JP2013044612A - Detection method and device of underground piping damage position - Google Patents
Detection method and device of underground piping damage position Download PDFInfo
- Publication number
- JP2013044612A JP2013044612A JP2011181951A JP2011181951A JP2013044612A JP 2013044612 A JP2013044612 A JP 2013044612A JP 2011181951 A JP2011181951 A JP 2011181951A JP 2011181951 A JP2011181951 A JP 2011181951A JP 2013044612 A JP2013044612 A JP 2013044612A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- pipe
- sound waves
- sound wave
- buried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Examining Or Testing Airtightness (AREA)
Abstract
Description
本発明は、埋設配管破損位置の検出方法及び装置に係り、特に、地中に埋設したガス配管に発生した開口破損位置を、配管を掘り出すことなく地上での探査により検出することが可能な埋設配管破損位置の検出方法及び装置に関する。 The present invention relates to a method and an apparatus for detecting a buried pipe breakage position, and more particularly, an buried breakup capable of detecting an opening breakage position generated in a gas pipe buried in the ground by exploration on the ground without digging up the pipe. The present invention relates to a method and an apparatus for detecting a broken pipe position.
地震などにより地中に埋設した配管に発生した開口破損位置を、配管を掘り出すことなく地上から探査することは、迅速に復旧する上で非常に重要である。特に、メインラインの太い配管でなく、各家庭内への配管における末端のソケットは外れ易いので、その必要性が高い。 It is very important for exploration from the ground without digging the pipes for the location of the opening breakage that occurred in the pipes buried in the ground due to an earthquake or the like. In particular, since the sockets at the ends of the pipes in each household, rather than the thick pipes in the main line, are easily removed, the necessity is high.
従来、配管の一種であるガス配管の開口破損位置を検出する場合は、ガス配管網の特定部位を区画し、この区間のガス配管内のみに窒素ガス等によりガス圧を掛けて、ゲージ圧が低下するかどうかを判別しながら、区画を順次狭くして、漏洩位置を推定していた。 Conventionally, when detecting the opening failure position of a gas pipe, which is a kind of piping, a specific part of the gas piping network is partitioned, and the gas pressure is applied only to the gas piping in this section with nitrogen gas, etc. While discriminating whether or not it was lowered, the sections were sequentially narrowed to estimate the leak position.
また、効率的な管路検査方法として、地中に埋設された都市ガス配管のように、被覆層(土)により隠蔽されたガス配管の開口端部で音を発生させて、ガス配管内に音波を伝播させ、ガス配管内を伝播する音波を被覆層外の複数の位置で受信して、受信される音量の空間的な分布を求め、求められる受信音量の分布から、ガス配管の位置または、ガス配管に発生している開口破損位置を推定する方法が特許文献1で提案されている。 In addition, as an efficient pipe inspection method, sound is generated at the open end of a gas pipe concealed by a covering layer (soil), such as a city gas pipe buried underground, in the gas pipe. The sound wave is propagated, the sound wave propagating in the gas pipe is received at a plurality of positions outside the coating layer, and the spatial distribution of the received sound volume is obtained, and from the obtained received sound volume distribution, the position of the gas pipe or Patent Document 1 proposes a method for estimating an opening breakage position occurring in a gas pipe.
しかしながら、特許文献1に示す計測方法では、土壌を伝播するため音波は著しく低下すること、計測に使用する数百Hz程度の音波と近似した周波数の音波(高周波音は土を通らない)が周辺環境に存在することから、配管に伝播させた音波を抽出することが難しい。 However, in the measurement method shown in Patent Document 1, the sound wave is remarkably lowered because it propagates through the soil, and a sound wave having a frequency approximate to a sound wave of about several hundred Hz used for measurement (high-frequency sound does not pass through the soil) is around. Because it exists in the environment, it is difficult to extract the sound wave propagated to the pipe.
そこで、高い音量を得るために、特許文献1の技術において、検査作業前に、異なる周波数を配管内に伝播させて、音量が最大となる周波数を求めて計測に使用する方法、もしくは、配管径と音速に基づいて決まる共鳴周波数を計測に使用する方法が特許文献2で提案されている。 Therefore, in order to obtain a high sound volume, in the technique of Patent Document 1, before the inspection work, a method in which different frequencies are propagated in the pipe and the frequency at which the sound volume is maximum is obtained and used for measurement, or the pipe diameter Patent Document 2 proposes a method of using a resonance frequency determined based on the sound speed for measurement.
しかしながら、特許文献2の方法は、配管内に伝播させる音量を増幅させるための手段であるため、その効果は限定的である。即ち、実用上では、配管形状(内径や長さ)、埋設環境、開口破損形状(開口サイズ)や位置などの諸条件により、適正な周波数が変化するため、事前の周波数調整は、調整位置の最適値にすぎず、開口破損形状や位置の変化には対応できない。共鳴周波数に関しても、配管の分岐や径の変化、開口破損形状や位置の変化に対応できない。 However, since the method of Patent Document 2 is a means for amplifying the sound volume propagated in the pipe, its effect is limited. In other words, in practice, the appropriate frequency changes depending on various conditions such as pipe shape (inner diameter and length), buried environment, opening breakage shape (opening size) and position. It is only an optimum value, and cannot cope with changes in the shape and position of the broken opening. Regarding the resonance frequency, it cannot cope with branching of pipes, changes in diameter, changes in opening shape or position.
また、計測データの評価では、実際に配管内を伝播した音を周辺環境の音から抽出する必要があるが、送信した音波が選択した単一の周波数の場合、周囲の音から分離、抽出する精度にも限界がある。 Also, in the evaluation of measurement data, it is necessary to extract the sound actually propagated in the pipe from the sound of the surrounding environment, but if the transmitted sound wave is a single frequency selected, it is separated and extracted from the surrounding sound There is a limit to accuracy.
一方、本発明に類似するものとして、特許文献3には、地層の物理特性の音響波を用いた非破壊測定に際して、擬似ランダムコードに従って発振源を励起し、受信器で発振信号との相関を取ることによって、他の雑音と識別することが提案されているが、そのままでは埋設配管の破損位置の検出に用いることができなかった。 On the other hand, as similar to the present invention, Patent Document 3 discloses that in nondestructive measurement using acoustic waves of physical properties of the formation, an oscillation source is excited according to a pseudo-random code, and a correlation with an oscillation signal is received by a receiver. It has been proposed to distinguish it from other noises by taking it, but it cannot be used as it is to detect the breakage position of the buried piping.
本発明は、前記従来の問題点を解消するべくなされたもので、埋設配管破損位置の検出に際して、様々な配管条件、埋設環境、開口破損状況に対応可能とすることを課題とする。 The present invention has been made to solve the above-mentioned conventional problems, and it is an object of the present invention to be able to cope with various piping conditions, embedded environments, and opening damage situations when detecting the location of embedded piping breakage.
本発明は、埋設配管内部に音波を伝播させ、該埋設配管内部を伝播する音波を地上の複数の位置で受信し、音波の受信状況から配管に生じた開口破損位置を推定する埋設配管破損位置の検出方法であって、配管内部に伝播させる音波に符号となるパターンを使用し、受信した音と相互相関処理を行うことにより、前記課題を解決したものである。 The present invention propagates a sound wave inside the buried pipe, receives the sound wave propagating inside the buried pipe at a plurality of positions on the ground, and estimates an opening breakage position generated in the pipe from the reception state of the sound wave. This method solves the above-mentioned problem by using a pattern as a code for a sound wave propagated inside a pipe and performing a cross-correlation process with the received sound.
ここで、前記符号となるパターンとして、擬似ランダム信号を使用することができる。 Here, a pseudo-random signal can be used as the pattern serving as the code.
又、前記符号となるパターンとして、周波数を時間変化させた信号を使用することができる。 Further, as the pattern to be the code, a signal whose frequency is changed with time can be used.
又、前記周波数を時間変化させた信号を、周波数を特定の範囲で連続的に変化させるパターンを繰り返したものとすることができる。 Further, the signal obtained by changing the frequency with time can be obtained by repeating a pattern in which the frequency is continuously changed within a specific range.
本発明は、又、埋設配管内部に音波を伝播させ、該埋設配管内部を伝播する音波を地上の複数の位置で受信し、音波の受信状況から配管に生じた開口破損位置を推定する埋設配管破損位置の検出方法であって、配管内部に伝播させる音波として、周波数が特定の範囲において均一となる音波を使用することにより、前記課題を解決したものである。 The present invention also provides a buried pipe for propagating a sound wave inside the buried pipe, receiving the sound wave propagating inside the buried pipe at a plurality of positions on the ground, and estimating an opening breakage position generated in the pipe from the reception state of the sound wave. A method for detecting a broken position, which solves the above problem by using a sound wave having a uniform frequency in a specific range as a sound wave to be propagated inside the pipe.
ここで、複数の位置の受信音波の位相差から音波の伝播方向を特定し、音圧分布と併せて破損位置を推定することができる。 Here, the propagation direction of the sound wave can be identified from the phase differences of the received sound waves at a plurality of positions, and the breakage position can be estimated together with the sound pressure distribution.
本発明は、又、埋設配管内部に音波を伝播させ、該埋設配管内部を伝播する音波を地上の複数の位置で受信し、音波の受信状況から配管に生じた開口破損位置を推定する埋設配管破損位置の検出装置であって、符号となるパターンを有する音波を送信する手段と、地表面に配置される複数の受信センサと、送信音と受信音の相互相関処理手段と、受信した音波と併せて測定点の位置情報を記録する手段と、既知の間隔で配置された受信センサ間の位相差から音波の伝播方向を導出する手段と、計測位置、音圧および伝播方向を図示する手段と、を具備していることを特徴とする埋設配管破損位置の検出装置により、前記課題を解決するものである。 The present invention also provides a buried pipe for propagating a sound wave inside the buried pipe, receiving the sound wave propagating inside the buried pipe at a plurality of positions on the ground, and estimating an opening breakage position generated in the pipe from the reception state of the sound wave. A damage position detection device, a means for transmitting a sound wave having a pattern to be a code, a plurality of reception sensors arranged on the ground surface, a cross-correlation processing means for a transmission sound and a reception sound, and a received sound wave In addition, means for recording the position information of the measurement point, means for deriving the propagation direction of the sound wave from the phase difference between the reception sensors arranged at known intervals, means for illustrating the measurement position, sound pressure and propagation direction The above-described problem is solved by a detection device for a buried pipe breakage position.
本発明により、符号となるパターンを有する音波を配管内部に伝播させ、受信した音波と送信音波の相互相関処理を行うことにより、実際に管内を伝播した音波を抽出する精度が向上する。 According to the present invention, a sound wave having a pattern to be a code is propagated inside the pipe, and a cross-correlation process between the received sound wave and the transmitted sound wave is performed, thereby improving the accuracy of extracting the sound wave actually propagated in the pipe.
特に、前記符号となるパターンとして、擬似ランダム信号を使用した場合、擬似ランダム信号は、周辺環境に存在しないパターンであり、相関処理による抽出精度が、単一周波数の音波と比べて向上する。 In particular, when a pseudo-random signal is used as the pattern to be the code, the pseudo-random signal is a pattern that does not exist in the surrounding environment, and the extraction accuracy by the correlation process is improved as compared with a single-frequency sound wave.
又、前記符号となるパターンとして、周波数を時間変化させた信号を使用した場合、この周波数の時間変化が周辺環境の音との識別性を向上させる。さらに、この手法は正弦波が基になるため、例えばスピーカから送信する際、出力が得られ易い。ここで、周波数を特定の範囲で連続的に変化させるパターンを繰り返すことができる。 Further, when a signal whose frequency is changed with time is used as the pattern to be the code, the time change of the frequency improves the discrimination with the sound of the surrounding environment. Furthermore, since this method is based on a sine wave, for example, an output can be easily obtained when transmitting from a speaker. Here, a pattern in which the frequency is continuously changed in a specific range can be repeated.
又、管径、土壌、開口破損形状などの要素によって、有効な周波数が異なるため、単一周波数の音波では満足な受信信号が得られないことが多いが、本発明により、特定の範囲で均一な周波数を使用することにより、事前の周波数調整を行うことなく、計測を行うことができる。例えば、擬似ランダム信号では、特定の範囲で均一な周波数を有する音波を発生できるパターンがあり、1種類の音波を用いるだけで、諸条件による周波数特性の変化に対応できる。また、周波数の時間変化では、特定の範囲で周波数変化させた1セットを1度の計測として利用すれば、変化させた範囲全ての周波数で計測したことになる。 In addition, since the effective frequency differs depending on factors such as tube diameter, soil, and broken opening shape, a satisfactory received signal cannot often be obtained with a single-frequency sound wave. By using a simple frequency, it is possible to perform measurement without adjusting the frequency in advance. For example, a pseudo-random signal has a pattern that can generate a sound wave having a uniform frequency in a specific range, and can use only one type of sound wave to cope with a change in frequency characteristics due to various conditions. Moreover, in the time change of the frequency, if one set whose frequency is changed in a specific range is used as one measurement, it is measured at all frequencies in the changed range.
更に、複数の受信手段を予め定めた位置に配し、受信信号の位相を確認することで、各受信手段への音波の到達時間差を計測し、音波の到来方向を算出することにより、開口破損箇所の特定が容易になる。 Furthermore, by arranging a plurality of receiving means at predetermined positions and confirming the phase of the received signal, the arrival time difference of the sound wave to each receiving means is measured, and the arrival direction of the sound wave is calculated, thereby breaking the opening The location can be easily identified.
以上のように、本発明では、管内に送信する音波に符号となるパターンを有する信号を利用することで、計測に利用する音波の分離、抽出精度が向上し、破損箇所の探知性能が高くなる。 As described above, in the present invention, by using a signal having a pattern that is a sign for a sound wave transmitted into a tube, the accuracy of separating and extracting sound waves used for measurement is improved, and the detection performance of a damaged portion is improved. .
また、管内に送信する音波として、周波数特性が特定の範囲で均一になる音波、もしくは、周波数を特定の範囲で連続的に変化させる音波を用いることによって、配管条件毎に適正な周波数を調整する作業を省略することができ、破損箇所の様々な開口形状にも対応することができる。 In addition, as the sound wave to be transmitted into the pipe, a sound wave whose frequency characteristic is uniform in a specific range or a sound wave whose frequency is continuously changed in a specific range is used to adjust an appropriate frequency for each piping condition. The work can be omitted, and it is possible to cope with various opening shapes of the damaged portion.
以下、図面を参照して、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1には、本発明の第1実施形態に係る検査装置を用いて地中に埋設された配管の開口破損位置を探査している状態を示す。本実施形態では、検査対象とする埋設配管10につながる立て管(例えばガスメータ管)12の開口端に、ガスメータの代わりに送信装置(例えばスピーカ)20を設置し、送信用波形発生器22で発生した信号で送信装置20を駆動して、立て管12を介して埋設配管10内に所定の波形を有する音波を送信する。その後、埋設配管上に設置した複数(図では3台)の受信センサ(例えば振動計)31、32、33で、開口破損箇所11から漏れ出た音波による振動を検出する。そして、受信センサ31、32、33の設置位置、受信した信号の音圧や位相を受信/分析器40で記録し、分析することにより開口破損位置の特定を行う。 In FIG. 1, the state which is exploring the opening breakage position of the piping embed | buried under the ground using the inspection apparatus which concerns on 1st Embodiment of this invention is shown. In this embodiment, a transmitting device (for example, a speaker) 20 is installed instead of a gas meter at the open end of a standing tube (for example, a gas meter tube) 12 connected to the buried piping 10 to be inspected, and is generated by a transmission waveform generator 22. The transmitter 20 is driven by the signal thus transmitted, and a sound wave having a predetermined waveform is transmitted into the buried pipe 10 via the standing pipe 12. Thereafter, a plurality of (three in the figure) receiving sensors (for example, vibrometers) 31, 32, and 33 installed on the buried pipe detect vibrations due to sound waves leaking from the broken opening portion 11. Then, the installation position of the reception sensors 31, 32, 33, the sound pressure and the phase of the received signal are recorded by the reception / analyzer 40, and the opening breakage position is specified by analysis.
前記送信用波形発生器22としては、周波数が調整可能な、いわゆる波形発生器の他、波形が固定されている場合には、デジタルオーディオプレーヤを使用することもできる。 As the transmission waveform generator 22, in addition to a so-called waveform generator whose frequency can be adjusted, a digital audio player can be used when the waveform is fixed.
前記受信センサ31〜33としては、例えば加速度ピックアップでなる振動計を用いることができる。この振動計は、予め配管図で確認した配管10の直上に設置することができる。なお、振動計の設置面(底面)は、路面の凹凸の影響を避けるため、平面構造でなく、図2に例示する如く、3点支持の突起31aを有した構造とすることが望ましい。 As the receiving sensors 31 to 33, for example, a vibrometer composed of an acceleration pickup can be used. This vibrometer can be installed immediately above the pipe 10 confirmed in advance with a piping diagram. Note that the installation surface (bottom surface) of the vibrometer is preferably not a planar structure but a structure having a three-point support protrusion 31a as illustrated in FIG. 2 in order to avoid the influence of road surface unevenness.
本実施形態の信号処理系統を図3に示す。受信センサ31、32、33からの信号はデータ収録部42に入力され、その波形や位置情報が記録される。データ収録部42の出力は、相互相関処理部44に送られ、送信用波形発生器22との相互相関がとられる。次いで振幅値検出部46で振幅が検出されると共に、伝播方向算出部48で伝播方向が算出され、振幅値分布および伝播方向表示部50で表示される。振動及び伝播方向の算出は、受信センサ31〜33の位置の違いに起因して生じる位相差を、音響分野でいうアクティブインテンシティとして捉え、このアクティブインテンシティの大きさ及び極性から開口破損箇所11の位置を示すベクトル(大きさ及び方向)を得ることにより行うことができる(特開平11−248591号公報参照)。 The signal processing system of this embodiment is shown in FIG. Signals from the receiving sensors 31, 32, and 33 are input to the data recording unit 42, and their waveforms and position information are recorded. The output of the data recording unit 42 is sent to the cross-correlation processing unit 44, and the cross-correlation with the transmission waveform generator 22 is taken. Next, the amplitude is detected by the amplitude value detection unit 46, the propagation direction is calculated by the propagation direction calculation unit 48, and displayed on the amplitude value distribution and propagation direction display unit 50. In the calculation of the vibration and propagation direction, the phase difference caused by the difference in position of the reception sensors 31 to 33 is regarded as an active intensity in the acoustic field, and an opening breakage point 11 is calculated from the magnitude and polarity of the active intensity. This can be done by obtaining a vector (size and direction) indicating the position of (see Japanese Patent Application Laid-Open No. 11-248591).
以下、配管内に送信する音波として、擬似ランダム信号を用いる方法を説明する。擬似ランダム信号を音波に適用する方法として、振幅、位相、周波数を変調する方法があり、いずれでも良い。 Hereinafter, a method of using a pseudo random signal as a sound wave to be transmitted into the pipe will be described. As a method of applying the pseudo random signal to the sound wave, there is a method of modulating the amplitude, the phase, and the frequency, and any of them may be used.
図4に、(A)本発明により位相を変調した擬似ランダム信号による送信波形と、(B)比較のため単一周波数の送信波形を示す。地上で受信した信号は、微弱になり周辺環境の音と合成されてしまうが、送信信号と相関処理することにより、配管内を伝播した音波を高精度で抽出することができる。ここで、図4(B)に示したような単一周波数の正弦波を用いた場合には、一波長分のシフトでピークが得られるので、図5(400Hzの例)に示す如く、相関後も連続波のような表示になってしまう。 FIG. 4 shows (A) a transmission waveform of a pseudo random signal whose phase is modulated according to the present invention, and (B) a transmission waveform of a single frequency for comparison. The signal received on the ground becomes weak and is synthesized with the sound of the surrounding environment, but the sound wave propagated in the pipe can be extracted with high accuracy by performing correlation processing with the transmission signal. Here, when a sine wave having a single frequency as shown in FIG. 4B is used, a peak is obtained with a shift of one wavelength. Therefore, as shown in FIG. After that, it will be displayed as a continuous wave.
これに対して、図4(A)に示したような、例えばM系列による位相変調を行った擬似ランダム信号を用いた場合には、図6(400Hzの例)に示す如く、相関ピークを得ることができる。なお、図6においてはM系列の符号が短いため、相関ピークが複数回表示されている。別の実験で、同じ400HzのM系列信号(位相変調)を受信した(A)生の波形と(B)相関処理した後の波形の例を図7に示す。 On the other hand, when a pseudo-random signal subjected to phase modulation by M-sequence, for example, as shown in FIG. 4 (A) is used, a correlation peak is obtained as shown in FIG. 6 (400 Hz example). be able to. In FIG. 6, since the M-sequence code is short, the correlation peak is displayed a plurality of times. In another experiment, FIG. 7 shows an example of a waveform after (A) a raw waveform and (B) correlation processing that have received the same 400 Hz M-sequence signal (phase modulation).
なおホワイトノイズであっても、M系列パターンでオンオフしてホワイトノイズを発生している波形発生器の出力であれば、図8(M系列の符号が長い例)に示す如く、ピークは一箇所となるため、本発明で用いることができる。 Even if it is white noise, if it is the output of a waveform generator that generates white noise by turning on and off in the M-sequence pattern, as shown in FIG. 8 (example of long M-sequence code), there is one peak. Therefore, it can be used in the present invention.
図9に、(A)正弦波400Hz、(B)M系列(位相変調)、(C)ホワイトノイズの送信音波形のパワースペクトルを比較して示す。 FIG. 9 shows a comparison of power spectra of transmission sound waveforms of (A) sine wave 400 Hz, (B) M series (phase modulation), and (C) white noise.
次に、配管内に送信する音波として、周波数を時間変化させてスイープした信号を用いる方法を説明する。特定範囲で周波数を連続的に変化させる処理を繰り返した音波を送信音として用いる。周波数を時間変化させる1パターンを1つの符号と考え、受信信号と相関処理することにより、配管内を伝播した音波を高精度で抽出することができる。周波数を100〜1000Hzでスイープした後の平均値を相関処理した例を図10に示す。 Next, a method of using a signal swept by changing the frequency over time as a sound wave to be transmitted into the pipe will be described. A sound wave obtained by repeating the process of continuously changing the frequency in a specific range is used as a transmission sound. By considering one pattern whose frequency is changed with time as one code and performing correlation processing with the received signal, it is possible to extract the sound wave propagated in the pipe with high accuracy. An example in which the average value after sweeping the frequency at 100 to 1000 Hz is subjected to correlation processing is shown in FIG.
また、配管の諸条件や開口破損形状によって、計測に有効な周波数が変化する傾向があることから、単一周波数では無く、特定の範囲において均一な周波数成分を有する送信音を用いることが有効となる。送信音として前記擬似ランダム信号を用いる場合は、特定の範囲で周波数特性が均一となる信号を選択する。一方、周波数時間変化信号を用いる場合は、変化させる範囲全ての周波数で計測することになるため、同様な効果が得られる。 In addition, because the frequency effective for measurement tends to change depending on the piping conditions and the shape of the broken opening, it is effective to use transmission sound that has a uniform frequency component in a specific range, not a single frequency. Become. When the pseudo random signal is used as the transmission sound, a signal having a uniform frequency characteristic in a specific range is selected. On the other hand, when the frequency time change signal is used, since the measurement is performed at all frequencies in the range to be changed, the same effect can be obtained.
開口破損位置を特定する方法として、受信信号の音圧を利用する場合は、計測点における音圧の推移から破損位置を特定する。一方、受信信号の位相を利用する場合は、予め定めた間隔で配置した複数の受信手段で受信した信号の位相差から音波の到来方向を算出する。 When the sound pressure of the received signal is used as a method for identifying the opening breakage position, the breakage position is identified from the transition of the sound pressure at the measurement point. On the other hand, when the phase of the received signal is used, the arrival direction of the sound wave is calculated from the phase difference of the signals received by a plurality of receiving means arranged at predetermined intervals.
以下、図1に基づいて本発明の手順を説明する。まず調査対象とする管路の一部、例えば、ガスメータ設置箇所のように地上部に出ている立て管12に、音波を送信する送信装置20、例えばスピーカを取り付ける。スピーカから発生させる音波は、予めプログラミングした擬似ランダム信号、もしくは、周波数時間変化を特定の変化幅で繰り返す信号に基づくものとする。なお、擬似ランダム信号では、その周波数成分が100〜1000Hzの帯域において均一となる信号を用いることが好ましく、周波数時間変化を用いる場合は、周波数変化の幅を100〜1000Hzとすることが好ましい。 Hereinafter, the procedure of the present invention will be described with reference to FIG. First, a transmitting device 20 that transmits sound waves, for example, a speaker, is attached to a part of a pipe line to be investigated, for example, a standing pipe 12 that protrudes from the ground like a gas meter installation location. The sound wave generated from the speaker is assumed to be based on a pre-programmed pseudo-random signal or a signal that repeats a frequency-time change with a specific change width. In the pseudo-random signal, it is preferable to use a signal whose frequency component is uniform in a band of 100 to 1000 Hz. When frequency time change is used, the frequency change width is preferably set to 100 to 1000 Hz.
受信センサ31〜33として用いる振動計は、予め配管図で確認した配管の直上に設置する。 Vibrometers used as the reception sensors 31 to 33 are installed immediately above the pipes confirmed in advance in the piping diagram.
受信した信号は、図3に示したように、データ収録部42で、振動計の設置位置情報と共に記録し、相互相関処理部44で送信信号と相互相関処理を行い、送信音波成分を抽出した後、振幅値検出部46及び伝播方向算出部48で信号振幅値および複数配置した振動計間の位相差から音波の伝播方向を算出する。これらのデータは、例えば、振幅値分布および伝播方向表示部50で配管図上に音圧分布および伝播方向を図示し、開口破損箇所11を特定する。 As shown in FIG. 3, the received signal is recorded together with the vibration meter installation position information by the data recording unit 42, and the cross-correlation processing unit 44 performs cross-correlation processing with the transmission signal to extract the transmission sound wave component. After that, the amplitude value detection unit 46 and the propagation direction calculation unit 48 calculate the propagation direction of the sound wave from the signal amplitude value and the phase difference between a plurality of vibrometers. For example, the amplitude value distribution and propagation direction display unit 50 displays the sound pressure distribution and the propagation direction on the piping diagram to identify the opening breakage point 11.
データ表示画面例を図11に示す。評価に用いるデータは、各計測点における受信した音の強さ(音圧)と音波の伝播方向である。単純に音圧の差から破損箇所を推定することもできるが、音波の伝播方向を併せて評価することで、評価が容易になり精度の向上を図ることができる。 An example of the data display screen is shown in FIG. Data used for the evaluation is the received sound intensity (sound pressure) and the propagation direction of the sound wave at each measurement point. Although it is possible to simply estimate the damaged portion from the difference in sound pressure, the evaluation can be facilitated and the accuracy can be improved by evaluating the propagation direction of the sound wave.
音圧の変化は、破損の位置や大きさに伴うものに限らず、土壌、舗装状態、受信センサの設置状態などによっても生じると考えられる。このため、音圧変化と異なるパラメータである音波の伝播方向を併用することは、有効な手段である。 The change in the sound pressure is considered to be caused not only by the location and size of the breakage but also by the soil, the pavement state, the installation state of the reception sensor, and the like. For this reason, it is an effective means to use the propagation direction of the sound wave, which is a parameter different from the sound pressure change.
また、計測時に音波の伝播方向を確認することにより、任意に計測箇所を追加する場合の指標とすることや、埋設管位置のずれを確認することができる。 In addition, by confirming the propagation direction of the sound wave at the time of measurement, it can be used as an index for arbitrarily adding a measurement location, and the displacement of the buried pipe position can be confirmed.
振動計としては、加速度ピックアップの他、レーザドップラー振動計を用いることもできる。 As the vibrometer, a laser Doppler vibrometer can be used in addition to the acceleration pickup.
振動計の代わりにマイクロフォンを用いた本発明の第2実施形態を図12に示す。 A second embodiment of the present invention using a microphone instead of a vibrometer is shown in FIG.
本実施形態によれば、受信センサとしての単一のマイクロフォン62を、オペレータ60が、移動可能とした受信/分析器64と共に移動しながらの測定が可能である。 According to this embodiment, it is possible to perform measurement while moving a single microphone 62 as a reception sensor together with a reception / analyzer 64 that the operator 60 can move.
なお、前記実施形態においては、いずれも本発明が、ガス配管の開口破損箇所の検出に適用されていたが、本発明の適用対象は、これに限定されず、他の埋設配管の開口破損箇所の検出にも同様に適用可能である。 In the above-described embodiment, the present invention is applied to detection of an opening breakage point of a gas pipe. However, the application target of the present invention is not limited to this, and an opening breakage point of another buried pipe. It is equally applicable to the detection of.
10…埋設配管
11…開口破損箇所
12…立て管(ガスメータ管)
20…送信装置(スピーカ)
22…送信用波形発生器
31、32、33…受信センサ(振動計)
40、64…受信/分析器
42…データ収録部
44…相互相関処理部
46…振幅値検出部
48…伝播方向算出部
50…振幅値分布および伝播方向表示部
60…オペレータ
62…マイクロフォン
10 ... Built-in piping 11 ... Broken opening 12 ... Standing pipe
20 ... Transmitter (speaker)
22 ... Transmission waveform generator 31, 32, 33 ... Reception sensor (vibrometer)
40, 64 ... reception / analyzer 42 ... data recording unit 44 ... cross correlation processing unit 46 ... amplitude value detection unit 48 ... propagation direction calculation unit 50 ... amplitude value distribution and propagation direction display unit 60 ... operator 62 ... microphone
Claims (7)
配管内部に伝播させる音波に符号となるパターンを使用し、受信した音と相互相関処理を行うことを特徴とする埋設配管破損位置の検出方法。 A method for detecting the location of a buried pipe breakage that propagates sound waves inside the buried pipe, receives the sound waves propagating inside the buried pipe at a plurality of positions on the ground, and estimates the opening breakage position in the pipe from the reception status of the sound waves. There,
A method for detecting an embedded pipe breakage position, wherein a pattern that is a sign is used for sound waves propagated inside a pipe, and a cross-correlation process is performed with the received sound.
配管内部に伝播させる音波として、周波数が特定の範囲において均一となる音波を使用することを特徴とする埋設配管破損位置の検出方法。 A method for detecting the location of a buried pipe breakage that propagates sound waves inside the buried pipe, receives the sound waves propagating inside the buried pipe at a plurality of positions on the ground, and estimates the opening breakage position in the pipe from the reception status of the sound waves. There,
A method of detecting a buried pipe breakage position, wherein a sound wave having a uniform frequency in a specific range is used as a sound wave propagated inside a pipe.
符号となるパターンを有する音波を送信する手段と、
地表面に配置される複数の受信センサと、
送信音と受信音の相互相関処理手段と、
受信した音波と併せて測定点の位置情報を記録する手段と、
既知の間隔で配置された受信センサ間の位相差から音波の伝播方向を導出する手段と、
計測位置、音圧および伝播方向を図示する手段と、
を具備していることを特徴とする埋設配管破損位置の検出装置。 A buried pipe breakage position detection device that propagates sound waves inside buried pipes, receives sound waves propagating inside the buried pipes at a plurality of positions on the ground, and estimates the opening breakage position in the pipes from the reception status of the sound waves. There,
Means for transmitting a sound wave having a pattern to be a code;
A plurality of receiving sensors arranged on the ground surface;
Means for cross-correlation processing between transmitted sound and received sound;
Means for recording the position information of the measurement point together with the received sound wave;
Means for deriving the propagation direction of the sound wave from the phase difference between the receiving sensors arranged at a known interval;
Means for illustrating the measurement position, sound pressure and propagation direction;
An apparatus for detecting a position where a buried pipe is broken.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181951A JP2013044612A (en) | 2011-08-23 | 2011-08-23 | Detection method and device of underground piping damage position |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011181951A JP2013044612A (en) | 2011-08-23 | 2011-08-23 | Detection method and device of underground piping damage position |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013044612A true JP2013044612A (en) | 2013-03-04 |
Family
ID=48008638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011181951A Pending JP2013044612A (en) | 2011-08-23 | 2011-08-23 | Detection method and device of underground piping damage position |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013044612A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157539A1 (en) * | 2013-03-29 | 2014-10-02 | 日本電気株式会社 | Defect analysis device, defect analysis method, and program |
WO2015034316A1 (en) * | 2013-09-06 | 2015-03-12 | 주식회사 사운들리 | Method for transmitting/receiving sound wave using symbol on basis of time-varying frequency and device using same |
JP2016061763A (en) * | 2014-09-22 | 2016-04-25 | 雄 尾▲崎▼ | Water leakage spot detection method for water pipe |
JP2016205976A (en) * | 2015-04-21 | 2016-12-08 | 株式会社テイエルブイ | Leakage detection device |
WO2021010407A1 (en) * | 2019-07-16 | 2021-01-21 | 日本電気株式会社 | Optical fiber sensing system, optical fiber sensing device, and method for detecting pipe deterioration |
US11175652B2 (en) | 2019-02-20 | 2021-11-16 | International Business Machines Corporation | Real-time detection and visualization of potential impairments in under-floor appliances |
US11428599B2 (en) | 2020-10-14 | 2022-08-30 | Distran Ag | Method and apparatus for testing tightness of an enclosure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5470883A (en) * | 1977-11-16 | 1979-06-07 | Kubota Ltd | Buried pipe and device for detecting leakage point |
JPH1019716A (en) * | 1996-06-28 | 1998-01-23 | Osaka Gas Co Ltd | Method and apparatus for inspecting conduit |
-
2011
- 2011-08-23 JP JP2011181951A patent/JP2013044612A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5470883A (en) * | 1977-11-16 | 1979-06-07 | Kubota Ltd | Buried pipe and device for detecting leakage point |
JPH1019716A (en) * | 1996-06-28 | 1998-01-23 | Osaka Gas Co Ltd | Method and apparatus for inspecting conduit |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157539A1 (en) * | 2013-03-29 | 2014-10-02 | 日本電気株式会社 | Defect analysis device, defect analysis method, and program |
WO2015034316A1 (en) * | 2013-09-06 | 2015-03-12 | 주식회사 사운들리 | Method for transmitting/receiving sound wave using symbol on basis of time-varying frequency and device using same |
CN105519016A (en) * | 2013-09-06 | 2016-04-20 | 三德利株式会社 | Method for transmitting/receiving sound wave using symbol on basis of time-varying frequency and device using same |
CN105519016B (en) * | 2013-09-06 | 2017-10-10 | 三德利株式会社 | The method and the equipment using methods described of sound wave are sent and received using the symbol based on time varying frequency |
US9858937B2 (en) | 2013-09-06 | 2018-01-02 | Soundlly Inc. | Method for transmitting and receiving sound waves using time-varying frequency-based symbol, and apparatus using the same |
JP2016061763A (en) * | 2014-09-22 | 2016-04-25 | 雄 尾▲崎▼ | Water leakage spot detection method for water pipe |
JP2016205976A (en) * | 2015-04-21 | 2016-12-08 | 株式会社テイエルブイ | Leakage detection device |
US11175652B2 (en) | 2019-02-20 | 2021-11-16 | International Business Machines Corporation | Real-time detection and visualization of potential impairments in under-floor appliances |
WO2021010407A1 (en) * | 2019-07-16 | 2021-01-21 | 日本電気株式会社 | Optical fiber sensing system, optical fiber sensing device, and method for detecting pipe deterioration |
US12092514B2 (en) | 2019-07-16 | 2024-09-17 | Nec Corporation | Optical fiber sensing system, optical fiber sensing device, and method for detecting pipe deterioration |
US11428599B2 (en) | 2020-10-14 | 2022-08-30 | Distran Ag | Method and apparatus for testing tightness of an enclosure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013044612A (en) | Detection method and device of underground piping damage position | |
KR101876730B1 (en) | Monitoring System for Leak Detection of Waterworks | |
US8131121B2 (en) | Optical fiber pipeline monitoring system and method | |
CA2158669C (en) | Underground conduit defect localization | |
AU2016374474B2 (en) | System for monitoring and/or surveying conduits | |
Muggleton et al. | Determining the location of buried plastic water pipes from measurements of ground surface vibration | |
GB2421311A (en) | Assessing the size of a leak in a pipeline by detecting leak noise and pressure | |
KR101936849B1 (en) | System and method for detecting cavity to non-contact type | |
Muggleton et al. | A shear wave ground surface vibration technique for the detection of buried pipes | |
RU2020111152A (en) | INSTALLATION AND METHOD FOR REMOTE MEASUREMENT OF PIPELINE GEOMETRIC PARAMETERS AT THE STAGE OF RELEASE BY MEANS OF SOUND WAVES IN REAL TIME | |
JP6700054B2 (en) | Non-contact acoustic exploration system | |
KR101373826B1 (en) | Apparatus for operating measurement system position of construction in water and sewage underground facility using elastic wave | |
JP2020190460A (en) | Noncontact acoustic analysis system | |
JP2006003311A (en) | Abnormality part detecting device | |
KR102002480B1 (en) | Systems for maintaining, managing and exploring pipe networks | |
JP4074154B2 (en) | Pipe breakage detector | |
US5412989A (en) | Acoustic tracing of buried conduits | |
JP2014106102A (en) | Noncontact acoustic inspection device and noncontact acoustic inspection method | |
JP2016099183A (en) | Hybrid surface wave survey method and hybrid surface wave survey system | |
WO2014157539A1 (en) | Defect analysis device, defect analysis method, and program | |
JP5732344B2 (en) | Detection method using sound waves, non-contact acoustic detection system, program used in the system, and recording medium recording the program | |
JP2008014830A (en) | Hydrate existence domain survey method and survey system | |
GB2488657A (en) | Detecting and locating impacts on pipelines using acoustic emission (AE) sensors | |
JPH11142280A (en) | Pipe-line inspecting method | |
Giunta et al. | Vibroacoustic monitoring of pigging operations in subsea gas transportation pipelines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140624 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140808 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150120 |