JP2009156863A - Optical element for x-ray - Google Patents

Optical element for x-ray Download PDF

Info

Publication number
JP2009156863A
JP2009156863A JP2008278429A JP2008278429A JP2009156863A JP 2009156863 A JP2009156863 A JP 2009156863A JP 2008278429 A JP2008278429 A JP 2008278429A JP 2008278429 A JP2008278429 A JP 2008278429A JP 2009156863 A JP2009156863 A JP 2009156863A
Authority
JP
Japan
Prior art keywords
film
multilayer film
stress
film thickness
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278429A
Other languages
Japanese (ja)
Inventor
Takayuki Miura
隆幸 三浦
Kenji Ando
謙二 安藤
Hidehiro Kanazawa
秀宏 金沢
Masanori Matsumoto
誠謙 松本
Shunpei Tatsumi
俊平 辰巳
Shinji Fukui
慎次 福井
Takako Nagata
香子 永田
Koji Teranishi
康治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008278429A priority Critical patent/JP2009156863A/en
Priority to US12/326,504 priority patent/US20090148695A1/en
Priority to AT08170685T priority patent/ATE499687T1/en
Priority to EP08170685A priority patent/EP2068325B1/en
Priority to DE200860005096 priority patent/DE602008005096D1/en
Publication of JP2009156863A publication Critical patent/JP2009156863A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce film thickness unevenness that occurs in association with the provision of a stress buffer layer to suppress film stress that causes the deformation of a substrate. <P>SOLUTION: An optical element for X-ray includes the substrate, a first multilayer film having a reflection property with respect to light in a soft X-ray wavelength range, and a second multilayer film, disposed between the substrate and the first multilayer film, for reducing film stress of the first multilayer film. The second multilayer film includes a periodic structure having a unit period film thickness which is 90% or more and less than 110% of a two or more integral multiple of 7 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、露光装置等の光学系に多層膜反射鏡として用いられるX線用光学素子に関するものである。   The present invention relates to an optical element for X-rays used as a multilayer mirror in an optical system such as an exposure apparatus.

一般的に、波長40nm以下のX線波長域の光に対しては、物質の屈折率は、n=1−δ−iβ(δ、β:正の実数)と表され、δ、βともに1に比べて非常に小さい(屈折率の虚部βはX線の吸収を表す)。従って、屈折率がほぼ1に近くなりX線はほとんど屈折しない。   In general, for light in an X-ray wavelength range of 40 nm or less, the refractive index of a substance is expressed as n = 1−δ−iβ (δ, β: positive real number), and both δ and β are 1 (The imaginary part β of the refractive index represents X-ray absorption). Therefore, the refractive index is close to 1, and X-rays are hardly refracted.

そのため、可視光領域の光のように屈折を利用したレンズはX線波長域の光の誘導には使用できない。そのため、反射を利用した光学素子が光の誘導に用いられるが、やはり屈折率が1に近いために反射率は非常に低く、大部分のX線は透過するか或いは吸収されてしまう。そこで、使用するX線の波長域での屈折率と真空の屈折率との差が大きい物質と差の小さい物質とを交互に何層も積層することで、それらの界面である反射面を多数設け、光学的干渉理論に基づいて各膜厚を調整した多層膜反射鏡が開発された。   Therefore, a lens using refraction like light in the visible light region cannot be used for guiding light in the X-ray wavelength region. Therefore, an optical element using reflection is used for guiding light. However, since the refractive index is close to 1, the reflectance is very low, and most of the X-rays are transmitted or absorbed. Therefore, by laminating many layers of materials with a large difference between the refractive index in the wavelength range of the X-rays used and the refractive index of the vacuum and a material with a small difference, a large number of reflective surfaces serving as interfaces between them are formed. Multi-layer reflectors with different film thicknesses based on optical interference theory have been developed.

このような多層膜反射鏡の代表的なものとして、W(タングステン)/C(炭素)、Mo(モリブデン)/Si(シリコン)等の組み合わせが知られている。そして、これらの多層膜はスパッタリング、真空蒸着、CVD等の薄膜形成技術によって作製されていた。最近、X線用の多層膜反射鏡の開発が進むに従い多層膜の評価が行われるようになり、いくつかの材料の組み合わせについてその実用性が明らかにされつつある。例えば、Mo/Siの組み合わせの多層膜は、123Åというシリコンの吸収端の長波長側で高い反射率を示すため、軟X線縮小投影露光装置の反射光学系に用いる多層膜反射鏡として優れている。この軟X線縮小投影露光装置は半導体回路の微細化要求に応じるための有効な手段と目されており、研究開発が盛んに行われている。   As typical examples of such multilayer mirrors, combinations of W (tungsten) / C (carbon), Mo (molybdenum) / Si (silicon), and the like are known. And these multilayer films were produced by thin film formation techniques, such as sputtering, vacuum evaporation, and CVD. Recently, as the development of multilayer mirrors for X-rays progresses, multilayer films have been evaluated, and the practicality of some combinations of materials is being clarified. For example, a multilayer film of a combination of Mo / Si exhibits a high reflectance on the long wavelength side of the silicon absorption edge of 123 mm, and is thus excellent as a multilayer film reflector used in the reflection optical system of a soft X-ray reduction projection exposure apparatus. Yes. This soft X-ray reduction projection exposure apparatus is regarded as an effective means for meeting the demand for miniaturization of semiconductor circuits, and research and development are actively conducted.

一方、多層膜反射鏡の実用化に向けては、反射率の低下防止、光耐久性、光学素子面内で所望の膜厚分布を得るための膜厚分布制御、光学素子面の変形原因となる膜応力の抑制等、多くの課題が残っている。特に、膜厚分布に製造誤差が生じると、光学設計に応じて表面形状を精密に研磨した光学素子の面形状を変化させてしまう。これは、露光装置の光学収差性能を大幅に低下させるため、重要な課題である。また、膜応力も光学素子の面形状を変化させてしまい、光学収差性能の低下を招くため、同様に重要な課題である。つまり、露光装置の光学収差性能を確保するためには、精密な膜厚分布制御と膜応力の抑制を両立させる必要があると言える。   On the other hand, for the practical application of multilayer reflectors, the reduction of reflectance, light durability, film thickness distribution control to obtain a desired film thickness distribution within the optical element surface, and the cause of deformation of the optical element surface Many problems remain, such as suppression of film stress. In particular, when a manufacturing error occurs in the film thickness distribution, the surface shape of the optical element whose surface shape is precisely polished is changed according to the optical design. This is an important issue because it significantly reduces the optical aberration performance of the exposure apparatus. In addition, film stress is also an important issue because it changes the surface shape of the optical element and causes a reduction in optical aberration performance. That is, in order to ensure the optical aberration performance of the exposure apparatus, it can be said that it is necessary to achieve both precise film thickness distribution control and suppression of film stress.

このような課題の中でも、膜応力対策としては特表2002−504715号公報及び特表2002−525698号公報等に開示された技術が知られている。   Among these problems, techniques disclosed in Japanese Patent Application Publication No. 2002-504715 and Japanese Patent Application Publication No. 2002-525698 are known as countermeasures for film stress.

特表2002−504715号公報では、基板と多層膜からなる反射層の間に応力方向の異なる単層もしくは多層からなる応力緩衝層を形成して光学素子の変形を相殺する提案がなされている。特にMo/Siから構成される応力緩衝層では、反射層の単位周期膜厚(6.9nm)と同程度の単位周期膜厚を持つMo分率と応力緩衝層(5.8nm)のペア数を最適化することにより応力を極小化する方法が提案されている。   Japanese Patent Laid-Open No. 2002-504715 proposes to offset the deformation of the optical element by forming a single or multi-layer stress buffer layer having a different stress direction between the substrate and the reflective layer formed of the multi-layer film. In particular, in the stress buffer layer composed of Mo / Si, the number of pairs of Mo fraction and stress buffer layer (5.8 nm) having a unit period film thickness comparable to the unit period film thickness (6.9 nm) of the reflective layer. A method for minimizing stress by optimizing the above has been proposed.

また、特表2002−525698号公報では、応力緩衝層をMo/Si、もしくはMo/Beで構成することで反射層としての効果も持たせ、総膜厚を薄くする方法が提案されている。   Japanese Patent Laid-Open No. 2002-525698 proposes a method in which the stress buffer layer is made of Mo / Si or Mo / Be so as to have an effect as a reflective layer and the total film thickness is reduced.

具体的には反射層の上部と下部で逆方向の応力を有する構成が提案されている。   Specifically, a configuration having stresses in opposite directions at the upper and lower portions of the reflective layer has been proposed.

しかしながら、多層膜反射鏡における多層膜の膜応力による基板の変形を防止する上記従来の方法は、つぎのような未解決の課題を有する。   However, the conventional method for preventing the deformation of the substrate due to the film stress of the multilayer film in the multilayer film reflector has the following unsolved problems.

特表2002−504715号公報(特許文献1)に開示されたように、基板と多層膜の間に応力方向の異なる多層膜の応力緩衝層を形成して変形を相殺する方法では、以下のような問題点があった。   As disclosed in JP-T-2002-504715 (Patent Document 1), a method of offsetting deformation by forming a stress buffer layer of a multilayer film having different stress directions between a substrate and the multilayer film is as follows. There was a serious problem.

単層からなる応力緩衝層の場合は、接触式段差計や、単層膜厚と同程度の波長の光を用いた分光測定にて膜厚を測定する。しかしこれらの方法では、特にX線領域の露光装置で要求される1nm以下の精度での膜厚測定を行うことが困難であった。このため、基板上に成膜した応力緩衝層が場所によって膜厚にムラがあっても、膜厚測定の精度以下では膜厚制御を行うことはできない。すなわち、露光装置等の光学素子に単層からなる応力緩衝層を用いた場合は、応力緩衝層に膜厚ムラが生じても測定することができず、応力緩衝層に膜厚ムラが存在するとその上に成膜する反射層の表面形状も変化するため、光学素子の面形状誤差となる。   In the case of a stress buffer layer composed of a single layer, the film thickness is measured by a contact-type step meter or spectroscopic measurement using light having the same wavelength as the single layer film thickness. However, with these methods, it has been difficult to measure the film thickness with an accuracy of 1 nm or less, which is particularly required for an X-ray exposure apparatus. For this reason, even if the stress buffer layer formed on the substrate has unevenness in film thickness depending on the location, the film thickness cannot be controlled below the accuracy of film thickness measurement. That is, when a stress buffer layer composed of a single layer is used for an optical element such as an exposure apparatus, measurement cannot be performed even if film thickness unevenness occurs in the stress buffer layer, and film thickness unevenness exists in the stress buffer layer. Since the surface shape of the reflective layer formed thereon also changes, a surface shape error of the optical element occurs.

一方、多層構造の応力緩衝層では、使用波長と同程度の波長光による回折を用いることで高精度での膜厚測定が可能である。しかし、特表2002−504715号公報(特許文献1)に開示されたように、Mo/Siから構成される応力緩衝層でMo分率等を最適化することにより応力を極小化する方法では、単位周期膜厚が反射層と同程度と小さいため(略7nm)、応力緩衝層のペア数を多くする必要が生じる。そのため、各層はわずかな膜厚ムラしか持っていなくても総膜厚が大きいことにより、結果として応力緩衝層の膜厚ムラが増大して光学素子の面形状誤差となり、露光装置の露光性能を悪化させる要因となっていた。   On the other hand, with a stress buffer layer having a multilayer structure, it is possible to measure the film thickness with high accuracy by using diffraction by light having the same wavelength as the wavelength used. However, as disclosed in JP-T-2002-504715 (Patent Document 1), in a method for minimizing stress by optimizing Mo fraction and the like in a stress buffer layer composed of Mo / Si, Since the unit periodic film thickness is as small as the reflective layer (approximately 7 nm), it is necessary to increase the number of pairs of stress buffer layers. Therefore, even if each layer has only a slight film thickness unevenness, the total film thickness is large, resulting in an increase in the film thickness unevenness of the stress buffer layer, resulting in a surface shape error of the optical element, and the exposure performance of the exposure apparatus. It was a factor to make it worse.

また、特表2002−525698号公報(特許文献2)に開示された構成では、必要最低限のMo層の膜厚及びSi層の厚さがあるので、Mo/Siの膜厚比を極端に大きくもしくは小さくすることはできないため、Mo/Si及びMo/Beの組み合わせの各分率調整にて制御可能な応力範囲が狭くなる。そのため、膜応力の十分な除去が達成できず膜応力が残留することとなっていた。結局、応力緩衝層が十分な膜応力を除去できる程度に応力緩衝層のペア数を多くする必要が生じ、光学素子の面形状誤差の原因となりうるという特表2002−504715号公報(特許文献1)と同様の問題を持っている。
特表2002−504715号公報 特表2002−525698号公報
In addition, in the configuration disclosed in Japanese Translation of PCT International Publication No. 2002-525698 (Patent Document 2), since there is a minimum necessary Mo layer thickness and Si layer thickness, the Mo / Si thickness ratio is extremely reduced. Since it cannot be increased or decreased, the stress range that can be controlled by adjusting each fraction of the combination of Mo / Si and Mo / Be is narrowed. Therefore, sufficient removal of the film stress cannot be achieved and the film stress remains. After all, it is necessary to increase the number of pairs of stress buffer layers to such an extent that the stress buffer layer can remove a sufficient film stress, which may cause a surface shape error of the optical element (Japanese Patent Laid-Open No. 2002-504715) ) Have similar problems.
JP-T-2002-504715 Special Table 2002-525698

本発明は、応力緩衝層の総膜厚を小さくすることで、応力緩衝層の膜厚ムラによる面形状誤差を抑制し、光学性能を向上させたX線用光学素子を提供することを目的とするものである。   It is an object of the present invention to provide an optical element for X-ray which has an improved optical performance by reducing a surface shape error due to uneven thickness of the stress buffer layer by reducing the total thickness of the stress buffer layer. To do.

上記の課題を解決する本発明のX線用光学素子は、
基板と、軟X線波長領域の光に対して反射特性を有する第1の多層膜と、前記第1の多層膜と前記基板の間に設けられ、第一の多層膜の膜応力を低減する第2の多層膜とを有するX線用光学素子であって、
前記第2の多層膜は周期構造を有し、前記周期構造の単位周期膜厚が、7nmの2以上の整数倍の90%以上110%未満であるX線用光学素子である。
The X-ray optical element of the present invention that solves the above problems is
Provided between the substrate, the first multilayer film having reflection characteristics with respect to light in the soft X-ray wavelength region, and between the first multilayer film and the substrate, to reduce the film stress of the first multilayer film An X-ray optical element having a second multilayer film,
The second multilayer film is an optical element for X-rays having a periodic structure, and a unit periodic film thickness of the periodic structure is 90% or more and less than 110%, which is an integer multiple of 2 or more of 7 nm.

第2の多層膜の周期構造を最適化するに当たり、単位周期膜厚を増大させることで必要ペア数を抑制し、総膜厚を抑える。かつ、単位周期膜厚を略7nmの整数倍とすることで、分光測定器による膜厚測定を可能とし、成膜時の膜厚制御を高精度に行うことが可能となる。これにより膜厚ムラを抑えて、面形状誤差を抑制した高い光学性能をもつX線用光学素子を提供することができる。   In optimizing the periodic structure of the second multilayer film, the number of necessary pairs is suppressed by increasing the unit periodic film thickness, and the total film thickness is suppressed. In addition, by setting the unit periodic film thickness to an integral multiple of approximately 7 nm, the film thickness can be measured with a spectroscopic measuring instrument, and the film thickness control during film formation can be performed with high accuracy. As a result, it is possible to provide an optical element for X-rays having high optical performance with suppressed film thickness unevenness and suppressed surface shape error.

本発明のX線用光学素子は、特に波長12nmから15nmの軟X線に対して高反射特性を有する光学素子である。軟X線波長領域では、単位周期膜厚7nmの多層構造に近い多層膜が、膜面に対し鉛直方向(0°)から30°程度である高入射角度の光に対して明確な反射率ピークを示すことが知られている。この反射率ピーク位置は周期構造の多層膜の単位周期膜厚に依存するため、このピークを利用し多層膜の膜厚を高精度に測定することができる。波長12nmから15nmの軟X線を利用した分光測定器(図4参照)は非常に良好な波長精度を達成しつつあり、半導体露光装置用の光学素子の要求膜厚測定精度を達成するほとんど唯一の方法である。   The X-ray optical element of the present invention is an optical element having high reflection characteristics particularly for soft X-rays having a wavelength of 12 nm to 15 nm. In the soft X-ray wavelength region, a multilayer film close to a multilayer structure having a unit periodic film thickness of 7 nm has a clear reflectance peak for light with a high incident angle that is about 30 ° from the vertical direction (0 °) to the film surface. It is known to show. Since the reflectance peak position depends on the unit periodic film thickness of the multilayer film having a periodic structure, the film thickness of the multilayer film can be measured with high accuracy using this peak. Spectrometers (see FIG. 4) using soft X-rays with a wavelength of 12 nm to 15 nm are achieving very good wavelength accuracy, and are almost the only ones that achieve the required film thickness measurement accuracy of optical elements for semiconductor exposure apparatuses. It is a method.

本発明は、このような高精度測定を可能とする波長12nmから15nmの軟X線を用いた分光測定器を利用し、単位周期膜厚が7nmの2以上の整数倍に近い多層膜の膜厚も高精度に測定することが可能となる点に着目してなされたものである。   The present invention utilizes a spectrophotometer using soft X-rays with a wavelength of 12 nm to 15 nm that enables such high-accuracy measurement, and is a multilayer film whose unit periodic film thickness is close to an integer multiple of 2 or more of 7 nm. The thickness was made paying attention to the point that it is possible to measure with high accuracy.

本発明を実施するための最良の形態を図面に基づいて説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、一実施形態によるX線用光学素子の膜構成を示すもので、基板10上に、軟X線波長領域で反射ミラーとして作用する高反射特性を有する第1の多層膜11と、多層膜11と基板10の間に介在する周期構造の第2の多層膜12と、を有する。   FIG. 1 shows a film configuration of an optical element for X-rays according to an embodiment. A first multilayer film 11 having a high reflection characteristic that acts as a reflection mirror in a soft X-ray wavelength region on a substrate 10; And a second multilayer film 12 having a periodic structure interposed between the multilayer film 11 and the substrate 10.

多層膜11は使用するX線波長に対して屈折率の異なる複数の材料の交互層からなる構造を有している。   The multilayer film 11 has a structure composed of alternating layers of a plurality of materials having different refractive indexes with respect to the X-ray wavelength used.

多層膜12は応力緩衝層として、使用するX線波長に対して屈折率の異なる複数の材料の交互層から構成され、交互層は膜の順序、膜厚に関して周期性を有している。その単位周期膜厚は、7nmに対し2以上の整数倍の90%以上110%未満である。単位周期膜厚をこのように設定することにより、単位周期膜厚が略7nmの応力緩衝層に比べて、必要ペア数を大幅に低減し、総膜厚を抑制できる。また、波長12nmから15nmの軟X線による高入射角度測定を利用した分光測定器を用いた膜厚測定も可能となる。軟X線を利用した分光測定器は、使用波長が短波長であることと材料によっては高入射角度での明確な反射率ピーク測定が可能であることから、0.02%以下の精度で測定することが可能である。   The multilayer film 12 is composed of alternating layers of a plurality of materials having different refractive indexes with respect to the X-ray wavelength to be used as a stress buffer layer, and the alternating layers have periodicity with respect to the film order and film thickness. The unit periodic film thickness is 90% or more and less than 110%, which is an integer multiple of 2 or more with respect to 7 nm. By setting the unit periodic film thickness in this way, the required number of pairs can be greatly reduced and the total film thickness can be suppressed as compared with the stress buffer layer having a unit periodic film thickness of approximately 7 nm. In addition, film thickness measurement using a spectrophotometer utilizing high incident angle measurement with soft X-rays having a wavelength of 12 nm to 15 nm is also possible. The spectrophotometer using soft X-rays can be measured with an accuracy of 0.02% or less because the wavelength used is short and, depending on the material, a clear reflectance peak can be measured at a high incident angle. Is possible.

基板10の表面は光学研磨が施されている。   The surface of the substrate 10 is optically polished.

第1の多層膜11は、使用波長に対し所望の分光特性を得られるように材料及び各膜厚が選定された膜構成を有する。特に軟X線領域では、Mo/Si、Ru/Si、W/Si、Ru/Be、Ru/Mo/Si、Ru/Mo/Be、Mo/Be、Mo2 C/Si、Mo2 C/Be、Mo/B4 C/Si/B4 C、Mo/C/Si/C、Ru/B4 C/Si/B4 C、Ru/C/Si/C、Ru/B4 C/Be/B4 C、Ru/C/Be/C、W/C/Si/C、W/C/Si、いずれかの構造を用いるとよい。また、多層膜11の最表面部には多層膜内部とは異なる材料からなる層が付加されていてもよい。   The first multilayer film 11 has a film configuration in which materials and film thicknesses are selected so that desired spectral characteristics can be obtained with respect to the wavelength used. Particularly in the soft X-ray region, Mo / Si, Ru / Si, W / Si, Ru / Be, Ru / Mo / Si, Ru / Mo / Be, Mo / Be, Mo2 C / Si, Mo2 C / Be, Mo / B4 C / Si / B4 C, Mo / C / Si / C, Ru / B4 C / Si / B4 C, Ru / C / Si / C, Ru / B4 C / Be / B4 C, Ru / C / Be Any of / C, W / C / Si / C, and W / C / Si may be used. Further, a layer made of a material different from that inside the multilayer film may be added to the outermost surface portion of the multilayer film 11.

多層膜の持つ応力は、多層膜の単位周期の膜厚比、多層膜の総数、成膜時の真空チャンバー内の真空度や、成膜条件によって決まる。したがって多層膜11の持つ応力はあらかじめ知ることができる。また、テストピース上に多層膜を試作して、その応力を測定してもよい。   The stress possessed by the multilayer film is determined by the unit film thickness ratio of the multilayer film, the total number of multilayer films, the degree of vacuum in the vacuum chamber during film formation, and the film formation conditions. Therefore, the stress of the multilayer film 11 can be known in advance. Alternatively, a multilayer film may be prototyped on the test piece and the stress may be measured.

このようにして得られた多層膜11の応力と逆符号の応力を持つように応力緩衝層を、多層膜11と基板との間に設けることで応力緩衝効果を得ることができる。   A stress buffering effect can be obtained by providing a stress buffer layer between the multilayer film 11 and the substrate so as to have a stress opposite in sign to the stress of the multilayer film 11 thus obtained.

本発明のX線用光学素子の特徴は、上記のように応力緩衝効果を奏するように何らかの方法で応力緩衝層の成膜条件を定めた上で、周期構造を持つ応力緩衝層である第2の多層膜12は、波長12nmから15nmの軟X線領域にて高入射角度で明確な反射率ピークを持つように、7nmに対し2以上の整数倍の90%以上110%未満である単位周期膜厚を持つところにある。また、単位周期を構成する材料は、Mo/Si、Ru/Si、W/Si、Ru/Be、Ru/Mo/Si、Ru/Mo/Be、Mo/Be、Mo2 C/Si、Mo2 C/Be、Mo/B4 C/Si/B4 C、Mo/C/Si/C、Ru/B4 C/Si/B4 C、Ru/C/Si/C、Ru/B4 C/Be/B4 C、Ru/C/Be/C、W/C/Si/C、W/C/Si、のいずれかより選定される。特にMo/Siを用いると応力緩衝効果が強まるため、応力緩衝層として効果的である。その場合、Moの膜厚が11.6nm以上14.4nm未満であり、かつSiの膜厚が1nm以上2nm未満であることがより望ましい。この場合は応力緩衝効果が特に強まり、かつ高入射角度の軟X線に対し明確な反射ピークを示すため高精度な膜厚測定が可能であることから、より一層膜厚ムラの少ない多層膜12を成膜することができる。   The X-ray optical element of the present invention is characterized in that the stress buffer layer having a periodic structure is obtained after the film forming conditions of the stress buffer layer are determined by some method so as to exhibit the stress buffer effect as described above. The multilayer film 12 has a unit period of 90% or more and less than 110%, which is an integer multiple of 2 or more with respect to 7 nm, so as to have a clear reflectance peak at a high incident angle in a soft X-ray region having a wavelength of 12 to 15 nm It has a film thickness. The material constituting the unit period is Mo / Si, Ru / Si, W / Si, Ru / Be, Ru / Mo / Si, Ru / Mo / Be, Mo / Be, Mo2 C / Si, Mo2 C / Be, Mo / B4 C / Si / B4 C, Mo / C / Si / C, Ru / B4 C / Si / B4 C, Ru / C / Si / C, Ru / B4 C / Be / B4 C, Ru / It is selected from C / Be / C, W / C / Si / C, and W / C / Si. In particular, the use of Mo / Si is effective as a stress buffer layer because the stress buffer effect is enhanced. In that case, it is more preferable that the film thickness of Mo is 11.6 nm or more and less than 14.4 nm and the film thickness of Si is 1 nm or more and less than 2 nm. In this case, the stress buffering effect is particularly strong, and since a clear reflection peak is shown for soft X-rays at a high incident angle, it is possible to measure the film thickness with high accuracy. Can be formed.

これにより、効果的に膜応力を低減した膜厚ムラの少ない高品質なX線用光学素子を実現できる。また、実施例以下に詳しく示されるが、応力緩衝層の一単位あたりの応力緩衝効果を高めることができるので、応力緩衝層の総膜厚を低減することもできる。   As a result, it is possible to realize a high-quality optical element for X-ray with less film thickness unevenness that effectively reduces film stress. Further, as will be described in detail below, the stress buffering effect per unit of the stress buffer layer can be enhanced, so that the total thickness of the stress buffer layer can be reduced.

このようなX線用光学素子を複数枚搭載した露光装置では、応力による基板変形、膜厚測定誤差による面内膜厚ムラが抑制されるため、光学収差が小さい露光が可能である。   In an exposure apparatus in which a plurality of optical elements for X-rays are mounted, in-plane film thickness unevenness due to substrate deformation due to stress and film thickness measurement error is suppressed, so that exposure with small optical aberration is possible.

図4はX線用光学素子の製造工程において多層膜の膜厚測定に用いる分光測定器を示す。一般的に、分光測定器は使用波長の光を発生させる光源と、光を分光する分光部と、被測定物の姿勢を制御するステージと、光を検知する検知部より構成される。   FIG. 4 shows a spectrometer used for measuring the film thickness of the multilayer film in the manufacturing process of the X-ray optical element. In general, a spectrophotometer includes a light source that generates light having a wavelength to be used, a spectroscopic unit that splits light, a stage that controls the posture of an object to be measured, and a detection unit that detects light.

図4に示す分光測定器は、軟X線を発生する光源101と、光源101より出射される軟X線を分光するための回折格子102と、被照射物からの分光を検知する検知器103と、を有する。回折格子102の角度を変化させることにより分光を行い、分光測定を行う。また、照射光と被照射物Wと検知器103の相対角度を変化させることにより、被照射物Wへの照射光入射角度を変化させることができる。   4 includes a light source 101 that generates soft X-rays, a diffraction grating 102 that splits soft X-rays emitted from the light source 101, and a detector 103 that detects the spectrum from an irradiated object. And having. Spectroscopy is performed by changing the angle of the diffraction grating 102 to perform spectroscopic measurement. Moreover, the incident light incident angle to the irradiation object W can be changed by changing the relative angle between the irradiation light, the irradiation object W, and the detector 103.

図1は、実施例1による、X線光学系で反射ミラーとして作用するX線用光学素子を示す。軟X線波長領域において高反射特性を有する第1の多層膜11は、MoとSiの交互層40ペアより構成されている。多層膜11と同じ膜構成をSiウエハ等からなるテストピースに成膜し、干渉計にて成膜前後のテストピースの面形状を測定し、その面形状変化量とテストピースのヤング率から膜応力を算出すると、この多層膜単独での膜応力は−98.3N/mであった。   FIG. 1 shows an X-ray optical element that acts as a reflecting mirror in an X-ray optical system according to the first embodiment. The first multilayer film 11 having high reflection characteristics in the soft X-ray wavelength region is composed of 40 pairs of Mo and Si alternating layers. The same film configuration as that of the multilayer film 11 is formed on a test piece made of Si wafer or the like, the surface shape of the test piece before and after film formation is measured by an interferometer, and the film is determined from the surface shape change amount and the Young's modulus of the test piece When the stress was calculated, the film stress of this multilayer film alone was -98.3 N / m.

多層膜11と基板10の間を占める第2の多層膜12は、MoとSiを交互に積層し、一対のMo/Si膜厚である単位周期膜厚が、7nmの2倍の90%以上110%未満の範囲内である14.7nmの周期構造となっている。Mo/Siのペア数は11である。   The second multilayer film 12 occupying the space between the multilayer film 11 and the substrate 10 is formed by alternately stacking Mo and Si, and the unit periodic film thickness as a pair of Mo / Si film thickness is 90% or more, which is twice as large as 7 nm. The periodic structure of 14.7 nm is in the range of less than 110%. The number of Mo / Si pairs is eleven.

この多層膜12と同じ膜構成の多層膜をテストピースに成膜し、前述と同様に干渉計にて成膜前後のテストピースの面形状を測定し、その面形状変化量とテストピースのヤング率から膜応力を算出すると、膜応力は+89.2N/mであった。   A multilayer film having the same film configuration as that of the multilayer film 12 is formed on the test piece, and the surface shape of the test piece before and after film formation is measured with an interferometer in the same manner as described above. When the film stress was calculated from the rate, the film stress was +89.2 N / m.

基板10は、低熱膨張係数の材料からなる基板である。表面には光学研磨が施され、0.32nmRMSの粗さを持つ。一般的に露光装置の光学素子基板としては熱膨張係数が小さいものが求められるため、材料としてはゼロデュアやULEが考えられている。特にEUV露光装置では吸収係数や屈折率等の基板の光学性能は問われないため、透明でなくてもよい。   The substrate 10 is a substrate made of a material having a low thermal expansion coefficient. The surface is optically polished and has a roughness of 0.32 nm RMS. In general, since an optical element substrate of an exposure apparatus is required to have a small thermal expansion coefficient, zero-dur and ULE are considered as materials. In particular, in the EUV exposure apparatus, the optical performance of the substrate, such as the absorption coefficient and the refractive index, is not questioned.

図2(a)は、多層膜12の軟X線(波長12nmから15nm)領域での分光反射特性を示す。測定には、図4に示した分光測定器を用いた。光は多層膜面の法線方向より5°傾いた角度で多層膜に入射させ、回折格子の角度を変えることで入射光の波長を変化させ、分光反射特性データを得た。基板10上に多層膜12を成膜し、入射光角度5°にて軟X線領域の反射分光特性を測定したところ、波長13.63nm、反射率7.02%を中心とした明確な反射ピークが観測された。   FIG. 2A shows the spectral reflection characteristics of the multilayer film 12 in the soft X-ray (wavelength 12 nm to 15 nm) region. The spectrophotometer shown in FIG. 4 was used for the measurement. Light was incident on the multilayer film at an angle of 5 ° with respect to the normal direction of the multilayer film surface, and the wavelength of the incident light was changed by changing the angle of the diffraction grating to obtain spectral reflection characteristic data. When the multilayer film 12 is formed on the substrate 10 and the reflection spectral characteristic in the soft X-ray region is measured at an incident light angle of 5 °, it is clear that the wavelength is 13.63 nm and the reflectance is 7.02%. A peak was observed.

このように、単位周期膜厚を7nmの略2倍に増大した場合でも、図4の分光測定器による高精度な膜厚測定が可能であることが確認された。   As described above, it was confirmed that the film thickness can be measured with high accuracy by the spectrophotometer shown in FIG.

図2(b)は、多層膜11の5°入射における分光反射率を示す。基板10上の多層膜12の上に多層膜11を成膜し、入射光角度5°にて軟X線領域の反射分光特性を測定したところ、波長13.50nm、反射率69.2%を中心とした明確な反射ピークが観測された。   FIG. 2B shows the spectral reflectance of the multilayer film 11 at 5 ° incidence. When the multilayer film 11 is formed on the multilayer film 12 on the substrate 10 and the reflection spectral characteristic in the soft X-ray region is measured at an incident light angle of 5 °, the wavelength is 13.50 nm and the reflectance is 69.2%. A clear central reflection peak was observed.

そして、多層膜12の上に多層膜11を積層した状態の膜応力を上記と同様の方法で求めたところ、−8.8N/mであった。   And when the film stress of the state which laminated | stacked the multilayer film 11 on the multilayer film 12 was calculated | required by the method similar to the above, it was -8.8 N / m.

図3(a)は、実施例2によるX線用光学素子であるX線用凹形状反射鏡を示す断面図であり、基板20は、周知の低膨張光学材料であるゼロデュアにより構成され、光学研磨が施された曲面20aを有する。曲面20a上には、図3(b)に示すように、上部の多層膜である第1の多層膜21及び下部の多層膜である第2の多層膜22が成膜されている。   FIG. 3A is a cross-sectional view showing an X-ray concave reflector that is an X-ray optical element according to the second embodiment, and the substrate 20 is formed of a zero-dur, which is a well-known low-expansion optical material. It has a curved surface 20a that has been polished. As shown in FIG. 3B, a first multilayer film 21 that is an upper multilayer film and a second multilayer film 22 that is a lower multilayer film are formed on the curved surface 20a.

多層膜21は単位周期膜厚H1を有し、この交互多層膜の構成要素はSi層21aとMo層21bである。多層膜22は単位周期膜厚H2を有し、この交互多層膜の構成要素はSi層22aとMo層22bである。   The multilayer film 21 has a unit period film thickness H1, and the constituent elements of the alternating multilayer film are a Si layer 21a and a Mo layer 21b. The multilayer film 22 has a unit periodic film thickness H2, and the constituent elements of the alternating multilayer film are a Si layer 22a and a Mo layer 22b.

基板20はゼロデュアからなる基板である。   The substrate 20 is a substrate made of zero-dur.

多層膜21、22を成膜する際の成膜条件出しとして、Siウエハ等からなるテストピースと、図3(a)と同じ面形状をもつ凹面曲面基板を用いて成膜条件の最適化を行う。   As film formation conditions when forming the multilayer films 21 and 22, the film formation conditions are optimized by using a test piece made of a Si wafer or the like and a concave curved surface substrate having the same surface shape as FIG. Do.

まず、テストピースに上部の多層膜21と同じ膜構成の、反射層に相当する多層膜を成膜した。この多層膜のSi層の膜厚は4.12nm、Mo層の膜厚は2.82nm、よって単位周期膜厚は6.94nmとなる。このMo/Siペアを40ペア成膜したところ、膜応力は−96.2N/mであった。   First, a multilayer film corresponding to the reflective layer having the same film configuration as that of the upper multilayer film 21 was formed on the test piece. In this multilayer film, the thickness of the Si layer is 4.12 nm, the thickness of the Mo layer is 2.82 nm, and thus the unit period thickness is 6.94 nm. When 40 pairs of these Mo / Si pairs were formed, the film stress was -96.2 N / m.

次に、テストピースに下部の多層膜22と同じ膜構成の、応力緩衝層に相当する多層膜を成膜した。この多層膜のSi層の膜厚は1.1nm、Mo層の膜厚は13.3nm、よって単位周期膜厚は14.4nmとなる。上部の多層膜の応力を相殺するように下部の多層膜の積層対数を最適化したところ、9ペアで膜応力+97.1N/mであった。   Next, a multilayer film corresponding to the stress buffer layer having the same film configuration as that of the lower multilayer film 22 was formed on the test piece. In this multilayer film, the thickness of the Si layer is 1.1 nm, the thickness of the Mo layer is 13.3 nm, and thus the unit period thickness is 14.4 nm. When the number of laminated layers of the lower multilayer film was optimized so as to offset the stress of the upper multilayer film, the film stress was 97.1 N / m for 9 pairs.

次に、基板20と同じ面形状をもつ凹面曲面基板に上部の多層膜21と同じ膜構成の多層膜を40ペア成膜した。その際、入射光角度5°にて軟X線領域の反射分光特性を曲面内の複数の個所で測定したところ、膜厚ムラは0.8%であった。測定には図4で示した分光測定器を用い、被照射物である凹面曲面基板の姿勢を変化させることで測定ポイントにおける入射光の入射角度が5°になるように調節した。   Next, 40 pairs of multilayer films having the same film configuration as the upper multilayer film 21 were formed on a concave curved substrate having the same surface shape as the substrate 20. At that time, when the reflection spectral characteristics of the soft X-ray region were measured at a plurality of locations in the curved surface at an incident light angle of 5 °, the film thickness unevenness was 0.8%. For the measurement, the spectrophotometer shown in FIG. 4 was used, and the incident angle of the incident light at the measurement point was adjusted to 5 ° by changing the posture of the concave curved substrate as the irradiation object.

この値をもとに真空成膜時の基板自転及び公転の動作パターンを微調整し再び基板20と同じ面形状をもつ凹面曲面基板に成膜したところ、膜厚ムラは±0.02%まで低減した。   Based on this value, fine adjustments were made to the operation pattern of substrate rotation and revolution at the time of vacuum film formation, and when the film was formed again on the concave curved substrate having the same surface shape as the substrate 20, the film thickness unevenness was up to ± 0.02%. Reduced.

次に、基板20と同じ面形状をもつ凹面曲面基板に下部の多層膜22と同じ膜構成の多層膜を9ペア成膜した。その際、入射光角度5°にて軟X線領域の反射分光特性を測定し、曲面内の膜厚ムラが均一になるように真空成膜時の基板自転及び公転の動作パターン条件を最適化し、膜厚ムラを±0.03%まで低減した。   Next, nine pairs of multilayer films having the same film configuration as the lower multilayer film 22 were formed on a concave curved substrate having the same surface shape as the substrate 20. At that time, the reflection spectral characteristic in the soft X-ray region is measured at an incident light angle of 5 °, and the operation pattern conditions of substrate rotation and revolution during vacuum film formation are optimized so that the film thickness unevenness in the curved surface becomes uniform. The film thickness unevenness was reduced to ± 0.03%.

次に、図3(a)の凹面形状反射鏡の基板20に、上記の最適化された成膜条件にて多層膜22を9ペア成膜した。入射光角度5°にて軟X線領域の反射分光特性を測定し、曲面20a内の膜厚ムラが±0.03%であることを確認した。   Next, nine pairs of multilayer films 22 were formed on the substrate 20 of the concave reflecting mirror of FIG. The reflection spectral characteristic in the soft X-ray region was measured at an incident light angle of 5 °, and it was confirmed that the film thickness unevenness in the curved surface 20a was ± 0.03%.

次に、基板20上の多層膜22上に多層膜21を40ペア積層した。入射光角度5°にて軟X線領域の反射分光特性を測定し、曲面20a内の膜厚ムラが±0.02%であることを確認した。   Next, 40 pairs of multilayer films 21 were laminated on the multilayer film 22 on the substrate 20. The reflection spectral characteristic in the soft X-ray region was measured at an incident light angle of 5 °, and it was confirmed that the film thickness unevenness in the curved surface 20a was ± 0.02%.

基板20に下部の多層膜22が9ペアと上部の多層膜21が40ペア積層された光学素子の面内平均膜応力は+1.1N/mであった。   The in-plane average film stress of the optical element in which 9 pairs of lower multilayer films 22 and 40 pairs of upper multilayer films 21 were laminated on the substrate 20 was +1.1 N / m.

このような手順にて、多層膜構成を有する凹面形状反射鏡を製造することで、応力緩衝層による応力抑制効果が充分であってしかも膜厚ムラの少ないX線用光学素子を実現できる。   By manufacturing a concave reflecting mirror having a multilayer film structure by such a procedure, it is possible to realize an optical element for X-rays that has a sufficient stress suppressing effect by the stress buffer layer and has little film thickness unevenness.

本実施例では凹面基板を用いたが、凸面基板にても同様の手順を踏むことで同様の効果を得ることができる。   Although the concave substrate is used in the present embodiment, the same effect can be obtained by following the same procedure for the convex substrate.

応力緩衝層である多層膜22は単位周期膜厚が14.4nmであり9ペア積層しているため総膜厚は129.6nmとなる。基板面内の膜厚ムラは±0.03%であるため、基板面形状は下部の多層膜22の成膜後に0.039nmの形状誤差を持つことになる。   The multilayer film 22 which is a stress buffer layer has a unit periodic film thickness of 14.4 nm and is laminated in 9 pairs, so that the total film thickness is 129.6 nm. Since the film thickness unevenness in the substrate surface is ± 0.03%, the substrate surface shape has a shape error of 0.039 nm after the lower multilayer film 22 is formed.

比較のために、下部の多層膜の単位周期膜厚をλ/2の約1倍である7nmにしてMo分率を変化させることで+91.2N/mの応力を持ち、本実施例と同等の応力緩衝効果を得る光学素子を製造した。この場合には38ペアの積層が必要(総膜厚266.0nm)であり、応力緩衝層の総膜厚は266nmとなる。基板面内の膜厚ムラが±0.03%であるため、総膜厚が266nmであれば、光学素子面は下部多層膜成膜後に0.080nmの形状誤差を持つことになる。これは前述したように、応力緩衝効果を奏するためにはSiもしくはMoの膜厚には一定の下限があるためである。したがって一単位あたりのMo/Siの膜厚比の調整する従来の方法では応力緩衝効果に限界があり、それゆえ7nmあたりに得られる応力緩衝効果は本発明と比べて小さいためである。   For comparison, the unit periodic film thickness of the lower multilayer film is set to 7 nm, which is about 1 times λ / 2, and the Mo fraction is changed to have a stress of +91.2 N / m, which is equivalent to the present embodiment. The optical element which obtains the stress buffering effect was manufactured. In this case, 38 pairs of layers are required (total film thickness 266.0 nm), and the total film thickness of the stress buffer layer is 266 nm. Since the film thickness unevenness in the substrate surface is ± 0.03%, if the total film thickness is 266 nm, the optical element surface has a shape error of 0.080 nm after the formation of the lower multilayer film. As described above, this is because the film thickness of Si or Mo has a certain lower limit in order to exhibit the stress buffering effect. Therefore, the conventional method of adjusting the film thickness ratio of Mo / Si per unit has a limit in the stress buffering effect, and therefore the stress buffering effect obtained per 7 nm is smaller than that of the present invention.

これにより、本発明のX線用光学素子においては、膜応力を抑制した状態での総膜厚を低減し、それによって膜厚ムラによる光学素子面の形状誤差を抑制できることが確認できた。   Thereby, in the optical element for X-rays of this invention, it has confirmed that the total film thickness in the state which suppressed film | membrane stress can be reduced, and, thereby, the shape error of the optical element surface by film thickness nonuniformity can be suppressed.

このような面形状誤差が小さいX線用光学素子を搭載した露光装置では、残存光学収差の小さい光学系を得ることが可能となる。
従来の応力緩衝層と本発明による応力緩衝層を以下の表1に示す。従来の応力緩衝層のペア数に比べずっと少ないペア数で、従来と同等の応力緩衝効果を発揮することが分かる。
In an exposure apparatus equipped with such an X-ray optical element having a small surface shape error, an optical system having a small residual optical aberration can be obtained.
The conventional stress buffer layer and the stress buffer layer according to the present invention are shown in Table 1 below. It can be seen that the stress buffering effect equivalent to the conventional one is exhibited with a much smaller number of pairs than the conventional stress buffer layer.

Figure 2009156863
Figure 2009156863

実施例1によるX線用光学素子を示す断面図である。1 is a cross-sectional view showing an optical element for X-ray according to Example 1. FIG. 第2の多層膜の、5°入射における分光反射特性と、第1の多層膜の、5°入射における分光反射特性を示すものである。The spectral reflection characteristics at 5 ° incidence of the second multilayer film and the spectral reflection characteristics at 5 ° incidence of the first multilayer film are shown. 実施例2によるX線用凹形状反射鏡を示すもので、(a)はその断面図、(b)は反射多層膜の膜構成を示す図である。FIGS. 2A and 2B show an X-ray concave reflecting mirror according to Example 2, in which FIG. 3A is a cross-sectional view thereof, and FIG. 本発明によるX線用光学素子の製造工程で用いる分光測定器の概略を示す図である。It is a figure which shows the outline of the spectrometer used in the manufacturing process of the optical element for X-rays by this invention.

符号の説明Explanation of symbols

10,20 基板
11,21 第1の多層膜
21,22 第2の多層膜
10,20 Substrate 11,21 First multilayer film 21,22 Second multilayer film

Claims (5)

基板と、軟X線波長領域の光に対して反射特性を有する第1の多層膜と、前記第1の多層膜と前記基板の間に設けられ、第1の多層膜の膜応力を低減する第2の多層膜とを有するX線用光学素子であって、
前記第2の多層膜は周期構造を有し、前記周期構造の単位周期膜厚が、7nmの2以上の整数倍の90%以上110%未満であるX線用光学素子。
A substrate, a first multilayer film having a reflection characteristic with respect to light in a soft X-ray wavelength region, and provided between the first multilayer film and the substrate, reduce film stress of the first multilayer film. An X-ray optical element having a second multilayer film,
The optical element for X-rays, wherein the second multilayer film has a periodic structure, and a unit periodic film thickness of the periodic structure is 90% or more and less than 110%, which is an integer multiple of 2 or more of 7 nm.
前記第2の多層膜が、Mo/Siからなる請求項1に記載のX線用光学素子。   The optical element for X-rays according to claim 1, wherein the second multilayer film is made of Mo / Si. 前記第1の多層膜が、Mo/Si、Ru/Si、W/Si、Ru/Be、Ru/Mo/Si、Ru/Mo/Be、Mo/Be、Mo2 C/Si、Mo2 C/Be、Mo/B4 C/Si/B4 C、Mo/C/Si/C、Ru/B4 C/Si/B4 C、Ru/C/Si/C、Ru/B4 C/Be/B4 C、Ru/C/Be/C、W/C/Si/C、W/C/Si、のうちのいずれかの膜構成を有し、
前記第2の多層膜が、Mo/Siの膜構成を有する請求項2に記載のX線用光学素子。
The first multilayer film is made of Mo / Si, Ru / Si, W / Si, Ru / Be, Ru / Mo / Si, Ru / Mo / Be, Mo / Be, Mo2 C / Si, Mo2 C / Be, Mo / B4 C / Si / B4 C, Mo / C / Si / C, Ru / B4 C / Si / B4 C, Ru / C / Si / C, Ru / B4 C / Be / B4 C, Ru / C / It has a film configuration of any one of Be / C, W / C / Si / C, and W / C / Si,
The optical element for X-rays according to claim 2, wherein the second multilayer film has a Mo / Si film configuration.
前記第2の多層膜のMo/Siの膜構成において、
Moの膜厚が11.6nm以上14.4nm未満であり、Siの膜厚が1nm以上2nm未満である請求項2に記載のX線用光学素子。
In the Mo / Si film configuration of the second multilayer film,
The optical element for X-rays according to claim 2, wherein the film thickness of Mo is 11.6 nm or more and less than 14.4 nm, and the film thickness of Si is 1 nm or more and less than 2 nm.
請求項1記載のX線用光学素子を搭載したことを特徴とする露光装置。   An exposure apparatus comprising the X-ray optical element according to claim 1.
JP2008278429A 2007-12-05 2008-10-29 Optical element for x-ray Pending JP2009156863A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008278429A JP2009156863A (en) 2007-12-05 2008-10-29 Optical element for x-ray
US12/326,504 US20090148695A1 (en) 2007-12-05 2008-12-02 Optical element for x-ray
AT08170685T ATE499687T1 (en) 2007-12-05 2008-12-04 OPTICAL ELEMENT FOR X-RAYS
EP08170685A EP2068325B1 (en) 2007-12-05 2008-12-04 Optical element for X-ray
DE200860005096 DE602008005096D1 (en) 2007-12-05 2008-12-04 Optical element for X-rays

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007314369 2007-12-05
JP2008278429A JP2009156863A (en) 2007-12-05 2008-10-29 Optical element for x-ray

Publications (1)

Publication Number Publication Date
JP2009156863A true JP2009156863A (en) 2009-07-16

Family

ID=40961019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278429A Pending JP2009156863A (en) 2007-12-05 2008-10-29 Optical element for x-ray

Country Status (3)

Country Link
JP (1) JP2009156863A (en)
AT (1) ATE499687T1 (en)
DE (1) DE602008005096D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror
JP2014523118A (en) * 2011-06-22 2014-09-08 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for manufacturing a reflective optical element for EUV lithography
JP2015018918A (en) * 2013-07-10 2015-01-29 キヤノン株式会社 Reflection type mask, exposure method, and method of manufacturing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247825A (en) * 2010-05-28 2011-12-08 Kyoto Univ Method for manufacturing neutron mirror, and neutron mirror
JP2014523118A (en) * 2011-06-22 2014-09-08 カール・ツァイス・エスエムティー・ゲーエムベーハー Method for manufacturing a reflective optical element for EUV lithography
US9733580B2 (en) 2011-06-22 2017-08-15 Carl Zeiss Smt Gmbh Method for producing a reflective optical element for EUV-lithography
JP2015018918A (en) * 2013-07-10 2015-01-29 キヤノン株式会社 Reflection type mask, exposure method, and method of manufacturing device

Also Published As

Publication number Publication date
DE602008005096D1 (en) 2011-04-07
ATE499687T1 (en) 2011-03-15

Similar Documents

Publication Publication Date Title
EP1675164B2 (en) Multilayer film reflection mirror, production method for multilayer film reflection mirror, and exposure system
JP5716038B2 (en) Reflective optical element for EUV lithography
JP4320970B2 (en) Manufacturing method of multilayer mirror
US8848167B2 (en) Optical element for UV or EUV lithography with coatings having optimized stress and thickness
US9720316B2 (en) Reflective mask blank for EUV lithography and process for its production, as well as substrate with reflective layer for such mask blank and process for its production
JP5054707B2 (en) Thermally stable multilayer mirror for extreme ultraviolet spectral region (EUV) and use of the multilayer mirror
CN110050231B (en) Intensity-adaptive filter for EUV microlithography, method for producing same, and illumination system having a corresponding filter
JP2011022012A (en) Optical element
JP2023175863A (en) Reflection type mask blank and reflection type mask
JP2007057450A (en) Multilayered film mirror and exposure system
EP2068325B1 (en) Optical element for X-ray
JP2009156863A (en) Optical element for x-ray
JPH0727198B2 (en) Multi-layer reflective mask
US11385536B2 (en) EUV mask blanks and methods of manufacture
JP4343895B2 (en) Multilayer mirror for soft X-ray
JP2005099571A (en) Multilayered film reflection mirror, film-deposition method of reflection multilayered film, film-deposition device and exposure device
JP2007059743A (en) Multilayer film reflector and aligner
JP2019144569A (en) Reflective optical element and optical system of microlithography projection exposure apparatus
JP2007163180A (en) Soft x-ray multilayer film mirror
JP2008096685A (en) Multilayer film mirror
KR20030089765A (en) Multilayer film reflection mirror and exposure apparatus
JP2675263C (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630