JPH071168B2 - A method for investigating in-pipe conditions using reflected sound waves - Google Patents

A method for investigating in-pipe conditions using reflected sound waves

Info

Publication number
JPH071168B2
JPH071168B2 JP59150705A JP15070584A JPH071168B2 JP H071168 B2 JPH071168 B2 JP H071168B2 JP 59150705 A JP59150705 A JP 59150705A JP 15070584 A JP15070584 A JP 15070584A JP H071168 B2 JPH071168 B2 JP H071168B2
Authority
JP
Japan
Prior art keywords
pipe
sound wave
reflected
wave
investigating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59150705A
Other languages
Japanese (ja)
Other versions
JPS6129757A (en
Inventor
松夫 鐙
三雄 森本
雅弘 中野
雄吾 梶尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59150705A priority Critical patent/JPH071168B2/en
Publication of JPS6129757A publication Critical patent/JPS6129757A/en
Publication of JPH071168B2 publication Critical patent/JPH071168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/012Phase angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、管の内部状況を反射音波を利用して調査する
方法に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for investigating the internal condition of a tube by utilizing reflected sound waves.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

地中に埋設された管、地上に設置された管、あるいは建
物に設置された管は経年とともに劣化するため、管の内
部状況を調査し、維持補修をしなければならない。
Pipes buried in the ground, pipes installed on the ground, or pipes installed in buildings deteriorate over time, so the internal conditions of the pipes must be investigated and maintained.

従来、この種の管の内部状況を調査する方法としては、
パイプカメラあるいは、ファイバスコープを管内に挿入
し、これらの画像をモニタあるいはカメラに写して直視
する方法、また管内に通線体またはセンサを挿入し、間
接的に調査する方法などがあり、管内の異物の有無、管
の接続状況、折損、偏平状況等を調査している。
Conventionally, as a method of investigating the internal condition of this type of pipe,
There is a method of inserting a pipe camera or a fiberscope into the tube and viewing these images directly on the monitor or camera, or a method of inserting a through wire or a sensor inside the tube and indirectly inspecting it. We are investigating the presence / absence of foreign matter, pipe connection, breakage, and flatness.

しかし、これら従来の方法は管の内部状況を定量的ある
いは定性的に調査できるものの、パイプカメラ、ファイ
バスコープ、通線体あるいはセンサ等を直接管内に挿入
する必要があるため、かなりの作業人員と調査時間を要
すという欠点があった。
However, although these conventional methods can quantitatively or qualitatively investigate the internal condition of the pipe, it is necessary to insert a pipe camera, a fiberscope, a wire body or a sensor directly into the pipe, and therefore a considerable number of workers are required. There was a drawback that it took time to investigate.

〔発明の目的〕[Object of the Invention]

本発明はこれらの欠点を解決するもので、管の一端に音
波送信子と音波受信子を設置し、音波送信子より音波パ
ルスを照射し、その反射波を音波受信子で測定すること
により管内の状況を定量的、定性的に調査し、なおかつ
短時間、少人数で調査し得る反射音波を利用した管内状
況調査方法を提供することを目的とする。
The present invention solves these drawbacks by installing a sound wave transmitter and a sound wave receiver at one end of the tube, irradiating a sound wave pulse from the sound wave transmitter, and measuring the reflected wave with the sound wave receiver. It is an object of the present invention to provide a method for investigating in-pipe conditions using reflected sound waves, which enables quantitative and qualitative investigation of the situation of (1) and can be investigated by a small number of people in a short time.

〔発明の実施例〕Example of Invention

本発明の反射音波を利用した管内状況調査方法につい
て、地中に埋設された通信ケーブル管路の場合の実施例
を図面によって説明する。
Regarding the method for investigating the situation inside a pipe using reflected sound waves of the present invention, an embodiment in the case of a communication cable pipe buried in the ground will be described with reference to the drawings.

第1図は実施概要図であって、1は信号発生装置、2は
波形記憶装置、3は音波送信子の一例としてのコーンス
ピーカ、4は音波受信子の一例としてのエレクトレット
マイクロフォン、5は指示計、6は地中に埋設された通
信ケーブル収容管である。
FIG. 1 is a schematic view of an embodiment, 1 is a signal generator, 2 is a waveform storage device, 3 is a cone speaker as an example of a sound wave transmitter, 4 is an electret microphone as an example of a sound wave receiver, and 5 is an instruction. A total of 6 is a communication cable housing pipe buried in the ground.

即ち、信号発生装置1で発生させた音波パルス信号を管
端に設置したコーンスピーカ3より管6内に照射する
と、管内空断面積が変化する箇所、すなわち、折損ある
いは偏平箇所A、異物詰まり箇所B、継手部C等から反
射波が得られるとともに、コーンスピーカ3およびエレ
クトレットマイクロフォン4が設置されていない他端D
から反射波が得られる。この反射波をエレクトレットマ
イクロフォン4により受波し、波形記憶装置2に記憶す
る。
That is, when the sound wave pulse signal generated by the signal generator 1 is applied to the inside of the tube 6 from the cone speaker 3 installed at the end of the tube, the area where the internal cross-sectional area of the tube changes, that is, the breakage or flattened area A and the foreign matter clogging area B, the reflected wave is obtained from the joint C, etc., and the other end D where the cone speaker 3 and the electret microphone 4 are not installed
The reflected wave is obtained from. The reflected wave is received by the electret microphone 4 and stored in the waveform storage device 2.

管6内へ照射する音波の周波数としては、管内の音波伝
播特性から減衰が少い平面波となる周波数帯域を使用す
るのがよく、通信ケーブル収容管6の場合管径が8cm程
度であるため、理論上1.2kHz以下が平面波として管内を
伝搬する。また、本発明者の実験によれば、低周波数ほ
ど管内断面積の変化を的確に捕える傾向にあるが、反面
低周波数にするほど雑音の周波数帯域に近くなり、反射
波の観測に支障を来すという欠点がある。そのため、本
実施例では、200Hz〜600Hz程度の周波数帯域をコーンス
ピーカ3から照射しており、その時の音波パルス信号幅
は1ms〜2msである。
As the frequency of the sound wave to be radiated into the pipe 6, it is preferable to use a frequency band in which the sound wave propagation characteristic in the pipe is a plane wave with little attenuation. In the case of the communication cable housing pipe 6, the pipe diameter is about 8 cm. Theoretically 1.2 kHz or less propagates in the tube as a plane wave. Further, according to the experiments of the present inventor, the lower the frequency, the more the tendency of accurately capturing the change in the cross-sectional area of the tube, but the lower the frequency, the closer to the frequency band of the noise, which hinders the observation of the reflected wave. There is a drawback that Therefore, in the present embodiment, the cone speaker 3 irradiates the frequency band of about 200 Hz to 600 Hz, and the sound wave pulse signal width at that time is 1 ms to 2 ms.

なお、管径が変わった場合は、それに応じた周波数帯域
を使用することとなる。
If the pipe diameter changes, the frequency band corresponding to the change will be used.

第2図は、波形記憶装置2に記憶された照射波形、反射
波形を波形記憶装置2の指示計5に表わしたものであ
り、図中Pは照射波、PAは折損あるいは偏平箇所Aから
反射した反射波、PBは異物詰まり箇所Bから反射した反
射波、PCは継手部Cから反射した反射波、PDは他端Dか
ら反射した反射波である。またtA,tB,tC,tDは音波パル
スを発信してから反射波を受波するまでの時間であり、
これらの時間と管内音波伝播速度Vから の計算をすることにより管内空断面積の変化している位
置、すなわちA、B、CおよびD点までの距離を知るこ
とができる。
FIG. 2 shows the irradiation waveform and the reflection waveform stored in the waveform storage device 2 in the indicator 5 of the waveform storage device 2, where P is the irradiation wave and P A is the breakage or flat portion A. The reflected wave reflected, P B is the reflected wave reflected from the foreign matter clogging point B, P C is the reflected wave reflected from the joint C, and P D is the reflected wave reflected from the other end D. Also, t A , t B , t C , t D is the time from transmitting the sound wave pulse to receiving the reflected wave,
From these times and the sound wave velocity V in the tube, By calculating, it is possible to know the position where the internal cross-sectional area of the pipe is changing, that is, the distance to points A, B, C and D.

また、照射波と反射波の位相を比較することにより、反
射波発生位置で管内空断面積が大きくなっているのか、
小さくなっているのか判定でき、反射波の位相が照射波
と同位相であれば管内空断面積が小さくなっていること
を示し、逆位相の場合は管内空断面積が大きくなってい
ることを示す。
Also, by comparing the phases of the irradiated wave and the reflected wave, is it possible that the internal cross-sectional area of the pipe is increased at the reflected wave generation position?
It can be determined whether it is small, and if the phase of the reflected wave is the same as the irradiation wave, it indicates that the internal cross-sectional area of the pipe is small, and if it is the opposite phase, the internal cross-sectional area of the pipe is large. Show.

さらに、これらの反射波の振幅を測定することにより、
管内空断面積の変化量を推定することができる。反射波
の発生位置が同一であれば、振幅が大きいほど管内空断
面積の変化量が大きく、振幅が小さいほど管内空断面積
も小さいことを示す。
Furthermore, by measuring the amplitude of these reflected waves,
It is possible to estimate the amount of change in the internal cross-sectional area of the pipe. If the generated position of the reflected wave is the same, it means that the larger the amplitude is, the larger the change amount of the in-pipe air cross-sectional area is.

これらのことから、第1図のような両端が開放された管
においては、照射波と同位相の反射波、第2図中では
PA、PBに注目した場合、管内に内空断面が小さくなって
いる所があるか否かが判定でき、あればその位置と小さ
くなっている程度を知ることができる。また、逆位相の
反射波、第2図中ではPC、PDに注目した場合、管内の内
空断面が大きくなっている所すなわち継手部Cの位置と
他端Dの位置を調査することができる。
From these facts, in a tube whose both ends are open as shown in FIG. 1, a reflected wave having the same phase as the irradiation wave, in FIG.
When paying attention to P A and P B , it is possible to determine whether or not there is a part where the inner cross-section is small in the pipe, and if so, it is possible to know that position and the extent to which it has become smaller. Also, when paying attention to the antiphase reflected waves, P C and P D in Fig. 2, investigate where the inner cross-section in the pipe is large, that is, the position of the joint C and the position of the other end D. You can

〔発明の効果〕〔The invention's effect〕

以上述べたように本発明によれば、管の一端に音波送信
子と音波受信子を設置し、音波パルスを照射したのち反
射波を測定することにより、管内状況を定量的および定
性的に知ることができるとともに短時間、少人数で調査
することができる利点がある。
As described above, according to the present invention, a sound wave transmitter and a sound wave receiver are installed at one end of a tube, and a reflected wave is measured after irradiating a sound wave pulse, so that the situation inside the tube can be quantitatively and qualitatively known. In addition to being able to do so, there is an advantage that a small number of people can be investigated in a short time.

また、本調査方法は実施例に限られたものではなく、地
上に設置された管、建物に設置された管など、一端が開
放されている管すべてに適用できる。
Further, the present survey method is not limited to the examples, and can be applied to all pipes having one end opened, such as pipes installed on the ground and pipes installed in buildings.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
の波形記憶装置に記憶された照射波形図および反射波形
図である。 1……信号発生装置、2……波形記憶装置、3……コー
ンスピーカ、4……エレクトレットマイクロフォン、5
……指示計、6……通信ケーブル収容管。
FIG. 1 is a vertical sectional view of an embodiment of the present invention, and FIG. 2 is an irradiation waveform diagram and a reflection waveform diagram stored in the waveform storage device of FIG. 1 ... Signal generator, 2 ... Waveform storage device, 3 ... Cone speaker, 4 ... Electret microphone, 5
…… Indicator, 6 …… Communication cable storage tube.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶尾 雄吾 東京都千代田区内幸町1丁目1番6号 日 本電信電話公社内 (56)参考文献 特公 昭51−18836(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yugo Kajio 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Public Corporation (56) References Japanese Patent Publication Sho 51-18836 (JP, B1)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】管の一端に音波送信子と音波受信子を設置
して、音波送信子により管内に音波パルスを照射し、管
内空断面積が変化する箇所で反射した音波を音波受信子
により測定し、照射波と反射波の位相を比較することに
より、反射波発生位置で管内空断面積が大きくなってい
るのか、小さくなっているのか判定することを特徴とす
る反射音波を利用した管内状況調査方法。
1. A sound wave transmitter and a sound wave receiver are installed at one end of a pipe, and a sound wave pulse is applied to the inside of the pipe by the sound wave transmitter, and the sound wave reflected at a portion where the hollow cross-sectional area in the pipe changes is received by the sound wave receiver. By measuring and comparing the phases of the irradiated wave and the reflected wave, it is possible to determine whether the internal cross-sectional area of the pipe is large or small at the reflected wave generation position. Status investigation method.
JP59150705A 1984-07-20 1984-07-20 A method for investigating in-pipe conditions using reflected sound waves Expired - Fee Related JPH071168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59150705A JPH071168B2 (en) 1984-07-20 1984-07-20 A method for investigating in-pipe conditions using reflected sound waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59150705A JPH071168B2 (en) 1984-07-20 1984-07-20 A method for investigating in-pipe conditions using reflected sound waves

Publications (2)

Publication Number Publication Date
JPS6129757A JPS6129757A (en) 1986-02-10
JPH071168B2 true JPH071168B2 (en) 1995-01-11

Family

ID=15502609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59150705A Expired - Fee Related JPH071168B2 (en) 1984-07-20 1984-07-20 A method for investigating in-pipe conditions using reflected sound waves

Country Status (1)

Country Link
JP (1) JPH071168B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375554A (en) * 1986-09-17 1988-04-05 Nobuo Nakayama Method and device for measurement utilizing acoustic wave
US7523667B2 (en) * 2003-12-23 2009-04-28 Rosemount Inc. Diagnostics of impulse piping in an industrial process
JP4762675B2 (en) * 2005-10-28 2011-08-31 能美防災株式会社 Foam release test method and apparatus
JP2007309838A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Conduit inspection method and conduit inspection device used therefor
GB2441788B (en) * 2006-09-15 2011-11-09 Studor Sa Method and equipment for detecting sealing deficiencies in drainage and vent systems for buildings

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118836A (en) * 1974-08-07 1976-02-14 Mitsubishi Electric Corp OKUNAI HAISENJOHODENSOHOSHIKI

Also Published As

Publication number Publication date
JPS6129757A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US4455863A (en) Sonic detection of gas leaks in underground pipes
CA2158669C (en) Underground conduit defect localization
EP2326933B1 (en) Improvements in and relating to apparatus for the airborne acoustic inspection of pipes
EP2018552B1 (en) Acoustic method and apparatus for detection and characterization of a medium
JPH0894481A (en) Gas leak detection method for embedded pipe
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JP3032185B2 (en) Piping leak detection system
US5412989A (en) Acoustic tracing of buried conduits
US9349269B2 (en) Glass breakage detection system and method of configuration thereof
US10787899B2 (en) Resonant acoustic structure for measuring well or borehole depth
JP3210491B2 (en) Inner diameter measurement method
JPH08271370A (en) Method and device for inspecting conduit
JPH11132896A (en) Inundation state inspecting method and inspecting apparatus
JP3786770B2 (en) Piping structure inspection method
JPH1019716A (en) Method and apparatus for inspecting conduit
US20030198131A1 (en) Method and apparatus for locating underground water pipes
JP3535329B2 (en) Acoustic leak location identification device
JPH084057A (en) Water leakage detector for water service
JP3535679B2 (en) Method for judging multiple reflection signals in a pipe in an ultrasonic line survey system
CN109521098A (en) A kind of monitoring system and method for sound barrier
JPH068802B2 (en) Pipe internal inspection device
JPH05187851A (en) Method and instrument for measuring length of buried pipeline
GB2603196A (en) Leak Detection
JP2745165B2 (en) Acoustic pipe length measuring instrument
ITTO20000886A1 (en) METHOD FOR DETECTING LOSSES FROM SUBMERGED CONDUCT.

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees