JPH0933377A - Method for inspecting pipe by electromagnetic wave - Google Patents

Method for inspecting pipe by electromagnetic wave

Info

Publication number
JPH0933377A
JPH0933377A JP17918395A JP17918395A JPH0933377A JP H0933377 A JPH0933377 A JP H0933377A JP 17918395 A JP17918395 A JP 17918395A JP 17918395 A JP17918395 A JP 17918395A JP H0933377 A JPH0933377 A JP H0933377A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
pipe
receiving device
electromagnetic waves
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17918395A
Other languages
Japanese (ja)
Inventor
Kiichi Suyama
毅一 陶山
Takashi Imaoka
隆司 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP17918395A priority Critical patent/JPH0933377A/en
Priority to CN95191631A priority patent/CN1108521C/en
Priority to DE69526213T priority patent/DE69526213T2/en
Priority to US08/687,450 priority patent/US6008657A/en
Priority to PCT/JP1995/002604 priority patent/WO1996018884A1/en
Priority to CA002180857A priority patent/CA2180857C/en
Priority to KR1019960704397A priority patent/KR100233954B1/en
Priority to EP95940470A priority patent/EP0745841B1/en
Publication of JPH0933377A publication Critical patent/JPH0933377A/en
Priority to US09/048,002 priority patent/US5963042A/en
Priority to US09/048,115 priority patent/US5990690A/en
Priority to US09/047,932 priority patent/US6008658A/en
Priority to US09/048,117 priority patent/US6005396A/en
Priority to US09/048,116 priority patent/US5966016A/en
Priority to CN03102911A priority patent/CN1431487A/en
Priority to CN03102910A priority patent/CN1431486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the erroneous detection by an external noise in an inspection method for detecting a leakage position such as corroded hole generated in a pipe such as gas pipe by use of electromagnetic waves. SOLUTION: In the method of inspecting a leakage position 26 of a pipe 14 to be inspected by exciting an electromagnetic wave to ward the pipe 14 by a transmitting device 11, propagating it in the pipe, and receiving the leaked electromagnetic wave with a receiving device 21, the receipt is performed also in the state where the excitation of the electromagnetic wave is temporarily turned off, and the received signal in OFF is compared with the received signal in ON, thereby, the electromagnetic wave by leakage is discriminated. When a certain electromagnetic wave is received by a receiving device, whether it contains one leaked from a leakage position, or consists of only an external noise, can be easily and surely discriminated, and the erroneous detection of the leakage position can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電磁波を利用してガス管
等の管に生じた腐食孔等の漏洩個所を検出する検査方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for detecting leak points such as corrosion holes formed in a gas pipe by using electromagnetic waves.

【0002】[0002]

【従来の技術】ガス管に生じた腐食孔等の漏洩個所を検
出する方法の一つとして、電磁波を利用した検出方法が
提案されている。この方法は、金属製のガス管に電磁波
を励振して円形導波管と同様な態様で伝播させ、漏洩個
所から漏れてくる電磁波を受信することにより、漏洩個
所を検出する方法である。図5は、この方法を適用する
従来の構成を模式的に示すもので、符号1は送信装置、
2は励振部、3は同軸ケーブルであり、励振部2はガス
管4の一端を切断して取付け、ガス管4内にプローブ5
を突出させた同軸−円形導波管変換器として構成してい
る。符号6はアンテナ、7は受信装置である。以上の構
成において、送信装置1側では励振部2で連続的に電磁
波を励振し、この状態で受信装置7側の作業員はアンテ
ナ6を移動させながら、漏洩個所8から漏洩する電磁波
を探査する。
2. Description of the Related Art As one of methods for detecting a leaked portion such as a corrosion hole formed in a gas pipe, a detection method using electromagnetic waves has been proposed. In this method, an electromagnetic wave is excited in a metal gas pipe, propagated in a manner similar to that of a circular waveguide, and the electromagnetic wave leaking from the leaked part is received to detect the leaked part. FIG. 5 schematically shows a conventional configuration to which this method is applied. Reference numeral 1 is a transmitting device,
Reference numeral 2 is an excitation unit, 3 is a coaxial cable, and the excitation unit 2 is attached by cutting one end of the gas pipe 4, and the probe 5 is installed in the gas pipe 4.
Is configured as a coaxial-to-circular waveguide converter. Reference numeral 6 is an antenna, and 7 is a receiving device. In the above configuration, the transmitter 1 side continuously excites the electromagnetic wave with the exciter 2, and in this state, the worker on the receiver 7 side moves the antenna 6 and searches for the electromagnetic wave leaking from the leakage point 8. .

【0003】[0003]

【発明が解決しようとする課題】アンテナ6には漏洩個
所8から漏洩してくる電磁波の他、種々の外来ノイズが
入って来るため、受信装置7で、ある電磁波を受信して
いる場合に、それが漏洩個所8から漏洩してきたものを
含むか、外来ノイズのみかを識別することが必要となる
が、一般的に、その識別は比較的困難である。本発明
は、このような課題を解決することを目的とするもので
ある。
In addition to the electromagnetic wave leaking from the leaking point 8, various external noises enter the antenna 6, so that when the receiving device 7 receives a certain electromagnetic wave, It is necessary to discriminate whether it includes the one leaking from the leaking point 8 or only the external noise, but in general, the discrimination is relatively difficult. The present invention aims to solve such problems.

【0004】[0004]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、送信装置により検査対象の管に電
磁波を励振して管内を伝播させ、漏洩する電磁波を受信
装置で受信することにより管の漏洩個所を検査する方法
において、電磁波の励振を一時的にOFFとした状態に
おいても受信を行い、OFF時の受信信号をON時の受
信信号と比較することにより、漏洩による電磁波を識別
することを提案する。
In order to solve the above-mentioned problems, in the present invention, an electromagnetic wave is excited by a transmitting device into a pipe to be inspected to propagate in the pipe, and a leaking electromagnetic wave is received by a receiving device. In the method of inspecting the leaked part of the pipe by the method, the electromagnetic wave caused by the leakage is identified by receiving even when the excitation of the electromagnetic wave is temporarily turned off and comparing the received signal at the time of OFF with the received signal at the time of ON. Suggest to do.

【0005】そして本発明では、上記の構成において、
送信装置側に、電磁波の励振のON−OFF制御手段を
構成すると共に、受信装置にON−OFF制御手段の遠
隔操作スイッチを構成し、受信装置側でON−OFF制
御手段を操作する構成とすることを提案する。
In the present invention, in the above structure,
An ON-OFF control unit for exciting electromagnetic waves is configured on the transmitting device side, a remote control switch for the ON-OFF control unit is configured on the receiving device, and the ON-OFF control unit is operated on the receiving device side. I suggest that.

【0006】そして更に本発明では、上記の構成におい
て、送信装置側に、電磁波の励振のON−OFF制御手
段を構成して、自体でON−OFF制御を行うと共にO
N−OFF動作に同期する信号を受信装置側に送信し
て、受信装置側においてON−OFF状態を検出可能に
構成することを提案する。
Further, according to the present invention, in the above-mentioned structure, an ON-OFF control means for exciting an electromagnetic wave is formed on the side of the transmitting device, and ON-OFF control is performed by itself.
It is proposed to transmit a signal synchronized with the N-OFF operation to the receiving device side so that the receiving device side can detect the ON-OFF state.

【0007】[0007]

【作用】受信装置で、ある電磁波を受信している際に、
送信装置による検査対象の管への電磁波の励振をOFF
とすると、受信している電磁波が検査対象の管の漏洩個
所から漏洩した電磁波である場合には受信しなくなる
が、外来ノイズの場合には変化がない。従って、受信し
ている電磁波に、漏洩個所から漏洩した電磁波が含まれ
る場合には、電磁波の励振をOFFとすると受信レベル
が低下するため、OFF時の受信信号とON時の受信信
号とを比較することにより、漏洩による電磁波を識別す
ることができる。
[Operation] When the receiving device is receiving a certain electromagnetic wave,
Turn off the excitation of electromagnetic waves to the pipe to be inspected by the transmitter.
Then, if the received electromagnetic wave is the electromagnetic wave leaked from the leak point of the pipe to be inspected, the electromagnetic wave is not received, but in the case of external noise, there is no change. Therefore, if the received electromagnetic waves include electromagnetic waves leaked from leaking points, the reception level decreases when excitation of the electromagnetic waves is turned off. Therefore, compare the received signal when it is off with the received signal when it is on. By doing so, it is possible to identify electromagnetic waves due to leakage.

【0008】送信装置側の励振のON−OFFは、受信
装置側での操作により行ったり、又は送信装置側で行っ
た励振のON−OFF動作に同期する信号を受信装置側
に送信することにより、励振のON−OFF状態を受信
装置側において知ることができ、こうして上述した比較
を行うことができる。
The excitation ON / OFF on the transmitter side is performed by an operation on the receiver side, or by transmitting a signal in synchronization with the ON / OFF operation of the excitation performed on the transmitter side to the receiver side. The excitation ON-OFF state can be known on the receiving device side, and thus the above-described comparison can be performed.

【0009】[0009]

【実施例】次に本発明の実施例を添付図面を参照して説
明する。図1は本発明の方法をガス管の漏洩個所検出に
適用した第1実施例の全体構成を模式的に示すものであ
る。符号11は送信装置、12は励振部、13は送信装
置と励振部12を接続する同軸ケーブルである。この実
施例では、励振部12は、ガス管14を切断しないで、
予め設置されているティー15の横側の開口部16の蓋
17に取付けてティー15内にプローブ18やループ
(図示省略)を突出させる構成としている。この励振部
12の具体的構成の実施例は図4を参照して後述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows the overall configuration of a first embodiment in which the method of the present invention is applied to the detection of a leak location in a gas pipe. Reference numeral 11 is a transmitting device, 12 is an exciting unit, and 13 is a coaxial cable that connects the transmitting device and the exciting unit 12. In this embodiment, the excitation unit 12 does not cut the gas pipe 14,
The probe 18 and the loop (not shown) are attached to the lid 17 of the opening 16 on the side of the tee 15 which is installed in advance so as to project into the tee 15. An example of a specific configuration of the excitation unit 12 will be described later with reference to FIG.

【0010】送信装置11には、発振器や増幅器等の、
電磁波の励振に必要な基本的な構成要素に加えて、励振
のON−OFF制御手段19と、ON−OFF制御手段
19の操作信号を受信する受信手段20を設けている。
ON−OFF制御手段19は、発振器のON−OFFや
導波路のON−OFFを行う構成等、適宜である。
The transmitter 11 includes an oscillator, an amplifier, etc.
In addition to the basic components necessary for exciting the electromagnetic wave, an excitation ON-OFF control means 19 and a receiving means 20 for receiving an operation signal of the ON-OFF control means 19 are provided.
The ON-OFF control means 19 has an appropriate configuration such as ON-OFF of the oscillator and ON-OFF of the waveguide.

【0011】符号21は受信装置、22は受信装置21
と同軸ケーブル23で接続したアンテナである。受信装
置11には検波器、増幅器、信号処理装置、受信レベル
の表示装置等の、電磁波の受信に必要な基本的な構成の
他に、送信装置11のON−OFF制御手段19をON
−OFF操作する遠隔操作スイッチを設けており、遠隔
操作スイッチは操作スイッチ24と、スイッチ状態の送
信手段25とから構成している。この送信手段25と上
記受信手段20は、図では無線による通信手段として表
しているが、有線による通信手段とすることもできるこ
とは云うまでもない。
Reference numeral 21 is a receiving device, and 22 is a receiving device 21.
Is an antenna connected with the coaxial cable 23. In the receiving device 11, in addition to a basic configuration such as a detector, an amplifier, a signal processing device, and a reception level display device necessary for receiving electromagnetic waves, the ON-OFF control means 19 of the transmitting device 11 is turned ON.
A remote operation switch for OFF operation is provided, and the remote operation switch is composed of an operation switch 24 and a switch state transmission means 25. The transmitting means 25 and the receiving means 20 are shown as wireless communication means in the figure, but it goes without saying that they may be wired communication means.

【0012】以上の構成において、送信装置11側の作
業員は漏洩個所の検出対象であるガス管14の延長上に
設けられているティー15に励振部12を取付け、励振
部12と送信装置11を接続して動作状態とする。受信
装置21側の作業員は受信装置21の操作スイッチ24
を操作して、送信手段25から送信装置11の受信手段
20を介してON−OFF制御手段19にON指令を送
り、励振部12における電磁波の励振をONとする。そ
して作業員は、この状態において受信装置21の表示装
置における受信レベルの表示を見ながらアンテナ22を
移動して電磁波を探査する。
In the above structure, the worker on the transmitter 11 side attaches the exciter 12 to the tee 15 provided on the extension of the gas pipe 14 which is the object of detection of the leakage point, and the exciter 12 and the transmitter 11 are installed. To connect them to the operating state. The worker on the side of the receiver 21 operates the operation switch 24 of the receiver 21.
Is operated to send an ON command from the transmission means 25 to the ON-OFF control means 19 via the reception means 20 of the transmission device 11, and the excitation of the electromagnetic wave in the excitation unit 12 is turned ON. Then, in this state, the worker moves the antenna 22 while looking at the display of the reception level on the display device of the reception device 21 to search for electromagnetic waves.

【0013】そして探査において受信レベルの高い個所
を検出した場合には、操作スイッチ24を操作して、送
信装置11のON−OFF制御手段19にOFF指令を
送り、励振部12における電磁波の励振をOFFとす
る。この際、ON時に受信した電磁波に、ガス管14の
漏洩個所26から漏洩した電磁波が含まれている場合に
は、OFFとした時点で図3(b)に示すように受信レ
ベルが低下し、一方、ON時に受信した電磁波に、ガス
管14の漏洩個所26から漏洩した電磁波が含まれてい
ないで外来ノイズのみを受信していた場合には、図3
(a)に示すように、励振をOFFとしても受信レベル
は変化しない。従って、OFF時の受信レベルとON時
の受信レベルとを比較することにより、漏洩による電磁
波を識別することができ、そして漏洩による電磁波によ
り漏洩個所26を検出することができる。OFF時とO
N時の受信レベルの比較は、作業員が行っても良いし、
自動化も可能である。
When a high reception level is detected in the search, the operation switch 24 is operated to send an OFF command to the ON-OFF control means 19 of the transmitter 11 to excite the electromagnetic wave in the exciter 12. Turn off. At this time, when the electromagnetic wave received at the time of ON includes the electromagnetic wave leaked from the leak point 26 of the gas pipe 14, the reception level is lowered as shown in FIG. On the other hand, when the electromagnetic wave received at the time of ON does not include the electromagnetic wave leaked from the leak point 26 of the gas pipe 14 and only the external noise is received, FIG.
As shown in (a), the reception level does not change even if the excitation is turned off. Therefore, by comparing the reception level at the time of OFF and the reception level at the time of ON, the electromagnetic wave due to the leakage can be identified, and the leakage point 26 can be detected by the electromagnetic wave due to the leakage. OFF and O
A worker may compare the reception levels at N hours,
Automation is also possible.

【0014】図2は本発明の方法をガス管の漏洩個所検
出に適用した第2実施例の全体構成を模式的に示すもの
であり、図1の構成要素と同様なものには同一の符号を
付して説明を省略する。この実施例では、送信装置11
には自体で電磁波の励振のON−OFFが可能なON−
OFF制御手段27を設けると共に、そのON−OFF
動作に同期する信号の送信手段28を設けている。一
方、受信装置には、上記ON−OFF動作に同期する信
号を受信して、動作状態を表示する受信手段29を設け
ている。
FIG. 2 schematically shows the overall construction of a second embodiment in which the method of the present invention is applied to the detection of a leak location in a gas pipe, and the same reference numerals are given to the same components as in FIG. Is attached and the description is omitted. In this embodiment, the transmitter 11
Can turn on and off the excitation of electromagnetic waves by itself.
An OFF control means 27 is provided and ON / OFF thereof
A transmission means 28 for transmitting a signal synchronized with the operation is provided. On the other hand, the receiving device is provided with receiving means 29 for receiving a signal in synchronization with the ON-OFF operation and displaying the operation state.

【0015】図2の構成においては、送信装置11側で
は、記憶手段等に予め設定された時間間隔で励振のON
−OFFを行い、また受信装置21側では送信装置11
側から送信される同期信号を受信して励振のON−OF
F状態を表示する。従って受信装置21側の作業員は、
励振のON−OFF状態と受信レベルとから図1の場合
と同様に、探査において受信レベルの高い個所を検出し
た場合に、この受信している電磁波にガス管14の漏洩
個所26から漏洩した電磁波が含まれているか、否か
を、励振のOFF時の受信レベルとON時の受信レベル
とを比較することにより検出することができる。
In the configuration of FIG. 2, on the transmitting device 11 side, the excitation is turned on at preset time intervals in the storage means or the like.
-OFF, and on the receiving device 21 side, the transmitting device 11
ON-OF of excitation by receiving the synchronization signal transmitted from the side
F status is displayed. Therefore, the worker on the receiving device 21 side
Similar to the case of FIG. 1, from the ON-OFF state of the excitation and the reception level, when a location with a high reception level is detected in the exploration, the electromagnetic wave leaked from the leakage location 26 of the gas pipe 14 to the received electromagnetic wave. Can be detected by comparing the reception level when the excitation is OFF and the reception level when the excitation is ON.

【0016】図4は励振部12の実施例を具体的に示す
もので、図1に示したものと同様な構成要素には同一の
符号を付して、説明を省略する。まず図4において、符
号30は支持体、31はロックナットであり、これらは
ねじ部32により接続する構成としている。ロックナッ
ト31のねじ部32aは蓋17の中央に形成した取付穴
33から内側に挿入し、内側に配置した支持体30のね
じ部32bと螺合して締め付けることにより、蓋17の
取付穴33の周辺を、ロックナット31のつば部34と
支持体30により挾持して固定状態とするものとしてい
る。このような螺合に先立ち、ロックナット31には同
軸ケーブル13の先端を挿通させ、中心リード35を突
出させると共に、シールド線36の編組をクランプ37
に沿って拡げ、上記螺合においてロックナット31の先
端側にワッシャ38、ガスケット39を介装し、上記締
付により、拡げたシールド線36を支持体30の内壁に
圧接して取付け状態とする。一方、中心リード35の先
端側には直線形状のプローブ18を接合しており、この
プローブ18は絶縁体40により支持体30の中心位置
に支持している。このような構成において、蓋17のね
じ部41aを、ティー15の横側の開口部16のねじ部
41bに螺合して締め付ければ開口部16を塞ぐことが
でき、この動作によりプローブ18はティー15内に位
置する。
FIG. 4 specifically shows an embodiment of the exciting section 12. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. First, in FIG. 4, reference numeral 30 is a support, 31 is a lock nut, and these are connected by a screw portion 32. The screw portion 32a of the lock nut 31 is inserted inward from the mounting hole 33 formed in the center of the lid 17, and is screwed into and screwed with the screw portion 32b of the support body 30 disposed inside, so that the mounting hole 33 of the lid 17 is secured. The periphery of is held between the collar portion 34 of the lock nut 31 and the support body 30 to be in a fixed state. Prior to such screwing, the tip of the coaxial cable 13 is inserted into the lock nut 31, the center lead 35 is projected, and the braid of the shield wire 36 is clamped 37.
The washer 38 and the gasket 39 are provided on the tip side of the lock nut 31 in the above-mentioned screwing, and the expanded shield wire 36 is pressed against the inner wall of the support body 30 to be in the attached state by the above-mentioned tightening. . On the other hand, a linear probe 18 is joined to the tip side of the center lead 35, and the probe 18 is supported at the center position of the support 30 by an insulator 40. In such a configuration, the screw portion 41a of the lid 17 can be closed by screwing the screw portion 41a of the lid 17 into the screw portion 41b of the opening portion 16 on the side of the tee 15 and tightening the screw portion 41b. Located in tee 15.

【0017】以上の構成において、送信装置11から同
軸ケーブル13により励振部12に電磁波を供給する
と、プローブ18による電界に対応するモードの電磁波
がティー15内に励振され、ティー15からガス管14
にと伝播する。こうしてガス管14は円形導波管と同様
なモードで電磁波を伝播させることができる。図の場合
には、ガス管14にはTM01のモードの電磁界が形成さ
れて伝播する。そしてガス管14に腐食孔等の漏洩個所
26が存在すると、ガス管14を伝播する電磁波は漏洩
個所26から外部に漏洩するため、この漏洩した電磁波
を上述したようにアンテナ22を介して受信装置21で
受信することにより、漏洩個所26を検出することがで
きるのである。
In the above structure, when the transmitter 11 supplies the electromagnetic wave to the exciter 12 through the coaxial cable 13, the electromagnetic wave in the mode corresponding to the electric field generated by the probe 18 is excited in the tee 15, and the tee 15 causes the gas pipe 14 to flow.
Propagate to. Thus, the gas pipe 14 can propagate electromagnetic waves in the same mode as the circular waveguide. In the case of the figure, an electromagnetic field of TM 01 mode is formed and propagates in the gas pipe 14. When the gas pipe 14 has a leaked portion 26 such as a corrosion hole, the electromagnetic wave propagating through the gas pipe 14 leaks to the outside from the leaked portion 26. Therefore, the leaked electromagnetic wave is received through the antenna 22 as described above. By receiving the data at 21, the leak point 26 can be detected.

【0018】尚、以上の実施例では、ガス管14への電
磁波の励振をティー15の横側の開口部16に取付けた
励振部12により行っているが、従来と同様にガス管1
4を切断して取付ける励振部により行うこともできる。
In the above embodiment, the electromagnetic wave is excited to the gas pipe 14 by the exciting portion 12 attached to the opening 16 on the side of the tee 15.
It is also possible to perform it by an exciter which is cut and attached to No. 4.

【0019】また以上の実施例では、検査の対象をガス
管としているが、本発明は、ガス管の他、適宜の金属製
の管を検査対象とすることができるものである。
Further, in the above embodiments, the object of inspection is a gas pipe, but the present invention can be applied to an appropriate metal pipe in addition to the gas pipe.

【0020】[0020]

【発明の効果】本発明は以上のとおりであるので、電磁
波を利用してガス管等の管に生じた腐食孔等の漏洩個所
を検出する検査方法において、受信装置で、ある電磁波
を受信している場合に、それが漏洩個所から漏洩してき
たものを含むか、外来ノイズのみかを容易に、しかも確
実に識別することができ、従って漏洩個所の誤検出を防
止することができるという効果がある。
As described above, according to the present invention, in an inspection method for detecting leak points such as corrosion holes formed in a gas pipe by using an electromagnetic wave, a receiving device receives an electromagnetic wave. In this case, it is possible to easily and surely identify whether it includes the one leaked from the leaking point or only the external noise, and thus to prevent the false detection of the leaking point. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法をガス管の漏洩個所検出に適用
した第1実施例の全体構成の模式図である。
FIG. 1 is a schematic diagram of the overall configuration of a first embodiment in which the method of the present invention is applied to detection of a leak location in a gas pipe.

【図2】 本発明の方法をガス管の漏洩個所検出に適用
した第2実施例の全体構成の模式図である。
FIG. 2 is a schematic diagram of an overall configuration of a second embodiment in which the method of the present invention is applied to detection of a leak location in a gas pipe.

【図3】 本発明の動作を示す説明図である。FIG. 3 is an explanatory diagram showing the operation of the present invention.

【図4】 本発明における励振部の実施例を示す断面図
である。
FIG. 4 is a cross-sectional view showing an embodiment of an exciting unit in the present invention.

【図5】 電磁波を利用した従来の、ガス管の漏洩個所
検出の全体構成を示す模式図である。
FIG. 5 is a schematic diagram showing an overall configuration of a conventional leak location detection of a gas pipe using electromagnetic waves.

【符号の説明】[Explanation of symbols]

1,11 送信装置 2,12 励振部 3,13,23 同軸ケーブル 4,14 ガス管 5,18 プローブ 6,22 アンテナ 7,21 受信装置 8,26 漏洩個所 15 ティー 16 開口部 17 蓋 19,27 ON−OFF制御手段 20,29 受信手段 24 操作スイッチ 25,28 送信手段 30 支持体 31 ロックナット 32a,32b ねじ部 33 取付穴 34 つば部 35 中心リード 36 シールド線 37 クランプ 38 ワッシャ 39 ガスケット 40 絶縁体 41a,41b ねじ部 1,11 Transmitter 2,12 Exciter 3,13,23 Coaxial cable 4,14 Gas pipe 5,18 Probe 6,22 Antenna 7,21 Receiver 8,26 Leakage point 15 Tee 16 Opening 17 Lid 19,27 ON-OFF control means 20,29 Receiving means 24 Operation switch 25,28 Transmission means 30 Support 31 Lock nuts 32a, 32b Screw part 33 Mounting hole 34 Collar part 35 Center lead 36 Shield wire 37 Clamp 38 Washer 39 Gasket 40 Insulator 41a, 41b screw part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送信装置により検査対象の管に電磁波を
励振して管内を伝播させ、漏洩する電磁波を受信装置で
受信することにより管の漏洩個所を検査する方法におい
て、電磁波の励振を一時的にOFFとした状態において
も受信を行い、OFF時の受信信号をON時の受信信号
と比較することにより、漏洩による電磁波を識別するこ
とを特徴とする電磁波による管の検査方法
1. A method for inspecting a leaked portion of a pipe by exciting the electromagnetic wave to a pipe to be inspected by a transmitting device to propagate the inside of the pipe and receiving a leaking electromagnetic wave by a receiving device. A method of inspecting a pipe by electromagnetic waves, characterized in that electromagnetic waves due to leakage are identified by performing reception even when the signal is turned off and comparing the received signal when turned off with the received signal when turned on.
【請求項2】 送信装置側に、電磁波の励振のON−O
FF制御手段を構成すると共に、受信装置にON−OF
F制御手段の遠隔操作スイッチを構成し、受信装置側で
ON−OFF制御手段を操作する構成としたことを特徴
とする請求項1記載の電磁波による管の検査方法
2. An electromagnetic wave excitation ON-O is provided on the transmitter side.
The FF control means is configured and the receiving device is turned ON-OF.
The method for inspecting a pipe by electromagnetic waves according to claim 1, wherein the remote control switch of the F control means is configured so that the ON-OFF control means is operated on the receiving device side.
【請求項3】 送信装置側に、電磁波の励振のON−O
FF制御手段を構成して、自体でON−OFF制御を行
うと共にON−OFF動作に同期する信号を受信装置側
に送信して、受信装置側においてON−OFF状態を検
出可能に構成したことを特徴とする請求項1記載の電磁
波による管の検査方法
3. On the transmitter side, ON-O for exciting electromagnetic waves
The FF control means is configured to perform ON-OFF control by itself and to transmit a signal synchronized with the ON-OFF operation to the receiving device side so that the receiving device side can detect the ON-OFF state. The method for inspecting a pipe by electromagnetic waves according to claim 1, characterized in that
JP17918395A 1994-12-16 1995-07-14 Method for inspecting pipe by electromagnetic wave Pending JPH0933377A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP17918395A JPH0933377A (en) 1995-07-14 1995-07-14 Method for inspecting pipe by electromagnetic wave
KR1019960704397A KR100233954B1 (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
EP95940470A EP0745841B1 (en) 1994-12-16 1995-12-18 A method and apparatus for inspecting a pipe using electromagnetic radiation
DE69526213T DE69526213T2 (en) 1994-12-16 1995-12-18 METHOD AND DEVICE FOR INSPECTING A TUBE WITH ELECTROMAGNETIC RADIATION
US08/687,450 US6008657A (en) 1994-12-16 1995-12-18 Method for inspecting the elements of piping systems by electromagnetic waves
PCT/JP1995/002604 WO1996018884A1 (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
CA002180857A CA2180857C (en) 1994-12-16 1995-12-18 A method for inspecting the elements of piping systems by electromagnetic waves
CN95191631A CN1108521C (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
US09/048,002 US5963042A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,116 US5966016A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,115 US5990690A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems BT electromagnetic waves
US09/047,932 US6008658A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,117 US6005396A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
CN03102911A CN1431487A (en) 1994-12-16 2003-01-21 Electromagnetic wave checking method for duct system
CN03102910A CN1431486A (en) 1994-12-16 2003-01-21 Electromagnetic wave checking method for duct system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17918395A JPH0933377A (en) 1995-07-14 1995-07-14 Method for inspecting pipe by electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH0933377A true JPH0933377A (en) 1997-02-07

Family

ID=16061395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17918395A Pending JPH0933377A (en) 1994-12-16 1995-07-14 Method for inspecting pipe by electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH0933377A (en)

Similar Documents

Publication Publication Date Title
WO1996018884A1 (en) Electromagnetic inspection of elements of piping
US6595038B2 (en) Apparatus for determining the position of a signal from a pipe
US7565252B2 (en) Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison
JP2006003311A (en) Abnormality part detecting device
JPH0933377A (en) Method for inspecting pipe by electromagnetic wave
WO2014157539A1 (en) Defect analysis device, defect analysis method, and program
EP0629837B1 (en) Method of measuring inner diameter of pipe
JP3406511B2 (en) Abnormal location detector
JPH05180804A (en) Inspecting method for buried piping
JPH0933378A (en) Method for inspecting pipe by electromagnetic wave
JP2002365371A (en) Pipe connection confirmation device and method
JP3603973B2 (en) Damage inspection method for flexible gas pipes in wall and floor construction
JP2003065880A (en) Inspection method and inspection system of water leak spot of building
JP2000205931A (en) Ultrasonic liquid level inspection device
JPH0961377A (en) Method for inspecting buried metal pipe with electromagnetic wave
JP2005265701A (en) Abnormal point detector
JPH05264512A (en) Method and device for inspecting piping
KR100992617B1 (en) Pipe conduit block testing equipment using magnetostrictive effect and the method thereof
JP3535679B2 (en) Method for judging multiple reflection signals in a pipe in an ultrasonic line survey system
JP2000221170A (en) Nondestructive inspection apparatus of structures
JPH10132541A (en) Acoustic wave pipeline examining method
RU2132510C1 (en) METHOD OF DIAGNOSIS OF LEAKS IN FITTINGS, PIPE LINES AND PRESSURE VESSEL AND DEVICE FOR ITS REALIZATION FIELD: location of leaks inaccessible for technical inspection; nuclear power plants; systems of treatment of highly active wastes
JPH10339684A (en) Leakage detecting device
JPH0961376A (en) Method for detecting joint position of buried metal pipe with electromagnetic wave, and method for inspecting joint of metal pipe with electromagnetic wave
JP3482086B2 (en) Reflection Signal Judgment Method in Acoustic Line Inspection System