JP3238534B2 - In-tube inspection method - Google Patents

In-tube inspection method

Info

Publication number
JP3238534B2
JP3238534B2 JP16855093A JP16855093A JP3238534B2 JP 3238534 B2 JP3238534 B2 JP 3238534B2 JP 16855093 A JP16855093 A JP 16855093A JP 16855093 A JP16855093 A JP 16855093A JP 3238534 B2 JP3238534 B2 JP 3238534B2
Authority
JP
Japan
Prior art keywords
pipe
transmitter
radio wave
inspected
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16855093A
Other languages
Japanese (ja)
Other versions
JPH075123A (en
Inventor
毅一 陶山
肇 古沢
靖治 細原
孝史 小堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP16855093A priority Critical patent/JP3238534B2/en
Priority to CA002121311A priority patent/CA2121311C/en
Priority to EP94108521A priority patent/EP0629836A1/en
Publication of JPH075123A publication Critical patent/JPH075123A/en
Priority to US08/585,979 priority patent/US5773984A/en
Application granted granted Critical
Publication of JP3238534B2 publication Critical patent/JP3238534B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガス管等の管の内部の
異常を検査する管内検査方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe inspection method for inspecting the inside of a pipe such as a gas pipe.

【0002】[0002]

【従来技術】地中に埋設されているガス管等の配管内に
土砂等の異物が侵入しているか否かを検査する方法とし
ては従来、検査用のカメラを管内に挿入させて管の内部
の状態を撮影し、その撮影した画面を観察して異常の有
無を判断したり、自走式のロボットを管内に侵入させ、
管内の状態を検査したりしていた(特開昭59−147
260号公報)。また管の内部に管の内径にほぼ等しい
外径のピグを挿入させる等の方法も知られていた。更
に、管の内部に音波を送り出し、その反射波を受信し
て、管の内部の状態を調べる方法(特公昭51−188
36号公報)も知られていた。
2. Description of the Related Art Conventionally, as a method for inspecting whether foreign matter such as earth and sand has penetrated a pipe such as a gas pipe buried underground, a camera for inspection is inserted into the pipe, and the inside of the pipe is conventionally inspected. The state of the camera is photographed, and the photographed screen is observed to judge whether there is any abnormality, or a self-propelled robot enters the pipe,
Inspection of the condition inside the pipe was conducted (Japanese Patent Laid-Open No. 59-147).
No. 260). Also known is a method of inserting a pig having an outer diameter substantially equal to the inner diameter of the pipe into the inside of the pipe. Further, a method of sending out a sound wave into the inside of the tube and receiving the reflected wave to check the state inside the tube (Japanese Patent Publication No. 51-188)
No. 36) was also known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、管内の
検査にカメラやロボット等を用いる場合には、複雑に管
が屈曲している場合には適用できず、又それら装置を管
内に入れるための挿入口が必要となり、既設の管に適応
させる場合には掘削工事等の手間や時間がかかるという
問題があった。更に、一回で検査できる距離もロボット
等に接続されている電線等の長さで限定されてしまうた
め検査を行なう距離が長いときには検査回数が増加し、
多くの費用がかかっていた。また管内に音波を送り、反
射波から内部の状態を検査する場合には、管が完全に閉
塞している状態かあるいは完全に大気に解放されてしま
っている場合等でなければなかなか感知できず、細かな
変化は検知できないという問題点が生じていた。
However, when a camera or a robot is used for the inspection of the inside of the pipe, it cannot be applied when the pipe is complicatedly bent. A mouth is required, and when adapting to an existing pipe, there is a problem that it takes time and labor for excavation work and the like. Furthermore, since the distance that can be inspected at one time is also limited by the length of the electric wires connected to the robot or the like, the number of inspections increases when the inspection distance is long,
Was expensive. Also, when a sound wave is sent into the pipe and the internal state is inspected from the reflected wave, it cannot be easily sensed unless the pipe is completely closed or completely released to the atmosphere. However, there has been a problem that a small change cannot be detected.

【0004】[0004]

【課題を解決するための手段】本発明では上記課題を解
決するため、被検査管内に、該被検査管から分岐し地上
に開口した管の端部から発信機を投入し、該発信機から
前記被検査管の内部に該被検査管の内径に対応した所定
の周波数の電波を発信させ、かつ前記被検査管内に、該
被検査管から分岐し地上に開口した管の端部から受信機
を投入し、前記発信機から発信させた前記電波を前記受
信機において受信し、前記受信機が受信した受信電波
を、前記発信機より発信した発信電波から前記受信機と
前記発信機間の距離による減衰量を減算した値と比較を
行ない、前記受信電波が所定量以上減衰している場合に
は、前記発信機と前記受信機とを投入した間の被検査管
の内部に該被検査管内の断面を狭める異常が発生してい
ると判定することとした。
According to the present invention, in order to solve the above-mentioned problems, a transmitter is inserted into a pipe to be inspected from an end of the pipe which branches off from the pipe to be inspected and opens to the ground. A radio wave having a predetermined frequency corresponding to the inner diameter of the tube to be inspected is transmitted inside the tube to be inspected, and a receiver is inserted into the tube to be inspected from an end of the tube branched from the tube to be inspected and opened to the ground. Is input, the radio wave transmitted from the transmitter is received by the receiver, the received radio wave received by the receiver, the distance between the receiver and the transmitter from the transmitted radio wave transmitted from the transmitter A comparison is made with the value obtained by subtracting the amount of attenuation due to the above, and when the received radio wave is attenuated by a predetermined amount or more, the inside of the tube under test is inserted into the tube under test while the transmitter and the receiver are turned on. Determining that an abnormality has occurred that narrows the cross section of the It was.

【0005】[0005]

【作用】管の内径から求められる所定の周波数の電波を
管内に発信させると内部での減衰が小さく遠方まで強度
が落ちることなく到達させることができる。又、管の内
部に異物があり、この異物によって管の内径が途中で縮
小されている場合には、かかる箇所で電波が大きく減衰
される。そこで検査箇所を通過してきた電波を受信し、
管径の縮小など管に異常がない場合の単なる通過距離か
ら生じる自然減衰量と、受信された電波の減衰量とを比
較することにより、受信された電波の減衰量が所定値よ
り大きい場合にはそのことによって管の内部につまり等
が発生し、内径が縮小されていることが検知できる。
When a radio wave of a predetermined frequency determined from the inner diameter of the tube is transmitted into the tube, attenuation inside the tube is small, and it is possible to reach a distant place without a drop in intensity. Also, if there is a foreign substance inside the tube and the inside diameter of the tube is reduced on the way due to the foreign substance, the radio wave is greatly attenuated at such a place. So we received the radio wave that passed the inspection point,
If the amount of attenuation of the received radio wave is larger than a predetermined value, by comparing the natural attenuation that occurs from the mere passage distance when there is no abnormality in the pipe such as a reduction in the pipe diameter, and the attenuation of the received radio wave, In this case, clogging or the like occurs inside the pipe, and it can be detected that the inner diameter is reduced.

【0006】[0006]

【実施例】以下本発明の検査方法の一実施例について、
道路下に埋設されている家庭用ガス管を例にして説明す
る。このような道路下の家庭用ガス管は、図1に示すよ
うに道路下に埋設された本支管2とこの本支管2から分
岐されている供内管4とから組み合わされており、供内
管4の端部にメータ6を取り付け、そこから各家庭内に
導かれている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the inspection method of the present invention will be described below.
A description will be given of a domestic gas pipe buried under a road as an example. Such a household gas pipe under a road is combined with a main pipe 2 buried under the road and a service pipe 4 branched from the main pipe 2 as shown in FIG. A meter 6 is attached to the end of the tube 4, from which it is led into each home.

【0007】検査は、本支管2の内部状態を検査するも
ので、検査方法を実施するための検査装置を図2に示
す。検査装置10は、発信機12と受信機14、及び処
理装置16、表示装置18等から構成されている。発信
機12は、GHz単位の周波数の電波を連続して可変発
信できるようになっており、導線21の先端に発信用の
アンテナ13が取り付けられている。受信機14は、受
信部15及び増幅器17等からなり、受信用のアンテナ
19が受信部15から延びる導線23の先端に発信機1
2と同様に取り付けてある。そして、発信機12から発
せられた電波を受信すると、その信号を増幅し処理装置
16に送るようになっている。
The inspection is to inspect the internal state of the main pipe 2, and an inspection apparatus for implementing the inspection method is shown in FIG. The inspection device 10 includes a transmitter 12, a receiver 14, a processing device 16, a display device 18, and the like. The transmitter 12 is capable of continuously and variably transmitting radio waves having a frequency of GHz unit, and a transmitting antenna 13 is attached to a leading end of a conductor 21. The receiver 14 includes a receiving unit 15 and an amplifier 17, and a receiving antenna 19 is provided at the tip of a conductor 23 extending from the receiving unit 15.
It is attached in the same way as 2. When a radio wave emitted from the transmitter 12 is received, the signal is amplified and sent to the processing device 16.

【0008】処理装置16は、受信機14で受信した電
波を発信機12で発信された電波の強度と比較して(強
度は予め入力しておく。)減衰量を検出するとともに、
距離入力部20が接続してあり、ここからアンテナ1
3、19の設置間隔が入力されるようになっており、入
力された値に基づいて減衰量を補正するようになってい
る。すなわち、本支管2を通過することによって自然に
生じる減衰量を補正するようになっている。そして、補
正された減衰量を表示装置18に送り、表示装置18は
その値を表示する。
The processing unit 16 compares the radio wave received by the receiver 14 with the intensity of the radio wave transmitted by the transmitter 12 (the intensity is input in advance), and detects the amount of attenuation.
The distance input unit 20 is connected, and the antenna 1
The installation intervals of 3, 19 are input, and the attenuation is corrected based on the input value. That is, the amount of attenuation that occurs naturally by passing through the main pipe 2 is corrected. Then, the corrected attenuation amount is sent to the display device 18, and the display device 18 displays the value.

【0009】次に検査手順を説明する。まず検査しよう
とする箇所を挟む2か所のメータ6を選択し、それぞれ
のメータ6から供内管4を外す。外した一方の供内管4
の開口端部から発信機12のアンテナ13を挿入し、本
支管2の内部にアンテナ13が到達するまで送り込む。
その際本支管2のガスの供給を停止させても、また供給
を止めずにおこなってもよい。供給を止めない場合に
は、供内管4の開口端にシールを行ないガスが外部に漏
出しないようにして行なう。
Next, the inspection procedure will be described. First, two meters 6 sandwiching a portion to be inspected are selected, and the service pipe 4 is removed from each meter 6. One of the service pipes removed
The antenna 13 of the transmitter 12 is inserted from the opening end of the main pipe 2 and is fed until the antenna 13 reaches the inside of the main pipe 2.
At that time, the supply of gas to the main pipe 2 may be stopped or may be performed without stopping the supply. If the supply is not stopped, sealing is performed on the open end of the internal pipe 4 so that the gas does not leak outside.

【0010】同様に他方の側のメータ6の供内管4の開
口端からは受信機14のアンテナ19を本支管2まで送
り込む。このようにして、発信機12と受信機14のア
ンテナ13、19とを本支管2の被検査箇所の両側に配
置させたなら、発信機12から、周波数=光速/{1.
706×管の内径}、で求められる値以上の周波数の電
波を発信する。例えば、本支管2が100A管であれば
1.67GHz以上の周波数の電波である。この式から
求められる周波数以上の周波数の電波は、計算式に代入
した内径の管であればその内部を少ない減衰で伝播でき
る性質を有している。
Similarly, the antenna 19 of the receiver 14 is fed to the main pipe 2 from the open end of the service pipe 4 of the meter 6 on the other side. In this way, if the transmitter 12 and the antennas 13 and 19 of the receiver 14 are arranged on both sides of the portion to be inspected of the main pipe 2, the frequency of the transmitter 12 is equal to the speed of light / {1.
A radio wave having a frequency equal to or higher than 706 × the inner diameter of the pipe} is transmitted. For example, if the main pipe 2 is a 100A pipe, it is a radio wave of a frequency of 1.67 GHz or more. A radio wave having a frequency equal to or higher than the frequency obtained from this equation has the property of being able to propagate inside the pipe with a small attenuation if the pipe has an inner diameter substituted into the calculation equation.

【0011】発信機12から所定の周波数帯域内で周波
数を連続的に変化させながら電波を発信したなら次に、
本支管2内を通過してきたその電波を受信機14で受信
する。受信した電波は、処理装置16に送られ、ここで
発信機12から発信された電波の強度と比較を行ないそ
の減衰量を検出する。そして更に、距離入力部20から
入力されたアンテナ13、19間の距離による減衰量に
基づいて補正を行なう。その値は表示装置18で表示さ
れ、本支管2の内部の状態を検査する。すなわち、本支
管2内に水や土等が侵入して本支管2の内部がせばめら
れているときは、それに応じて受信機14で受信される
電波が減衰されるので、処理装置16で、実質的な電波
の減衰量を得ることにより、本支管2の内部の閉塞状態
を検査することができる。
If a radio wave is transmitted from the transmitter 12 while continuously changing the frequency within a predetermined frequency band, then:
The radio wave passing through the main pipe 2 is received by the receiver 14. The received radio wave is sent to the processing device 16, where it is compared with the intensity of the radio wave transmitted from the transmitter 12 to detect the amount of attenuation. Further, the correction is performed based on the attenuation caused by the distance between the antennas 13 and 19 input from the distance input unit 20. The value is displayed on the display device 18, and the state inside the main branch 2 is inspected. That is, when water, soil, or the like enters the main pipe 2 and the inside of the main pipe 2 is shrunk, the radio wave received by the receiver 14 is attenuated accordingly. Obtaining a substantial amount of attenuation of the radio wave enables an inspection of the closed state of the inside of the main pipe 2.

【0012】次に、上記検査方法を用いた実験例につい
て説明する。実験装置を、図3に示す。実験には、内径
が約105mmの100Aと呼ばれるガス管30を用い
た。ガス管30は、長さが約1m50cmで、両端に発
信機と受信機のアンテナ32を、それぞれガス管30内
に少し挿入させた状態で設置し、発信機から1.0GH
zから5.0GHzまでの連続して変化させた周波数の
電波を発信させ、かつ中央内部に障害物34を配置し
た。障害物34は、ガス管30の内径とほぼ同一の外径
を有する円形の厚板の一部を切り欠いた形状をし、この
切り欠き部分の形状や面積を変えることにより障害物3
4によるガス管30の閉塞状態を変更できる。更に、障
害物34の表面にはアルミ箔を巻き付けた。
Next, an experimental example using the above inspection method will be described. The experimental apparatus is shown in FIG. In the experiment, a gas pipe 30 called 100A having an inner diameter of about 105 mm was used. The gas pipe 30 has a length of about 1 m and 50 cm, and transmitter and receiver antennas 32 are installed at both ends with the antennas 32 slightly inserted into the gas pipe 30 respectively.
Radio waves of continuously varied frequencies from z to 5.0 GHz were transmitted, and an obstacle 34 was arranged inside the center. The obstacle 34 has a shape in which a part of a circular thick plate having an outer diameter substantially the same as the inner diameter of the gas pipe 30 is cut out, and the shape and area of the cut-out portion are changed to form the obstacle 3.
4 can change the closed state of the gas pipe 30. Further, an aluminum foil was wound around the surface of the obstacle 34.

【0013】具体的には、比較例1としてガス管30の
内部に障害物34を置かずに、発信機から電波を発信
し、それを対向させた受信機のアンテナ32で受信した
ものを行ない、次にガス管30の断面の1/2を覆う形
状の障害物34を挿入し、同様に受信したもの(実験1
とする。)、ガス管30の断面の2/3を覆う障害物3
4を挿入して同様に受信したもの(実験2とする。)、
ガス管30の断面全体を覆う障害物34を挿入して同様
に受信したもの(実験3とする。)、及びガス管30の
間に水を配置し同様に受信したもの(実験4とする。)
の計5種類行なった。実験4は、ガス管30の断面に等
しいPET樹脂製の容器に水を入れ、それをガス管30
の内部に挿入した。以下実験1〜実験4までの結果を図
4〜図7に示し、比較例1の結果を各図に点線にて示
す。
More specifically, as a comparative example 1, a radio wave is transmitted from a transmitter without placing an obstacle 34 inside the gas pipe 30, and the radio wave is received by an antenna 32 of a receiver facing the radio wave. Then, an obstacle 34 having a shape covering half of the cross section of the gas pipe 30 was inserted and received in the same manner (Experiment 1).
And ), Obstacle 3 covering 2/3 of the cross section of gas pipe 30
4 and similarly received (experiment 2),
One receiving an obstacle 34 covering the entire cross section of the gas pipe 30 and receiving the same (Experiment 3), and one receiving water with the water placed between the gas pipes 30 (Experiment 4). )
5 types were performed. In Experiment 4, water was placed in a container made of PET resin equal to the cross section of the gas pipe 30, and the water was poured into the gas pipe 30.
Was inserted inside. Hereinafter, the results of Experiments 1 to 4 are shown in FIGS. 4 to 7, and the results of Comparative Example 1 are shown by dotted lines in each figure.

【0014】又、実験6として周波数を2.5GHzに
設定し、ガス管30の1/3を閉塞した状態を加えた上
で他の条件を上記条件と同一で行なった。実験6の結果
を図8に示す。この結果から減衰量が−35dbm以下
となった場合に異物が管内に存在するとする判断基準を
設定できる。
In Experiment 6, the frequency was set to 2.5 GHz, and a condition in which one third of the gas pipe 30 was closed was added. Other conditions were the same as those described above. FIG. 8 shows the results of Experiment 6. From this result, it is possible to set a criterion for determining that a foreign substance is present in the pipe when the attenuation amount is equal to or less than -35 dbm.

【0015】更に、図9に減衰定数のグラフを示す。こ
れは、100A管における2GHzでの減衰定数を1と
したときの各周波数での減衰定数比、及び50A管と2
5A管における減衰定数比である。したがって、100
A管における2GHzでの減衰定数を0.4dB/mと
して、各周波数での相違及び管の内径が異なる時の減衰
定数の差を図9から求め、減衰定数を訂正した上で補正
のための減衰量を求める。
FIG. 9 is a graph showing the attenuation constant. This is because the attenuation constant ratio at each frequency when the attenuation constant at 2 GHz in the 100A tube is 1 and the 50A tube
It is a damping constant ratio in a 5A tube. Therefore, 100
Assuming that the attenuation constant at 2 GHz in the A tube is 0.4 dB / m, the difference at each frequency and the difference of the attenuation constant when the inner diameter of the tube is different are obtained from FIG. Find the amount of attenuation.

【0016】更に、実験7として1mの100A管と、
図10に示すように3mの100A管と50cmの10
0A管を直角に交互に連結させた管のそれぞれ両端に発
信機と受信機を設置して受信したものを行なった。その
結果を図11に示す(1mの100A管の結果を点線で
示す。)。この結果から、電波は屈曲箇所が多い場合で
も、それによる減衰量が少ないことがわかる。
Further, as an experiment 7, a 1-meter 100A tube was used.
As shown in FIG. 10, a 3 m 100A tube and a 50 cm 10
The receiver was installed by installing a transmitter and a receiver at both ends of a tube in which 0A tubes were alternately connected at right angles. The result is shown in FIG. 11 (the result of a 1 m 100A tube is indicated by a dotted line). From this result, it can be seen that even when the radio wave has many bent portions, the amount of attenuation due to it is small.

【0017】以上述べたように、本実施例によれば離れ
た2か所の家庭用メータ6の取り付け部から、発信機1
2及び受信機14のアンテナ13、19をそれぞれ挿入
して、検査しようとする本支管2内に送り込み、発信機
12から発信された電波の減衰量を計測することによ
り、発信用のアンテナ13から受信用のアンテナ19ま
での間の本支管2の閉塞状態等を正確に検査することが
できる。しかも、電波を用いていることから、検査距離
を長く設定することができ、少ない検査回数で長い距離
にわたる本支管2を検査することができる。又本支管2
が複雑に屈曲している場合でも、減衰量が少なく容易に
正確な検査を行なうことができる。
As described above, according to the present embodiment, the transmitter 1 is attached to the home meter 6 at two separate locations.
2 and the antennas 13 and 19 of the receiver 14 are inserted and sent into the main pipe 2 to be inspected, and the attenuation of the radio wave transmitted from the transmitter 12 is measured. The closed state of the main pipe 2 up to the receiving antenna 19 can be accurately inspected. Moreover, since radio waves are used, the inspection distance can be set long, and the main pipe 2 can be inspected over a long distance with a small number of inspections. Main branch 2
Even when is complicatedly bent, an accurate inspection can be easily performed with a small amount of attenuation.

【0018】尚、上記実施例ではガス管を検査対象とし
たが、本発明の検査方法の適用はガス管に限るものでは
ない。又、アンテナ13等の挿入は、メータ6の接続管
からでなくともよい。
In the above embodiment, the gas pipe is inspected, but the application of the inspection method of the present invention is not limited to the gas pipe. Further, the insertion of the antenna 13 or the like does not have to be performed from the connection pipe of the meter 6.

【0019】[0019]

【発明の効果】本発明の検査方法によれば、電波を管内
に発信し通過してきた電波の減衰量を求め、この減衰量
から管内に生じているつまり等の異常を検査するように
しているので、管内の状態を正確に検査することができ
る。しかも、電波を用いていることから、管が複雑に屈
曲している場合でも容易に検査でき、また検査距離を長
く設定することができるので、少ない検査回数で長距離
にわたる管を検査することができる。
According to the inspection method of the present invention, the amount of attenuation of a radio wave transmitted after transmitting a radio wave into a pipe is determined, and an abnormality such as clogging occurring in the pipe is inspected from the attenuation. Therefore, the condition in the tube can be accurately inspected. In addition, because radio waves are used, inspection can be easily performed even when the tube is bent in a complicated manner, and the inspection distance can be set long. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の検査方法の一実施例を示す図である。FIG. 1 is a diagram showing one embodiment of an inspection method of the present invention.

【図2】本発明の検査方法にかかる装置の一実施例を示
す図である。
FIG. 2 is a diagram showing an embodiment of an apparatus according to the inspection method of the present invention.

【図3】本発明の検査方法の実験例を示す斜視図であ
る。
FIG. 3 is a perspective view showing an experimental example of the inspection method of the present invention.

【図4】実験結果を示すグラフである。FIG. 4 is a graph showing experimental results.

【図5】実験結果を示すグラフである。FIG. 5 is a graph showing experimental results.

【図6】実験結果を示すグラフである。FIG. 6 is a graph showing experimental results.

【図7】実験結果を示すグラフである。FIG. 7 is a graph showing experimental results.

【図8】実験結果を示す表である。FIG. 8 is a table showing experimental results.

【図9】減衰定数比を表すグラフである。FIG. 9 is a graph showing a damping constant ratio.

【図10】管を示す平面図である。FIG. 10 is a plan view showing a tube.

【図11】実験結果を示すグラフである。FIG. 11 is a graph showing experimental results.

【符号の説明】[Explanation of symbols]

2 本支管 4 供内管 6 メータ 10 検査装置 12 発信機 13,19,32 アンテナ 15 受信部 16 処理装置 18 表示装置 30 ガス管 34 障害物 2 main pipe 4 service pipe 6 meter 10 inspection device 12 transmitter 13, 19, 32 antenna 15 reception unit 16 processing device 18 display device 30 gas pipe 34 obstacle

フロントページの続き (56)参考文献 特開 昭53−8190(JP,A) 特開 昭50−91787(JP,A) 特開 平4−215046(JP,A) 特開 昭60−76660(JP,A) 実開 平4−68410(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01N 22/00 - 22/04 Continuation of the front page (56) References JP-A-53-8190 (JP, A) JP-A-50-91787 (JP, A) JP-A-4-215046 (JP, A) JP-A-60-76660 (JP) , A) Japanese Utility Model Hei 4-68410 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 22/00-22/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被検査管内に、該被検査管から分岐し
上に開口した管の端部から発信機を投入し、該発信機か
ら前記被検査管の内部に該被検査管の内径に対応した所
定の周波数の電波を発信させ、かつ前記被検査管内に
該被検査管から分岐し地上に開口した管の端部から受信
機を投入し、前記発信機から発信させた前記電波を前記
受信機において受信し、前記受信機が受信した受信電波
を、前記発信機より発信した発信電波から前記受信機と
前記発信機間の距離による減衰量を減算した補正値と比
較を行ない、前記受信電波が所定量以上減衰している場
合には、前記発信機と前記受信機とを投入した間の被検
査管の内部に該被検査管内の断面を狭める異常が発生し
ていると判定することを特徴とした管内検査方法。
A transmitter is inserted into a pipe to be inspected from an end of a pipe branched from the pipe to be inspected and opened on the ground, and the transmitter is inserted into the pipe to be inspected from the transmitter. Transmit a radio wave of a predetermined frequency corresponding to the inner diameter of the test tube, and in the test tube ,
A receiver is inserted from the end of the tube branched from the tube to be inspected and opened to the ground, the radio wave transmitted from the transmitter is received by the receiver, and the received radio wave received by the receiver is A comparison is made with a correction value obtained by subtracting the amount of attenuation due to the distance between the receiver and the transmitter from the transmitted radio wave transmitted from the transmitter.If the received radio wave is attenuated by a predetermined amount or more, the transmitter and the transmitter are compared. An in-pipe inspection method, characterized in that it is determined that an abnormality that narrows the cross section of the pipe to be inspected has occurred inside the pipe to be inspected while the receiver is turned on.
JP16855093A 1993-06-15 1993-06-15 In-tube inspection method Expired - Fee Related JP3238534B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16855093A JP3238534B2 (en) 1993-06-15 1993-06-15 In-tube inspection method
CA002121311A CA2121311C (en) 1993-06-15 1994-04-14 Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method
EP94108521A EP0629836A1 (en) 1993-06-15 1994-06-03 Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method
US08/585,979 US5773984A (en) 1993-06-15 1996-01-12 Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16855093A JP3238534B2 (en) 1993-06-15 1993-06-15 In-tube inspection method

Publications (2)

Publication Number Publication Date
JPH075123A JPH075123A (en) 1995-01-10
JP3238534B2 true JP3238534B2 (en) 2001-12-17

Family

ID=15870106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16855093A Expired - Fee Related JP3238534B2 (en) 1993-06-15 1993-06-15 In-tube inspection method

Country Status (1)

Country Link
JP (1) JP3238534B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224666A (en) * 2007-03-08 2008-09-25 Tohoku Univ Microwave measurement system of piping thickness reduction
WO2018036781A1 (en) * 2016-08-22 2018-03-01 Basf Se Method and apparatus for detecting deposits in a pipe system of an apparatus

Also Published As

Publication number Publication date
JPH075123A (en) 1995-01-10

Similar Documents

Publication Publication Date Title
KR100233954B1 (en) Electromagnetic inspection of elements of piping
US5773984A (en) Method of inspecting abnormality occurring inside pipe and apparatus for practicing the method
JPH08316918A (en) Transmission method for intra-pipe radio wave
US4455863A (en) Sonic detection of gas leaks in underground pipes
US6005396A (en) Method for inspecting the elements of piping systems by electromagnetic waves
WO2014120074A9 (en) System for monitoring pipeline leakage, pipeline element provided with the system, and method for mounting the monitoring system onto a pipeline
JP3238534B2 (en) In-tube inspection method
JP3210491B2 (en) Inner diameter measurement method
KR100401482B1 (en) Leakout detection connector of the water service pipe
JPH10239365A (en) Method of and apparatus for inspecting shielding performance of electromagnetic wave shielding room
RU2207562C1 (en) Process of acoustic emission control over technical condition of pipe-lines
JPH08166228A (en) Pipe inspection device
JPH074941A (en) Inside-of-tube inspection apparatus
JPS604840A (en) Fluid detecting apparatus
JPH084057A (en) Water leakage detector for water service
JP3603973B2 (en) Damage inspection method for flexible gas pipes in wall and floor construction
JPH09196798A (en) Method and apparatus for detecting leakage from water pipe
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JP3535679B2 (en) Method for judging multiple reflection signals in a pipe in an ultrasonic line survey system
JPH0853878A (en) Measuring cover antenna for underground embedded article
Trinchero et al. Wireless sensors for a wire-independent analysis of fluid networks
JPH05217078A (en) Target detector
JP2994848B2 (en) Pipeline repair method using sound.
RU2287108C2 (en) Device for determining damaged sites of pipeline thermal insulation
JPH1056408A (en) Method and device for detecting damaged part of cable

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010925

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees