display devices 9302 to 9303. A portable book uses a 4-inch to 12-inch class display device, but by using the display device of the present invention, the portable book can be reduced in weight and thickness.

図9(D)はビデオカメラであり、本体9401、表示装置9402、音声入力部94
03、操作スイッチ9404、バッテリー9405、受像部9406などで構成されてい
る。本発明は表示装置9402に適用することができる。
FIG. 9D illustrates a video camera, which includes a main body 9401, a display device 9402, and an audio input portion 94.
03, an operation switch 9404, a battery 9405, an image receiving unit 9406, and the like. The present invention can be applied to the display device 9402.

図10(A)はパーソナルコンピュータであり、本体9601、画像入力部9602、
表示装置9603、キーボード9604で構成される。本発明は表示装置9603に適用
することができる。
FIG. 10A illustrates a personal computer, which includes a main body 9601, an image input portion 9602,
A display device 9603 and a keyboard 9604 are included. The present invention can be applied to the display device 9603.

図10(B)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレ
ーヤーであり、本体9701、表示装置9702、スピーカ部9703、記録媒体970
4、操作スイッチ9705で構成される。なお、この装置は記録媒体としてDVD(Digi
tal Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを
行うことができる。本発明は表示装置9702に適用することができる。
FIG. 10B shows a player using a recording medium (hereinafter referred to as a recording medium) on which a program is recorded. The main body 9701, the display device 9702, the speaker unit 9703, and the recording medium 970 are shown.
4 and operation switch 9705. Note that this device uses a DVD (Digi) as a recording medium.
tal Versatile Disc), CDs, etc., music appreciation, movie appreciation, games and the Internet can be performed. The present invention can be applied to the display device 9702.

図10(C)はデジタルカメラであり、本体9801、表示装置9802、接眼部98
03、操作スイッチ9804、受像部(図示しない)で構成される。本発明は表示装置9
802に適用することができる。
FIG. 10C illustrates a digital camera, which includes a main body 9801, a display device 9802, and an eyepiece unit 98.
03, an operation switch 9804, and an image receiving unit (not shown). The present invention provides a display device 9
802 can be applied.

本発明の表示装置は図9(A)の携帯電話、図9(B)のモバイルコンピュータ或いは
携帯型情報端末、図9(C)の携帯書籍、図10(A)のパーソナルコンピュータに用い
、スタンバイモードにおいて黒色の背景を表示することで機器の消費電力を抑えることが
できる。
The display device of the present invention is used for the mobile phone shown in FIG. 9A, the mobile computer or portable information terminal shown in FIG. 9B, the portable book shown in FIG. 9C, and the personal computer shown in FIG. By displaying a black background in the mode, the power consumption of the device can be suppressed.

また、図9(A)で示す携帯電話操作において、操作キーを使用している時に輝度を下
げ、操作スイッチの使用が終わったら輝度を上げることで低消費電力化することができる
。また、着信した時に表示装置の輝度を上げ、通話中は輝度を下げることによっても低消
費電力化することができる。また、継続的に使用している場合に、リセットしない限り時
間制御で表示がオフになるような機能を持たせることで低消費電力化を図ることもできる
。なお、これらはマニュアル制御であっても良い。
Further, in the cellular phone operation shown in FIG. 9A, the power consumption can be reduced by decreasing the luminance when using the operation keys and increasing the luminance when the operation switch is used. Further, the power consumption can be reduced by increasing the brightness of the display device when an incoming call is received and decreasing the brightness during a call. Further, in the case of continuous use, it is possible to reduce power consumption by providing a function that turns off display by time control unless resetting. Note that these may be manual control.

ここでは図示しなかったが、本発明はその他にもナビゲーションシステムをはじめ冷蔵
庫、洗濯機、電子レンジ、固定電話機、ファクシミリなどに組み込む表示装置としても適
用することも可能である。このように本発明の適用範囲はきわめて広く、さまざまな製品
に適用することができる。
Although not shown here, the present invention can also be applied to a display device incorporated in a navigation system, a refrigerator, a washing machine, a microwave oven, a fixed telephone, a facsimile, and the like. Thus, the application range of the present invention is very wide and can be applied to various products.

Claims (2)

第1の基板上方の薄膜トランジスタと、
前記薄膜トランジスタ上方の絶縁膜と、
前記絶縁膜上方の発光素子と、
外部入力端子と、
前記第1の基板とシール材を介して接着された第2の基板と、
を有する半導体装置であって、
前記シール材の下方に前記絶縁膜と第1の導電膜と第2の導電膜を有し、
前記第1の導電膜は、前記外部入力端子と前記薄膜トランジスタを電気的に接続し、
前記第2の導電膜は、前記第1の導電膜と同一材料で形成され、
前記第2の導電膜は、前記絶縁膜の側面を覆っていることを特徴とする半導体装置。
A thin film transistor above the first substrate;
An insulating film above the thin film transistor;
A light emitting device above the insulating film;
An external input terminal,
A second substrate bonded to the first substrate via a sealing material;
A semiconductor device comprising:
The insulating film, the first conductive film, and the second conductive film are provided below the sealing material,
The first conductive film electrically connects the external input terminal and the thin film transistor,
The second conductive film is formed of the same material as the first conductive film,
The semiconductor device, wherein the second conductive film covers a side surface of the insulating film.
請求項3において、
前記発光素子からの光は前記第2の基板側に放出されることを特徴とする半導体装置。
In claim 3,
The semiconductor device is characterized in that light from the light emitting element is emitted to the second substrate side.
JP2012035093A 2012-02-21 2012-02-21 Light emitting device Expired - Fee Related JP5409830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035093A JP5409830B2 (en) 2012-02-21 2012-02-21 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035093A JP5409830B2 (en) 2012-02-21 2012-02-21 Light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010258579A Division JP5222927B2 (en) 2010-11-19 2010-11-19 Light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013048843A Division JP5548795B2 (en) 2013-03-12 2013-03-12 Light emitting device

Publications (3)

Publication Number Publication Date
JP2012099503A true JP2012099503A (en) 2012-05-24
JP2012099503A5 JP2012099503A5 (en) 2013-04-25
JP5409830B2 JP5409830B2 (en) 2014-02-05

Family

ID=46391125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035093A Expired - Fee Related JP5409830B2 (en) 2012-02-21 2012-02-21 Light emitting device

Country Status (1)

Country Link
JP (1) JP5409830B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154450A (en) * 2013-02-12 2014-08-25 Japan Display Inc Organic semiconductor element, and method of manufacturing organic semiconductor element
JP2016201362A (en) * 2015-04-14 2016-12-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
WO2019064509A1 (en) * 2017-09-29 2019-04-04 シャープ株式会社 Display device, and method for manufacturing display device
CN111710794A (en) * 2014-10-17 2020-09-25 株式会社半导体能源研究所 Light-emitting device, module, electronic apparatus, and method for manufacturing light-emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202287A (en) * 1995-01-31 1996-08-09 Futaba Corp Organic electroluminescent display device and its production
JPH0935868A (en) * 1995-07-21 1997-02-07 Idemitsu Kosan Co Ltd Sealing method for organic el element and organic el element
WO1997031508A1 (en) * 1996-02-26 1997-08-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and method for manufacturing the same
JPH11224772A (en) * 1998-02-06 1999-08-17 Denso Corp El element
JP2001052864A (en) * 1999-06-04 2001-02-23 Semiconductor Energy Lab Co Ltd Making method of opto-electronical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202287A (en) * 1995-01-31 1996-08-09 Futaba Corp Organic electroluminescent display device and its production
JPH0935868A (en) * 1995-07-21 1997-02-07 Idemitsu Kosan Co Ltd Sealing method for organic el element and organic el element
WO1997031508A1 (en) * 1996-02-26 1997-08-28 Idemitsu Kosan Co., Ltd. Organic electroluminescent element and method for manufacturing the same
JPH11224772A (en) * 1998-02-06 1999-08-17 Denso Corp El element
JP2001052864A (en) * 1999-06-04 2001-02-23 Semiconductor Energy Lab Co Ltd Making method of opto-electronical device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014154450A (en) * 2013-02-12 2014-08-25 Japan Display Inc Organic semiconductor element, and method of manufacturing organic semiconductor element
US9466813B2 (en) 2013-02-12 2016-10-11 Japan Display Inc. OLED with a flattening layer between two barrier layers
US9728747B2 (en) 2013-02-12 2017-08-08 Japan Display Inc. OLED with a flattening layer between two barrier layers
US9728748B2 (en) 2013-02-12 2017-08-08 Japan Display Inc. OLED with a flattening layer between two barrier layers
US9812669B2 (en) 2013-02-12 2017-11-07 Japan Display Inc. OLED with a flattening layer between two barrier layers
US10319947B2 (en) 2013-02-12 2019-06-11 Japan Display Inc. OLED with a flattening layer between two barrier layers
US10629849B2 (en) 2013-02-12 2020-04-21 Japan Display Inc. OLED with a flattening layer between two barrier layers
US11600801B2 (en) 2013-02-12 2023-03-07 Japan Display Inc. OLED with a flattening layer between two barrier layers
CN111710794A (en) * 2014-10-17 2020-09-25 株式会社半导体能源研究所 Light-emitting device, module, electronic apparatus, and method for manufacturing light-emitting device
JP2016201362A (en) * 2015-04-14 2016-12-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device
WO2019064509A1 (en) * 2017-09-29 2019-04-04 シャープ株式会社 Display device, and method for manufacturing display device

Also Published As

Publication number Publication date
JP5409830B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4801278B2 (en) Light emitting device and manufacturing method thereof
US10476031B2 (en) Display unit with moisture proof film outside of seal section and electronic apparatus with said display unit
US7662011B2 (en) Method of sealing an organic el display provided with an adhesive layer over a peripheral insulating layer
JP4101529B2 (en) Display device and manufacturing method thereof
US8648361B2 (en) Organic light emitting diode display
US9343698B2 (en) Organic EL display and electronic apparatus
JP5409830B2 (en) Light emitting device
JP5548795B2 (en) Light emitting device
JP2015062195A (en) Light emitting device
JP5696236B2 (en) Light emitting device
JP6322301B2 (en) Light emitting device
JP6150873B2 (en) Method for manufacturing light emitting device
JP5222927B2 (en) Light emitting device
JP5003808B2 (en) Electro-optical device and electronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees