JPH0933699A - Method for manufacturing multilayer-film reflector - Google Patents
Method for manufacturing multilayer-film reflectorInfo
- Publication number
- JPH0933699A JPH0933699A JP7189577A JP18957795A JPH0933699A JP H0933699 A JPH0933699 A JP H0933699A JP 7189577 A JP7189577 A JP 7189577A JP 18957795 A JP18957795 A JP 18957795A JP H0933699 A JPH0933699 A JP H0933699A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- multilayer film
- multilayer
- film
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はX線望遠鏡、X線レーザ
ー、X線リソグラフィー、その他各種X線分析装置等に
て用いられる多層膜反射鏡の製造方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multi-layered film reflecting mirror used in an X-ray telescope, an X-ray laser, an X-ray lithography and other various X-ray analyzers.
【0002】[0002]
【従来の技術】X線領域の光に対する物質の複素屈折率
は、n=1−δ−ik(δ、k:実数、kはX線の吸収
を示す)で表され、δ、kとも1に比べて非常に小さ
い。そのため、X線領域では可視光領域のような屈折を
利用したレンズは利用できない。そこで、反射を利用し
た光学系が用いられる。2. Description of the Related Art The complex refractive index of a substance with respect to light in the X-ray region is represented by n = 1-δ-ik (δ, k: real number, k indicates X-ray absorption), and both δ and k are 1 Very small compared to. Therefore, in the X-ray region, a lens utilizing refraction like the visible light region cannot be used. Therefore, an optical system using reflection is used.
【0003】しかし、全反射臨界角θc(波長10nm
で20゜程度以下)よりも垂直に近い入射角では、反射
率が非常に小さいので、界面の振幅反射率がなるべく高
い物質の組み合わせを何層も積層することにより、反射
面を多数(例えば数百層も)設けて、それぞれの反射波
の位相が合うように、光学干渉理論に基づいて各層の厚
さを調整した多層膜反射鏡が用いられる。However, the total reflection critical angle θc (wavelength 10 nm
Since the reflectance is very small at an incident angle closer to vertical than about 20 °), the number of reflecting surfaces (for example, several A multilayer film reflecting mirror in which the thickness of each layer is adjusted based on the optical interference theory so that the phases of the reflected waves match each other is used.
【0004】より具体的に説明すれば、多層膜反射鏡
は、使用するX線波長における屈折率と真空の屈折率
(=1)との差が小さい物質層(第1層)と、差の大き
い物質層(第2層)とを交互に多数回積層することによ
って得られる。その代表例として、W(タングステン)
/C(炭素)、Mo(モリブデン)/Si(シリコン)
などの組み合わせが従来から知られており、スパッタリ
ング、真空蒸着、CVD(Chemical Vapo
r Deposition)などの薄膜形成技術により
形成されている。More specifically, the multilayer-film reflective mirror has a material layer (first layer) having a small difference between the refractive index at the X-ray wavelength used and the vacuum refractive index (= 1). It is obtained by alternately laminating a large material layer (second layer) many times. As a typical example, W (tungsten)
/ C (carbon), Mo (molybdenum) / Si (silicon)
Combinations such as the following have been known, and sputtering, vacuum deposition, CVD (Chemical Vapo)
It is formed by a thin film forming technique such as r Deposition).
【0005】多層膜反射鏡は、X線を垂直に反射するこ
ともできるので、全反射を利用した斜入射光学系よりも
収差の小さい光学系を構成することができる。また、多
層膜反射鏡は、ブラッグの式:2dsinθ=mλ
(d:多層膜の周期長、θ:斜入射角、λ:X線の波
長、m:正の整数)を満たすときのみX線を強く反射す
るので、波長選択性を有する。なお、dは前記屈折率の
差が小さい物質層と大きい物質層を各1層ずつ積層した
積層体の層厚(膜厚)に相当する。Since the multilayer-film reflective mirror can also reflect X-rays vertically, it is possible to construct an optical system having a smaller aberration than an oblique-incidence optical system utilizing total reflection. In addition, the multilayer film reflecting mirror has a Bragg formula: 2 dsin θ = mλ
Since the X-ray is strongly reflected only when (d: periodic length of multilayer film, θ: oblique incidence angle, λ: wavelength of X-ray, m: positive integer) is satisfied, it has wavelength selectivity. Here, d corresponds to the layer thickness (film thickness) of a laminate in which the material layer having a small difference in refractive index and the material layer having a large refractive index are laminated one by one.
【0006】[0006]
【発明が解決しようとする課題】多くの薄膜は内部応力
を有しており、反射鏡に用いる多層膜も例外ではない。
即ち、基板に多層膜を形成すると、多層膜の内部応力に
より基板が変形してしまい、多層膜反射鏡の光学特性が
劣化するという問題点があった。円板状の基板に薄膜を
形成する場合、その内部応力σは σ=E・ts 2 ・δ/{3(1−ν)tf ・(D/2)2 } と表される。ここで、Eは基板のヤング率、νは基板の
ポアソン比、ts は基板の厚さ、tf は薄膜の厚さ、D
は基板の直径、δは薄膜形成前後での基板のそりの変化
量である。Many thin films have internal stress, and multilayer films used for reflecting mirrors are no exception.
That is, when a multilayer film is formed on the substrate, the substrate is deformed due to the internal stress of the multilayer film, which causes a problem that the optical characteristics of the multilayer film reflecting mirror are deteriorated. When forming a thin film on a disk-shaped substrate, the internal stress sigma is expressed as σ = E · t s 2 · δ / {3 (1-ν) t f · (D / 2) 2}. Here, E is the Young's modulus of the substrate, ν is the Poisson's ratio of the substrate, t s is the thickness of the substrate, t f is the thickness of the thin film, and D is
Is the diameter of the substrate, and δ is the amount of change in the warp of the substrate before and after thin film formation.
【0007】例えば、基板として石英を用いた場合に
は、E/(1−ν)=93.7GPaとなり、基板としてS
i(100)を用いた場合には、E/(1−ν)=180
GPaとなる。ここで、基板の厚さを15mm、直径を
80mmとし、該基板に厚さ300nmの多層膜を形成
したとする。多層膜の内部応力が500MPaのとき、
該基板中央部での突出、またはへこみといった基板のそ
り変化量は、石英基板の場合に約35nm、Si(10
0)基板の場合に約20nmとなる。For example, when quartz is used as the substrate, E / (1-ν) = 93.7 GPa, and S as the substrate.
When i (100) is used, E / (1-ν) = 180
It becomes GPa. Here, it is assumed that the substrate has a thickness of 15 mm and a diameter of 80 mm, and a multilayer film having a thickness of 300 nm is formed on the substrate. When the internal stress of the multilayer film is 500 MPa,
The amount of change in the warp of the substrate such as a protrusion or a dent in the central part of the substrate is about 35 nm in the case of a quartz substrate, and Si (10
In the case of 0) substrate, it is about 20 nm.
【0008】このような基板形状の変化は、多層膜反射
鏡の光学特性を劣化させてしまうので大きな問題点とな
る。本発明は、かかる問題点に鑑みて成されたものであ
り、多層膜反射鏡の光学特性劣化の原因となる、多層膜
の内部応力による基板変形を低減または解消した多層膜
反射鏡を製造する方法を提供することを目的とする。Such a change in substrate shape causes a serious problem because it deteriorates the optical characteristics of the multilayer-film reflective mirror. The present invention has been made in view of the above problems, and manufactures a multilayer-film reflective mirror that reduces or eliminates substrate deformation due to internal stress of the multilayer film, which causes deterioration of optical characteristics of the multilayer-film reflective mirror. The purpose is to provide a method.
【0009】[0009]
【課題を解決するための手段】そのため、本発明は第一
に「基板上に、軟X線領域の光に対する屈折率と真空の
屈折率との差が小さい物質の層と大きい物質の層とを交
互に複数回積層して、圧縮応力を有する交互多層膜を形
成することにより、多層膜反射鏡を製造する方法におい
て 前記基板として、前記多層膜の熱膨張率よりも小さ
い熱膨張率を有する材料からなる基板を使用し、かつ該
基板を加熱しながら前記多層膜を形成した後、これを冷
却して多層膜使用時の状態とすることにより、製造され
る多層膜反射鏡の基板変形を解消または低減することを
特徴とする多層膜反射鏡の製造方法(請求項1)」を提
供する。Therefore, the first aspect of the present invention is to provide "on a substrate, a layer of a substance having a small difference between the refractive index of light in the soft X-ray region and a refractive index of vacuum and a layer of a large substance. By alternately laminating a plurality of times to form an alternating multilayer film having a compressive stress, in the method for manufacturing a multilayer film reflecting mirror, the substrate has a thermal expansion coefficient smaller than that of the multilayer film. A substrate made of a material is used, and after the multilayer film is formed while heating the substrate, the substrate is deformed by cooling the multilayer film to a state in which the multilayer film is used. There is provided a method for manufacturing a multilayer-film reflective mirror (claim 1), characterized in that it is solved or reduced.
【0010】また、本発明は第二に「基板上に、軟X線
領域の光に対する屈折率と真空の屈折率との差が小さい
物質の層と大きい物質の層とを交互に複数回積層して、
引張り応力を有する交互多層膜を形成することにより、
多層膜反射鏡を製造する方法において、前記基板とし
て、前記多層膜の熱膨張率よりも大きい熱膨張率を有す
る材料からなる基板を使用し、かつ該基板を加熱しなが
ら前記多層膜を形成した後、これを冷却して多層膜使用
時の状態とすることにより、製造される多層膜反射鏡の
基板変形を解消または低減することを特徴とする多層膜
反射鏡の製造方法(請求項2)」を提供する。The second aspect of the present invention is that "a layer of a substance having a small difference between the refractive index for light in the soft X-ray region and a vacuum and a layer of a large substance are alternately laminated on the substrate a plurality of times. do it,
By forming an alternating multilayer film with tensile stress,
In the method of manufacturing a multilayer-film reflective mirror, a substrate made of a material having a coefficient of thermal expansion larger than that of the multilayer film is used as the substrate, and the multilayer film is formed while heating the substrate. After that, this is cooled to be in a state of using the multilayer film, thereby eliminating or reducing the deformation of the substrate of the multilayer film mirror to be manufactured (claim 2). "I will provide a.
【0011】また、本発明は第三に「前記屈折率の差が
小さい物質としてSiまたはSi化合物を用い、大きい
物質としてMoを用いることを特徴とする請求項1また
は2記載の多層膜反射鏡の製造方法(請求項3)」を提
供する。The third aspect of the present invention is that "Si or a Si compound is used as the substance having a small difference in refractive index, and Mo is used as the substance having a large difference in refractive index. Manufacturing method (claim 3) ”.
【0012】[0012]
【作用】ある物体を加熱すると、該物体は膨張してその
体積が増加する。その増加量は温度変化量および該物体
を構成する物質の熱膨張率の値に依存する。熱膨張率が
相対的に小さい物質からなる板(以下、第1板と称す
る)と熱膨張率が相対的に大きい物質からなる板(以
下、第2板と称する)を貼り合わせて合板とし、これを
加熱すると、第1板よりも第2板の方が大きく体積変化
するので、第2板を外側に第1板を内側にして、合板は
反ってしまう。When a certain object is heated, the object expands and its volume increases. The amount of increase depends on the amount of temperature change and the value of the coefficient of thermal expansion of the substance forming the body. A plate made of a substance having a relatively small coefficient of thermal expansion (hereinafter, referred to as a first plate) and a plate made of a substance having a relatively large coefficient of thermal expansion (hereinafter, referred to as a second plate) are bonded together to form a plywood, When this is heated, the volume of the second plate changes more than that of the first plate, so that the plywood warps with the second plate outside and the first plate inside.
【0013】また、第1板及び第2板を加熱した状態で
貼り合わせて合板とした後、これを冷却すれば、熱膨張
率が相対的に大きい第2板の方が第1板よりも温度低下
(冷却)による収縮量が大きいので、第2板を内側に第
1板を外側にして、合板は反ってしまう。この現象はバ
イメタル効果と呼ばれ、この熱膨張率の差により発生す
る応力を熱応力という。If the first plate and the second plate are laminated in a heated state to form a plywood, and then the plywood is cooled, the second plate having a relatively large coefficient of thermal expansion is larger than the first plate. Since the amount of shrinkage due to the temperature decrease (cooling) is large, the plywood warps with the second plate inside and the first plate outside. This phenomenon is called the bimetal effect, and the stress generated by this difference in coefficient of thermal expansion is called thermal stress.
【0014】多層膜反射鏡は、基板上に異なる2種類の
物質を交互に複数回積層して交互多層膜(以下、単に多
層膜と称する)を形成したものであり、基板形状は多層
膜が有する応力により元(多層膜成膜前)の形状から変
化する。多層膜が圧縮応力を有する場合には、基板は多
層膜成膜前の形状と比べて凸に変化し、多層膜が引っ張
り応力をを有する場合には、基板は多層膜成膜前の形状
と比べて凹に変化する。The multi-layer film reflecting mirror is one in which two different substances are alternately laminated on a substrate a plurality of times to form an alternate multi-layer film (hereinafter, simply referred to as a multi-layer film). The original shape (before forming the multilayer film) changes due to the stress that it has. When the multilayer film has a compressive stress, the substrate changes to a convex shape compared to the shape before the multilayer film is formed, and when the multilayer film has a tensile stress, the substrate has a shape before the multilayer film is formed. Compared to concave.
【0015】そこで、本発明では、多層膜が圧縮応力を
有する場合には、基板として、多層膜の熱膨張率よりも
小さい熱膨張率を有する材料からなる基板を使用し、か
つ該基板を加熱しながら前記多層膜を形成した後、これ
を冷却して多層膜使用時の状態とすることにより、多層
膜反射鏡を製造することとした(請求項1)。このよう
にして多層膜反射鏡を製造すると、室温・大気状態にし
たとき、多層膜の方が基板よりも温度低下(加熱状態→
温度低下時、冷却状態、多層膜使用環境など)による収
縮量が大きいので基板側を外側にして反る引っ張り応力
が発生し、多層膜の有する圧縮応力を相殺または緩和す
ることができる。即ち、基板の変形を解消または低減す
ることができる。Therefore, in the present invention, when the multilayer film has a compressive stress, a substrate made of a material having a coefficient of thermal expansion smaller than that of the multilayer film is used as the substrate, and the substrate is heated. However, after forming the multi-layer film, the multi-layer film reflecting mirror is manufactured by cooling the multi-layer film to be in a state in which the multi-layer film is used (Claim 1). When the multi-layered film reflecting mirror is manufactured in this way, the temperature of the multi-layered film is lower than that of the substrate (heated state →
When the temperature decreases, the shrinkage amount due to the cooling state, the environment in which the multilayer film is used, etc. is large, so that a tensile stress that warps with the substrate side facing outward is generated, and the compressive stress of the multilayer film can be canceled or relaxed. That is, the deformation of the substrate can be eliminated or reduced.
【0016】また、本発明では、多層膜が引っ張り応力
を有する場合には、基板として、多層膜の熱膨張率より
も大きい熱膨張率を有する材料からなる基板を使用し、
かつ該基板を加熱しながら前記多層膜を形成した後、こ
れを冷却して多層膜使用時の状態とすることにより、多
層膜反射鏡を製造することとした(請求項2)。このよ
うにして多層膜反射鏡を製造すると、室温・大気状態に
したとき、基板の方が多層膜よりも温度低下(加熱状態
→温度低下時、冷却状態、多層膜使用環境など)による
収縮量が大きいので基板側を内側にして反る圧縮応力が
発生し、多層膜の有する引っ張り応力を相殺することが
できる。即ち、基板の変形を解消または低減することが
できる。Further, in the present invention, when the multilayer film has a tensile stress, a substrate made of a material having a coefficient of thermal expansion higher than that of the multilayer film is used as the substrate,
Further, the multilayer film reflecting mirror is manufactured by forming the multilayer film while heating the substrate, and then cooling the substrate to bring it into a state in which the multilayer film is used (claim 2). When a multilayer mirror is manufactured in this way, the amount of shrinkage of the substrate due to the temperature drop (heating state → temperature drop, cooling state, environment in which the multilayer film is used, etc.) is lower than that of the multilayer film at room temperature and atmospheric conditions. Therefore, a compressive stress that warps with the substrate side inside is generated, and the tensile stress of the multilayer film can be offset. That is, the deformation of the substrate can be eliminated or reduced.
【0017】一般にスパッタリング法により多層膜の成
膜を行った場合には、多層膜が有する応力は圧縮応力に
なりやすく、また真空蒸着法にて多層膜の成膜を行った
場合には、引っ張り応力になりやすい。また、基板とし
ては一般に、石英などのガラス基板やシリコン単結晶な
どが用いられている。Mo、SiおよびSi化合物の熱
膨張率を表1に示す。Generally, when a multilayer film is formed by a sputtering method, the stress possessed by the multilayer film is likely to be a compressive stress, and when a multilayer film is formed by a vacuum vapor deposition method, a tensile force is applied. Easy to get stress. Further, as the substrate, a glass substrate such as quartz or a silicon single crystal is generally used. Table 1 shows the thermal expansion coefficients of Mo, Si and Si compounds.
【0018】MoはSiやSi化合物よりも熱膨張率が
大きいので、基板加熱を行いながらMo/SiまたはM
o/Si化合物の多層膜をSiまたはSi化合物基板に
スパッタリング法により成膜すると、Mo層によるバイ
メタル効果により、引っ張り応力が発生するので、多層
膜の圧縮応力を緩和することができる。また、真空蒸着
法により多層膜の成膜を行う場合には、基板に例えばク
ラウンガラスを用いると、クラウンガラスはMo、Si
またはSi化合物よりも熱膨張率が大きいので圧縮応力
が発生する。よって、この圧縮応力により多層膜の引っ
張り応力を緩和することができる。Since Mo has a larger coefficient of thermal expansion than Si and Si compounds, Mo / Si or M
When a multilayer film of an o / Si compound is formed on a Si or Si compound substrate by a sputtering method, tensile stress occurs due to the bimetal effect of the Mo layer, so that the compressive stress of the multilayer film can be relaxed. When a multilayer film is formed by a vacuum vapor deposition method, if crown glass is used for the substrate, the crown glass is Mo or Si.
Alternatively, since the coefficient of thermal expansion is larger than that of the Si compound, compressive stress is generated. Therefore, the tensile stress of the multilayer film can be relaxed by this compressive stress.
【0019】以上のように、多層膜の熱膨張率及び多層
膜が有する応力の種類に応じて選択した材料からなる基
板を使用し、かつ該基板を加熱しながら前記多層膜を形
成した後、これを室温・大気状態にすることにより、製
造される多層膜反射鏡の基板変形を解消または低減する
ことができる。また、その結果、製造される多層膜反射
鏡の基板形状の変化による光学特性の劣化をふせぎ、良
好な光学系を得ることができる。As described above, after using a substrate made of a material selected according to the coefficient of thermal expansion of the multilayer film and the type of stress possessed by the multilayer film, and forming the multilayer film while heating the substrate, By subjecting this to room temperature and atmospheric conditions, it is possible to eliminate or reduce substrate deformation of the manufactured multilayer film reflecting mirror. Further, as a result, it is possible to prevent the deterioration of the optical characteristics due to the change of the substrate shape of the manufactured multilayer film reflecting mirror, and to obtain a good optical system.
【0020】本発明にかかる屈折率の差が小さい物質と
してSiまたはSi化合物を用い、大きい物質としてM
oを用いると、軟X線領域において(特に、X線縮小投
影露光において有望視される波長13nmの軟X線にお
いて)高反射率が得られるので好ましい。なお、Si化
合物としては、例えばSiCやSiNなどが使用でき
る。Si or a Si compound is used as a substance having a small difference in refractive index according to the present invention, and M is used as a substance having a large difference.
It is preferable to use o because high reflectance can be obtained in the soft X-ray region (particularly, in the soft X-ray having a wavelength of 13 nm, which is promising in X-ray reduction projection exposure). As the Si compound, for example, SiC or SiN can be used.
【0021】以下、実施例により本発明をさらに詳しく
説明するが、本発明はこれらの実施例に限定されるもの
ではない。Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【実施例1】本実施例では、Mo/Si多層膜を石英基
板(基板の厚さ15mm、直径80mm)上に成膜し
た。MoとSiの各ターゲットを用いて、イオンビーム
スパッタリング法により基板1上にSi層2とMo層3
を交互に積層して多層膜を形成した。このとき、成膜前
に基板を55℃に加熱し、温度が安定した後、55℃に
保持した状態にて成膜を行った。成膜終了後、基板を室
温まで冷却して大気雰囲気下においた。Example 1 In this example, a Mo / Si multilayer film was formed on a quartz substrate (substrate thickness 15 mm, diameter 80 mm). Using the targets of Mo and Si, the Si layer 2 and the Mo layer 3 are formed on the substrate 1 by the ion beam sputtering method.
Were alternately laminated to form a multilayer film. At this time, the substrate was heated to 55 ° C. before the film formation, and after the temperature was stabilized, the film formation was performed while maintaining the temperature at 55 ° C. After the film formation was completed, the substrate was cooled to room temperature and placed in an air atmosphere.
【0024】Mo/Si多層膜の周期長は、6.7 nm、
Γ(=Mo層の厚さ/周期長)は1/3、積層数は50
ペアとした。図1に多層膜反射鏡の概略断面図を示す
(図1では多層膜の層数を実際よりも少なく描いてあ
る)。作製した多層膜反射鏡の応力は、約3MPa(圧
縮応力)であり、基板の反り変化量は約0.2 nmであっ
た。これに対して、基板加熱を行わずに作製した多層膜
反射鏡の場合には、応力が約385MPa(圧縮応
力)、基板の反り変化量が約29nmであり、本実施例
の基板加熱を行った多層膜反射鏡と比較して基板の変形
量が大きいことが判った。The period length of the Mo / Si multilayer film is 6.7 nm,
Γ (= Mo layer thickness / period length) is ⅓, and the number of stacked layers is 50
Made a pair. FIG. 1 shows a schematic cross-sectional view of a multilayer film reflecting mirror (in FIG. 1, the number of layers of the multilayer film is smaller than the actual number). The stress of the manufactured multilayer-film reflective mirror was about 3 MPa (compressive stress), and the amount of change in the warp of the substrate was about 0.2 nm. On the other hand, in the case of the multilayer-film reflective mirror manufactured without heating the substrate, the stress was about 385 MPa (compressive stress) and the amount of change in the warp of the substrate was about 29 nm. It was found that the amount of deformation of the substrate was larger than that of the multilayer film reflecting mirror.
【0025】また、本実施例の多層膜反射鏡の垂直入射
軟X線反射率を放射光を用いて測定したところ、波長1
3nmで約68%であり、基板加熱を行わずに作製した
前記多層膜反射鏡とほぼ同じ値であった。Further, when the normal incidence soft X-ray reflectance of the multilayer-film reflective mirror of this embodiment was measured by using radiated light, a wavelength of 1
The value was about 68% at 3 nm, which was almost the same value as that of the multilayer-film reflective mirror manufactured without heating the substrate.
【0026】[0026]
【実施例2】本実施例では、Mo/SiC多層膜をSi
(100)基板(基板の厚さ15mm、直径80mm)
上に成膜した。MoとSiCの各ターゲットを用いて、
イオンビームスパッタリング法により基板1上にSiC
層2とMo層3を交互に積層して多層膜を形成した。こ
のとき、成膜前に基板を250℃に加熱し、温度が安定
した後、250℃に保持した状態にて成膜を行った。成
膜終了後、基板を室温まで冷却して大気雰囲気下におい
た。[Embodiment 2] In this embodiment, a Mo / SiC multilayer film is formed into Si.
(100) substrate (substrate thickness 15 mm, diameter 80 mm)
A film was formed thereon. Using each target of Mo and SiC,
SiC on the substrate 1 by the ion beam sputtering method
Layer 2 and Mo layer 3 were alternately laminated to form a multilayer film. At this time, before the film formation, the substrate was heated to 250 ° C., and after the temperature was stabilized, the film formation was performed while maintaining the temperature at 250 ° C. After the film formation was completed, the substrate was cooled to room temperature and placed in an air atmosphere.
【0027】Mo/SiC多層膜の周期長は6.7 nm、
Γ(=Mo層の厚さ/周期長)は1/3、積層数は50
ペアとした。図1に多層膜反射鏡の概略断面図を示す
(図1では、多層膜の層数は実際よりも少なく描いてあ
る)。作製した多層膜反射鏡の応力は、約2MPa(引
っ張り応力)であり、基板の反り変化量は約0.08nmで
あった。これに対して、基板加熱を行わずに作製した多
層膜反射鏡の場合には、応力が約363MPa(圧縮応
力)、基板の反り変化量が約14nmであり、本実施例
の基板加熱を行った多層膜反射鏡と比較して基板の変形
量が大きいことが判った。The cycle length of the Mo / SiC multilayer film is 6.7 nm,
Γ (= Mo layer thickness / period length) is ⅓, and the number of stacked layers is 50
Made a pair. FIG. 1 shows a schematic cross-sectional view of the multilayer-film reflective mirror (in FIG. 1, the number of layers of the multilayer film is smaller than the actual number). The stress of the manufactured multilayer-film reflective mirror was about 2 MPa (tensile stress), and the amount of change in the warp of the substrate was about 0.08 nm. On the other hand, in the case of the multilayer-film reflective mirror manufactured without heating the substrate, the stress was about 363 MPa (compressive stress) and the amount of change in the warp of the substrate was about 14 nm. It was found that the amount of deformation of the substrate was larger than that of the multilayer film reflecting mirror.
【0028】また、本実施例の多層膜反射鏡の垂直入射
軟X線反射率を放射光を用いて測定したところ、波長1
3nmで約51%であり、基板加熱を行わずに作製した
前記多層膜反射鏡とほぼ同じ値であった。Further, when the normal incidence soft X-ray reflectance of the multilayer-film reflective mirror of this embodiment was measured by using radiated light, a wavelength of 1 was obtained.
The value was about 51% at 3 nm, which was almost the same value as that of the multilayer-film reflective mirror manufactured without heating the substrate.
【0029】[0029]
【発明の効果】以上のように、本発明によれば、多層膜
反射鏡の光学特性劣化の原因となる、多層膜の内部応力
による基板変形を低減または解消した多層膜反射鏡を製
造することができる。また、その結果、製造される多層
膜反射鏡の基板形状の変化による光学特性の劣化をふせ
ぎ、良好な光学系を得ることができる。As described above, according to the present invention, it is possible to manufacture a multilayer-film reflective mirror which reduces or eliminates substrate deformation due to internal stress of the multilayer film, which causes deterioration of optical characteristics of the multilayer-film reflective mirror. You can Further, as a result, it is possible to prevent the deterioration of the optical characteristics due to the change of the substrate shape of the manufactured multilayer film reflecting mirror, and to obtain a good optical system.
【図1】本発明にかかる多層膜反射鏡(一例)の概略断
面図である。FIG. 1 is a schematic cross-sectional view of a multilayer reflector (one example) according to the present invention.
【主要部分の符号の説明】 1・・・基板 2・・・SiまたはSi化合物層 3・・・Mo層
以 上[Explanation of Signs of Main Parts] 1 ... Substrate 2 ... Si or Si compound layer 3 ... Mo layer
that's all
Claims (3)
率と真空の屈折率との差が小さい物質の層と大きい物質
の層とを交互に複数回積層して、圧縮応力を有する交互
多層膜を形成することにより、多層膜反射鏡を製造する
方法において前記基板として、前記多層膜の熱膨張率よ
りも小さい熱膨張率を有する材料からなる基板を使用
し、かつ該基板を加熱しながら前記多層膜を形成した
後、これを冷却して多層膜使用時の状態とすることによ
り、製造される多層膜反射鏡の基板変形を解消または低
減することを特徴とする多層膜反射鏡の製造方法。1. A layer of a substance having a small difference between the refractive index of light in the soft X-ray region and a vacuum and a layer of a large substance are alternately laminated on a substrate to have a compressive stress. In the method for manufacturing a multilayer-film reflective mirror by forming an alternating multilayer film, a substrate made of a material having a thermal expansion coefficient smaller than that of the multilayer film is used as the substrate, and the substrate is heated. However, after the multilayer film is formed, it is cooled to be in a state of using the multilayer film, thereby eliminating or reducing the substrate deformation of the manufactured multilayer film reflector. Manufacturing method.
率と真空の屈折率との差が小さい物質の層と大きい物質
の層とを交互に複数回積層して、引張り応力を有する交
互多層膜を形成することにより、多層膜反射鏡を製造す
る方法において、 前記基板として、前記多層膜の熱膨張率よりも大きい熱
膨張率を有する材料からなる基板を使用し、かつ該基板
を加熱しながら前記多層膜を形成した後、これを冷却し
て多層膜使用時の状態とすることにより、製造される多
層膜反射鏡の基板変形を解消または低減することを特徴
とする多層膜反射鏡の製造方法。2. A substrate having a tensile stress by alternately laminating a plurality of layers of a substance having a small difference between the refractive index of light in the soft X-ray region and a vacuum in a soft X-ray region and a layer of the same having a large difference on the substrate. In the method of manufacturing a multilayer-film reflective mirror by forming an alternating multilayer film, a substrate made of a material having a coefficient of thermal expansion larger than that of the multilayer film is used as the substrate, and the substrate is A multilayer film reflection characterized by eliminating or reducing substrate deformation of a manufactured multilayer film reflection mirror by forming the multilayer film while heating and then cooling the multilayer film to a state before use. Mirror manufacturing method.
またはSi化合物を用い、大きい物質としてMoを用い
ることを特徴とする請求項1または2記載の多層膜反射
鏡の製造方法。3. The material having a small difference in refractive index is Si
Alternatively, a Si compound is used, and Mo is used as a large substance, and the method for manufacturing a multilayer-film reflective mirror according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18957795A JP3648791B2 (en) | 1995-07-25 | 1995-07-25 | Manufacturing method of multilayer mirror |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18957795A JP3648791B2 (en) | 1995-07-25 | 1995-07-25 | Manufacturing method of multilayer mirror |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0933699A true JPH0933699A (en) | 1997-02-07 |
JP3648791B2 JP3648791B2 (en) | 2005-05-18 |
Family
ID=16243665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18957795A Expired - Fee Related JP3648791B2 (en) | 1995-07-25 | 1995-07-25 | Manufacturing method of multilayer mirror |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3648791B2 (en) |
-
1995
- 1995-07-25 JP JP18957795A patent/JP3648791B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3648791B2 (en) | 2005-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6776006B2 (en) | Method to avoid striae in EUV lithography mirrors | |
US6160867A (en) | Multi-layer X-ray-reflecting mirrors with reduced internal stress | |
KR101176682B1 (en) | Thermally stable multilayer mirror for the euv spectral region | |
US7679820B2 (en) | IR absorbing reflector | |
JP4320970B2 (en) | Manufacturing method of multilayer mirror | |
JPS58217901A (en) | Laminate vapor-deposited on both sides | |
KR101350325B1 (en) | Thermally stable multilayer mirror for the euv spectral range | |
JP2883100B2 (en) | Half mirror or beam splitter for soft X-ray and vacuum ultraviolet | |
JP3060624B2 (en) | Multilayer reflector | |
JP4461652B2 (en) | Multilayer film reflector and method for producing multilayer film mirror | |
JPH0933699A (en) | Method for manufacturing multilayer-film reflector | |
JPS6222121B2 (en) | ||
JPH06186403A (en) | Multilayer film optical member | |
JP4343895B2 (en) | Multilayer mirror for soft X-ray | |
JPS58223101A (en) | Production of polygonal mirror | |
TW202111419A (en) | Euv mask blanks and methods of manufacture | |
JPH07280999A (en) | Multilayer film x-ray reflector | |
JP2009156863A (en) | Optical element for x-ray | |
JP2001194526A (en) | Multilayer film reflective mirror | |
JPS63266397A (en) | X-ray reflecting mirror | |
JP2814595B2 (en) | Multilayer reflector | |
JP2002277589A (en) | Mo/Si MULTILAYER FILM AND METHOD FOR IMPROVING ITS HEAT RESISTANCE | |
JPH05283322A (en) | Mask for exposure to x-ray | |
JPH07154012A (en) | Variable wavelength laser and fabrication thereof | |
JPS63266398A (en) | X-ray reflecting mirror |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050207 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110225 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |