JPH0933378A - Method for inspecting pipe by electromagnetic wave - Google Patents

Method for inspecting pipe by electromagnetic wave

Info

Publication number
JPH0933378A
JPH0933378A JP17918495A JP17918495A JPH0933378A JP H0933378 A JPH0933378 A JP H0933378A JP 17918495 A JP17918495 A JP 17918495A JP 17918495 A JP17918495 A JP 17918495A JP H0933378 A JPH0933378 A JP H0933378A
Authority
JP
Japan
Prior art keywords
pipe
electromagnetic wave
frequency
electromagnetic
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17918495A
Other languages
Japanese (ja)
Inventor
Kiichi Suyama
毅一 陶山
Takashi Imaoka
隆司 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP17918495A priority Critical patent/JPH0933378A/en
Priority to US08/687,450 priority patent/US6008657A/en
Priority to PCT/JP1995/002604 priority patent/WO1996018884A1/en
Priority to CA002180857A priority patent/CA2180857C/en
Priority to KR1019960704397A priority patent/KR100233954B1/en
Priority to EP95940470A priority patent/EP0745841B1/en
Priority to CN95191631A priority patent/CN1108521C/en
Priority to DE69526213T priority patent/DE69526213T2/en
Publication of JPH0933378A publication Critical patent/JPH0933378A/en
Priority to US09/048,116 priority patent/US5966016A/en
Priority to US09/048,002 priority patent/US5963042A/en
Priority to US09/048,115 priority patent/US5990690A/en
Priority to US09/048,117 priority patent/US6005396A/en
Priority to US09/047,932 priority patent/US6008658A/en
Priority to CN03102910A priority patent/CN1431486A/en
Priority to CN03102911A priority patent/CN1431487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the detection error due to the stationary electromagnetic field distribution within a pipe, in an inspection method for detecting a leakage position such as corroded hole generated in a pipe such as gas pipe by use of electromagnetic waves. SOLUTION: In the method of inspecting a leakage position 36 of a pipe 14 to be inspected by exciting an electromagnetic wave to the pipe 14 by a transmitting device 11, propagating it in the pipe, and receiving the leaked electromagnetic wave by a receiving device 12, the frequency of the excited electromagnetic wave is changed with the lapse of time. The frequency can be continuously changed by sweeping, or stepwise. Since no stational electromagnetic field distribution is formed in the pipe, the leakage of electromagnetic wave from a leakage position can be surely judged, thereby, the detection of the leakage position can be ensured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電磁波を利用してガス管
等の管に生じた腐食孔等の漏洩個所を検出する検査方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection method for detecting leak points such as corrosion holes formed in a gas pipe by using electromagnetic waves.

【0002】[0002]

【従来の技術】ガス管に生じた腐食孔等の漏洩個所を検
出する方法の一つとして、電磁波を利用した検出方法が
提案されている。この方法は、金属製のガス管に一定の
周波数の電磁波を励振して円形導波管と同様な態様で伝
播させ、漏洩個所から漏れてくる電磁波を受信すること
により、漏洩個所を検出する方法である。図6は、この
方法を適用する従来の構成を模式的に示すもので、符号
1は送信装置、2は励振部、3は同軸ケーブルであり、
励振部2はガス管4の一端を切断して取付け、ガス管4
内にプローブ5を突出させた同軸−円形導波管変換器と
して構成している。符号6はアンテナ、7は受信装置で
ある。以上の構成において、送信装置1側では励振部2
で連続的に電磁波を励振し、この状態で受信装置7側の
作業員はアンテナ6を移動させながら、漏洩個所8から
漏洩する電磁波を探査する。
2. Description of the Related Art As one of methods for detecting a leaked portion such as a corrosion hole formed in a gas pipe, a detection method using electromagnetic waves has been proposed. In this method, an electromagnetic wave of a certain frequency is excited in a metal gas pipe, propagated in the same manner as a circular waveguide, and an electromagnetic wave leaking from the leaking part is received to detect the leaking part. Is. FIG. 6 schematically shows a conventional configuration to which this method is applied. Reference numeral 1 is a transmitter, 2 is an excitation unit, 3 is a coaxial cable,
The exciter 2 is attached by cutting one end of the gas pipe 4.
It is configured as a coaxial-circular waveguide converter with a probe 5 protruding therein. Reference numeral 6 is an antenna, and 7 is a receiving device. In the above configuration, the excitation unit 2 is provided on the transmitter 1 side.
In this state, the worker on the receiving device 7 side searches the electromagnetic wave leaking from the leaking point 8 while moving the antenna 6 while continuously exciting the electromagnetic wave.

【0003】[0003]

【発明が解決しようとする課題】電磁波の伝送路として
のガス管の状態や励振する周波数によっては、漏洩個所
から電磁波の漏洩がしにくいように管内の電磁界分布が
形成される場合があり、このような場合には漏洩個所の
検出が困難となる。しかし、このような電磁界分布が形
成されないような、検出に妥当な周波数を予め設定する
ことはできない。本発明は、このような課題を解決する
ことを目的とするものである。
Depending on the state of the gas pipe as an electromagnetic wave transmission line and the frequency of excitation, an electromagnetic field distribution in the pipe may be formed so that the electromagnetic wave is less likely to leak from the leak point. In such a case, it becomes difficult to detect the leakage point. However, it is not possible to preset a frequency suitable for detection so that such an electromagnetic field distribution is not formed. The present invention aims to solve such problems.

【0004】[0004]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、送信装置により検査対象の管に電
磁波を励振して管内を伝播させ、漏洩する電磁波を受信
装置で受信することにより管の漏洩個所を検査する方法
において、励振する電磁波の周波数を経時的に変化させ
ることを提案する。
In order to solve the above-mentioned problems, in the present invention, an electromagnetic wave is excited by a transmitting device into a pipe to be inspected to propagate in the pipe, and a leaking electromagnetic wave is received by a receiving device. In the method of inspecting a leaked part of a pipe, it is proposed that the frequency of the electromagnetic wave to be excited is changed with time.

【0005】そして本発明では、上述した構成におい
て、電磁波の周波数は掃引により連続的に変化させた
り、又はステップ的に変化させることを提案する。
The present invention proposes that the frequency of the electromagnetic wave is continuously changed by sweeping or is changed stepwise in the above-mentioned configuration.

【0006】[0006]

【作用】管に励振する電磁波の周波数を経時的に変化さ
せると、ある時点の、ある周波数において漏洩個所から
の漏洩がしにくい電磁界分布が生じても、次の時点の、
異なった周波数においては電磁界分布が変化して、漏洩
個所から電磁波が漏洩するようになるため、漏洩個所の
検出が可能となる。
When the frequency of the electromagnetic wave excited in the pipe is changed with time, even if an electromagnetic field distribution that is difficult to leak from a leak point at a certain frequency occurs at a certain time,
The electromagnetic field distribution changes at different frequencies, and the electromagnetic waves leak from the leaking point, so that the leaking point can be detected.

【0007】[0007]

【実施例】次に本発明の実施例を添付図面を参照して説
明する。図1は本発明の方法をガス管の漏洩個所検出に
適用した実施例の全体構成を模式的に示すものである。
符号11は送信装置、12は励振部、13は送信装置と
励振部12を接続する同軸ケーブルである。この実施例
では、励振部12は、ガス管14を切断しないで、予め
設置されているティー15の横側の開口部16の蓋17
に取付けてティー15内にプローブ18やループ(図示
省略)を突出させる構成としている。この励振部12の
具体的構成の実施例は図5を参照して後述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 schematically shows the overall construction of an embodiment in which the method of the present invention is applied to the detection of a leak location in a gas pipe.
Reference numeral 11 is a transmitting device, 12 is an exciting unit, and 13 is a coaxial cable that connects the transmitting device and the exciting unit 12. In this embodiment, the exciter 12 does not cut the gas pipe 14, but the lid 17 of the opening 16 on the side of the tee 15 that is installed in advance.
The probe 18 and the loop (not shown) are projected into the tee 15 by being attached to the. An example of the specific configuration of the excitation unit 12 will be described later with reference to FIG.

【0008】送信装置11には、発振器や増幅器等の、
電磁波の励振に必要な基本的な構成要素に加えて、励振
する電磁波の周波数を経時的に変化させるための手段を
構成している。図2〜図4は周波数の経時的変化の例を
模式的に示すものである。まず図2、図3は、いずれも
周波数を、ある範囲で掃引により連続的に変化させるも
ので、図2では周波数が、低→高,高→低,低→高,…
…と変化するもの、図3では周波数が、低→高,低→
高,低→高,……と変化するものである。このような周
波数の経時的変化を得るための手段として送信装置11
の発振器を掃引発振器により構成すれば良い。次に、図
4は、複数の周波数をステップ的に変化させるもので、
このような周波数の経時的変化を得るための手段として
送信装置11の発振器を複数の発振周波数の設定が可能
なプログラマブル発振器により構成すれば良い。符号2
1は受信装置、22は受信装置21と同軸ケーブル23
で接続したアンテナである。受信装置21には検波器、
増幅器、信号処理装置、受信レベルの表示装置等、上記
周波数の範囲の電磁波を受信可能な構成とする。
The transmitter 11 includes an oscillator, an amplifier, etc.
In addition to the basic constituent elements necessary for exciting the electromagnetic wave, it constitutes means for changing the frequency of the exciting electromagnetic wave with time. 2 to 4 schematically show examples of changes in frequency with time. First, in FIGS. 2 and 3, the frequency is continuously changed by sweeping in a certain range. In FIG. 2, the frequencies are low → high, high → low, low → high, ...
..., the frequency changes from low to high and low to low in Fig. 3.
High, low → high, and so on. As a means for obtaining such a change in frequency over time, the transmitter 11
The oscillator may be composed of a swept oscillator. Next, FIG. 4 shows a stepwise change of a plurality of frequencies.
As a means for obtaining such a frequency change with time, the oscillator of the transmitter 11 may be configured by a programmable oscillator capable of setting a plurality of oscillation frequencies. Code 2
1 is a receiving device, 22 is a receiving device 21 and a coaxial cable 23
It is the antenna connected by. The receiver 21 has a detector,
An amplifier, a signal processing device, a reception level display device, and the like are configured to be able to receive electromagnetic waves in the above frequency range.

【0009】図5は励振部12の実施例を具体的に示す
もので、図1に示したものと同様な構成要素には同一の
符号を付して、説明を省略する。図5において、符号2
4は支持体、25はロックナットであり、これらはねじ
部26により接続する構成としている。ロックナット2
5のねじ部26aは蓋17の中央に形成した取付穴27
から内側に挿入し、内側に配置した支持体24のねじ部
26bと螺合して締め付けることにより、蓋17の取付
穴27の周辺を、ロックナット25のつば部28と支持
体24により挾持して固定状態とするものとしている。
このような螺合に先立ち、ロックナット25には同軸ケ
ーブル13の先端を挿通させ、中心リード29を突出さ
せると共に、シールド線30の編組をクランプ31に沿
って拡げ、上記螺合においてロックナット25の先端側
にワッシャ32、ガスケット33を介装し、上記締付に
より、拡げたシールド線30を支持体24の内壁に圧接
して取付け状態とする。一方、中心リード29の先端側
には直線形状のプローブ18を接合しており、このプロ
ーブ18は絶縁体34により支持体35a,35bの中
心位置に支持している。このような構成において、蓋1
7のねじ部35aを、ティー15の横側の開口部16の
ねじ部35bに螺合して締め付ければ開口部16を塞ぐ
ことができ、この動作によりプローブ18はティー15
内に位置する。
FIG. 5 specifically shows an embodiment of the exciting section 12. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted. In FIG. 5, reference numeral 2
Reference numeral 4 is a support, and 25 is a lock nut, which are connected by a screw portion 26. Lock nut 2
The screw portion 26a of 5 is a mounting hole 27 formed in the center of the lid 17.
From the inside, and by screwing and tightening with the screw portion 26b of the support body 24 arranged inside, the periphery of the mounting hole 27 of the lid 17 is held by the collar portion 28 of the lock nut 25 and the support body 24. It is supposed to be fixed.
Prior to such screwing, the tip of the coaxial cable 13 is inserted into the lock nut 25, the center lead 29 is projected, and the braid of the shield wire 30 is expanded along the clamp 31. A washer 32 and a gasket 33 are provided on the tip side of the above, and the expanded shield wire 30 is pressed against the inner wall of the support body 24 by the above-mentioned tightening to be in a mounted state. On the other hand, a linear probe 18 is joined to the tip side of the center lead 29, and the probe 18 is supported by an insulator 34 at the center positions of the supports 35a and 35b. In such a configuration, the lid 1
The threaded portion 35a of No. 7 can be closed by screwing the threaded portion 35a of the tee 15 into the threaded portion 35b of the opening 16 on the side of the tee 15 and tightening the probe.
Located inside.

【0010】以上の構成において、送信装置11から同
軸ケーブル13により励振部12に電磁波を供給する
と、プローブ18による電界に対応するモードの電磁波
がティー15内に励振され、ティー15からガス管14
にと伝播する。こうしてガス管14は、円形導波管と同
様なモードで電磁波を伝播させることができる。図の場
合には、ガス管14にはTM01のモードの電磁界が形成
されて伝播する。
In the above structure, when the transmitter 11 supplies the electromagnetic wave to the exciter 12 by the coaxial cable 13, the electromagnetic wave in the mode corresponding to the electric field generated by the probe 18 is excited in the tee 15, and the tee 15 causes the gas pipe 14 to flow.
Propagate to. In this way, the gas pipe 14 can propagate electromagnetic waves in the same mode as the circular waveguide. In the case of the figure, an electromagnetic field of TM 01 mode is formed and propagates in the gas pipe 14.

【0011】そしてガス管14に腐食孔等の漏洩個所2
6が存在する場合、この漏洩個所26においては管壁方
向の磁界成分や管壁に直角方向の電界成分により、電磁
波の漏洩が生じ、この漏洩した電磁波を上述したように
アンテナ22を介して受信装置21で受信することによ
り漏洩個所36を検出することができる。ところが、あ
る時点の、ある周波数の電磁波では、漏洩個所36に上
述したような電、磁界成分が形成されない場合があり、
この時点では電磁波の漏洩は生じにくい。従って、この
ような周波数の電磁波が連続的に励振されているとする
と、漏洩して来る電磁波によるガス管14の漏洩個所3
6の検出は困難である。
The gas pipe 14 has a leakage point 2 such as a corrosion hole.
6 exists, leakage of electromagnetic waves occurs at the leakage point 26 due to a magnetic field component in the pipe wall direction and an electric field component in a direction perpendicular to the pipe wall, and the leaked electromagnetic waves are received via the antenna 22 as described above. The leakage point 36 can be detected by receiving the data at the device 21. However, the electromagnetic wave of a certain frequency at a certain time may not form the above-described electric and magnetic field components at the leakage point 36,
At this point, electromagnetic waves are unlikely to leak. Therefore, assuming that electromagnetic waves of such a frequency are continuously excited, the leakage point 3 of the gas pipe 14 due to the leaking electromagnetic waves 3
Detection of 6 is difficult.

【0012】しかしながら本発明では、ガス管14に励
振する電磁波の周波数が経時的に変化するので、ある時
点の、ある周波数において漏洩個所36からの漏洩がし
にくい電磁界分布が生じても、次の時点の、異なった周
波数においては電磁界分布が変化して、漏洩個所36か
ら電磁波が漏洩するようになるため、漏洩個所36の検
出が可能となる。
However, in the present invention, since the frequency of the electromagnetic wave excited in the gas pipe 14 changes with time, even if an electromagnetic field distribution which is difficult to leak from the leak point 36 at a certain frequency at a certain time, At different times at different frequencies, the electromagnetic field distribution changes, and the electromagnetic wave leaks from the leak point 36, so that the leak point 36 can be detected.

【0013】尚、以上の実施例では、ガス管14への電
磁波の励振をティー15の横側の開口部16に取付けた
励振部12により行っているが、従来と同様にガス管1
4を切断して取付ける励振部により行うこともできる。
In the above embodiment, the excitation of the electromagnetic wave to the gas pipe 14 is performed by the excitation portion 12 attached to the opening 16 on the side of the tee 15.
It is also possible to perform it by an exciter which is cut and attached to No. 4.

【0014】また以上の実施例では、検査の対象をガス
管としているが、本発明は、ガス管の他、適宜の金属製
の管を検査対象とすることができるものである。
Further, in the above-mentioned embodiments, the object of inspection is a gas pipe, but the present invention can be applied to an appropriate metal pipe in addition to the gas pipe.

【0015】[0015]

【発明の効果】本発明は以上のとおりであるので、電磁
波を利用してガス管等の管に生じた腐食孔等の漏洩個所
を検出する検査方法において、管内に固定的な電磁界分
布を形成しないので、漏洩個所からの電磁波の漏洩を確
実ならしめ、以って漏洩個所の検出を確実に行えるとい
う効果がある。
The present invention is as described above. Therefore, in an inspection method for detecting a leaked portion such as a corrosion hole formed in a gas pipe by using electromagnetic waves, a fixed electromagnetic field distribution is provided in the pipe. Since it is not formed, there is an effect that the leakage of the electromagnetic wave from the leakage point can be ensured, and thus the leakage point can be surely detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法をガス管の漏洩個所検出に適用
した実施例の全体構成の模式図である。
FIG. 1 is a schematic diagram of an overall configuration of an embodiment in which the method of the present invention is applied to detection of a leak point in a gas pipe.

【図2】 本発明における周波数の経時的変化の一例を
示す説明図である。
FIG. 2 is an explanatory diagram showing an example of changes in frequency with time according to the present invention.

【図3】 本発明における周波数の経時的変化の他の例
を示す説明図である。
FIG. 3 is an explanatory diagram showing another example of changes in frequency with time according to the present invention.

【図4】 本発明における周波数の経時的変化の更に、
他の例を示す説明図である。
FIG. 4 is a graph showing changes in frequency with time according to the present invention.
It is explanatory drawing which shows another example.

【図5】 本発明における励振部の実施例を示す断面図
である。
FIG. 5 is a cross-sectional view showing an example of an excitation unit in the present invention.

【図6】 電磁波を利用した従来の、ガス管の漏洩個所
検出の全体構成を示す模式図である。
FIG. 6 is a schematic diagram showing an entire configuration of a conventional leak location detection of a gas pipe using electromagnetic waves.

【符号の説明】[Explanation of symbols]

1,11 送信装置 2,12 励振部 3,13,23 同軸ケーブル 4,14 ガス管 5,18 プローブ 6,22 アンテナ 7,21 受信装置 8,36 漏洩個所 15 ティー 16 開口部 17 蓋 24 支持体 25 ロックナット 26a,26b ねじ部 27 取付穴 28 つば部 29 中心リード 30 シールド線 31 クランプ 32 ワッシャ 33 ガスケット 34 絶縁体 35a,35b ねじ部 1,11 Transmitter 2,12 Excitation part 3,13,23 Coaxial cable 4,14 Gas pipe 5,18 Probe 6,22 Antenna 7,21 Receiver 8,36 Leakage point 15 Tee 16 Opening 17 Lid 24 Support 25 lock nut 26a, 26b screw part 27 mounting hole 28 flange part 29 center lead 30 shield wire 31 clamp 32 washer 33 gasket 34 insulator 35a, 35b screw part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 送信装置により検査対象の管に電磁波を
励振して管内を伝播させ、漏洩する電磁波を受信装置で
受信することにより管の漏洩個所を検査する方法におい
て、励振する電磁波の周波数を経時的に変化させること
を特徴とする電磁波による管の検査方法
1. A method for inspecting a leaked portion of a pipe by exciting the electromagnetic wave to a pipe to be inspected by a transmitting device to propagate the inside of the pipe and receiving a leaking electromagnetic wave by a receiving device. A method of inspecting a pipe by electromagnetic waves, characterized by changing with time
【請求項2】 電磁波の周波数は掃引により連続的に変
化させることを特徴とする請求項1記載の電磁波による
管の検査方法
2. The method for inspecting a pipe by electromagnetic waves according to claim 1, wherein the frequency of the electromagnetic waves is continuously changed by sweeping.
【請求項3】 電磁波の周波数はステップ的に変化させ
ることを特徴とする請求項1記載の電磁波による管の検
査方法
3. The method of inspecting a pipe by electromagnetic waves according to claim 1, wherein the frequency of the electromagnetic waves is changed stepwise.
JP17918495A 1994-12-16 1995-07-14 Method for inspecting pipe by electromagnetic wave Pending JPH0933378A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP17918495A JPH0933378A (en) 1995-07-14 1995-07-14 Method for inspecting pipe by electromagnetic wave
CN95191631A CN1108521C (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
DE69526213T DE69526213T2 (en) 1994-12-16 1995-12-18 METHOD AND DEVICE FOR INSPECTING A TUBE WITH ELECTROMAGNETIC RADIATION
PCT/JP1995/002604 WO1996018884A1 (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
CA002180857A CA2180857C (en) 1994-12-16 1995-12-18 A method for inspecting the elements of piping systems by electromagnetic waves
KR1019960704397A KR100233954B1 (en) 1994-12-16 1995-12-18 Electromagnetic inspection of elements of piping
EP95940470A EP0745841B1 (en) 1994-12-16 1995-12-18 A method and apparatus for inspecting a pipe using electromagnetic radiation
US08/687,450 US6008657A (en) 1994-12-16 1995-12-18 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,116 US5966016A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/047,932 US6008658A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,002 US5963042A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
US09/048,115 US5990690A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems BT electromagnetic waves
US09/048,117 US6005396A (en) 1994-12-16 1998-03-26 Method for inspecting the elements of piping systems by electromagnetic waves
CN03102910A CN1431486A (en) 1994-12-16 2003-01-21 Electromagnetic wave checking method for duct system
CN03102911A CN1431487A (en) 1994-12-16 2003-01-21 Electromagnetic wave checking method for duct system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17918495A JPH0933378A (en) 1995-07-14 1995-07-14 Method for inspecting pipe by electromagnetic wave

Publications (1)

Publication Number Publication Date
JPH0933378A true JPH0933378A (en) 1997-02-07

Family

ID=16061413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17918495A Pending JPH0933378A (en) 1994-12-16 1995-07-14 Method for inspecting pipe by electromagnetic wave

Country Status (1)

Country Link
JP (1) JPH0933378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511884A (en) * 2005-10-12 2009-03-19 エアバス・ドイチュラント・ゲーエムベーハー Leak detector
CN103792050A (en) * 2014-01-17 2014-05-14 上海宇田机电设备有限公司 Bottle cap automatic electric shock detection device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511884A (en) * 2005-10-12 2009-03-19 エアバス・ドイチュラント・ゲーエムベーハー Leak detector
US8365581B2 (en) 2005-10-12 2013-02-05 Airbus Operations Gmbh Valve for a leak detector
CN103792050A (en) * 2014-01-17 2014-05-14 上海宇田机电设备有限公司 Bottle cap automatic electric shock detection device
CN103792050B (en) * 2014-01-17 2016-02-10 上海宇田机电设备有限公司 A kind of bottle cap automatic electric shock pick-up unit

Similar Documents

Publication Publication Date Title
US6008657A (en) Method for inspecting the elements of piping systems by electromagnetic waves
US5180969A (en) Detection of reinforcing steel corrosion in concrete structures using non-linear harmonic and intermodulation wave generation
US6008658A (en) Method for inspecting the elements of piping systems by electromagnetic waves
JP2008064587A (en) Electric power equipment
JPH0933378A (en) Method for inspecting pipe by electromagnetic wave
EP0629837B1 (en) Method of measuring inner diameter of pipe
KR100632078B1 (en) Noise discriminating device and method for detect the partial discharge in underground power cable
JPH0961377A (en) Method for inspecting buried metal pipe with electromagnetic wave
JPH0961376A (en) Method for detecting joint position of buried metal pipe with electromagnetic wave, and method for inspecting joint of metal pipe with electromagnetic wave
JPH0933377A (en) Method for inspecting pipe by electromagnetic wave
EA017013B1 (en) Means for pipe control, displacement device for use thereof and method therefor
JPH1019805A (en) Method for inspecting damage of flexible gas pipe in construction of wall and floor
JPH05180804A (en) Inspecting method for buried piping
JP3238534B2 (en) In-tube inspection method
JPH04215046A (en) Detecting method for internal residue in steel pipe
CN111537617A (en) GIS shell defect detection method based on magnetostrictive torsional guided waves
JPH1010173A (en) Method and apparatus for evaluating characteristics of antenna
JPH0943166A (en) Electromagnetic wave exciting method for leakage position detection of tube utilizing electromagnetic wave
JPH10339684A (en) Leakage detecting device
JP2002196074A (en) Device for inspecting inside of conduit line
JP2001249085A (en) Method and apparatus for inspecting sewer pipe
KR940002703B1 (en) Failed fuel rod detection using the acoustic resonance phenomenon
RU2327964C2 (en) Process and device of communication line flaw and location search
JPH0933379A (en) Method for inspecting pipe by electromagnetic wave
JP2002243660A (en) Structure for measuring electromagnetic shielding performance