JPH068802B2 - Pipe internal inspection device - Google Patents

Pipe internal inspection device

Info

Publication number
JPH068802B2
JPH068802B2 JP60043433A JP4343385A JPH068802B2 JP H068802 B2 JPH068802 B2 JP H068802B2 JP 60043433 A JP60043433 A JP 60043433A JP 4343385 A JP4343385 A JP 4343385A JP H068802 B2 JPH068802 B2 JP H068802B2
Authority
JP
Japan
Prior art keywords
pulse
signal
conduit
pipeline
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60043433A
Other languages
Japanese (ja)
Other versions
JPS61202158A (en
Inventor
哲郎 藪田
健 辻村
武則 森光
康利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60043433A priority Critical patent/JPH068802B2/en
Publication of JPS61202158A publication Critical patent/JPS61202158A/en
Publication of JPH068802B2 publication Critical patent/JPH068802B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/341Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics
    • G01N29/343Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with time characteristics pulse waves, e.g. particular sequence of pulses, bursts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、超音波あるいは音波パルスを用いて通信用ケ
ーブル管路内部の変形および異常を点検するパイプ内部
点検装置に関するものである。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a pipe interior inspection device for inspecting deformation and abnormality inside a communication cable conduit by using ultrasonic waves or sound wave pulses.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

通信用ケーブルの管路は、内径約75mmφのプラスチッ
クパイプまたは鋼管から構成されている。従来の通信用
ケーブル管路内部点検装置は第3図のように構成されて
おり、本使用例は通信用ケーブルを収容していない空管
路の点検状況を示している。図中、1は管路、2はマン
ホール、3はパイプカメラであり光源とテレビカメラか
ら構成されている。このパイプカメラ3は、牽引用ケー
ブル4及び引戻用ケーブル5を用いて管路1内を移動
し、パイプカメラ3に接続されたカメラケーブル6を通
して制御用モニタ7に管路1内状況が写し出される構成
になっている。このような構成になっているので、管路
1内部の状況は映像としてとれる反面、管路1内部に牽
引用ケーブル4を通す作業、パイプカメラ3を移動させ
る作業等、非常に大がかりな作業になる欠点があった。
また、第3図に示すように、パイプカメラ3を管路1内
部に通す構造なので、管路1が偏平または折損等をして
いると管路1内部にパイプカメラ3を通すことが出来
ず、点検作業に用いることが出来ない欠点があった。
The conduit of the communication cable is made of a plastic pipe or a steel pipe having an inner diameter of about 75 mmφ . The conventional apparatus for inspecting the inside of a communication cable pipeline is configured as shown in FIG. 3, and this example of use shows the inspection status of an empty pipeline that does not accommodate the communication cable. In the figure, 1 is a conduit, 2 is a manhole, 3 is a pipe camera, which is composed of a light source and a television camera. The pipe camera 3 moves in the pipeline 1 using the pulling cable 4 and the pulling back cable 5, and the inside of the pipeline 1 is displayed on the control monitor 7 through the camera cable 6 connected to the pipe camera 3. It is configured to be. With such a configuration, the inside of the pipeline 1 can be taken as an image, but on the other hand, it is very large-scale work such as the work of passing the towing cable 4 inside the pipeline 1 and the work of moving the pipe camera 3. There was a drawback.
Further, as shown in FIG. 3, since the pipe camera 3 is configured to pass through the inside of the pipe line 1, if the pipe line 1 is flat or broken, the pipe camera 3 cannot pass through the inside of the pipe line 1. However, there was a drawback that it could not be used for inspection work.

〔発明の目的〕[Object of the Invention]

本発明はこれらの欠点を除去するため、管路端末部から
超音波または音波を用いて管路内部を点検することを特
徴とし、その日的は管路内部の状況調査を管路両端また
は片端から簡易に行う装置を開発することにある。
In order to eliminate these drawbacks, the present invention is characterized by inspecting the inside of the pipeline using ultrasonic waves or sound waves from the end of the pipeline, and on that day, the situation inside the pipeline is checked from both ends or one end of the pipeline. It is to develop a simple device.

〔発明の概要〕[Outline of Invention]

本発明は、超音波または音波パルスを管路片端部から管
路内部に送信し、その反射パルスの情報によって管路内
部の異常を推定することを特徴とする。このため、従来
装置のように、管路内部にカメラ等を物理的に挿入する
ものとは全く異なるものである。
The present invention is characterized in that an ultrasonic wave or a sound wave pulse is transmitted from one end of a duct to the inside of the duct, and abnormality in the duct is estimated based on information of the reflected pulse. Therefore, it is completely different from the conventional device in which a camera or the like is physically inserted inside the conduit.

〔発明の実施例〕Example of Invention

第1図は本発明の実施例であって、1は通信用ケーブル
管路、2はマンホール、8は超音波あるいは音波パルス
の受信および送信機能を有する超音波または音波セン
サ、9は超音波または音波パルスから電気信号、および
電気信号から超音波または音波パルスに変換する信号変
換部、10は信号処理部、11は管路異常部分である。
点検を行おうとする通信用ケーブル管路1の端末部に超
音波または音波センサ8を固定し、超音波または音波パ
ルスを管路1内部に送信し、管路1内部の変形等の異常
部分11からの反射パルスをセンサ8で受信する。第1
図に示す管路異常部分11からの超音波または音波パル
ス反射波形を信号変換部9で電気信号に変換した結果を
第2図に示す。この第2図に示すように、管路の異常部
分11に対応して反射パルスAが得られ、反射パルスA
の伝搬時間tから管路1の異常部分11の位置、反射パ
ルスAの波高値および位置から、管路異常部分11の変
形の程度を推定できる。管路異常部分11の位置L
伝搬時間τを用いて次式で与えられる。
FIG. 1 shows an embodiment of the present invention, in which 1 is a communication cable line, 2 is a manhole, 8 is an ultrasonic wave or sound wave sensor having a function of receiving and transmitting ultrasonic waves or sound wave pulses, and 9 is an ultrasonic wave or A signal conversion unit for converting a sound wave pulse into an electric signal and an electric signal into an ultrasonic wave or a sound wave pulse, 10 is a signal processing unit, and 11 is an abnormal duct section.
An ultrasonic wave or sound wave sensor 8 is fixed to a terminal portion of the communication cable pipe line 1 to be inspected, an ultrasonic wave or a sound wave pulse is transmitted to the inside of the pipe line 1, and an abnormal portion 11 such as deformation inside the pipe line 1 is transmitted. The reflected pulse from the sensor is received by the sensor 8. First
The result of converting the ultrasonic wave or the sound wave pulse reflection waveform from the abnormal duct 11 shown in the figure into an electric signal by the signal conversion unit 9 is shown in FIG. As shown in FIG. 2, the reflected pulse A is obtained corresponding to the abnormal portion 11 of the conduit, and the reflected pulse A
The degree of deformation of the abnormal section 11 of the conduit can be estimated from the position of the abnormal section 11 of the conduit 1, the peak value of the reflected pulse A, and the position from the propagation time t. The position L 1 of the abnormal conduit portion 11 is given by the following equation using the propagation time τ 1 .

=τv/2 (1) ただし、vは超音波または音波の音速である。L 1 = τ 1 v / 2 (1) where v is the speed of sound of an ultrasonic wave or a sound wave.

また、第2図に示す反射パルスAの電圧は、管路1内部
の変形と強い相関を有し、変形が大きくなるほど反射パ
ルスAの電圧は大きくなる。しかし、管路異常部分11
の反射パルスAの電圧は変形の大きさのみならず、管路
異常部分11の長さにも依存する。管路異常部分11の
長さをl、超音波または音波の使用波長をλとすると、
管路異常部分11の長さlがλ/2の整数倍に近い時は
透過しやすくほとんど反射を起こさない。一方、管路異
常部分11の長さlがλ/4の奇数倍に近い時は透過率が
小さくなり、非常に大きな反射となる。また、l≪λの
時にも反射率は小さくなり、反射パルスAはほとんど得
られなくなる。
The voltage of the reflected pulse A shown in FIG. 2 has a strong correlation with the deformation inside the conduit 1, and the voltage of the reflected pulse A increases as the deformation increases. However, the abnormal conduit section 11
The voltage of the reflection pulse A of No. 1 depends not only on the size of the deformation but also on the length of the abnormal section 11 of the duct. If the length of the abnormal conduit section 11 is l and the wavelength of the ultrasonic wave or sound wave is λ,
When the length l of the abnormal conduit portion 11 is close to an integral multiple of λ / 2, it easily transmits and hardly reflects. On the other hand, when the length 1 of the abnormal conduit portion 11 is close to an odd multiple of λ / 4, the transmittance becomes small and the reflection becomes extremely large. Also, when l << λ, the reflectance becomes small and the reflected pulse A is hardly obtained.

このため、1周波数を用いた試験法だと、管路異常部分
11の長さによっては、反射パルスAの波高値に管路異
常部分11の長さの要因が強く反映され、反射パルスA
と管路1の変形度の間の相関が期待できない。そこで、
本発明では周波数を変化させたパルスを複数個発信し、
それぞれの周波数の反射パルスAの反射係数を平均化
し、平均化処理した結果を用いることにより、管路異常
部分11の長さの影響を除去している。
Therefore, in the test method using one frequency, depending on the length of the abnormal conduit section 11, the crest value of the reflected pulse A strongly reflects the factor of the length of the abnormal conduit section 11, and the reflected pulse A
And the degree of deformation of the pipeline 1 cannot be expected. Therefore,
In the present invention, a plurality of pulses having different frequencies are transmitted,
By averaging the reflection coefficients of the reflection pulse A of each frequency and using the result of the averaging process, the influence of the length of the abnormal conduit section 11 is removed.

また、反射パルスを電気信号変換した後の波高値の電圧
は、管路異常部分11の反射係数の影響のみならず、パ
ルスは伝送距離が長くなるにつれて減衰するので、伝送
距離の影響も受ける。電気信号変換したパルスの波高値
の電圧から、管路異常部分11における反射係数を正確
に求めるためには、長距離伝送による減衰を補正する必
要がある。この補正方法は、送信各周波数の減衰特性の
距離依存性を実験的に求めておき、式(1)を用いて伝搬
時間から伝送距離を求め、前記の距離依存性の実験結果
から減衰量を補正することにより、真の反射率を求め
る。各周波数パルスで得られた該反射率を、前記に示し
た方法を用いて平均化し、その結果を用いてパイプの変
形を推定すると、精度の良い推定が可能となる。
Further, the voltage of the crest value after converting the reflected pulse into an electric signal is affected not only by the reflection coefficient of the abnormal conduit section 11, but also by the transmission distance because the pulse is attenuated as the transmission distance becomes longer. In order to accurately obtain the reflection coefficient in the abnormal section 11 of the conduit from the voltage of the peak value of the pulse converted into an electric signal, it is necessary to correct the attenuation due to long-distance transmission. In this correction method, the distance dependence of the attenuation characteristic of each transmission frequency is experimentally obtained, the transmission distance is calculated from the propagation time using the equation (1), and the attenuation amount is calculated from the experimental result of the distance dependence. By correcting, the true reflectance is obtained. If the reflectance obtained for each frequency pulse is averaged using the method described above and the deformation of the pipe is estimated using the result, accurate estimation can be performed.

以上の測定方法を具体化するために、信号変換部9およ
び信号処理部10は次のような構成を用いるとよい。信
号変換部9内に発生周波数可変なパルス発生回路を内蔵
し、信号処理部10内のマイクロコンピュータから指令
された周波数のパルスをパルス発生回路で発生させ、信
号変換部9内の増幅回路で増幅されたパルスを駆動信号
としてセンサ8から超音波または音波パルスを管路1内
に出力する。
In order to embody the above measuring method, the signal conversion unit 9 and the signal processing unit 10 may have the following configurations. A pulse generation circuit having a variable generation frequency is built in the signal conversion unit 9, a pulse having a frequency commanded by a microcomputer in the signal processing unit 10 is generated by the pulse generation circuit, and amplified by an amplification circuit in the signal conversion unit 9. The sensor 8 outputs an ultrasonic wave or a sound wave pulse into the duct 1 using the generated pulse as a drive signal.

管路1内に超音波または音波パルスを出力した時刻か
ら、反射パルス信号のサンプリングを開始し、センサ8
で電圧変換された反射パルスの信号は信号変換部9内の
A/D変換器によってディジタル化され、一定のサンプ
リング周期で信号処理部10内のディジタルメモリに蓄
積される。
The sampling of the reflected pulse signal is started from the time when the ultrasonic wave or the sound wave pulse is output into the pipe line 1, and the sensor 8
The signal of the reflected pulse that has been voltage-converted in (1) is digitized by the A / D converter in the signal conversion unit 9, and is stored in the digital memory in the signal processing unit 10 at a constant sampling period.

また、あらかじめ管路1内の超音波または音波の伝搬距
離と減衰量の関係の実験データをディジタルメモリ内に
記憶しておき、このデータを用いて上記測定データをマ
イクロコンピュータで伝搬距離による減衰分の補正計算
を行い補正後のデータをディジタルメモリ内に内蔵す
る。この信号処理は、測定データをサンプリングする時
に行うことも可能である。
Further, experimental data on the relationship between the propagation distance of ultrasonic waves or sound waves in the conduit 1 and the attenuation amount is stored in advance in a digital memory, and the measured data is used by the microcomputer to calculate the attenuation component due to the propagation distance. The correction calculation is performed and the corrected data is stored in the digital memory. This signal processing can also be performed when sampling the measurement data.

以上示した手順を、予定した複数の周波数ごとに測定お
よび信号処理し、測定終了後各周波数で記憶したデータ
をマイクロコンピュータで平均化処理し、駆動電圧と測
定電圧の比から反射係数を求め、その結果をブラウン管
表示または記録紙に出力するとよい。この時縦軸は反射
係数であり、横軸は式(1)を用いて伝搬距離に換算した
結果を表示する。この測定結果を用いて管路1の変形度
を判断することができる。
The procedure shown above is measured and signal-processed for each of a plurality of planned frequencies, data stored at each frequency after the measurement is averaged by a microcomputer, and the reflection coefficient is calculated from the ratio of the driving voltage and the measured voltage. It is advisable to display the result on a CRT display or recording paper. At this time, the vertical axis represents the reflection coefficient, and the horizontal axis represents the result converted into the propagation distance using the equation (1). The degree of deformation of the conduit 1 can be determined using this measurement result.

超音波または音波が管路のように閉そくした空間を伝搬
する場合は、拡散による超音波または音波の損失が少な
く、普通の自由空間の伝搬に比較して、長距離の伝搬が
可能になる。このため、音波または超音波を管路に適用
することにより、長尺の管路の点検が片端から可能にな
る。さらに、曲線部分を多数含む管路も考えられるが、
超音波または音波は、この管路曲線部分にも追従して伝
搬するので、曲り部分を有する管路についても本実施例
を適用出来る。
When an ultrasonic wave or a sound wave propagates in a closed space such as a conduit, there is little loss of the ultrasonic wave or the sound wave due to diffusion, and it is possible to propagate a long distance as compared with a normal propagation in a free space. Therefore, by applying sound waves or ultrasonic waves to the conduit, inspection of a long conduit can be performed from one end. Furthermore, although a pipeline containing many curved parts is also conceivable,
The ultrasonic wave or the sound wave propagates following this curved line portion of the pipe, so that this embodiment can be applied to a pipe having a curved portion.

さらに、従来の管路点検方法は、通信ケーブルを収容し
た管路には、点検方法が皆無であったが、本発明を用い
ると、センサ部を小型化することにより、管路とケーブ
ル間の間隙にセンサを挿入し、管路とケーブル間の間隙
異常を測定することができる。
Further, in the conventional pipeline inspection method, there is no inspection method in the pipeline containing the communication cable. However, when the present invention is used, the sensor section is miniaturized so that the pipeline and the cable A sensor can be inserted in the gap to measure the gap abnormality between the conduit and the cable.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明を用いると、超音波または音
波センサを管路片端部に設置するだけで、管路内部を点
検できるので、従来のパイプカメラ方式等のカメラを管
路内部に挿入するような大掛りな作業を必要とせず、簡
単な作業で管路内部の点検を行うことができる。さら
に、本発明を用いると、管路長手方向全体にわたる測定
が非常に短時間に行えるので、マンホール等の路上作業
においても、交通等のさまたげを非常に小さくできる利
点がある。
As described above, when the present invention is used, the inside of the pipeline can be inspected simply by installing an ultrasonic or sonic sensor at one end of the pipeline, so that a conventional pipe camera type camera or the like is inserted into the pipeline. The inside of the pipeline can be inspected by a simple work without requiring such a large work. Further, according to the present invention, the measurement over the entire longitudinal direction of the pipeline can be performed in a very short time, so that there is an advantage that it is possible to significantly reduce the obstruction of traffic and the like even on a road work such as a manhole.

また、一部閉塞した管路には、従来の通線パイプカメラ
方式は使用出来ず、管路内部の測定にはパイプカメラに
自走機能をつける必要があるが、本発明を用いると閉塞
していない管路と同様に、簡単に測定が行える利点があ
る。
In addition, the conventional conduit pipe camera method cannot be used for a partially blocked pipeline, and the pipe camera must have a self-propelled function for measuring the inside of the pipeline. It has the advantage that it can be easily measured as well as a non-conducting pipeline.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の構成図、第2図は本発明装
置を用いた超音波反射パルス測定例を示す特性図、第3
図は従来の通信用ケーブル管路内部点検装置の断面図で
ある。 1…管路、2…マンホール、3…パイプカメラ、4…牽
引用ケーブル、5…引戻用ケーブル、6…カメラケーブ
ル、7…制御用モニタ、8…超音波または音波センサ、
9…信号変換部、10…信号処理部。
FIG. 1 is a configuration diagram of an embodiment of the present invention, FIG. 2 is a characteristic diagram showing an example of ultrasonic reflection pulse measurement using the device of the present invention, and FIG.
FIG. 1 is a cross-sectional view of a conventional communication cable pipe inside inspection device. 1 ... Pipeline, 2 ... Manhole, 3 ... Pipe camera, 4 ... Towing cable, 5 ... Pulling back cable, 6 ... Camera cable, 7 ... Control monitor, 8 ... Ultrasonic wave or sound wave sensor,
9 ... Signal converter, 10 ... Signal processor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森光 武則 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話公社茨城電気通信研究所 内 (72)発明者 山岸 康利 茨城県那珂郡東海村大字白方字白根162番 地 日本電信電話公社茨城電気通信研究所 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takenori Morimitsu 162 Shirahane, Shikatakata, Tokai-mura, Naka-gun, Ibaraki Prefecture, Japan Ibaraki Telecommunications Research Institute, Nippon Telegraph and Telephone Corporation (72) Yasutoshi Yamagishi, Naka-gun, Ibaraki Prefecture Tokai-mura, Oji, Shirahoji, 162, Shirane, Nippon Telegraph and Telephone Public Corporation, Ibaraki Telecommunications Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】点検しようとする管路の端部に設置され、
周波数を変化させた超音波または音波パルスを複数個管
路内部に送信し、管路内部の異常部分からの反射パルス
を受信する送信および受信部からなるセンサと、 このセンサで受信した超音波または音波パルスから電気
信号に変換、および電気信号から前記センサで送信する
超音波または音波パルスに変換する信号変換部と、 この信号変換部に電気信号を送り、あるいは信号変換部
からの信号を受けてそれぞれの反射パルスの伝搬時間と
反射波形の情報を信号処理することにより、伝搬時間と
反射係数を求め、それぞれの周波数パルスで求めた該伝
搬時間と反射係数を平均化処理する信号処理部と、 この信号処理部の処理結果を表示もしくは記録する出力
部と を具備することを特徴とするパイプ内部点検装置。
1. Installed at the end of the pipeline to be inspected,
A sensor consisting of a transmitter and a receiver that transmit multiple ultrasonic waves or sound pulses with different frequencies to the inside of the conduit and receive the reflected pulse from the abnormal part inside the conduit, and the ultrasonic wave received by this sensor A signal conversion unit for converting a sound wave pulse into an electric signal and converting the electric signal into an ultrasonic wave or a sound wave pulse transmitted by the sensor, and sending an electric signal to this signal conversion unit or receiving a signal from the signal conversion unit. By signal processing the information of the propagation time and the reflection waveform of each reflection pulse, to obtain the propagation time and the reflection coefficient, a signal processing unit for averaging the propagation time and the reflection coefficient obtained for each frequency pulse, And an output unit for displaying or recording the processing result of the signal processing unit.
JP60043433A 1985-03-05 1985-03-05 Pipe internal inspection device Expired - Lifetime JPH068802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043433A JPH068802B2 (en) 1985-03-05 1985-03-05 Pipe internal inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043433A JPH068802B2 (en) 1985-03-05 1985-03-05 Pipe internal inspection device

Publications (2)

Publication Number Publication Date
JPS61202158A JPS61202158A (en) 1986-09-06
JPH068802B2 true JPH068802B2 (en) 1994-02-02

Family

ID=12663560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043433A Expired - Lifetime JPH068802B2 (en) 1985-03-05 1985-03-05 Pipe internal inspection device

Country Status (1)

Country Link
JP (1) JPH068802B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309838A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Conduit inspection method and conduit inspection device used therefor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375554A (en) * 1986-09-17 1988-04-05 Nobuo Nakayama Method and device for measurement utilizing acoustic wave
EP0393960A1 (en) * 1989-04-20 1990-10-24 Simmonds Precision Products Inc. Ice detecting apparatus and methods
JP5604738B2 (en) * 2009-04-08 2014-10-15 独立行政法人海上技術安全研究所 Progress crack detection method, apparatus and program
CN106949860B (en) * 2017-05-15 2019-08-02 山东省科学院激光研究所 Inner wall of the pipe detection system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007309838A (en) * 2006-05-19 2007-11-29 Non-Destructive Inspection Co Ltd Conduit inspection method and conduit inspection device used therefor

Also Published As

Publication number Publication date
JPS61202158A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US6106469A (en) Method and apparatus for reducing undesired multiple-echo signal in ultrasound imaging
EP0041403B1 (en) Method and apparatus for ultrasonic wave measurement of characteristics of the internal structure of an object
US4771786A (en) Ultrasonic method and apparatus for tissue characterization and imaging of nonlinear parameter
US4796238A (en) System for measurement of the acoustic coefficient of reflection of submerged reflectors
JPH11218436A (en) Ultrasonic liquid level measuring device
US6730029B1 (en) Ultrasonic transmitter/receiver by pulse compression
JPH068802B2 (en) Pipe internal inspection device
US4949313A (en) Ultrasonic diagnostic apparatus and pulse compression apparatus for use therein
CN1333555C (en) Method for testing network transmission line using time-domain signal
EP0222450B1 (en) Method and apparatus for estimating the ultrasound attenuation - vs - frequency slope of a propagation medium from the complex envelope of a signal
EP0629837B1 (en) Method of measuring inner diameter of pipe
CN109521098A (en) A kind of monitoring system and method for sound barrier
JPH11295179A (en) Abnormal place detecting device
JP3786770B2 (en) Piping structure inspection method
JP3849394B2 (en) Ultrasonic level meter
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JP3243237B2 (en) Ultrasound diagnostic equipment
JPS61279235A (en) Ultrasonic diagnostic apparatus
JPS6128301B2 (en)
JPS6145964A (en) Method and device for inspecting optical fiber with ultrasonic wave
CN114354761B (en) Device and method for measuring loss of acoustic waveguide tube
JPH04318455A (en) Ultrasonic concentration measuring instrument
JP3512512B2 (en) Ultrasonic flow velocity measuring device
JP3535682B2 (en) Prevention method of multiple reflections in pipes in ultrasonic inspection system
JPH0933239A (en) Method and apparatus for estimation of shape inside conduit