WO2014157539A1 - Defect analysis device, defect analysis method, and program - Google Patents

Defect analysis device, defect analysis method, and program Download PDF

Info

Publication number
WO2014157539A1
WO2014157539A1 PCT/JP2014/058919 JP2014058919W WO2014157539A1 WO 2014157539 A1 WO2014157539 A1 WO 2014157539A1 JP 2014058919 W JP2014058919 W JP 2014058919W WO 2014157539 A1 WO2014157539 A1 WO 2014157539A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
pipe
frequency
defect
detection
Prior art date
Application number
PCT/JP2014/058919
Other languages
French (fr)
Japanese (ja)
Inventor
慎 冨永
佐々木 康弘
尚武 高橋
裕文 井上
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2015508704A priority Critical patent/JPWO2014157539A1/en
Publication of WO2014157539A1 publication Critical patent/WO2014157539A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Definitions

  • the present invention relates to a defect analysis apparatus, a defect analysis method, and a program.
  • Patent Document 1 includes a vibration source that generates a pressure wave in a fluid in a pipe, and a detection unit that detects a pressure wave reflected at a leaked location. A method for identifying a leaked part from the time difference from the time is disclosed.
  • Patent Document 2 a vibrator that excites sound waves is installed in a water pipe buried in the ground, and a leak point is identified by detecting the vibration level that has passed through the water pipe and the ground and reached the ground. A technique is disclosed.
  • a variable oscillator that oscillates an electric vibration that is not a sine wave while changing the frequency, and a concrete object to be measured are installed on the concrete surface, excited by the electric vibration from the variable oscillator, and directed toward the opposite surface of the concrete.
  • An apparatus for measuring the thickness and the internal crack position of concrete which comprises a receiver for receiving a resonant wave having a frequency and a spectrum analyzer for searching for the resonant frequency of the resonant wave.
  • an output of a vibration sensor provided in a resonant vibration body is input to a constant amplitude control circuit, and an excitation is performed to vibrate the resonant vibration body based on a result of comparison with a set input in the constant amplitude control circuit.
  • a resonance detection circuit is provided separately from the constant amplitude control circuit, and the output of the vibration sensor is input to the resonance detection circuit.
  • a control device for a resonant vibration body is disclosed in which the drive signal automatically follows the resonance frequency of the resonant vibration body.
  • An object of the present invention is to provide a technique for specifying a defect position of a pipe with high accuracy.
  • Vibration means for applying vibration to at least one of the pipe and the fluid flowing in the pipe;
  • First vibration control means for controlling the vibration means to apply a first vibration including vibrations at a plurality of frequencies to at least one of the fluid and the pipe;
  • First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
  • a second detection means installed on a first surface spaced from the pipe and detecting the first vibration; Using the first vibration waveform obtained by detecting the first vibration by the first detection means and the second vibration waveform obtained by detecting the first vibration by the second detection means.
  • Second vibration control means for controlling the vibration means to apply a second vibration, which is a vibration of a determined frequency, to at least one of the fluid or the pipe;
  • a third detection means installed on the first surface for detecting the second vibration;
  • a defect analysis apparatus having the following is provided.
  • a vibration means for applying vibration to at least one of a pipe or a fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid or the pipe.
  • the first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection step, and the first vibration obtained by the second detection step.
  • a defect analysis method for performing is provided.
  • Computer A vibration means for applying vibration to at least one of the pipe and the fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid and the pipe.
  • First excitation control means for causing First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
  • a second detection means installed on a first surface spaced from the pipe and detecting the first vibration; The first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection means, and the first vibration obtained by the second detection means.
  • a second vibration control means for applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, to at least one of the fluid and the pipe;
  • Third detection means installed on the first surface for detecting the second vibration;
  • a program for functioning as a server is provided.
  • the apparatus includes an arbitrary computer CPU, memory, and a program loaded in the memory (a program stored in the memory in advance from the stage of shipping the apparatus, a storage medium such as a CD, and the like on the Internet). And a storage unit such as a hard disk for storing the program, and a network connection interface, and any combination of hardware and software. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
  • each device is described as being realized by one device, but the means for realizing it is not limited to this. That is, it may be a physically separated configuration or a logically separated configuration.
  • the position of a defect formed in a pipe installed at a position (e.g., underground) away from the first surface (e.g., the ground) is installed on the first surface. It is specified using a vibration sensor.
  • the defect apparatus detects the position of the defect by detecting vibration (vibration having a specific frequency) leaking from the defect to the outside of the pipe by a vibration sensor installed on the first surface.
  • the defect detection apparatus of the present embodiment applies vibration to the pipe and / or the fluid flowing through the pipe using the vibrator, and detects the vibration in this state. According to the said means, the magnitude
  • the defect detection apparatus of the present embodiment does not apply vibrations in a wide frequency band using a vibrator, but applies only vibrations of a predetermined frequency to a pipe or a fluid flowing in the pipe. Specifically, a vibration frequency that is likely to leak from the defect to the outside of the pipe and has good transmission efficiency between the pipe and the first surface is applied to the pipe and / or the fluid flowing through the pipe. In the case of this embodiment in which vibration is detected in such a state, the S / N ratio is increased, and the detection accuracy is improved.
  • FIG. 1 shows an example of a schematic diagram of the defect detection apparatus of the present embodiment that specifies the position of a defect (eg, leakage hole) 3 formed in the pipe 2.
  • a defect eg, leakage hole
  • the pipe 2 shown in Fig. 1 is installed in the ground. That is, the pipe 2 is installed at a position away from the ground (first surface) 4.
  • a fluid 5 flows in the pipe 2.
  • the fluid corresponds to a liquid such as water or a gas such as air or gas.
  • the pipe 2 may be installed in the attic or underground of the building, or may be embedded in a wall or a pillar.
  • the first surface is a ceiling surface, a wall surface, a side surface of a column, a floor surface, or the like.
  • the defect inspection apparatus includes a vibration unit 6, a first detection unit 7, a second detection unit 9, a third detection unit 8, a first vibration control unit 101, a second vibration control unit 103, and signal processing.
  • the first processing apparatus 100 including the unit 102 and the defect position estimation unit 104 are included. First, the positional relationship between these components will be described.
  • the vibration unit 6 is installed at a position where vibration can be applied to the pipe 2. For example, it may be installed directly on the outer surface or inner surface of the pipe 2 or may be installed on an accessory (flange, fire hydrant, etc.) of the pipe 2.
  • the 1st detection part 7 is installed in the position which can detect the vibration which propagates the piping 2. As shown in FIG. For example, it may be installed directly on the outer surface or inner surface of the pipe 2 or may be installed on an accessory (flange, fire hydrant, etc.) of the pipe 2. In the case of the example shown in FIG. 1, both the excitation unit 6 and the first detection unit 7 are installed on the outer surface of the pipe 2. In the case of the example shown in FIG. 9, both the excitation unit 6 and the first detection unit 7 are installed inside the pipe 2. Although not shown, either one of the vibration unit 6 and the first detection unit 7 may be installed on the outer surface of the pipe 2 and the other may be installed inside the pipe 2.
  • the vibration unit 6 and the first detection unit 7 have the same or sufficiently close positions in the extending direction of the pipe 2 (left and right direction shown in FIG. 1) (hereinafter referred to as “pipe extending direction position”). For this reason, when the defect 3 is formed at an arbitrary position of the pipe 2, the position in the pipe extending direction of the vibration unit 6 and the first detection unit 7 is located on the same side as viewed from the defect 3 with high probability. It becomes.
  • the second detection unit 9 and the third detection unit 8 are installed on the ground 4.
  • the second detection unit 9 may be installed, for example, immediately above or near the excitation unit 6.
  • the installation position of the first processing apparatus 100 is not particularly limited, and may be anywhere as long as it can communicate with the vibration unit 6, the first detection unit 7, and the second detection unit 9. It may be installed on the ground or installed in the ground.
  • the first processing apparatus 100 may be installed on the ground, and may communicate with the vibration unit 6, the first detection unit 7, and the second detection unit 9 by wired and / or wireless communication.
  • the installation position of the defect position estimation unit 104 is not particularly limited and may be anywhere as long as communication with the second detection unit 9 is possible.
  • the defect position estimation part 104 is also installed on the ground.
  • the vibration unit 6 applies vibration to at least one of the fluid 5 flowing in the pipe 2 and the pipe 2.
  • the excitation unit 6 applies vibration to the pipe 2.
  • the vibration applied to the pipe 2 may be transmitted to the fluid 5.
  • the excitation unit 6 applies vibration to the fluid 5.
  • the vibration applied to the fluid 5 may be transmitted to the pipe 2.
  • the vibration applied to the pipe 2 by the vibration unit 6 mainly proceeds along the extending direction of the pipe 2.
  • the vibration unit 6 applies a vibration having a frequency corresponding to the vibration signal input from the first vibration control unit 101 and the second vibration control unit 103.
  • the vibration unit 6 can apply vibrations having a plurality of frequencies (high-band frequencies) in accordance with the vibration signal input from the first vibration control unit 101.
  • the means for applying vibrations having a plurality of frequencies is not particularly limited, and vibrations having a plurality of frequencies may be applied simultaneously, or vibrations having a plurality of frequencies may be sequentially applied while changing the frequency.
  • the vibration unit 6 may apply, for example, impulse vibration or white noise.
  • the vibration unit 6 can continuously apply vibration of a specific frequency in accordance with the vibration signal input from the second vibration control unit 103.
  • vibration can be applied to the fluid 5 and the pipe 2 such as an electromagnetic vibrator, a permanent magnet vibrator, an electromagnetic speaker, an ultrasonic vibrator, and the vibration frequency can be changed.
  • an electromagnetic vibrator a permanent magnet vibrator, an electromagnetic speaker, an ultrasonic vibrator, and the vibration frequency can be changed.
  • Those capable of exciting vibrations having a plurality of frequency components can be used.
  • the first vibration control unit 101 controls the vibration unit 6 (inputs a vibration signal to the vibration unit 6), and has a plurality of frequencies for at least one of the fluid 5 flowing in the pipe 2 and the pipe 2.
  • a first vibration including vibration is applied.
  • the incident wave 20 of the first vibration applied by the vibration unit 6 in a state where the defect 3 exists in the pipe 2 is reflected by the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3. Then, it is separated into a reflected wave 22 that returns to the side where the excitation unit 6 and the first detection unit 7 are located, and a leakage wave 23 that leaks outside the pipe 2 through the defect 3.
  • the first detection unit 7 detects at least one of the first vibration that is applied by the vibration unit 6 and propagates through the pipe 2 and the first vibration that propagates through the fluid 5. In the case of the example shown in FIG. 1, the first detection unit 7 detects the first vibration that propagates through the pipe 2. In the case of the example shown in FIG. 9, the first detection unit 7 detects the first vibration that propagates through the fluid 5.
  • the pipe extending direction positions of the excitation unit 6 and the first detection unit 7 are located on the same side as viewed from the defect 3 with high probability. For this reason, when the 1st vibration is applied in the state where defect 3 exists in piping 2, the 1st detection part 7 can detect reflected wave 22 of the 1st vibration.
  • the first detection unit 7 inputs an electric signal corresponding to the detected amplitude and frequency of the first vibration to the signal processing unit 102 as a detection signal.
  • a piezoelectric vibration sensor As the first detection unit 7, a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used.
  • the second detection unit 9 is installed on the first surface (the ground 4) and detects the first vibration applied by the vibration unit 6. That is, the second detection unit 9 detects the first vibration that has passed through the underground 1 after being applied by the excitation unit 6.
  • a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used as the second detection unit 9.
  • the second vibration control unit 103 controls the vibration unit 6 (inputs a vibration signal to the vibration unit 6), and will be described below with respect to at least one of the fluid 5 flowing in the pipe 2 and the pipe 2.
  • the vibration of the frequency determined by the signal processing unit 102 to be applied (second vibration) is applied.
  • the frequency of the second vibration includes a first vibration waveform that is a vibration waveform obtained by the first detection unit 7 detecting the first vibration in a state where the defect 3 exists in the pipe 2, and the first vibration. Is determined using a second vibration waveform which is a vibration waveform obtained by detecting by the second detection unit 9 installed on the first surface (ground 4).
  • the second vibration will be described in detail in the description of the signal processing unit 102 below.
  • the second vibration control unit 103 controls the vibration unit 6 to detect the second vibration determined by using the first vibration waveform detected by the first detection unit 7 in the state where the defect 3 exists. 3 is applied to the pipe 2 in which it exists.
  • the signal processing unit 102 determines the frequency of the second vibration using the first vibration waveform and the second vibration waveform. By determining the frequency of the second vibration using the first vibration waveform and the second vibration waveform, leakage from the defect 3 to the outside of the pipe 2 is facilitated, and the transmission efficiency between the pipe 2 and the ground 4 is improved. The frequency of vibration that is good can be determined. Hereinafter, the reason will be described.
  • the first vibration waveform will be described.
  • the first vibration applied to the pipe 2 and / or the fluid 5 propagates as an incident wave (vibration wave) 20 in the pipe and / or the fluid 5 (see FIG. 1).
  • the incident wave 20 is reflected at the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3, and the side where the excitation unit 6 and the first detection unit 7 are located. Is separated into a reflected wave 22 that returns to the outside and a leaky wave 23 that leaks to the outside of the pipe 2 through the defect 3.
  • the spectrum of the leaky wave 23 has a characteristic that the vibration amplitude of a specific frequency is larger than the spectrum of the incident wave 20.
  • the reflected wave 22 also has a feature that the vibration amplitude of a specific frequency is large, like the leaky wave 23.
  • the spectrum of the leaky wave 23 and the reflected wave 22 has a larger vibration amplitude at a specific frequency than the incident wave 20 because resonance occurs between the incident wave 20 and the defect 3.
  • the defect 3 has a resonance frequency corresponding to the diameter, length, etc. of the defect 3. When vibration having the same frequency as the resonance frequency is incident on the defect 3, resonance occurs in the defect 3, and the vibration amplitude of the resonance frequency increases.
  • FIG. 2 shows a vibration spectrum of the leaky wave 23 when the first vibration having a flat frequency characteristic is incident on the defect 3 as the incident wave 20.
  • the horizontal axis represents the frequency f
  • the vertical axis represents the vibration amplitude I.
  • the vibration amplitude I of the leaky wave 23 has a plurality of peaks at the fundamental frequency f 0 and its harmonic frequencies f 1 , f 2 , f 3 ..., And has the largest amplitude I at the fundamental frequency f 0.
  • a large peak is obtained.
  • the frequency f 0 of this fundamental wave and the frequencies f 1 , f 2 , f 3 ... Of its harmonics are defined as resonance frequencies.
  • a frequency having a large vibration amplitude in the spectrum of the leaky wave 23 is a frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3.
  • FIG. 3 shows a vibration spectrum of the reflected wave 22 when the first vibration having a flat frequency characteristic is incident on the defect 3 as the incident wave 20.
  • the horizontal axis represents the frequency f
  • the vertical axis represents the vibration amplitude I.
  • the spectrum of the reflected wave 22 has a plurality of peaks at the fundamental frequency f 0 and its harmonic frequencies f 1 , f 2 , f 3 ..., As with the leaky wave 23, and the fundamental frequency f 0.
  • the peak with the largest amplitude I is obtained at
  • the frequency at which the vibration amplitude in the reflected wave 22 increases and the frequency at which the vibration amplitude in the leaky wave 23 increases coincide.
  • a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3. That is, in the first vibration waveform including the component of the reflected wave 22, a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3.
  • the second vibration waveform is a vibration waveform obtained by detecting the first vibration with the second detection unit 9 installed on the first surface (ground 4). For this reason, the peak frequency that appears in the second vibration waveform can be said to be a frequency that is easily transmitted between the pipe 2 and the first surface (the ground surface 4). That is, the second vibration waveform has a peak at the frequency of vibration that is easily transmitted between the pipe 2 and the first surface (the ground surface 4).
  • the signal processing unit 102 includes the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f). Determine the frequency.
  • the transfer function G3 (f) a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3 and is easily transmitted between the pipe 2 and the first surface (the ground surface 4).
  • the transfer function G3 (f) is expressed by the following equation.
  • the signal processing unit 102 may set the frequency band of a predetermined range (a predetermined range centered on the peak) including the frequency of the peak appearing in the vibration waveform of the transfer function G3 (f) as the frequency of the second vibration. .
  • the signal processing unit 102 may determine the peak frequency appearing in the vibration waveform of the transfer function G3 (f) as the second vibration frequency.
  • the signal processing unit 102 may set a frequency band in a predetermined range including the frequencies of the plurality of peaks as the second vibration frequency.
  • a frequency band in a predetermined range (a predetermined range centered on the peak) including the frequency of the strongest peak may be used as the frequency of the second vibration.
  • the signal processing unit 102 may set the frequency of the plurality of peaks therein as the frequency of the second vibration, or the highest among them.
  • the strong peak frequency may be set as the frequency of the second vibration.
  • the frequency determined in this way is a frequency of vibration that is likely to leak from the defect 3 to the outside of the pipe 2 and that the transmission efficiency between the pipe 2 and the ground surface 4 (first surface) is good. I can say that.
  • the range is preferably set to about 100 Hz or less.
  • the vibration waveform of the transfer function G3 (f) is as shown in FIG.
  • the peak frequency appearing in the vibration waveform of the transfer function G3 (f) may deviate from the peak frequency appearing in the first vibration waveform, or may coincide with the peak frequency appearing in the first vibration waveform. There is also a case.
  • the third detection unit 8 detects the second vibration applied to the pipe 2 in which the defect 3 exists and / or the fluid 5 flowing through the pipe 2 by the vibration unit 6. Specifically, the third detection unit 8 leaks to the outside of the pipe 2 through the defect 3 in the second vibration applied by the vibration unit 6 according to the control of the second vibration control unit 103.
  • the second vibration propagating through the underground 1 is detected.
  • the second vibration is a vibration having a frequency that easily leaks from the defect 3 to the outside of the pipe 2 and has good transmission efficiency between the pipe 2 and the ground surface 4 (first surface). For this reason, the third detection unit 8 can detect the second vibration with sufficient strength that has propagated to the ground 4 after propagating to the outside of the pipe 2 through the defect 3.
  • the third detection unit 8 may be configured to change the installation position and detect the second vibration at a plurality of positions.
  • a plurality of third detection units 8 may exist, the plurality of second detection units 9 may be installed at different positions with predetermined intervals, and each may detect the second vibration (FIG. 8). reference).
  • the third detection unit 8 inputs an electrical signal corresponding to the detected amplitude and frequency of the second vibration to the defect position estimation unit 104 as a detection signal.
  • a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used.
  • the second detection unit 9 and the third detection unit 8 may be the same device or different devices.
  • the sensors constituting the second detection unit 9 and the third detection unit 8 may be provided separately, or may be configured by the same sensor or the like. Since the second detector 9 and the third detector 8 are used at different timings, there is no problem even if the latter is configured.
  • the defect position estimation unit 104 estimates the position of the defect 3 using the vibration waveforms of the plurality of second vibrations detected at the plurality of positions by the third detection unit 8. Alternatively, the defect position estimation unit 104 estimates the position of the defect 3 using the vibration waveforms of the plurality of second vibrations detected by the plurality of second detection units 9. For example, the defect position estimation unit 104 compares the vibration waveforms of the plurality of second vibrations measured at each of the plurality of installation positions, and determines the installation position where the peak output is maximum as the position immediately above the defect 3. Can be estimated. In addition, when the position of the rough defect 3 can be grasped, it is preferable that the installation position of the third detection unit 8 is in the vicinity immediately above the defect 3.
  • FIG. 7 is an example of a flowchart showing a processing flow of the defect detection method of the present embodiment.
  • the defect detection method of the present embodiment includes an external propagation frequency specifying step S10 and an external propagation vibration detection step S20.
  • the presence of the defect 3 in the pipe 2 is detected by some means.
  • the spectrum of the reflected wave 22 is constantly or intermittently (eg, once a day, once an hour, once every 12 hours, etc.) using the first detector 7 by the same means as described above.
  • Measurement of the defect 3 can be detected from the change in the spectrum of the reflected wave 22 when the defect 3 occurs.
  • the following steps for specifying the position of the defect 3 are executed.
  • the vibration unit 6 applies vibrations in a plurality of frequency bands (first vibrations) to the fluid 5 according to the vibration signal output from the first vibration control unit 101.
  • the first vibration applied to the fluid 5 propagates in the fluid 5 as an incident wave (vibration wave) 20 (see FIG. 1).
  • the incident wave 20 is reflected at the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3, and the side where the excitation unit 6 and the first detection unit 7 are located. Is separated into a reflected wave 22 that returns to the outside and a leaky wave 23 that leaks to the outside of the pipe 2 through the defect 3.
  • the first detection unit 7 is reflected by the defect 3 in the first vibration applied by the vibration unit 6 according to the control of the first vibration control unit 101, and the reflected wave 22 propagates through the pipe 2 and / or the fluid 5. Detect vibrations. Then, the first detection unit 7 inputs a detection signal to the signal processing unit 102.
  • the signal processing unit 102 includes the data of the vibration waveform (first vibration waveform) detected by the first detection unit 7 and the vibration waveform (second vibration waveform) detected by the second detection unit 9 of the first vibration.
  • the frequency of the second vibration is determined using the data. Details are as described above.
  • the second vibration waveform data is acquired (measured) at the same timing (eg, the same day and the same time) as the first vibration waveform data is acquired (measured), and input to the signal processing unit 102. Or, it is acquired (measured) before the data of the first vibration waveform is acquired (measured) (for example, when the excitation unit 6 or the first detection unit 7 is installed in the pipe 2). Alternatively, it may be stored in the signal processing unit 102 in advance. In the latter case, instead of the data of the second vibration waveform, the transfer function G2 (f) determined using the data may be stored in the signal processing unit 102.
  • external propagation vibration detection step S20 is executed.
  • the frequency determined in the external propagation frequency specifying step S10 is likely to leak from the defect 3 to the outside of the pipe 2 and the transmission efficiency between the pipe 2 and the ground 4 (first surface) is good.
  • Vibration (second vibration) is applied to the pipe 2 and / or the fluid 5, and this vibration is detected by the third detection unit 8 installed on the ground 4.
  • the vibration unit 6 applies vibration (second vibration) having the frequency determined in the external propagation frequency specifying step S10 to the pipe 2 and / or the fluid 5. During this time, the vibration unit 6 does not apply vibration according to the control of the first vibration control unit 101.
  • the incident wave 20 of the second vibration is separated into a transmitted wave 21, a reflected wave 22, and a leakage wave 23 in the defect 3.
  • the vibration of the resonance frequency (second vibration) is applied, the amplitude of the leakage wave 23 that leaks from the defect 3 to the outside of the pipe 2 and propagates to the ground 1 is amplified by resonance.
  • the amplified leaky wave 23 propagates in the ground 1 and is detected by the second detection unit 9 installed on the ground 4, and a detection signal corresponding to the amplitude of the detection signal is input to the defect position estimation unit 104.
  • the third detection unit 8 changes the installation position and detects the second vibration at a plurality of positions. For example, the ground is scanned along the pipe 2.
  • a plurality of third detection units 8 exist, the plurality of third detection units 8 are installed at different positions with a predetermined interval, and each detects a second vibration. For example, they are installed on the ground side by side at a predetermined interval along the pipe 2.
  • the vibration amplitude of the leaky wave 23 is large, so that the detection signal level also increases, and the vibration amplitude of the leaky wave 23 increases as the third detection unit 8 moves away from the defect 3. It becomes smaller and the detection signal level becomes smaller. From this, it is estimated that the place of the 3rd detection part 8 in which a detection signal level becomes the maximum right above the place where the defect 3 exists. That is, by specifying the installation location where the detection signal level is maximized, it is possible to estimate the location immediately above the location where the defect 3 exists.
  • the defect position estimation unit 104 compares a plurality of detection signals detected at a plurality of positions, and estimates the position where the detection signal level is the maximum directly above the place where the defect 3 is present.
  • the defect position estimation unit 104 can specify it. For example, when the third detection unit 8 is scanned on the ground (automatic scanning or manually scanned by an operator), the third detection unit 8 measures the second vibration at each position and processes the measured detection signal. The data is displayed on the display in real time. The worker may specify the position where the detection signal level is maximized by checking the data displayed on the display while scanning the third detection unit 8 on the ground.
  • a frequency at which the defect 3 easily leaks to the outside of the pipe 2 and the transmission efficiency between the pipe 2 and the ground 4 (first surface) is good.
  • the amplitude of the leakage wave 23 can be increased by calculating by the signal processing unit 102 and applying the vibration of the frequency to the fluid 5.
  • the third detector 8 can detect a sufficiently strong vibration without causing the inconvenience of a low S / N ratio. As a result, the leak position can be estimated with high accuracy.
  • the third detector 8 detects the second vibration in a state in which the second vibration including the frequencies of a plurality of peaks appearing in the vibration waveform of the transfer function G3 (f) is applied to the fluid 5. You can also Thereby, even when the frequency of the disturbance vibration overlaps with any one of the resonance frequencies, the influence of the disturbance vibration can be reduced by detecting the leakage wave 23 having another resonance frequency.
  • the reflected wave 22 may include a reflected wave other than the defect 3.
  • a reflected wave is also generated in a bent pipe of the pipe 2 or a branch portion of the pipe 2.
  • these reflected waves can be distinguished from the reflected wave 22 caused by the defect 3 because it is possible to predict the reflected wave spectrum by measuring the reflected wave without leakage or by simulation. That is, such noise can be removed from the first vibration waveform.
  • the frequency of the second vibration can be determined using the first vibration waveform from which such noise is removed.
  • the vibration detected by the first detection unit 7 in a state where the vibration unit 6 is not applying the first vibration to the fluid 5, and the state where the vibration unit 6 is applying the first vibration to the fluid 5 can be distinguished from the difference in frequency characteristics from the vibration detected by the first detection unit 7. That is, the frequency of the second vibration can be determined using the first vibration waveform from which such noise has been removed.
  • the leak position can be estimated with higher accuracy by performing the leak position detection by the second detector 9 at night when there is little disturbance vibration.
  • the defect device of the present embodiment can also be configured as shown in FIG. That is, the defect device of the present embodiment does not have to include the signal processing unit 102 and the defect position estimation unit 104.
  • the signal processing unit 102 and the defect position estimation unit 104 are provided in an external device different from the defect device.
  • the defective device and the external device exchange data by wired and / or wireless communication, or data exchange by a user operation using a portable storage device or the like, thereby realizing the above-described processing.
  • the defect position estimation unit 104 synchronizes the detection signals detected by the plurality of second detection units 9, calculates a time difference in timing when the feature due to the defect 3 is detected, and based on the time difference, A rough position may be estimated (correlation method).
  • Vibration means for applying vibration to at least one of the fluid flowing in the pipe installed at a position away from the first surface and the pipe;
  • First vibration control means for controlling the vibration means and applying a first vibration including vibrations of a plurality of frequencies to at least one of the fluid flowing in the pipe and the pipe;
  • First detection means for detecting at least one of the first vibration that is applied by the vibration means and propagates through the pipe and the first vibration that propagates the fluid;
  • a second detection means installed on the first surface for detecting the first vibration;
  • a first vibration waveform which is a vibration waveform obtained by controlling the excitation means and detecting the first vibration by the first detection means, and the second detection means detecting the first vibration.
  • Second excitation control means for causing Third detection means installed on the first surface and detecting the second vibration applied by the vibration means; A defect analysis apparatus.
  • the second vibration control unit is a defect analysis apparatus that controls the vibration of the frequency determined by the signal processing unit to be applied from the vibration unit as the second vibration. 3.
  • the defect analysis apparatus wherein the signal processing means determines a peak frequency appearing in a vibration waveform of the transfer function G3 (f) as the frequency of the second vibration. 4).
  • the signal processing means when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), determines the frequency of the strongest peak among them as the frequency of the second vibration. 5.
  • the third detection means is configured to detect the second vibration at a plurality of positions on the first surface, A defect analysis apparatus further comprising defect position estimation means for estimating the position of a defect using a plurality of vibration waveforms detected at a plurality of positions by the third detection means. 6).
  • a defect analysis apparatus In the defect analysis apparatus according to any one of 1 to 4, there are a plurality of the third detection means, and the plurality of third detection means are installed at different positions with a predetermined interval on the first surface, and each detects the second vibration. , A defect analysis apparatus further comprising defect position estimation means for estimating a defect position using a plurality of vibration waveforms detected by the plurality of third detection means. 7).
  • a second vibration which is a vibration having a frequency determined using the second vibration waveform, which is a vibration waveform obtained by applying, to at least one of the fluid flowing in the pipe and the pipe.
  • a second excitation control step A third detection step installed on the first surface and detecting the second vibration applied by the vibration means; Perform defect analysis method. 7-2.
  • the computer further performs a signal processing step of determining a frequency of the second vibration;
  • the transfer function G2 (f ) A2 (f) / P0 (f) (where f is the frequency
  • P0 (f) is the magnitude of the first vibration applied from the excitation means
  • A1 (f ) Indicates the magnitude of the first vibration detected in the first detection step
  • A2 (f) indicates the magnitude of the first vibration detected in the second detection step).
  • the frequency of the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f);
  • the defect analysis method described in 7-3 In the signal processing step, when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), the defect analysis method of determining the frequency of the strongest peak among them as the frequency of the second vibration. 7-5.
  • the defect analysis method according to any one of 7 to 7-4 In the defect analysis method according to any one of 7 to 7-4, In the third detection step, the second vibration can be detected at a plurality of positions on the first surface.
  • the defect analysis method wherein the computer further executes a defect position estimation step of estimating the position of the defect using a plurality of vibration waveforms detected at a plurality of positions in the third detection step. 8).
  • a first vibration control means for applying a first vibration including a plurality of vibrations to one side; First detection means for detecting at least one of the first vibration that is applied by the vibration means and propagates through the pipe and the first vibration that propagates the fluid; Second detection means for detecting the first vibration on the first surface; A first vibration waveform, which is a vibration waveform obtained by controlling the excitation means and detecting the first vibration by the first detection means, and the second detection means detecting the first vibration.
  • Second excitation control means for causing Third detection means installed on the first surface and detecting the second vibration applied by the vibration means; Program to function as. 8-2.
  • the frequency of the second vibration is determined so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f);

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

A defect analysis device that has the following: a vibration-application unit (6) that applies vibrations to a pipe (2) installed at a distance from ground level (4); a first vibration-application control unit (101) that controls the vibration-application unit (6) so as to apply, to the pipe (2), first vibrations that include vibrations of a plurality of frequencies; a first detection unit (7) that detects the first vibrations propagating down the pipe (2) after having been applied by the vibration-application unit (6); a second detection unit (9) that is installed at ground level (4) and detects the first vibrations; a second vibration-application control unit (103) that controls the vibration-application unit (6) so as to apply second vibrations to the pipe (2), said second vibrations having a frequency determined using a vibration waveform (first vibration waveform) obtained from the detection of the first vibrations by the first detection unit (7) and a vibration waveform (second vibration waveform) obtained from the detection of the first vibrations by the second detection unit (9); and a third detection unit (8) that is installed at ground level (4) and detects the second vibrations applied by the vibration-application unit (6).

Description

欠陥分析装置、欠陥分析方法及びプログラムDefect analysis apparatus, defect analysis method and program
 本発明は、欠陥分析装置、欠陥分析方法及びプログラムに関する。 The present invention relates to a defect analysis apparatus, a defect analysis method, and a program.
 デジタル化が支えるITやネットワーク技術の進展により、人や電子機器が扱い、蓄積する情報量は増大の一途をたどっている。入力デバイスであるセンサから事象の正確なデータを取得し、それを正確に分析、判断、加工を施し有用情報として人が認知することは、多量の情報に散漫になりつつある人間社会にとって安心安全な社会を形成する上で重要な位置づけにある。 With the advancement of IT and network technology supported by digitalization, the amount of information handled and stored by people and electronic devices is steadily increasing. It is safe and secure for human society, which is getting distracted by a large amount of information, to acquire accurate data of events from sensors that are input devices, and to accurately analyze, judge, and process them and recognize them as useful information It is in an important position in forming a healthy society.
 現代生活では、上下水道網や、ガスや石油などの高圧化学パイプライン、高速鉄道、長大橋、超高層建築、大型旅客機、自動車などの設備が構築され、豊かな社会の基盤となっている。これらが、予期せぬ震災などの自然災害や寿命劣化によって破壊されて、重大事故に至れば、社会への影響は多大であり、経済的損失は大きい。設備に用いられる部材は、使用時間に応じて腐食、磨耗、ガタツキなどの劣化が進み、やがて破壊などの機能不全に至る。設備の安心・安全を確保するために科学、工学、社会学などの学術的領域を超えた技術開発に多大な努力がおこなわれている。なかでも、低コストかつ操作が簡便な検査技術である非破壊検査技術の進展は、設備の劣化や破壊による重大事故の防止を図る上でますます重要になっている。 In modern life, facilities such as water and sewage networks, high-pressure chemical pipelines such as gas and oil, high-speed railways, long-span bridges, high-rise buildings, large passenger planes, and automobiles have been built and have become the foundation of a prosperous society. If these are destroyed by natural disasters such as unexpected earthquakes and life deterioration, leading to serious accidents, the impact on society will be great, and the economic loss will be great. The members used in the equipment are subject to deterioration such as corrosion, wear, rattling and the like according to the usage time, and eventually malfunction such as destruction. In order to ensure the safety and security of facilities, great efforts are being made to develop technologies that transcend academic fields such as science, engineering, and sociology. In particular, the advancement of non-destructive inspection technology, which is a low-cost and easy-to-operate inspection technology, is becoming more and more important for preventing serious accidents caused by deterioration and destruction of equipment.
 ところで、上下水道網やパイプライン等の配管の劣化や破壊による流体の漏洩検査としては、人により漏洩音を聴き取る聴感官能検査が一般的におこなわれている。しかしながら、配管は地中へ埋没されている場合や建造物の高所に設置されている場合が多いため、その検査には危険な作業がともない、かつ多大な労力を必要とする。このため、高精度かつ十分な検査が実現されていなかった。また、聴感官能検査は検査員の熟練度合いに依存しており、その低い検知精度のため漏洩事故防止が困難である要因になっている。 By the way, as a fluid leakage inspection due to deterioration or destruction of piping such as water and sewage networks and pipelines, an auditory sensory inspection in which a person hears the leakage sound is generally performed. However, since pipes are often buried in the ground or installed at high places in buildings, the inspection involves dangerous work and requires a great deal of labor. For this reason, high-precision and sufficient inspection has not been realized. Also, the sensory sensory test depends on the level of proficiency of the inspector, and its low detection accuracy makes it difficult to prevent leakage accidents.
 また、漏水の存在が明らかになった場合、修理修繕費用を低く抑える必要から、その位置を高精度に特定することが求められる。現在では、専門の検査員の聴感官能検査によって位置を特定している。しかしながら、例えば検査中には交通騒音などの外乱が存在し、漏水により生じる音とその周波数成分が類似した場合、漏水発生の判別が困難な状況となる。そのため外乱の少ない深夜時間帯での計測を行うなど工夫がなされているが、検査員に大きな負担となる。 Also, when the existence of water leakage becomes clear, it is necessary to specify the position with high accuracy because it is necessary to keep repair costs low. At present, the position is specified by an auditory sensory test of a specialized inspector. However, for example, when there is a disturbance such as traffic noise during the inspection and the sound generated by the water leak is similar in frequency component, it is difficult to determine the occurrence of the water leak. For this reason, contrivances have been made such as measurement in the midnight time zone with little disturbance, but this is a heavy burden on the inspector.
 このような課題を解決するため、機械による各種漏洩検査法が提案されている。 In order to solve such problems, various leak inspection methods using machines have been proposed.
 特許文献1には、配管内の流体に圧力波を生じさせる加振源と、漏洩箇所で反射された圧力波を検知する検知部を備え、反射した圧力波の有無と加振した時間と検知した時間との時間差から、漏洩箇所を特定する手法が開示されている。 Patent Document 1 includes a vibration source that generates a pressure wave in a fluid in a pipe, and a detection unit that detects a pressure wave reflected at a leaked location. A method for identifying a leaked part from the time difference from the time is disclosed.
 特許文献2には、地中に埋設された水道管内に音波を励振する振動子を設置し、水道管および地中を透過して地面に到達した振動レベルを検知することで、漏水箇所を特定する手法が開示されている。 In Patent Document 2, a vibrator that excites sound waves is installed in a water pipe buried in the ground, and a leak point is identified by detecting the vibration level that has passed through the water pipe and the ground and reached the ground. A technique is disclosed.
 特許文献3には、周波数を変えながら正弦波でない電気振動を発振する可変発振器と、測定対象物のコンクリート面上に設置し、可変発振器からの電気振動によって励起し、コンクリートの対向面に向けて音波パルスを繰り返し送波してコンクリートを共振状態とする音波振動子の送波器と、送波器を設置したコンクリートとの同一面上に設置し、コンクリートの厚さ又は内在ひび割れの位置によって異なる周波数を有する共振波を受波する受波器と、共振波の共振周波数を探査するスペクトル解析器とからなるコンクリートの厚さ及び内在ひび割れ位置の測定装置が開示されている。 In Patent Document 3, a variable oscillator that oscillates an electric vibration that is not a sine wave while changing the frequency, and a concrete object to be measured are installed on the concrete surface, excited by the electric vibration from the variable oscillator, and directed toward the opposite surface of the concrete. Installed on the same surface of the transducer of the sonic transducer that makes the concrete resonant by repeatedly transmitting sonic pulses and the concrete on which the transducer is installed, depending on the thickness of the concrete or the position of the internal crack An apparatus for measuring the thickness and the internal crack position of concrete is disclosed which comprises a receiver for receiving a resonant wave having a frequency and a spectrum analyzer for searching for the resonant frequency of the resonant wave.
 特許文献4には、共振振動体に設けられた振動センサの出力を定振幅制御回路に入力し、この定振幅制御回路において設定入力と比較した結果に基づいて前記共振振動体を振動させる加振器に対して所定の駆動信号を出力するようにした共振振動体の制御装置において、前記定振幅制御回路とは別に、共振検出回路を設け、この共振検出回路に前記振動センサの出力を入力し、前記駆動信号を前記共振振動体の共振周波数に自動的に追従させるようにした共振振動体の制御装置が開示されている。 In Patent Document 4, an output of a vibration sensor provided in a resonant vibration body is input to a constant amplitude control circuit, and an excitation is performed to vibrate the resonant vibration body based on a result of comparison with a set input in the constant amplitude control circuit. In the control device for a resonant vibration body that outputs a predetermined drive signal to the detector, a resonance detection circuit is provided separately from the constant amplitude control circuit, and the output of the vibration sensor is input to the resonance detection circuit. A control device for a resonant vibration body is disclosed in which the drive signal automatically follows the resonance frequency of the resonant vibration body.
特開昭60-13237号公報Japanese Patent Application Laid-Open No. 60-13237 特開昭60-238734号公報JP 60-238734 A 特開昭64-65407号公報JP-A-64-65407 実開平5-95678号公報Japanese Utility Model Publication No. 5-95678
 従来の機械による漏洩検査法は、その精度が十分でなかった。 The accuracy of the conventional leakage inspection method using machines was not sufficient.
 特許文献1に記載の手法では、漏洩箇所の孔の形状によって反射する圧力波のスペクトルや振幅が変化するため、反射した圧力波と外乱振動が重畳した場合に、圧力波と外乱振動との識別が困難である。特許文献2に記載の手法では、漏洩箇所の孔の形状によって漏水箇所から地面に伝わる振動振幅が異なるため、漏水箇所の孔の形状によっては漏水箇所を特定できないという課題がある。このように、特許文献1及び2に記載の手法の場合、外乱振動や、漏洩箇所の孔の大きさに精度が影響されてしまう。なお、特許文献3及び4に記載の手法は当該課題を解決可能に構成していない。 In the method described in Patent Document 1, since the spectrum and amplitude of the reflected pressure wave change depending on the shape of the hole at the leak location, when the reflected pressure wave and the disturbance vibration are superimposed, the pressure wave and the disturbance vibration are distinguished. Is difficult. In the method described in Patent Document 2, the vibration amplitude transmitted from the water leakage location to the ground differs depending on the shape of the hole at the leakage location, and thus there is a problem that the water leakage location cannot be specified depending on the shape of the hole at the water leakage location. As described above, in the case of the methods described in Patent Documents 1 and 2, the accuracy is affected by disturbance vibration and the size of the hole at the leak location. Note that the methods described in Patent Documents 3 and 4 are not configured to solve the problem.
 本発明の目的は、配管の欠陥位置を高精度に特定する技術を提供することにある。 An object of the present invention is to provide a technique for specifying a defect position of a pipe with high accuracy.
 本発明によれば、
 配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段と、
 複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させるように前記加振手段を制御する第1加振制御手段と、
 前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知手段と、
 前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知手段と、
 前記第1の振動を前記第1検知手段により検知して得られた第1振動波形と、前記第1の振動を前記第2検知手段により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させるように前記加振手段を制御する第2加振制御手段と、
 前記第1の面に設置され、前記第2の振動を検知する第3検知手段と、
を有する欠陥分析装置が提供される。
According to the present invention,
Vibration means for applying vibration to at least one of the pipe and the fluid flowing in the pipe;
First vibration control means for controlling the vibration means to apply a first vibration including vibrations at a plurality of frequencies to at least one of the fluid and the pipe;
First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
A second detection means installed on a first surface spaced from the pipe and detecting the first vibration;
Using the first vibration waveform obtained by detecting the first vibration by the first detection means and the second vibration waveform obtained by detecting the first vibration by the second detection means. Second vibration control means for controlling the vibration means to apply a second vibration, which is a vibration of a determined frequency, to at least one of the fluid or the pipe;
A third detection means installed on the first surface for detecting the second vibration;
A defect analysis apparatus having the following is provided.
 また、本発明によれば、
 コンピュータが、
 配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段を制御し、複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第1加振制御工程と、
 前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知工程と、
 前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知工程と、
 前記加振手段を制御し、前記第1の振動を前記第1検知工程により検知して得られた第1振動波形と、前記第1の振動を前記第2検知工程により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第2加振制御工程と、
 前記第1の面に設置され、前記第2の振動を検知する第3検知工程と、
を実行する欠陥分析方法が提供される。
Moreover, according to the present invention,
Computer
A vibration means for applying vibration to at least one of a pipe or a fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid or the pipe. A first vibration control step to be performed;
A first detection step of detecting the first vibration propagating through at least one of the pipe or the fluid;
A second detection step that is installed on a first surface spaced from the pipe and detects the first vibration;
The first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection step, and the first vibration obtained by the second detection step. A second vibration control step of applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, to at least one of the fluid or the pipe;
A third detection step installed on the first surface and detecting the second vibration;
A defect analysis method for performing is provided.
 また、本発明によれば、
 コンピュータを、
 配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段を制御し、複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第1加振制御手段、
 前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知手段、
 前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知手段、
 前記加振手段を制御し、前記第1の振動を前記第1検知手段により検知して得られた第1振動波形と、前記第1の振動を前記第2検知手段により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第2加振制御手段、
 前記第1の面に設置され、前記第2の振動を検知する第3検知手段、
として機能させるためのプログラムが提供される。
Moreover, according to the present invention,
Computer
A vibration means for applying vibration to at least one of the pipe and the fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid and the pipe. First excitation control means for causing
First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
A second detection means installed on a first surface spaced from the pipe and detecting the first vibration;
The first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection means, and the first vibration obtained by the second detection means. A second vibration control means for applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, to at least one of the fluid and the pipe;
Third detection means installed on the first surface for detecting the second vibration;
A program for functioning as a server is provided.
 本発明によれば、配管の欠陥位置を高精度に特定することが可能となる。 According to the present invention, it is possible to specify the defect position of the pipe with high accuracy.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
本実施形態の欠陥分析装置の概略図の一例を示す図である。It is a figure which shows an example of the schematic of the defect analyzer of this embodiment. 漏洩波の振動スペクトルの一例である。It is an example of the vibration spectrum of a leaky wave. 反射波の振動スペクトルの一例である。It is an example of the vibration spectrum of a reflected wave. 第1振動波形のスペクトルの一例である。It is an example of the spectrum of a 1st vibration waveform. 第2振動波形のスペクトルの一例である。It is an example of the spectrum of a 2nd vibration waveform. 第1振動波形と第2振動波形をかけ合わせた振動波形のスペクトルの一例である。It is an example of the spectrum of the vibration waveform which multiplied the 1st vibration waveform and the 2nd vibration waveform. 本実施形態の欠陥分析方法の処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the defect analysis method of this embodiment. 本実施形態の欠陥分析装置の概略図の一例を示す図である。It is a figure which shows an example of the schematic of the defect analyzer of this embodiment. 本実施形態の欠陥分析装置の概略図の一例を示す図である。It is a figure which shows an example of the schematic of the defect analyzer of this embodiment. 本実施形態の欠陥分析装置の概略図の一例を示す図である。It is a figure which shows an example of the schematic of the defect analyzer of this embodiment.
 以下、本発明の実施の形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、本実施形態の装置は、任意のコンピュータのCPU、メモリ、メモリにロードされたプログラム(あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む)、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インタフェイスを中心にハードウェアとソフトウェアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。 The apparatus according to the present embodiment includes an arbitrary computer CPU, memory, and a program loaded in the memory (a program stored in the memory in advance from the stage of shipping the apparatus, a storage medium such as a CD, and the like on the Internet). And a storage unit such as a hard disk for storing the program, and a network connection interface, and any combination of hardware and software. It will be understood by those skilled in the art that there are various modifications to the implementation method and apparatus.
 また、本実施形態の説明において利用する機能ブロック図は、ハードウェア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。 Further, the functional block diagram used in the description of the present embodiment shows functional unit blocks, not hardware unit configurations. In these drawings, each device is described as being realized by one device, but the means for realizing it is not limited to this. That is, it may be a physically separated configuration or a logically separated configuration.
 まず、本実施形態の欠陥検知装置の概要について説明する。本実施形態の欠陥検知装置は、第1の面(例:地面)から離れた位置(例:地中)に設置されている配管に形成された欠陥の位置を、第1の面に設置した振動センサを用いて特定する。 First, an outline of the defect detection apparatus of this embodiment will be described. In the defect detection device of the present embodiment, the position of a defect formed in a pipe installed at a position (e.g., underground) away from the first surface (e.g., the ground) is installed on the first surface. It is specified using a vibration sensor.
 配管に欠陥が存在する場合、配管又は配管内を流れる流体を伝搬する振動の一部(特定の周波数の振動)は、配管に形成された欠陥を介して配管の外部に漏れる。本実施形態の欠陥装置は、第1の面に設置した振動センサにより欠陥から配管の外部に漏れた振動(特定の周波数の振動)を検知することで、欠陥の位置を検出する。 When there is a defect in the pipe, part of the vibration propagating through the pipe or the fluid flowing in the pipe (vibration with a specific frequency) leaks to the outside of the pipe through the defect formed in the pipe. The defect apparatus according to the present embodiment detects the position of the defect by detecting vibration (vibration having a specific frequency) leaking from the defect to the outside of the pipe by a vibration sensor installed on the first surface.
 ところで、欠陥から漏れて第1の面まで到達する振動の大きさが十分でない場合、振動センサで検出できる振動は微小となり、十分な検出精度を得られない。そこで、本実施形態の欠陥検知装置は、加振器を用いて配管及び/又は配管を流れる流体に振動を印加し、当該状態で振動を検知する。当該手段によれば、欠陥から漏れて第1の面まで到達する振動の大きさを十分な大きさにすることができる。 By the way, when the magnitude of the vibration that leaks from the defect and reaches the first surface is not sufficient, the vibration that can be detected by the vibration sensor becomes minute, and sufficient detection accuracy cannot be obtained. Therefore, the defect detection apparatus of the present embodiment applies vibration to the pipe and / or the fluid flowing through the pipe using the vibrator, and detects the vibration in this state. According to the said means, the magnitude | size of the vibration which leaks from a defect and arrives at a 1st surface can be made into sufficient magnitude | size.
 しかし、加振器を用いて広い周波数帯の振動を印加すると、検知対象(上記特定の周波数の振動)以外の振動(外乱振動)をも増幅することとなり、S/N比が低くなる。結果、やはり、十分な検出精度が得られない。 However, when vibration in a wide frequency band is applied using a vibrator, vibrations (disturbance vibrations) other than the detection target (vibration having the specific frequency) are also amplified, and the S / N ratio is lowered. As a result, sufficient detection accuracy cannot be obtained.
 そこで、本実施形態の欠陥検知装置は、加振器を用いて広い周波数帯の振動を印加するのでなく、所定の周波数の振動のみを、配管又は配管内を流れる流体に印加する。具体的には、欠陥から配管の外部に漏れやすく、かつ、配管と第1の面との間の伝達効率が良好である振動の周波数を配管及び/又は配管を流れる流体に印加する。このような状態で振動を検知する本実施形態の場合、S/N比が高くなり、検出精度が向上する。 Therefore, the defect detection apparatus of the present embodiment does not apply vibrations in a wide frequency band using a vibrator, but applies only vibrations of a predetermined frequency to a pipe or a fluid flowing in the pipe. Specifically, a vibration frequency that is likely to leak from the defect to the outside of the pipe and has good transmission efficiency between the pipe and the first surface is applied to the pipe and / or the fluid flowing through the pipe. In the case of this embodiment in which vibration is detected in such a state, the S / N ratio is increased, and the detection accuracy is improved.
 次に、図面を用いて本実施形態の欠陥検知装置の構成について詳細に説明する。図1には、配管2に形成された欠陥(例:漏洩孔)3の位置を特定する本実施形態の欠陥検知装置の概略図の一例が示されている。 Next, the configuration of the defect detection apparatus of this embodiment will be described in detail with reference to the drawings. FIG. 1 shows an example of a schematic diagram of the defect detection apparatus of the present embodiment that specifies the position of a defect (eg, leakage hole) 3 formed in the pipe 2.
 図1に示す配管2は地中に設置されている。すなわち、配管2は地面(第1の面)4から離れた位置に設置されている。配管2内には、流体5が流れている。流体は、水等の液体や、空気、ガス等の気体が該当する。なお、配管2は、建造物の屋根裏や地下に設置されてもよく、また、壁や柱等に埋設されてもよい。かかる場合、第1の面は、天井面、壁面、柱の側面、床面等となる。 The pipe 2 shown in Fig. 1 is installed in the ground. That is, the pipe 2 is installed at a position away from the ground (first surface) 4. A fluid 5 flows in the pipe 2. The fluid corresponds to a liquid such as water or a gas such as air or gas. The pipe 2 may be installed in the attic or underground of the building, or may be embedded in a wall or a pillar. In such a case, the first surface is a ceiling surface, a wall surface, a side surface of a column, a floor surface, or the like.
 欠陥検査装置は、加振部6と、第1検知部7と、第2検知部9と、第3検知部8と、第1加振制御部101、第2加振制御部103及び信号処理部102を含む第1処理装置100と、欠陥位置推定部104とを有する。まず、これら構成要素の位置関係について説明する。 The defect inspection apparatus includes a vibration unit 6, a first detection unit 7, a second detection unit 9, a third detection unit 8, a first vibration control unit 101, a second vibration control unit 103, and signal processing. The first processing apparatus 100 including the unit 102 and the defect position estimation unit 104 are included. First, the positional relationship between these components will be described.
 加振部6は配管2に振動を印加可能な位置に設置される。例えば、配管2の外面や内面に直接設置されてもよいし、配管2が有する付属物(フランジ、消火栓等)に設置されてもよい。第1検知部7は配管2を伝搬する振動を検知可能な位置に設置される。例えば、配管2の外面や内面に直接設置されてもよいし、配管2が有する付属物(フランジ、消火栓等)に設置されてもよい。図1に示す例の場合、加振部6及び第1検知部7はいずれも、配管2の外面に設置されている。なお、図9に示す例の場合、加振部6及び第1検知部7はいずれも、配管2の内部に設置されている。図示しないが、加振部6及び第1検知部7のいずれか一方が配管2の外面に設置され、他方が配管2の内部に設置されてもよい。 The vibration unit 6 is installed at a position where vibration can be applied to the pipe 2. For example, it may be installed directly on the outer surface or inner surface of the pipe 2 or may be installed on an accessory (flange, fire hydrant, etc.) of the pipe 2. The 1st detection part 7 is installed in the position which can detect the vibration which propagates the piping 2. As shown in FIG. For example, it may be installed directly on the outer surface or inner surface of the pipe 2 or may be installed on an accessory (flange, fire hydrant, etc.) of the pipe 2. In the case of the example shown in FIG. 1, both the excitation unit 6 and the first detection unit 7 are installed on the outer surface of the pipe 2. In the case of the example shown in FIG. 9, both the excitation unit 6 and the first detection unit 7 are installed inside the pipe 2. Although not shown, either one of the vibration unit 6 and the first detection unit 7 may be installed on the outer surface of the pipe 2 and the other may be installed inside the pipe 2.
 加振部6及び第1検知部7は、配管2の延伸方向(図1に示す左右方向)の位置(以下、配管延伸方向位置)が同一又は十分に近接している。このため、配管2の任意の位置に欠陥3が形成された場合、加振部6及び第1検知部7の配管延伸方向位置は、高い確率で、欠陥3から見て同じ側に位置することとなる。 The vibration unit 6 and the first detection unit 7 have the same or sufficiently close positions in the extending direction of the pipe 2 (left and right direction shown in FIG. 1) (hereinafter referred to as “pipe extending direction position”). For this reason, when the defect 3 is formed at an arbitrary position of the pipe 2, the position in the pipe extending direction of the vibration unit 6 and the first detection unit 7 is located on the same side as viewed from the defect 3 with high probability. It becomes.
 第2検知部9及び第3検知部8は、地面4に設置される。第2検知部9は、例えば、加振部6の直上又はその付近に設置されてもよい。 The second detection unit 9 and the third detection unit 8 are installed on the ground 4. The second detection unit 9 may be installed, for example, immediately above or near the excitation unit 6.
 第1処理装置100の設置位置は特段制限されず、加振部6、第1検知部7及び第2検知部9と通信可能であればどこでもよい。地上に設置されてもよいし、地中に設置されてもよい。例えば、第1処理装置100は地上に設置され、有線及び/又は無線での通信により、加振部6、第1検知部7及び第2検知部9と通信してもよい。 The installation position of the first processing apparatus 100 is not particularly limited, and may be anywhere as long as it can communicate with the vibration unit 6, the first detection unit 7, and the second detection unit 9. It may be installed on the ground or installed in the ground. For example, the first processing apparatus 100 may be installed on the ground, and may communicate with the vibration unit 6, the first detection unit 7, and the second detection unit 9 by wired and / or wireless communication.
 欠陥位置推定部104の設置位置は特段制限されず、第2検知部9と通信可能であればどこでもよい。なお、第2検知部9は地上に設置されるので、欠陥位置推定部104も地上に設置されるのが好ましい。 The installation position of the defect position estimation unit 104 is not particularly limited and may be anywhere as long as communication with the second detection unit 9 is possible. In addition, since the 2nd detection part 9 is installed on the ground, it is preferable that the defect position estimation part 104 is also installed on the ground.
 次に、各要素の構成について詳細に説明する。 Next, the configuration of each element will be described in detail.
 加振部6は、配管2内を流れる流体5及び配管2の少なくとも一方に対して振動を印加する。図1に示す例の場合、加振部6は配管2に対して振動を印加する。配管2に印加された振動は、流体5に伝わってもよい。図9に示す例の場合、加振部6は流体5に対して振動を印加する。流体5に印加された振動は、配管2に伝わってもよい。加振部6により配管2に印加された振動は、主に、配管2の延伸方向に沿って進行する。 The vibration unit 6 applies vibration to at least one of the fluid 5 flowing in the pipe 2 and the pipe 2. In the case of the example shown in FIG. 1, the excitation unit 6 applies vibration to the pipe 2. The vibration applied to the pipe 2 may be transmitted to the fluid 5. In the case of the example shown in FIG. 9, the excitation unit 6 applies vibration to the fluid 5. The vibration applied to the fluid 5 may be transmitted to the pipe 2. The vibration applied to the pipe 2 by the vibration unit 6 mainly proceeds along the extending direction of the pipe 2.
 加振部6は、第1加振制御部101及び第2加振制御部103から入力された加振信号に応じた周波数の振動を印加する。例えば、加振部6は、第1加振制御部101から入力された加振信号に応じて、複数の周波数(高帯域な周波数)の振動を印加することができる。複数の周波数の振動を印加する手段は特段制限されず、複数の周波数の振動を同時に印加してもよいし、周波数を変えながら複数の周波数の振動を順次印加してもよい。加振部6は、例えばインパルス振動やホワイトノイズを印加してもよい。その他、加振部6は、第2加振制御部103から入力された加振信号に応じて、特定の周波数の振動を継続して印加することができる。 The vibration unit 6 applies a vibration having a frequency corresponding to the vibration signal input from the first vibration control unit 101 and the second vibration control unit 103. For example, the vibration unit 6 can apply vibrations having a plurality of frequencies (high-band frequencies) in accordance with the vibration signal input from the first vibration control unit 101. The means for applying vibrations having a plurality of frequencies is not particularly limited, and vibrations having a plurality of frequencies may be applied simultaneously, or vibrations having a plurality of frequencies may be sequentially applied while changing the frequency. The vibration unit 6 may apply, for example, impulse vibration or white noise. In addition, the vibration unit 6 can continuously apply vibration of a specific frequency in accordance with the vibration signal input from the second vibration control unit 103.
 加振部6としては、電磁式加振器や永久磁石式加振器、電磁式スピーカー、超音波振動子など、流体5や配管2に振動を加振可能で、かつ、振動周波数を変化できるものまたは複数の周波数成分を有する振動を加振できるものを使用できる。 As the vibration unit 6, vibration can be applied to the fluid 5 and the pipe 2 such as an electromagnetic vibrator, a permanent magnet vibrator, an electromagnetic speaker, an ultrasonic vibrator, and the vibration frequency can be changed. Those capable of exciting vibrations having a plurality of frequency components can be used.
 第1加振制御部101は、加振部6を制御し(加振部6に加振信号を入力し)、配管2内を流れる流体5及び配管2の少なくとも一方に対して複数の周波数の振動を含む第1の振動を印加させる。図示するように、配管2に欠陥3が存在する状態で加振部6により印加された第1の振動の入射波20は、欠陥3の位置を通り抜ける透過波21と、欠陥3の位置で反射し、加振部6及び第1検知部7が位置する側に戻ってくる反射波22と、欠陥3を介して配管2の外部に漏れる漏洩波23とに分離される。 The first vibration control unit 101 controls the vibration unit 6 (inputs a vibration signal to the vibration unit 6), and has a plurality of frequencies for at least one of the fluid 5 flowing in the pipe 2 and the pipe 2. A first vibration including vibration is applied. As shown in the figure, the incident wave 20 of the first vibration applied by the vibration unit 6 in a state where the defect 3 exists in the pipe 2 is reflected by the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3. Then, it is separated into a reflected wave 22 that returns to the side where the excitation unit 6 and the first detection unit 7 are located, and a leakage wave 23 that leaks outside the pipe 2 through the defect 3.
 第1検知部7は、加振部6により印加されて配管2を伝搬する第1の振動及び流体5を伝搬する第1の振動の少なくとも一方を検知する。図1に示す例の場合、第1検知部7は、配管2を伝搬する第1の振動を検知する。図9に示す例の場合、第1検知部7は、流体5を伝搬する第1の振動を検知する。上述の通り、加振部6及び第1検知部7の配管延伸方向位置は、高い確率で、欠陥3から見て同じ側に位置することとなる。このため、配管2に欠陥3が存在する状態で第1の振動が印加された場合、第1検知部7は第1の振動の反射波22を検知することができる。 The first detection unit 7 detects at least one of the first vibration that is applied by the vibration unit 6 and propagates through the pipe 2 and the first vibration that propagates through the fluid 5. In the case of the example shown in FIG. 1, the first detection unit 7 detects the first vibration that propagates through the pipe 2. In the case of the example shown in FIG. 9, the first detection unit 7 detects the first vibration that propagates through the fluid 5. As described above, the pipe extending direction positions of the excitation unit 6 and the first detection unit 7 are located on the same side as viewed from the defect 3 with high probability. For this reason, when the 1st vibration is applied in the state where defect 3 exists in piping 2, the 1st detection part 7 can detect reflected wave 22 of the 1st vibration.
 第1検知部7は、検知した第1の振動の振幅および周波数に応じた電気信号を検知信号として信号処理部102に入力する。第1検知部7としては、圧電式振動センサや電磁式振動センサ、超音波センサ、マイクなどを使用できる。 The first detection unit 7 inputs an electric signal corresponding to the detected amplitude and frequency of the first vibration to the signal processing unit 102 as a detection signal. As the first detection unit 7, a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used.
 第2検知部9は、第1の面(地面4)に設置され、加振部6により印加された第1の振動を検知する。すなわち、第2検知部9は、加振部6により印加された後、地中1を経由してきた第1の振動を検知する。第2検知部9としては、圧電式振動センサや電磁式振動センサ、超音波センサ、マイクなどを使用できる。 The second detection unit 9 is installed on the first surface (the ground 4) and detects the first vibration applied by the vibration unit 6. That is, the second detection unit 9 detects the first vibration that has passed through the underground 1 after being applied by the excitation unit 6. As the second detection unit 9, a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used.
 第2加振制御部103は、加振部6を制御し(加振部6に加振信号を入力し)、配管2内を流れる流体5及び配管2の少なくとも一方に対して、以下で説明する信号処理部102が決定した周波数の振動(第2の振動)を印加させる。第2の振動の周波数は、配管2に欠陥3が存在する状態で第1の振動を第1検知部7が検知することで得られた振動波形である第1振動波形と、第1の振動を第1の面(地面4)に設置された第2検知部9で検知することで得られた振動波形である第2振動波形とを用いて決定される。第2の振動については、以下の信号処理部102の説明で詳述する。第2加振制御部103は、加振部6を制御し、欠陥3が存在する状態で第1検知部7が検知した第1振動波形を用いて決定された第2の振動を、その欠陥3が存在する配管2に印加させる。 The second vibration control unit 103 controls the vibration unit 6 (inputs a vibration signal to the vibration unit 6), and will be described below with respect to at least one of the fluid 5 flowing in the pipe 2 and the pipe 2. The vibration of the frequency determined by the signal processing unit 102 to be applied (second vibration) is applied. The frequency of the second vibration includes a first vibration waveform that is a vibration waveform obtained by the first detection unit 7 detecting the first vibration in a state where the defect 3 exists in the pipe 2, and the first vibration. Is determined using a second vibration waveform which is a vibration waveform obtained by detecting by the second detection unit 9 installed on the first surface (ground 4). The second vibration will be described in detail in the description of the signal processing unit 102 below. The second vibration control unit 103 controls the vibration unit 6 to detect the second vibration determined by using the first vibration waveform detected by the first detection unit 7 in the state where the defect 3 exists. 3 is applied to the pipe 2 in which it exists.
 信号処理部102は、第1振動波形と第2振動波形とを用いて、第2の振動の周波数を決定する。第1振動波形と第2振動波形とを用いて第2の振動の周波数を決定することで、欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4との間の伝達効率が良好である振動の周波数を決定することができる。以下、この理由を説明する。 The signal processing unit 102 determines the frequency of the second vibration using the first vibration waveform and the second vibration waveform. By determining the frequency of the second vibration using the first vibration waveform and the second vibration waveform, leakage from the defect 3 to the outside of the pipe 2 is facilitated, and the transmission efficiency between the pipe 2 and the ground 4 is improved. The frequency of vibration that is good can be determined. Hereinafter, the reason will be described.
 まず、第1振動波形について説明する。配管2及び/又は流体5に印加された第1の振動は、配管及び/又は流体5内を入射波(振動波)20として伝搬する(図1参照)。配管2に欠陥3が形成されている場合、入射波20は、欠陥3の位置を通り抜ける透過波21と、欠陥3の位置で反射し、加振部6及び第1検知部7が位置する側に戻ってくる反射波22と、欠陥3を介して配管2の外部に漏れる漏洩波23とに分離される。 First, the first vibration waveform will be described. The first vibration applied to the pipe 2 and / or the fluid 5 propagates as an incident wave (vibration wave) 20 in the pipe and / or the fluid 5 (see FIG. 1). When the defect 3 is formed in the pipe 2, the incident wave 20 is reflected at the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3, and the side where the excitation unit 6 and the first detection unit 7 are located. Is separated into a reflected wave 22 that returns to the outside and a leaky wave 23 that leaks to the outside of the pipe 2 through the defect 3.
 なお、漏洩波23のスペクトルは、入射波20のスペクトルと比較して、特定の周波数の振動振幅が大きいという特徴が現れる。また、反射波22も漏洩波23と同様に、特定の周波数の振動振幅が大きいという特徴が現れる。漏洩波23および反射波22のスペクトルが、入射波20と比較して特定の周波数の振動振幅が大きいのは、入射波20と欠陥3との間で共鳴が起こるためである。欠陥3は、欠陥3の直径、長さ等に応じた共鳴周波数を有する。この共鳴周波数と同じ周波数の振動が欠陥3に入射すると欠陥3内で共鳴が生じ、共鳴周波数の振動振幅が増大する。 Note that the spectrum of the leaky wave 23 has a characteristic that the vibration amplitude of a specific frequency is larger than the spectrum of the incident wave 20. The reflected wave 22 also has a feature that the vibration amplitude of a specific frequency is large, like the leaky wave 23. The spectrum of the leaky wave 23 and the reflected wave 22 has a larger vibration amplitude at a specific frequency than the incident wave 20 because resonance occurs between the incident wave 20 and the defect 3. The defect 3 has a resonance frequency corresponding to the diameter, length, etc. of the defect 3. When vibration having the same frequency as the resonance frequency is incident on the defect 3, resonance occurs in the defect 3, and the vibration amplitude of the resonance frequency increases.
 図2に入射波20としてフラットな周波数特性の第1の振動を欠陥3に向かって入射したときの、漏洩波23の振動スペクトルを示す。図2の横軸は周波数f、縦軸は振動振幅Iを示す。漏洩波23の振動振幅Iは基本波の周波数f及びその高調波の周波数f、f、f・・・において複数のピークを有し、基本波の周波数fの時に最も振幅Iの大きいピークが得られる。ここでは、この基本波の周波数f及びその高調波の周波数f、f、f・・・を共鳴周波数と定義する。漏洩波23のスペクトルにおいて振動振幅が大きい周波数が、欠陥3を介して配管2の外部に漏れやすい振動の周波数である。 FIG. 2 shows a vibration spectrum of the leaky wave 23 when the first vibration having a flat frequency characteristic is incident on the defect 3 as the incident wave 20. In FIG. 2, the horizontal axis represents the frequency f, and the vertical axis represents the vibration amplitude I. The vibration amplitude I of the leaky wave 23 has a plurality of peaks at the fundamental frequency f 0 and its harmonic frequencies f 1 , f 2 , f 3 ..., And has the largest amplitude I at the fundamental frequency f 0. A large peak is obtained. Here, the frequency f 0 of this fundamental wave and the frequencies f 1 , f 2 , f 3 ... Of its harmonics are defined as resonance frequencies. A frequency having a large vibration amplitude in the spectrum of the leaky wave 23 is a frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3.
 次に、図3に入射波20としてフラットな周波数特性の第1の振動を欠陥3に向かって入射したときの、反射波22の振動スペクトルを示す。図3の横軸は周波数f、縦軸は振動振幅Iを示す。反射波22のスペクトルは、漏洩波23と同様、基本波の周波数f及びその高調波の周波数f、f、f・・・において複数のピークを有し、基本波の周波数fの時に最も振幅Iの大きいピークが得られる。 Next, FIG. 3 shows a vibration spectrum of the reflected wave 22 when the first vibration having a flat frequency characteristic is incident on the defect 3 as the incident wave 20. In FIG. 3, the horizontal axis represents the frequency f, and the vertical axis represents the vibration amplitude I. The spectrum of the reflected wave 22 has a plurality of peaks at the fundamental frequency f 0 and its harmonic frequencies f 1 , f 2 , f 3 ..., As with the leaky wave 23, and the fundamental frequency f 0. The peak with the largest amplitude I is obtained at
 なお、反射波22における振動振幅が大きくなる周波数と、漏洩波23における振動振幅が大きくなる周波数とは一致する。このため、反射波22のスペクトルには、欠陥3を介して配管2の外部に漏れやすい振動の周波数にピークが現れていると考えることができる。すなわち、反射波22の成分が含まれる第1振動波形には、欠陥3を介して配管2の外部に漏れやすい振動の周波数にピークが現れる。 It should be noted that the frequency at which the vibration amplitude in the reflected wave 22 increases and the frequency at which the vibration amplitude in the leaky wave 23 increases coincide. For this reason, in the spectrum of the reflected wave 22, it can be considered that a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3. That is, in the first vibration waveform including the component of the reflected wave 22, a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3.
 次に、第2振動波形について説明する。上述の通り、第2振動波形は、第1の振動を第1の面(地面4)に設置された第2検知部9で検知することで得られた振動波形である。このため、第2振動波形に現れたピークの周波数は、配管2と第1の面(地面4)との間を伝達しやすい周波数ということができる。すなわち、第2振動波形には、配管2と第1の面(地面4)との間を伝達しやすい振動の周波数にピークが現れる。 Next, the second vibration waveform will be described. As described above, the second vibration waveform is a vibration waveform obtained by detecting the first vibration with the second detection unit 9 installed on the first surface (ground 4). For this reason, the peak frequency that appears in the second vibration waveform can be said to be a frequency that is easily transmitted between the pipe 2 and the first surface (the ground surface 4). That is, the second vibration waveform has a peak at the frequency of vibration that is easily transmitted between the pipe 2 and the first surface (the ground surface 4).
 信号処理部102は、このような第1振動波形及び第2振動波形を利用して、第2振動の周波数を決定する。具体的には、信号処理部102は、第1振動波形を利用して伝達関数G1(f)=A1(f)/P0(f)を決定する。また、第2振動波形を利用して伝達関数G2(f)=A2(f)/P0(f)を決定する。なお、fは周波数を示し、P0(f)は加振部6から印加された第1の振動の大きさを示し、A1(f)は第1検知部7で検知された第1の振動の大きさを示し、A2(f)は第2検知部9で検知された第1の振動の大きさを示す。振動の大きさは、加速度、速度又は変位等である。そして、信号処理部102は、伝達関数G1(f)と伝達関数G2(f)との積で得られる伝達関数G3(f)の振動波形に現れるピークの周波数を含むように、第2の振動の周波数を決定する。伝達関数G3(f)には、欠陥3を介して配管2の外部に漏れやすく、かつ、配管2と第1の面(地面4)との間を伝達しやすい振動の周波数にピークが現れる。伝達関数G3(f)は以下の式で示される。 The signal processing unit 102 determines the frequency of the second vibration using the first vibration waveform and the second vibration waveform. Specifically, the signal processing unit 102 determines the transfer function G1 (f) = A1 (f) / P0 (f) using the first vibration waveform. Further, the transfer function G2 (f) = A2 (f) / P0 (f) is determined using the second vibration waveform. In addition, f shows a frequency, P0 (f) shows the magnitude | size of the 1st vibration applied from the vibration part 6, A1 (f) is the 1st vibration detected by the 1st detection part 7. A2 (f) indicates the magnitude of the first vibration detected by the second detector 9. The magnitude of the vibration is acceleration, speed, displacement or the like. Then, the signal processing unit 102 includes the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f). Determine the frequency. In the transfer function G3 (f), a peak appears at the frequency of vibration that easily leaks to the outside of the pipe 2 through the defect 3 and is easily transmitted between the pipe 2 and the first surface (the ground surface 4). The transfer function G3 (f) is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 例えば、信号処理部102は、伝達関数G3(f)の振動波形に現れるピークの周波数を含む所定範囲(当該ピークを中心とした所定範囲)の周波数帯を、第2の振動の周波数としてもよい。その他の例として、信号処理部102は、伝達関数G3(f)の振動波形に現れるピークの周波数を、第2の振動の周波数として決定してもよい。なお、伝達関数G3(f)の振動波形にピークが複数現れる場合、信号処理部102は、その中の複数のピークの周波数を含む所定範囲の周波数帯を第2の振動の周波数としてもよいし、または、その中の最も強いピークの周波数を含む所定範囲(当該ピークを中心とした所定範囲)の周波数帯を、第2の振動の周波数としてもよい。また、伝達関数G3(f)の振動波形にピークが複数現れる場合、信号処理部102は、その中の複数のピークの周波数を第2の振動の周波数としてもよいし、または、その中の最も強いピークの周波数を第2の振動の周波数としてもよい。このようにして決定された周波数は、欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4(第1の面)との間の伝達効率が良好である振動の周波数であるといえる。なお、第2の振動として所定範囲の周波数帯を決定する場合、所定範囲を広くし過ぎるとS/N比の問題が発生するので、その範囲は100Hz程度以下とするのが好ましい。 For example, the signal processing unit 102 may set the frequency band of a predetermined range (a predetermined range centered on the peak) including the frequency of the peak appearing in the vibration waveform of the transfer function G3 (f) as the frequency of the second vibration. . As another example, the signal processing unit 102 may determine the peak frequency appearing in the vibration waveform of the transfer function G3 (f) as the second vibration frequency. When a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), the signal processing unit 102 may set a frequency band in a predetermined range including the frequencies of the plurality of peaks as the second vibration frequency. Alternatively, a frequency band in a predetermined range (a predetermined range centered on the peak) including the frequency of the strongest peak may be used as the frequency of the second vibration. In addition, when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), the signal processing unit 102 may set the frequency of the plurality of peaks therein as the frequency of the second vibration, or the highest among them. The strong peak frequency may be set as the frequency of the second vibration. The frequency determined in this way is a frequency of vibration that is likely to leak from the defect 3 to the outside of the pipe 2 and that the transmission efficiency between the pipe 2 and the ground surface 4 (first surface) is good. I can say that. In addition, when determining the frequency band of the predetermined range as the second vibration, since the problem of the S / N ratio occurs if the predetermined range is too wide, the range is preferably set to about 100 Hz or less.
 例えば、第1振動波形が図4で示され、第2振動波形が図5で示される場合、伝達関数G3(f)の振動波形は図6のようになる。図6に示すように、伝達関数G3(f)の振動波形に現れるピークの周波数は、第1振動波形に現れるピークの周波数からずれる場合もあれば、第1振動波形に現れるピークの周波数と一致する場合もある。 For example, when the first vibration waveform is shown in FIG. 4 and the second vibration waveform is shown in FIG. 5, the vibration waveform of the transfer function G3 (f) is as shown in FIG. As shown in FIG. 6, the peak frequency appearing in the vibration waveform of the transfer function G3 (f) may deviate from the peak frequency appearing in the first vibration waveform, or may coincide with the peak frequency appearing in the first vibration waveform. There is also a case.
 図1に戻り、第3検知部8は、加振部6により欠陥3が存在する配管2及び/又は当該配管2を流れる流体5に印加された第2の振動を検知する。具体的には、第3検知部8は、第2加振制御部103の制御に従い加振部6により印加された第2の振動の中の、欠陥3を介して配管2の外部に漏れ、地中1を伝搬してきた第2の振動を検知する。上述の通り、第2の振動は、欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4(第1の面)との間の伝達効率が良好である周波数の振動である。このため、第3検知部8は、欠陥3を介して配管2の外部に伝搬した後、地面4まで伝搬してきた十分な強度の第2の振動を検知することができる。 1, the third detection unit 8 detects the second vibration applied to the pipe 2 in which the defect 3 exists and / or the fluid 5 flowing through the pipe 2 by the vibration unit 6. Specifically, the third detection unit 8 leaks to the outside of the pipe 2 through the defect 3 in the second vibration applied by the vibration unit 6 according to the control of the second vibration control unit 103. The second vibration propagating through the underground 1 is detected. As described above, the second vibration is a vibration having a frequency that easily leaks from the defect 3 to the outside of the pipe 2 and has good transmission efficiency between the pipe 2 and the ground surface 4 (first surface). For this reason, the third detection unit 8 can detect the second vibration with sufficient strength that has propagated to the ground 4 after propagating to the outside of the pipe 2 through the defect 3.
 第3検知部8は、設置位置を変え、複数の位置で第2の振動を検知可能に構成されてもよい。または、第3検知部8は複数存在し、複数の第2検知部9は所定の間隔を設けて各々異なる位置に設置され、かつ、各々が第2の振動を検知してもよい(図8参照)。第3検知部8は、検知した第2の振動の振幅および周波数に応じた電気信号を検知信号として欠陥位置推定部104に入力する。第3検知部8としては、圧電式振動センサや電磁式振動センサ、超音波センサ、マイクなどを使用できる。なお、第2検知部9と第3検知部8は同じ装置であってもよいし、異なる装置であってもよい。第2検知部9と第3検知部8を構成するセンサ等を別々に設けてもよいし、同一のセンサ等で構成してもよい。第2検知部9と第3検知部8は使用のタイミングが異なるので、後者のように構成しても問題ない。 The third detection unit 8 may be configured to change the installation position and detect the second vibration at a plurality of positions. Alternatively, a plurality of third detection units 8 may exist, the plurality of second detection units 9 may be installed at different positions with predetermined intervals, and each may detect the second vibration (FIG. 8). reference). The third detection unit 8 inputs an electrical signal corresponding to the detected amplitude and frequency of the second vibration to the defect position estimation unit 104 as a detection signal. As the third detection unit 8, a piezoelectric vibration sensor, an electromagnetic vibration sensor, an ultrasonic sensor, a microphone, or the like can be used. The second detection unit 9 and the third detection unit 8 may be the same device or different devices. The sensors constituting the second detection unit 9 and the third detection unit 8 may be provided separately, or may be configured by the same sensor or the like. Since the second detector 9 and the third detector 8 are used at different timings, there is no problem even if the latter is configured.
 欠陥位置推定部104は、第3検知部8により複数の位置で検知された複数の第2の振動の振動波形を利用して、欠陥3の位置を推定する。または、欠陥位置推定部104は、複数の第2検知部9により検知された複数の第2の振動の振動波形を利用して、欠陥3の位置を推定する。例えば、欠陥位置推定部104は、複数の設置位置各々で測定された複数の第2の振動の振動波形を比較処理し、ピークの出力が最大となる設置位置を、欠陥3の直上の位置と推定することができる。なお、おおまかな欠陥3の位置が把握できている場合、第3検知部8の設置位置は、欠陥3の直上付近とするのが好ましい。 The defect position estimation unit 104 estimates the position of the defect 3 using the vibration waveforms of the plurality of second vibrations detected at the plurality of positions by the third detection unit 8. Alternatively, the defect position estimation unit 104 estimates the position of the defect 3 using the vibration waveforms of the plurality of second vibrations detected by the plurality of second detection units 9. For example, the defect position estimation unit 104 compares the vibration waveforms of the plurality of second vibrations measured at each of the plurality of installation positions, and determines the installation position where the peak output is maximum as the position immediately above the defect 3. Can be estimated. In addition, when the position of the rough defect 3 can be grasped, it is preferable that the installation position of the third detection unit 8 is in the vicinity immediately above the defect 3.
 次に、本実施形態の欠陥検知装置を用いて実現される欠陥検知方法について説明する。図7は、本実施形態の欠陥検知方法の処理の流れを示すフローチャートの一例である。図示するように、本実施形態の欠陥検知方法は、外部伝搬周波数特定ステップS10と、外部伝搬振動検知ステップS20とを有する。 Next, a defect detection method realized using the defect detection apparatus of this embodiment will be described. FIG. 7 is an example of a flowchart showing a processing flow of the defect detection method of the present embodiment. As shown in the figure, the defect detection method of the present embodiment includes an external propagation frequency specifying step S10 and an external propagation vibration detection step S20.
 外部伝搬周波数特定ステップS10では、配管2に存在する欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4(第1の面)との間の伝達効率が良好である振動の周波数を第2の振動の周波数として決定する。 In the external propagation frequency specifying step S10, the frequency of vibration at which the defect 3 existing in the pipe 2 easily leaks to the outside of the pipe 2 and the transmission efficiency between the pipe 2 and the ground surface 4 (first surface) is good. Is determined as the frequency of the second vibration.
 まず、何らかの手段により、配管2に欠陥3が存在することが検知される。例えば、第1検知部7を用いて、常時または断続的(例:1日に1回、1時間に1回、12時間に1回等)に、上記と同様の手段で反射波22のスペクトルを測定することで、欠陥3が発生した時の反射波22のスペクトルの変化から、欠陥3の発生を検知することもできる。欠陥3が検知されると、欠陥3の位置を特定するための以下のステップが実行される。 First, the presence of the defect 3 in the pipe 2 is detected by some means. For example, the spectrum of the reflected wave 22 is constantly or intermittently (eg, once a day, once an hour, once every 12 hours, etc.) using the first detector 7 by the same means as described above. Measurement of the defect 3 can be detected from the change in the spectrum of the reflected wave 22 when the defect 3 occurs. When the defect 3 is detected, the following steps for specifying the position of the defect 3 are executed.
 まず、加振部6は、第1加振制御部101から出力された加振信号に応じて、流体5に複数の周波数帯域の振動(第1の振動)を印加する。流体5に印加された第1の振動は流体5内を入射波(振動波)20として伝搬する(図1参照)。配管2に欠陥3が形成されている場合、入射波20は、欠陥3の位置を通り抜ける透過波21と、欠陥3の位置で反射し、加振部6及び第1検知部7が位置する側に戻ってくる反射波22と、欠陥3を介して配管2の外部に漏れる漏洩波23とに分離される。 First, the vibration unit 6 applies vibrations in a plurality of frequency bands (first vibrations) to the fluid 5 according to the vibration signal output from the first vibration control unit 101. The first vibration applied to the fluid 5 propagates in the fluid 5 as an incident wave (vibration wave) 20 (see FIG. 1). When the defect 3 is formed in the pipe 2, the incident wave 20 is reflected at the transmitted wave 21 passing through the position of the defect 3 and the position of the defect 3, and the side where the excitation unit 6 and the first detection unit 7 are located. Is separated into a reflected wave 22 that returns to the outside and a leaky wave 23 that leaks to the outside of the pipe 2 through the defect 3.
 第1検知部7は、第1加振制御部101の制御に従い加振部6が印加した第1の振動の内、欠陥3で反射し、配管2及び/又は流体5を伝搬する反射波22の振動を検知する。そして、第1検知部7は、検出信号を信号処理部102に入力する。 The first detection unit 7 is reflected by the defect 3 in the first vibration applied by the vibration unit 6 according to the control of the first vibration control unit 101, and the reflected wave 22 propagates through the pipe 2 and / or the fluid 5. Detect vibrations. Then, the first detection unit 7 inputs a detection signal to the signal processing unit 102.
 すると、信号処理部102は、第1検知部7が検知した振動波形(第1振動波形)のデータと、第1の振動を第2検知部9が検知した振動波形(第2振動波形)のデータとを用いて、第2振動の周波数を決定する。詳細は上述の通りである。 Then, the signal processing unit 102 includes the data of the vibration waveform (first vibration waveform) detected by the first detection unit 7 and the vibration waveform (second vibration waveform) detected by the second detection unit 9 of the first vibration. The frequency of the second vibration is determined using the data. Details are as described above.
 なお、第2振動波形のデータは、第1振動波形のデータが取得(測定)されるタイミングと同じタイミング(例:同じ日、同じ時間)で取得(測定)され、信号処理部102に入力されてもよいし、又は、第1振動波形のデータが取得(測定)されるよりも前(例:加振部6や第1検知部7が配管2に設置された時)に取得(測定)され、予め信号処理部102に記憶されていてもよい。後者の場合、第2振動波形のデータの代わりに、当該データを利用して決定された伝達関数G2(f)が信号処理部102に記憶されていてもよい。 Note that the second vibration waveform data is acquired (measured) at the same timing (eg, the same day and the same time) as the first vibration waveform data is acquired (measured), and input to the signal processing unit 102. Or, it is acquired (measured) before the data of the first vibration waveform is acquired (measured) (for example, when the excitation unit 6 or the first detection unit 7 is installed in the pipe 2). Alternatively, it may be stored in the signal processing unit 102 in advance. In the latter case, instead of the data of the second vibration waveform, the transfer function G2 (f) determined using the data may be stored in the signal processing unit 102.
 次に、外部伝搬振動検知ステップS20を実行する。当該ステップでは、外部伝搬周波数特定ステップS10で決定した、欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4(第1の面)との間の伝達効率が良好である周波数の振動(第2の振動)を配管2及び/又は流体5に印加し、地面4に設置された第3検知部8でこの振動を検知する。 Next, external propagation vibration detection step S20 is executed. In this step, the frequency determined in the external propagation frequency specifying step S10 is likely to leak from the defect 3 to the outside of the pipe 2 and the transmission efficiency between the pipe 2 and the ground 4 (first surface) is good. Vibration (second vibration) is applied to the pipe 2 and / or the fluid 5, and this vibration is detected by the third detection unit 8 installed on the ground 4.
 まず、第2加振制御部103の制御に従い、加振部6が、外部伝搬周波数特定ステップS10で決定された周波数の振動(第2の振動)を配管2及び/又は流体5に印加する。なお、この間、加振部6は第1加振制御部101の制御に従った振動の印加は行わない。第2の振動の入射波20は、欠陥3において、透過波21と反射波22と漏洩波23に分離される。ここで、共鳴周波数の振動(第2の振動)が印加されると、欠陥3から配管2の外部に漏れて地中1に伝搬する漏洩波23の振幅は共鳴によって増幅される。増幅された漏洩波23は地中1を伝搬し、地面4に設置された第2検知部9で検知され、検知信号の振幅に応じた検知信号が欠陥位置推定部104に入力される。 First, according to the control of the second vibration control unit 103, the vibration unit 6 applies vibration (second vibration) having the frequency determined in the external propagation frequency specifying step S10 to the pipe 2 and / or the fluid 5. During this time, the vibration unit 6 does not apply vibration according to the control of the first vibration control unit 101. The incident wave 20 of the second vibration is separated into a transmitted wave 21, a reflected wave 22, and a leakage wave 23 in the defect 3. Here, when the vibration of the resonance frequency (second vibration) is applied, the amplitude of the leakage wave 23 that leaks from the defect 3 to the outside of the pipe 2 and propagates to the ground 1 is amplified by resonance. The amplified leaky wave 23 propagates in the ground 1 and is detected by the second detection unit 9 installed on the ground 4, and a detection signal corresponding to the amplitude of the detection signal is input to the defect position estimation unit 104.
 なお、欠陥3の位置を特定するため、第3検知部8は、設置位置を変え、複数の位置で第2の振動を検知する。例えば、配管2に沿って地面を走査される。または、第3検知部8は複数存在し、複数の第3検知部8は所定の間隔を設けて各々異なる位置に設置され、かつ、各々が第2の振動を検知する。例えば、配管2に沿って所定の間隔で並べて地面に設置される。 In addition, in order to specify the position of the defect 3, the third detection unit 8 changes the installation position and detects the second vibration at a plurality of positions. For example, the ground is scanned along the pipe 2. Alternatively, a plurality of third detection units 8 exist, the plurality of third detection units 8 are installed at different positions with a predetermined interval, and each detects a second vibration. For example, they are installed on the ground side by side at a predetermined interval along the pipe 2.
 第3検知部8が欠陥3の近くにある場合、漏洩波23の振動振幅が大きいため、検知信号レベルも大きくなり、第3検知部8が欠陥3から遠ざかるに従って、漏洩波23の振動振幅が小さくなり、検知信号レベルも小さくなる。このことから、検知信号レベルが最大となる第3検知部8の場所が、欠陥3がある場所の直上と推定される。すなわち、検知信号レベルが最大となる設置場所を特定することで、欠陥3がある場所の直上を推定することができる。 When the third detection unit 8 is near the defect 3, the vibration amplitude of the leaky wave 23 is large, so that the detection signal level also increases, and the vibration amplitude of the leaky wave 23 increases as the third detection unit 8 moves away from the defect 3. It becomes smaller and the detection signal level becomes smaller. From this, it is estimated that the place of the 3rd detection part 8 in which a detection signal level becomes the maximum right above the place where the defect 3 exists. That is, by specifying the installation location where the detection signal level is maximized, it is possible to estimate the location immediately above the location where the defect 3 exists.
 欠陥位置推定部104は、複数の位置で検知された複数の検知信号を比較処理し、検知信号レベルが最大となる位置を、欠陥3がある場所の直上と推定する。 The defect position estimation unit 104 compares a plurality of detection signals detected at a plurality of positions, and estimates the position where the detection signal level is the maximum directly above the place where the defect 3 is present.
 なお、欠陥位置推定部104が欠陥3の位置を特定する代わりに、作業員が、特定することもできる。例えば、第3検知部8を地面で走査(自動走査、又は、作業員が手動で走査)すると、各位置で第3検知部8が第2の振動を測定し、測定された検知信号を処理したデータがリアルタイムにディスプレイに表示されるように構成しておく。作業員は、第3検知部8を地面で走査しながら、ディスプレイに表示されたデータを確認することで、検知信号レベルが最大となる位置を特定してもよい。 In addition, instead of the defect position estimation unit 104 specifying the position of the defect 3, an operator can specify it. For example, when the third detection unit 8 is scanned on the ground (automatic scanning or manually scanned by an operator), the third detection unit 8 measures the second vibration at each position and processes the measured detection signal. The data is displayed on the display in real time. The worker may specify the position where the detection signal level is maximized by checking the data displayed on the display while scanning the third detection unit 8 on the ground.
 以上のように、本実施形態の欠陥検知装置では、欠陥3から配管2の外部に漏れやすく、かつ、配管2と地面4(第1の面)との間の伝達効率が良好である周波数を信号処理部102によって算出し、当該周波数の振動を流体5に印加することにより、漏洩波23の振幅を増大させることができる。かかる場合、S/N比が低くなる不都合が発生することなく、十分な強さの振動を第3検知部8で検知することができる。結果、高精度に漏水位置を推定できる。 As described above, in the defect detection device of the present embodiment, a frequency at which the defect 3 easily leaks to the outside of the pipe 2 and the transmission efficiency between the pipe 2 and the ground 4 (first surface) is good. The amplitude of the leakage wave 23 can be increased by calculating by the signal processing unit 102 and applying the vibration of the frequency to the fluid 5. In such a case, the third detector 8 can detect a sufficiently strong vibration without causing the inconvenience of a low S / N ratio. As a result, the leak position can be estimated with high accuracy.
 なお、本実施形態では、伝達関数G3(f)の振動波形に現れる複数のピークの周波数を含む第2の振動を流体5に印加した状態で、第3検知部8が第2の振動を検知することもできる。これにより、外乱振動の周波数がいずれか一つの共鳴周波数と重なった場合においても、他の共鳴周波数の漏洩波23を検知することによって、外乱振動の影響を低減できる。 In the present embodiment, the third detector 8 detects the second vibration in a state in which the second vibration including the frequencies of a plurality of peaks appearing in the vibration waveform of the transfer function G3 (f) is applied to the fluid 5. You can also Thereby, even when the frequency of the disturbance vibration overlaps with any one of the resonance frequencies, the influence of the disturbance vibration can be reduced by detecting the leakage wave 23 having another resonance frequency.
 なお、反射波22には、欠陥3以外での反射波が含まれる可能性がある。例えば、配管2の曲がり管や配管2の分岐部においても反射波は発生する。しかし、これらの反射波は漏洩が無い状態での反射波の測定や、シミュレーションによって、反射波のスペクトルを予知しておくことが可能であるため、欠陥3による反射波22と区別できる。すなわち、第1振動波形からこのようなノイズを取り除くことができる。そして、このようなノイズを取り除いた第1振動波形を利用して、第2の振動の周波数を決定することができる。 It should be noted that the reflected wave 22 may include a reflected wave other than the defect 3. For example, a reflected wave is also generated in a bent pipe of the pipe 2 or a branch portion of the pipe 2. However, these reflected waves can be distinguished from the reflected wave 22 caused by the defect 3 because it is possible to predict the reflected wave spectrum by measuring the reflected wave without leakage or by simulation. That is, such noise can be removed from the first vibration waveform. The frequency of the second vibration can be determined using the first vibration waveform from which such noise is removed.
 また、加振部6が流体5に第1の振動を印加していない状態で第1検知部7が検知した振動と、加振部6が流体5に第1の振動を印加している状態で第1検知部7が検知した振動との周波数特性の違いから、外乱振動(交通騒音等)と欠陥3からの反射波22とを区別できる。すなわち、このようなノイズを取り除いた第1振動波形を利用して、第2の振動の周波数を決定することができる。 In addition, the vibration detected by the first detection unit 7 in a state where the vibration unit 6 is not applying the first vibration to the fluid 5, and the state where the vibration unit 6 is applying the first vibration to the fluid 5 Thus, the disturbance vibration (traffic noise, etc.) and the reflected wave 22 from the defect 3 can be distinguished from the difference in frequency characteristics from the vibration detected by the first detection unit 7. That is, the frequency of the second vibration can be determined using the first vibration waveform from which such noise has been removed.
 また、第2検知部9による漏洩位置の検知は、外乱振動の少ない夜間に行うことで、より高精度に漏洩位置を推定できる。 Moreover, the leak position can be estimated with higher accuracy by performing the leak position detection by the second detector 9 at night when there is little disturbance vibration.
 その他、本実施形態の欠陥装置は、図10のように構成することもできる。すなわち、本実施形態の欠陥装置は、信号処理部102及び欠陥位置推定部104を有さなくてもよい。かかる場合、信号処理部102及び欠陥位置推定部104は、欠陥装置とは別の外部装置に備えられる。そして、欠陥装置と外部装置は、有線及び/又は無線での通信、又は、可搬型記憶装置等を利用したユーザ操作によるデータの受渡しによりデータの授受を行い、上述した処理を実現する。 In addition, the defect device of the present embodiment can also be configured as shown in FIG. That is, the defect device of the present embodiment does not have to include the signal processing unit 102 and the defect position estimation unit 104. In such a case, the signal processing unit 102 and the defect position estimation unit 104 are provided in an external device different from the defect device. The defective device and the external device exchange data by wired and / or wireless communication, or data exchange by a user operation using a portable storage device or the like, thereby realizing the above-described processing.
 その他、欠陥位置推定部104は、複数の第2検知部9が検知した検知信号を同期させ、欠陥3に起因した特徴を検知したタイミングの時間差を算出し、その時間差に基づいて、欠陥3のおおまかな位置を推定してもよい(相関法)。 In addition, the defect position estimation unit 104 synchronizes the detection signals detected by the plurality of second detection units 9, calculates a time difference in timing when the feature due to the defect 3 is detected, and based on the time difference, A rough position may be estimated (correlation method).
 本実施形態においては、予め複数の第3検知部8を設置すれば、欠陥位置を推定するために第3検知部8を配管2に沿って走査する必要が無いため、手間と時間を軽減できる。 In the present embodiment, if a plurality of third detection units 8 are installed in advance, it is not necessary to scan the third detection unit 8 along the pipe 2 in order to estimate the defect position, thereby reducing labor and time. .
<付記>
 以下、参考形態の例を付記する。
1. 第1の面から離れた位置に設置されている配管内を流れる流体及び前記配管の少なくとも一方に対して振動を印加する加振手段と、
 前記加振手段を制御し、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して複数の周波数の振動を含む第1の振動を印加させる第1加振制御手段と、
 前記加振手段により印加されて前記配管を伝搬する前記第1の振動及び前記流体を伝搬する前記第1の振動の少なくとも一方を検知する第1検知手段と、
 前記第1の面に設置され、前記第1の振動を検知する第2検知手段と、
 前記加振手段を制御し、前記第1の振動を前記第1検知手段が検知することで得られた振動波形である第1振動波形と、前記第1の振動を前記第2検知手段が検知することで得られた振動波形である第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して、印加させる第2加振制御手段と、
 前記第1の面に設置され、前記加振手段により印加された前記第2の振動を検知する第3検知手段と、
を有する欠陥分析装置。
2. 1に記載の欠陥分析装置において、
 前記第2の振動の周波数を決定する信号処理手段をさらに有し、
 前記信号処理手段は、前記第1振動波形を利用して伝達関数G1(f)=A1(f)/P0(f)を決定するとともに、前記第2振動波形を利用して伝達関数G2(f)=A2(f)/P0(f)を決定し(なお、fは周波数を示し、P0(f)は前記加振手段から印加された前記第1の振動の大きさを示し、A1(f)は前記第1検知手段で検知された前記第1の振動の大きさを示し、A2(f)は前記第2検知手段で検知された前記第1の振動の大きさを示す。)、前記伝達関数G1(f)と前記伝達関数G2(f)との積で得られる伝達関数G3(f)の振動波形に現れるピークの周波数を含むように、前記第2の振動の周波数を決定し、
 前記第2加振制御手段は、前記信号処理手段が決定した周波数の振動を前記第2の振動として前記加振手段から印加させるように制御する欠陥分析装置。
3. 2に記載の欠陥分析装置において、
 前記信号処理手段は、前記伝達関数G3(f)の振動波形に現れるピークの周波数を、前記第2の振動の周波数として決定する欠陥分析装置。
4. 3に記載の欠陥分析装置において、
 前記信号処理手段は、前記伝達関数G3(f)の振動波形にピークが複数現れる場合、その中の最も強いピークの周波数を、前記第2の振動の周波数として決定する欠陥分析装置。
5. 1から4のいずれかに記載の欠陥分析装置において、
 前記第3検知手段は、前記第1の面上における複数の位置で前記第2の振動を検知可能に構成され、
 前記第3検知手段により複数の位置で検知された複数の振動波形を利用して、欠陥の位置を推定する欠陥位置推定手段をさらに有する欠陥分析装置。
6. 1から4のいずれかに記載の欠陥分析装置において、
 前記第3検知手段は複数存在し、複数の前記第3検知手段は前記第1の面上で所定の間隔を設けて各々異なる位置に設置され、かつ、各々が前記第2の振動を検知し、
 複数の前記第3検知手段により検知された複数の振動波形を利用して、欠陥の位置を推定する欠陥位置推定手段をさらに有する欠陥分析装置。
7. コンピュータが、
 第1の面から離れた位置に設置されている配管内を流れる流体及び前記配管の少なくとも一方に対して振動を印加する加振手段を制御し、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して複数の周波数の振動を含む第1の振動を印加させる第1加振制御ステップと、
 前記加振手段により印加されて前記配管を伝搬する前記第1の振動及び前記流体を伝搬する前記第1の振動の少なくとも一方を検知する第1検知ステップと、
 前記第1の面において前記第1の振動を検知する第2検知ステップと、
 前記加振手段を制御し、前記第1の振動を前記第1検知ステップで検知することで得られた振動波形である第1振動波形と、前記第1の振動を前記第2検知ステップで検知することで得られた振動波形である第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して、印加させる第2加振制御ステップと、
 前記第1の面に設置され、前記加振手段により印加された前記第2の振動を検知する第3検知ステップと、
を実行する欠陥分析方法。
7-2. 7に記載の欠陥分析方法において、
 前記コンピュータは、前記第2の振動の周波数を決定する信号処理ステップをさらに実行し、
 前記信号処理ステップでは、前記第1振動波形を利用して伝達関数G1(f)=A1(f)/P0(f)を決定するとともに、前記第2振動波形を利用して伝達関数G2(f)=A2(f)/P0(f)を決定し(なお、fは周波数を示し、P0(f)は前記加振手段から印加された前記第1の振動の大きさを示し、A1(f)は前記第1検知ステップで検知された前記第1の振動の大きさを示し、A2(f)は前記第2検知ステップで検知された前記第1の振動の大きさを示す。)、前記伝達関数G1(f)と前記伝達関数G2(f)との積で得られる伝達関数G3(f)の振動波形に現れるピークの周波数を含むように、前記第2の振動の周波数を決定し、
 前記第2加振制御ステップでは、前記信号処理ステップで決定した周波数の振動を前記第2の振動として前記加振手段から印加させるように制御する欠陥分析方法。
7-3. 7-2に記載の欠陥分析方法において、
 前記信号処理ステップでは、前記伝達関数G3(f)の振動波形に現れるピークの周波数を、前記第2の振動の周波数として決定する欠陥分析方法。
7-4. 7-3に記載の欠陥分析方法において、
 前記信号処理ステップでは、前記伝達関数G3(f)の振動波形にピークが複数現れる場合、その中の最も強いピークの周波数を、前記第2の振動の周波数として決定する欠陥分析方法。
7-5. 7から7-4のいずれかに記載の欠陥分析方法において、
 前記第3検知ステップでは、前記第1の面上における複数の位置で前記第2の振動を検知可能に構成され、
 前記コンピュータは、前記第3検知ステップにおいて複数の位置で検知された複数の振動波形を利用して、前記欠陥の位置を推定する欠陥位置推定ステップをさらに実行する欠陥分析方法。
8. コンピュータを、
 第1の面から離れた位置に設置されている配管内を流れる流体及び前記配管の少なくとも一方に対して振動を印加する加振手段を制御し、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して複数の周波数の振動を含む第1の振動を印加させる第1加振制御手段、
 前記加振手段により印加されて前記配管を伝搬する前記第1の振動及び前記流体を伝搬する前記第1の振動の少なくとも一方を検知する第1検知手段、
 前記第1の面において前記第1の振動を検知する第2検知手段、
 前記加振手段を制御し、前記第1の振動を前記第1検知手段が検知することで得られた振動波形である第1振動波形と、前記第1の振動を前記第2検知手段が検知することで得られた振動波形である第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記配管内を流れる前記流体及び前記配管の少なくとも一方に対して、印加させる第2加振制御手段、
 前記第1の面に設置され、前記加振手段により印加された前記第2の振動を検知する第3検知手段、
として機能させるためのプログラム。
8-2. 8に記載のプログラムにおいて、
 前記コンピュータを、さらに、前記第2の振動の周波数を決定する信号処理手段として機能させ、
 前記信号処理手段に、前記第1振動波形を利用して伝達関数G1(f)=A1(f)/P0(f)を決定させるとともに、前記第2振動波形を利用して伝達関数G2(f)=A2(f)/P0(f)を決定させ(なお、fは周波数を示し、P0(f)は前記加振手段から印加された前記第1の振動の大きさを示し、A1(f)は前記第1検知手段に検知された前記第1の振動の大きさを示し、A2(f)は前記第2検知手段に検知された前記第1の振動の大きさを示す。)、前記伝達関数G1(f)と前記伝達関数G2(f)との積で得られる伝達関数G3(f)の振動波形に現れるピークの周波数を含むように、前記第2の振動の周波数を決定させ、
 前記第2加振制御手段に、前記信号処理手段が決定した周波数の振動を前記第2の振動として前記加振手段から印加させるように制御させるプログラム。
8-3. 8-2に記載のプログラムにおいて、
 前記信号処理手段に、前記伝達関数G3(f)の振動波形に現れるピークの周波数を、前記第2の振動の周波数として決定させるプログラム。
8-4. 8-3に記載のプログラムにおいて、
 前記信号処理手段に、前記伝達関数G3(f)の振動波形にピークが複数現れる場合、その中の最も強いピークの周波数を、前記第2の振動の周波数として決定させるプログラム。
8-5. 8から8-4のいずれかに記載のプログラムにおいて、
 前記第3検知手段に、前記第1の面上における複数の位置で前記第2の振動を検知させ、
 前記コンピュータを、さらに、前記第3検知手段により複数の位置で検知された複数の振動波形を利用して、前記欠陥の位置を推定する欠陥位置推定手段として機能させるプログラム。
<Appendix>
Hereinafter, examples of the reference form will be added.
1. Vibration means for applying vibration to at least one of the fluid flowing in the pipe installed at a position away from the first surface and the pipe;
First vibration control means for controlling the vibration means and applying a first vibration including vibrations of a plurality of frequencies to at least one of the fluid flowing in the pipe and the pipe;
First detection means for detecting at least one of the first vibration that is applied by the vibration means and propagates through the pipe and the first vibration that propagates the fluid;
A second detection means installed on the first surface for detecting the first vibration;
A first vibration waveform, which is a vibration waveform obtained by controlling the excitation means and detecting the first vibration by the first detection means, and the second detection means detecting the first vibration. And applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, which is a vibration waveform obtained by applying, to at least one of the fluid flowing in the pipe and the pipe. Second excitation control means for causing
Third detection means installed on the first surface and detecting the second vibration applied by the vibration means;
A defect analysis apparatus.
2. In the defect analysis apparatus according to 1,
Signal processing means for determining the frequency of the second vibration;
The signal processing means determines the transfer function G1 (f) = A1 (f) / P0 (f) using the first vibration waveform, and uses the second vibration waveform to transfer function G2 (f ) = A2 (f) / P0 (f) (where f is the frequency, P0 (f) is the magnitude of the first vibration applied from the excitation means, and A1 (f ) Indicates the magnitude of the first vibration detected by the first detection means, and A2 (f) indicates the magnitude of the first vibration detected by the second detection means). Determining the frequency of the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f);
The second vibration control unit is a defect analysis apparatus that controls the vibration of the frequency determined by the signal processing unit to be applied from the vibration unit as the second vibration.
3. In the defect analysis apparatus according to 2,
The defect analysis apparatus, wherein the signal processing means determines a peak frequency appearing in a vibration waveform of the transfer function G3 (f) as the frequency of the second vibration.
4). In the defect analysis apparatus according to 3,
The signal processing means, when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), determines the frequency of the strongest peak among them as the frequency of the second vibration.
5. In the defect analysis apparatus according to any one of 1 to 4,
The third detection means is configured to detect the second vibration at a plurality of positions on the first surface,
A defect analysis apparatus further comprising defect position estimation means for estimating the position of a defect using a plurality of vibration waveforms detected at a plurality of positions by the third detection means.
6). In the defect analysis apparatus according to any one of 1 to 4,
There are a plurality of the third detection means, and the plurality of third detection means are installed at different positions with a predetermined interval on the first surface, and each detects the second vibration. ,
A defect analysis apparatus further comprising defect position estimation means for estimating a defect position using a plurality of vibration waveforms detected by the plurality of third detection means.
7). Computer
Controlling at least one of a fluid flowing in a pipe installed at a position away from the first surface and at least one of the pipe, and controlling at least one of the fluid flowing in the pipe and the pipe A first excitation control step of applying a first vibration including vibrations of a plurality of frequencies to one side;
A first detection step of detecting at least one of the first vibration that is applied by the vibration means and propagates through the pipe and the first vibration that propagates through the fluid;
A second detection step of detecting the first vibration on the first surface;
A first vibration waveform that is a vibration waveform obtained by controlling the excitation means and detecting the first vibration in the first detection step, and detecting the first vibration in the second detection step. And applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, which is a vibration waveform obtained by applying, to at least one of the fluid flowing in the pipe and the pipe. A second excitation control step,
A third detection step installed on the first surface and detecting the second vibration applied by the vibration means;
Perform defect analysis method.
7-2. In the defect analysis method according to 7,
The computer further performs a signal processing step of determining a frequency of the second vibration;
In the signal processing step, the transfer function G1 (f) = A1 (f) / P0 (f) is determined using the first vibration waveform, and the transfer function G2 (f ) = A2 (f) / P0 (f) (where f is the frequency, P0 (f) is the magnitude of the first vibration applied from the excitation means, and A1 (f ) Indicates the magnitude of the first vibration detected in the first detection step, and A2 (f) indicates the magnitude of the first vibration detected in the second detection step). Determining the frequency of the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f);
In the second vibration control step, a defect analysis method for controlling the vibration of the frequency determined in the signal processing step to be applied as the second vibration from the vibration means.
7-3. In the defect analysis method described in 7-2,
In the signal processing step, a defect analysis method for determining a peak frequency appearing in a vibration waveform of the transfer function G3 (f) as the frequency of the second vibration.
7-4. In the defect analysis method described in 7-3,
In the signal processing step, when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), the defect analysis method of determining the frequency of the strongest peak among them as the frequency of the second vibration.
7-5. In the defect analysis method according to any one of 7 to 7-4,
In the third detection step, the second vibration can be detected at a plurality of positions on the first surface.
The defect analysis method, wherein the computer further executes a defect position estimation step of estimating the position of the defect using a plurality of vibration waveforms detected at a plurality of positions in the third detection step.
8). Computer
Controlling at least one of a fluid flowing in a pipe installed at a position away from the first surface and at least one of the pipe, and controlling at least one of the fluid flowing in the pipe and the pipe A first vibration control means for applying a first vibration including a plurality of vibrations to one side;
First detection means for detecting at least one of the first vibration that is applied by the vibration means and propagates through the pipe and the first vibration that propagates the fluid;
Second detection means for detecting the first vibration on the first surface;
A first vibration waveform, which is a vibration waveform obtained by controlling the excitation means and detecting the first vibration by the first detection means, and the second detection means detecting the first vibration. And applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, which is a vibration waveform obtained by applying, to at least one of the fluid flowing in the pipe and the pipe. Second excitation control means for causing
Third detection means installed on the first surface and detecting the second vibration applied by the vibration means;
Program to function as.
8-2. In the program described in 8,
Further causing the computer to function as signal processing means for determining a frequency of the second vibration,
The signal processing means determines the transfer function G1 (f) = A1 (f) / P0 (f) using the first vibration waveform, and uses the second vibration waveform to transfer function G2 (f ) = A2 (f) / P0 (f) (where f is the frequency, P0 (f) is the magnitude of the first vibration applied from the excitation means, and A1 (f ) Indicates the magnitude of the first vibration detected by the first detection means, and A2 (f) indicates the magnitude of the first vibration detected by the second detection means). The frequency of the second vibration is determined so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f);
A program for causing the second vibration control means to control the vibration of the frequency determined by the signal processing means to be applied from the vibration means as the second vibration.
8-3. In the program described in 8-2,
A program for causing the signal processing means to determine a peak frequency appearing in a vibration waveform of the transfer function G3 (f) as the frequency of the second vibration.
8-4. In the program described in 8-3,
A program for causing the signal processing means to determine the frequency of the strongest peak among them as the frequency of the second vibration when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f).
8-5. In the program according to any one of 8 to 8-4,
Causing the third detection means to detect the second vibration at a plurality of positions on the first surface;
A program for causing the computer to further function as defect position estimation means for estimating the position of the defect using a plurality of vibration waveforms detected at a plurality of positions by the third detection means.
 この出願は、2013年3月29日に出願された日本特許出願特願2013-073381号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2013-073381 filed on Mar. 29, 2013, the entire disclosure of which is incorporated herein.

Claims (9)

  1.  配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段と、
     複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させるように前記加振手段を制御する第1加振制御手段と、
     前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知手段と、
     前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知手段と、
     前記第1の振動を前記第1検知手段により検知して得られた第1振動波形と、前記第1の振動を前記第2検知手段により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させるように前記加振手段を制御する第2加振制御手段と、
     前記第1の面に設置され、前記第2の振動を検知する第3検知手段と、
    を有する欠陥分析装置。
    Vibration means for applying vibration to at least one of the pipe and the fluid flowing in the pipe;
    First vibration control means for controlling the vibration means to apply a first vibration including vibrations at a plurality of frequencies to at least one of the fluid and the pipe;
    First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
    A second detection means installed on a first surface spaced from the pipe and detecting the first vibration;
    Using the first vibration waveform obtained by detecting the first vibration by the first detection means and the second vibration waveform obtained by detecting the first vibration by the second detection means. Second vibration control means for controlling the vibration means to apply a second vibration, which is a vibration of a determined frequency, to at least one of the fluid or the pipe;
    A third detection means installed on the first surface for detecting the second vibration;
    A defect analysis apparatus.
  2.  請求項1に記載の欠陥分析装置において、
     前記第2の振動の周波数を決定する信号処理手段をさらに有し、
     前記信号処理手段は、前記第1振動波形から前記流体又は前記配管の伝達関数G1を求めるとともに、前記第2振動波形から前記加振手段と前記第3検知手段との間の伝達関数G2を求め、前記伝達関数G1と前記伝達関数G2から得られる伝達関数G3に現れるピークの周波数に基づいて前記第2の振動の周波数を決定し、
     前記第2加振制御手段は、前記信号処理手段が決定した周波数の振動を前記第2の振動として前記加振手段から印加させるように制御する欠陥分析装置。
    The defect analysis apparatus according to claim 1,
    Signal processing means for determining the frequency of the second vibration;
    The signal processing means obtains a transfer function G1 of the fluid or the pipe from the first vibration waveform and obtains a transfer function G2 between the vibration means and the third detection means from the second vibration waveform. , Determining the frequency of the second vibration based on the peak frequency appearing in the transfer function G3 obtained from the transfer function G1 and the transfer function G2.
    The second vibration control unit is a defect analysis apparatus that controls the vibration of the frequency determined by the signal processing unit to be applied from the vibration unit as the second vibration.
  3.  請求項2に記載の欠陥分析装置において、
     前記第2の振動の周波数を決定する信号処理手段をさらに有し、
     前記信号処理手段は、前記第1振動波形を利用して伝達関数G1(f)=A1(f)/P0(f)を決定するとともに、前記第2振動波形を利用して伝達関数G2(f)=A2(f)/P0(f)を決定し(なお、fは周波数を示し、P0(f)は前記加振手段から印加された前記第1の振動の大きさを示し、A1(f)は前記第1検知手段で検知された前記第1の振動の大きさを示し、A2(f)は前記第2検知手段で検知された前記第1の振動の大きさを示す。)、前記伝達関数G1(f)と前記伝達関数G2(f)との積で得られる伝達関数G3(f)の振動波形に現れるピークの周波数を含むように、前記第2の振動の周波数を決定する欠陥分析装置。
    The defect analysis apparatus according to claim 2,
    Signal processing means for determining the frequency of the second vibration;
    The signal processing means determines the transfer function G1 (f) = A1 (f) / P0 (f) using the first vibration waveform, and uses the second vibration waveform to transfer function G2 (f ) = A2 (f) / P0 (f) (where f is the frequency, P0 (f) is the magnitude of the first vibration applied from the excitation means, and A1 (f ) Indicates the magnitude of the first vibration detected by the first detection means, and A2 (f) indicates the magnitude of the first vibration detected by the second detection means). Defect that determines the frequency of the second vibration so as to include the peak frequency appearing in the vibration waveform of the transfer function G3 (f) obtained by the product of the transfer function G1 (f) and the transfer function G2 (f) Analysis equipment.
  4.  請求項2又は3に記載の欠陥分析装置において、
     前記信号処理手段は、前記伝達関数G3(f)の振動波形に現れるピークの周波数を、前記第2の振動の周波数として決定する欠陥分析装置。
    In the defect analysis apparatus according to claim 2 or 3,
    The defect analysis apparatus, wherein the signal processing means determines a peak frequency appearing in a vibration waveform of the transfer function G3 (f) as the frequency of the second vibration.
  5.  請求項4に記載の欠陥分析装置において、
     前記信号処理手段は、前記伝達関数G3(f)の振動波形にピークが複数現れる場合、その中の最も強いピークの周波数を、前記第2の振動の周波数として決定する欠陥分析装置。
    The defect analysis apparatus according to claim 4,
    The signal processing means, when a plurality of peaks appear in the vibration waveform of the transfer function G3 (f), determines the frequency of the strongest peak among them as the frequency of the second vibration.
  6.  請求項1から5のいずれか1項に記載の欠陥分析装置において、
     前記第3検知手段は、前記第1の面上における複数の位置で前記第2の振動を検知可能に構成され、
     前記第3検知手段により複数の位置で検知された複数の振動波形を利用して、欠陥の位置を推定する欠陥位置推定手段をさらに有する欠陥分析装置。
    In the defect analysis apparatus according to any one of claims 1 to 5,
    The third detection means is configured to detect the second vibration at a plurality of positions on the first surface,
    A defect analysis apparatus further comprising defect position estimation means for estimating the position of a defect using a plurality of vibration waveforms detected at a plurality of positions by the third detection means.
  7.  請求項1から5のいずれか1項に記載の欠陥分析装置において、
     前記第3検知手段は複数存在し、複数の前記第3検知手段は前記第1の面上で所定の間隔を設けて各々異なる位置に設置され、かつ、各々が前記第2の振動を検知し、
     複数の前記第3検知手段により検知された複数の振動波形を利用して、欠陥の位置を推定する欠陥位置推定手段をさらに有する欠陥分析装置。
    In the defect analysis apparatus according to any one of claims 1 to 5,
    There are a plurality of the third detection means, and the plurality of third detection means are installed at different positions with a predetermined interval on the first surface, and each detects the second vibration. ,
    A defect analysis apparatus further comprising defect position estimation means for estimating a defect position using a plurality of vibration waveforms detected by the plurality of third detection means.
  8.  コンピュータが、
     配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段を制御し、複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第1加振制御工程と、
     前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知工程と、
     前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知工程と、
     前記加振手段を制御し、前記第1の振動を前記第1検知工程により検知して得られた第1振動波形と、前記第1の振動を前記第2検知工程により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第2加振制御工程と、
     前記第1の面に設置され、前記第2の振動を検知する第3検知工程と、
    を実行する欠陥分析方法。
    Computer
    A vibration means for applying vibration to at least one of a pipe or a fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid or the pipe. A first vibration control step to be performed;
    A first detection step of detecting the first vibration propagating through at least one of the pipe or the fluid;
    A second detection step that is installed on a first surface spaced from the pipe and detects the first vibration;
    The first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection step, and the first vibration obtained by the second detection step. A second vibration control step of applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, to at least one of the fluid or the pipe;
    A third detection step installed on the first surface and detecting the second vibration;
    Perform defect analysis method.
  9.  コンピュータを、
     配管又は前記配管内を流れる流体の少なくとも一方に対して振動を印加する加振手段を制御し、複数の周波数の振動を含む第1の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第1加振制御手段、
     前記配管又は前記流体の少なくとも一方を伝搬する前記第1の振動を検知する第1検知手段、
     前記配管から離間した第1の面に設置され、前記第1の振動を検知する第2検知手段、
     前記加振手段を制御し、前記第1の振動を前記第1検知手段により検知して得られた第1振動波形と、前記第1の振動を前記第2検知手段により検知して得られた第2振動波形とを用いて決定された周波数の振動である第2の振動を、前記流体又は前記配管の少なくとも一方に対して印加させる第2加振制御手段、
     前記第1の面に設置され、前記第2の振動を検知する第3検知手段、
    として機能させるためのプログラム。
    Computer
    A vibration means for applying vibration to at least one of a pipe or a fluid flowing in the pipe is controlled, and a first vibration including vibrations having a plurality of frequencies is applied to at least one of the fluid or the pipe. First excitation control means for causing
    First detection means for detecting the first vibration propagating through at least one of the pipe or the fluid;
    A second detection means installed on a first surface spaced from the pipe and detecting the first vibration;
    The first vibration waveform obtained by controlling the vibration means and detecting the first vibration by the first detection means, and the first vibration obtained by the second detection means. A second vibration control means for applying a second vibration, which is a vibration having a frequency determined using the second vibration waveform, to at least one of the fluid or the pipe;
    A third detection means installed on the first surface for detecting the second vibration;
    Program to function as.
PCT/JP2014/058919 2013-03-29 2014-03-27 Defect analysis device, defect analysis method, and program WO2014157539A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015508704A JPWO2014157539A1 (en) 2013-03-29 2014-03-27 Defect analysis apparatus, defect analysis method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013073381 2013-03-29
JP2013-073381 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014157539A1 true WO2014157539A1 (en) 2014-10-02

Family

ID=51624500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/058919 WO2014157539A1 (en) 2013-03-29 2014-03-27 Defect analysis device, defect analysis method, and program

Country Status (2)

Country Link
JP (1) JPWO2014157539A1 (en)
WO (1) WO2014157539A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152143A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium
RU2748291C1 (en) * 2020-09-25 2021-05-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for determining defective object
CN112857721A (en) * 2021-01-20 2021-05-28 石家庄铁道大学 High-speed railway lining structure pneumatic load response reproduction experiment method containing macroscopic defects
JP2021156760A (en) * 2020-03-27 2021-10-07 首都高速道路株式会社 Internal defect probe method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142280A (en) * 1997-08-21 1999-05-28 Osaka Gas Co Ltd Pipe-line inspecting method
JP2001280943A (en) * 2000-03-29 2001-10-10 Osaka Gas Co Ltd Pipe inspecting method
JP3488623B2 (en) * 1998-03-04 2004-01-19 東京都 Water leak position detecting method and water leak position detecting device
JP2013044612A (en) * 2011-08-23 2013-03-04 Jfe Engineering Corp Detection method and device of underground piping damage position

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142280A (en) * 1997-08-21 1999-05-28 Osaka Gas Co Ltd Pipe-line inspecting method
JP3488623B2 (en) * 1998-03-04 2004-01-19 東京都 Water leak position detecting method and water leak position detecting device
JP2001280943A (en) * 2000-03-29 2001-10-10 Osaka Gas Co Ltd Pipe inspecting method
JP2013044612A (en) * 2011-08-23 2013-03-04 Jfe Engineering Corp Detection method and device of underground piping damage position

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152143A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium
GB2552108A (en) * 2015-03-24 2018-01-10 Nec Corp Defect analysis device, defect analysis system, efect analysis method, and computer readable recording medium
JP2021156760A (en) * 2020-03-27 2021-10-07 首都高速道路株式会社 Internal defect probe method
JP7398737B2 (en) 2020-03-27 2023-12-15 首都高速道路株式会社 Internal defect detection method
RU2748291C1 (en) * 2020-09-25 2021-05-21 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Method for determining defective object
CN112857721A (en) * 2021-01-20 2021-05-28 石家庄铁道大学 High-speed railway lining structure pneumatic load response reproduction experiment method containing macroscopic defects
CN112857721B (en) * 2021-01-20 2022-11-08 石家庄铁道大学 Macroscopic defect-containing pneumatic load response reproduction experiment method for lining structure of high-speed railway

Also Published As

Publication number Publication date
JPWO2014157539A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP6406013B2 (en) Defect analysis apparatus, defect analysis method and program
WO2013183314A1 (en) Structure analysis device and structure analysis method
JP6079776B2 (en) Structure analyzing apparatus and structure analyzing method
US9759629B2 (en) Leak detection device, leak detection method and program
WO2014050618A1 (en) Defect analysis device, defect analysis method, and program
WO2014157539A1 (en) Defect analysis device, defect analysis method, and program
CA2783089A1 (en) Damage detection in pipes and joint systems
WO2016152143A1 (en) Defect analysis device, defect analysis system, defect analysis method, and computer readable recording medium
JP6459186B2 (en) Information processing device, piping sound velocity distribution measuring device, piping abnormal position detecting device using the same, and piping sound velocity distribution measuring method
JP2013044612A (en) Detection method and device of underground piping damage position
JP6229659B2 (en) Defect analysis apparatus, defect analysis method and program
RU2739144C1 (en) Acoustic-resonance method of non-destructive inspection of pipelines
JP2011059064A (en) State evaluation method for structure using ultra-low frequency sound measurement
JP6316131B2 (en) How to identify the location of abnormal sound
WO2015059956A1 (en) Structure diagnosis device, structure diagnosis method, and program
JP2016095265A (en) Leakage detection method and leakage detection device
JP2015102405A (en) Inspection method and inspection device
JP2020101394A (en) Leak detection system and leak detection method
WO2015194138A1 (en) Position specification device, position specification system, position specification method, and computer-readable recording medium
KR100332345B1 (en) System for detecting a pipe under the ground using elastic wave
WO2016185726A1 (en) State assessment device, state assessment method, and program recording medium
JP6349861B2 (en) Leak detection device, leak detection system, leak detection method and program
Lobato de Almeida Improved acoustic methods for leak detection in buried plastic water distribution pipes
Shardakov et al. Experimental study of dynamic deformation processes in gas pipeline
JP2005308724A (en) Method of determining leak portion in pipe, and pipe length measuring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14772723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015508704

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14772723

Country of ref document: EP

Kind code of ref document: A1