JPH05187851A - Method and instrument for measuring length of buried pipeline - Google Patents

Method and instrument for measuring length of buried pipeline

Info

Publication number
JPH05187851A
JPH05187851A JP2461892A JP2461892A JPH05187851A JP H05187851 A JPH05187851 A JP H05187851A JP 2461892 A JP2461892 A JP 2461892A JP 2461892 A JP2461892 A JP 2461892A JP H05187851 A JPH05187851 A JP H05187851A
Authority
JP
Japan
Prior art keywords
pipe
buried
length
pipeline
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2461892A
Other languages
Japanese (ja)
Inventor
Yoshihisa Shimizu
善久 清水
Kenji Kubota
兼士 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Fuji Tecom Inc
Original Assignee
Tokyo Gas Co Ltd
Fuji Tecom Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Fuji Tecom Inc filed Critical Tokyo Gas Co Ltd
Priority to JP2461892A priority Critical patent/JPH05187851A/en
Publication of JPH05187851A publication Critical patent/JPH05187851A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To obtain a method by which the length of a pipeline buried in the ground can be measured with high accuracy without digging the ground over the full length of the pipeline irrespective of the buried direction and material of the pipeline. CONSTITUTION:White noise generated from a white noise generator 11 is transmitted into a branch buried pipe 16 from a loudspeaker 12. The noise propagated through the pipe 16 is caught by means of microphones 13 and 14 installed to two points and the length of the pipe 16 is measured by calculating the cross-correlative function between the caught noise signals by means of a correlator 15. By measuring the lengths of the branch pipe 16 to be measured and branch buried pipes 17 and 19 adjacent to the pipe 16, the length of the pipe 16 is measured from the measured results.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地中に埋設されたガス
管、水道管等の管路長を掘削することなく高精度に測定
し得る埋設管路の測長方法及びその方法に用いる測長装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for a buried pipe length measuring method and a method therefor capable of highly accurately measuring the length of a pipe such as a gas pipe or a water pipe buried underground. The present invention relates to a length measuring device.

【0002】[0002]

【従来の技術】従来、地中に埋設されたガス管、水道管
等の管路長を掘削することなく測定する方法としては、
電磁誘導を利用した埋設金属管探知器を使用する方法が
知られている。この方法は、対象とする埋設管に微少な
交流電流を流し、管路に沿って発生する磁界を地表にお
いて捕獲し、埋設管の位置を検知して埋設管路の長さを
測定するものである。
2. Description of the Related Art Conventionally, as a method for measuring the length of a pipeline such as a gas pipe or a water pipe buried in the ground without excavating,
A method of using a buried metal tube detector utilizing electromagnetic induction is known. This method is to measure the length of a buried pipe by detecting a position of the buried pipe by capturing a magnetic field generated along the pipe on the surface of the earth by applying a minute alternating current to the target buried pipe. is there.

【0003】[0003]

【発明が解決しようとする課題】この方法では、埋設管
を地表に投影した形態で位置検知するため、水平方向の
管路長を測定することはできるが、鉛直方向の管路長を
測定することはできない。又、埋設管が非導電性材料よ
りなるものである場合には、そもそも埋設管に交流電流
を流すことができず、管路長を測定することはできな
い。
In this method, since the position of the buried pipe is detected in a form projected on the surface of the earth, the pipe length in the horizontal direction can be measured, but the pipe length in the vertical direction is measured. It is not possible. Further, when the buried pipe is made of a non-conductive material, an alternating current cannot flow through the buried pipe in the first place, and the pipe length cannot be measured.

【0004】本発明は、かかる問題点に鑑みてなされた
ものであり、その目的とするところは、埋設管の埋設方
向にかかわらず、又その材料にかかわらず、高精度に管
路長を測定することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to measure the pipe length with high accuracy regardless of the burying direction of the buried pipe and the material thereof. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の第1は、白色雑音を音響に変換して管路内
に放出し、管路内を伝搬する音響を異なる2地点にて捕
獲し、これら2地点における音響の相互相関係数を算出
することにより管路長を測定する方法を、対象とする埋
設管路及びこれに隣接する両側の埋設管路において実施
し、これら測長結果から対象とする埋設管路の長さを測
定する埋設管路の測長方法を提供するものである。
In order to achieve the above object, the first aspect of the present invention is to convert white noise into sound and emit the sound into a pipe, and to emit sound propagating in the pipe at two different points. The method of measuring the pipe length by capturing the sound and calculating the cross-correlation coefficient of acoustics at these two points was carried out in the target buried pipe and the adjacent buried pipes on both sides. It is intended to provide a method for measuring the length of a buried pipeline which measures the length of the target buried pipeline from the measurement result.

【0006】本発明の埋設管路の測長方法は次のような
原理に基づくものである。
The method for measuring the length of a buried pipeline according to the present invention is based on the following principle.

【0007】図1に示すように、測長の対象とする埋設
支管1及びその両側の埋設支管2,3が埋設本管4に接
続されているとし、埋設支管1,2,3の長さをそれぞ
れl1 ,l2 ,l3 ,埋設支管1,2,3の接続点間の
埋設本管4の長さをそれぞれL1 ,L2 とする。
As shown in FIG. 1, assuming that the buried branch pipe 1 to be measured and the buried branch pipes 2 and 3 on both sides thereof are connected to the buried main pipe 4, the lengths of the buried branch pipes 1, 2 and 3 are determined. Let l 1 , l 2 and l 3 , respectively, and the length of the buried main pipe 4 between the connection points of the buried branch pipes 1, 2 and 3 be L 1 and L 2 , respectively.

【0008】埋設支管1,2と埋設本管4とからなる管
路の長さをAとすると、 A=l1 +l2 +L1 (1) 同様に、埋設支管1,3と埋設本管4とからなる管路の
長さをB、埋設支管2,3と埋設本管4とからなる管路
の長さをCとすると、 B=l1 +l3 +L2 (2) C=l2 +l3 +L1 +L2 (3) 従って、埋設支管1の長さl1 は上記式(1) ,(2) ,
(3) より、 l1 =(A+B−C)/2 (4) と算出できる。
Assuming that the length of the conduit consisting of the buried branch pipes 1 and 2 and the buried main pipe 4 is A, A = l 1 + l 2 + L 1 (1) Similarly, the buried branch pipes 1 and 3 and the buried main pipe 4 Let B be the length of the pipeline consisting of and B be the length of the pipeline consisting of the buried branch pipes 2 and 3 and the buried main pipe 4, and B = l 1 + l 3 + L 2 (2) C = 1 2 +1 3 + L 1 + L 2 (3) Therefore, the length l 1 of the buried branch pipe 1 is calculated by the above equations (1), (2),
From (3), it can be calculated that l 1 = (A + BC) / 2 (4).

【0009】図2に示すように、スピ−カ−5より管路
6内に白色雑音を放出し、2地点に配置したセンサ−
7,8でこの音響を捕獲するとする。音響がセンサ−7
にはt1 時間後、センサ−8にはt2 時間後に到達する
とし、その時間差をΔt、管路内の音速をVとすれば、
センサ−7とセンサ−8との間の管路長lは、 l=V・Δt (5) である。管路6内の音速Vは、 V=331.45(1+T/273)1/2 (6) ここで、Tは管路6内の温度である。伝達時間差Δt
は、センサ−7及びセンサ−8により捕獲した2つの音
響信号の相互相関係数を算出することにより求めること
ができる。2信号をf(t),g(t)とすれば、相互
相関係数R(τ)は、
As shown in FIG. 2, a white noise is emitted from the speaker 5 into the pipe line 6, and the sensor is arranged at two points.
Suppose this sound is captured at 7 and 8. Acoustic sensor-7
, T 1 hours later, and the sensor-8 t 2 hours later. If the time difference is Δt and the sound velocity in the pipeline is V,
The conduit length l between the sensor-7 and the sensor-8 is l = V · Δt (5). The sound velocity V in the pipeline 6 is: V = 331.45 (1 + T / 273) 1/2 (6) where T is the temperature in the pipeline 6. Transmission time difference Δt
Can be obtained by calculating the cross-correlation coefficient of the two acoustic signals captured by the sensor-7 and the sensor-8. If the two signals are f (t) and g (t), the cross-correlation coefficient R (τ) is

【0010】[0010]

【数1】 [Equation 1]

【0011】ここで、f(t)=g(t−t′)なら
ば、R(τ)はτ=t′で最大となり、f(t)とg
(t)とが全く独立した信号ならば、R(τ)=0とな
る。
Here, if f (t) = g (t-t '), R (τ) becomes maximum at τ = t', and f (t) and g
If (t) is a completely independent signal, then R (τ) = 0.

【0012】以上の式(1) 〜(7) より対象とする埋設支
管1の長さl1 を求めることができる。
From the above equations (1) to (7), the length l 1 of the target buried branch pipe 1 can be obtained.

【0013】又、上記埋設管路の測長方法を実施するた
めに、本発明の第2は、白色雑音発生器と、発生した白
色雑音信号を音響に変換して管路内に放出するスピ−カ
−と、管路内を伝搬する音響を捕獲する2つのマイクロ
ホンと、捕獲した2つの音響の相互相関係数を算出する
相関器とからなる埋設管路の測長装置を提供するもので
ある。
In order to carry out the above-mentioned method for measuring the length of the buried pipeline, the second aspect of the present invention is to provide a white noise generator and a spin filter which converts the generated white noise signal into sound and emits it into the pipeline. (EN) Provided is a buried pipe length measuring device comprising a car, two microphones for capturing sound propagating in a pipeline, and a correlator for calculating a cross-correlation coefficient of the captured two sound. is there.

【0014】[0014]

【実施例】本発明の実施例について図面を参照して説明
する。本発明の埋設管路の測長装置は、図3に示すよう
に、白色雑音発生器11、スピ−カ−12、2つのマイ
クロホン13,14及び相関器15よりなる。
Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 3, the buried pipe length measuring device of the present invention comprises a white noise generator 11, a speaker 12, two microphones 13 and 14, and a correlator 15.

【0015】白色雑音発生器11は周波数帯域100H
z〜5kHzの白色雑音を発生させるものであり、スピ
−カ−12はこの白色雑音を音響に変換して埋設支管1
6内に放出するものであり、埋設支管16の先端部に配
置される。
The white noise generator 11 has a frequency band of 100H.
The white noise of z to 5 kHz is generated, and the speaker 12 converts this white noise into sound and the buried branch pipe 1
It is discharged into the inside of the pipe 6, and is arranged at the tip of the buried branch pipe 16.

【0016】マイクロホン13,14は、管路内を伝搬
する音響を捕獲するものであり、マイクロホン13は埋
設支管16の先端部近傍に配置され、マイクロホン14
は隣接する埋設支管17の先端部に配置される。
The microphones 13 and 14 capture the sound propagating in the conduit, and the microphone 13 is arranged near the tip of the buried branch pipe 16,
Is arranged at the tip of the adjacent buried branch pipe 17.

【0017】相関器15は、これら2つのマイクロホン
13,14で捕獲された音響信号より相互相関係数を算
出し、音響の伝達時間差Δtを求めるものである。
The correlator 15 calculates the cross-correlation coefficient from the acoustic signals captured by the two microphones 13 and 14 to obtain the acoustic transmission time difference Δt.

【0018】次に、埋設管路の測長装置の作用及びこれ
による埋設管路の測長方法について説明する。
Next, the operation of the length measuring device for the buried pipeline and the method for measuring the length of the buried pipeline will be described.

【0019】図3に示すように、白色雑音発生器11に
より白色雑音を発生させ、スピ−カ−12より測長の対
象とする埋設支管16の先端部において音響を放出す
る。
As shown in FIG. 3, white noise is generated by the white noise generator 11, and sound is emitted from the speaker 12 at the tip of the embedded branch pipe 16 to be measured.

【0020】放出された音響は埋設支管16、埋設本管
18、埋設支管17内を伝搬し、その一部は埋設支管1
6の先端部近傍に配置されたマイクロホン13により捕
獲され、又その一部は埋設支管17の先端部に配置され
たマイクロホン14により捕獲される。
The emitted sound propagates through the buried branch pipe 16, the buried main pipe 18, and the buried branch pipe 17, and a part of the sound propagates through the buried branch pipe 1.
6 is captured by the microphone 13 disposed near the tip of the buried reference pipe 6, and a part thereof is captured by the microphone 14 disposed at the tip of the buried branch pipe 17.

【0021】マイクロホン13,14により捕獲された
音響は電気信号に変換され、それぞれ相関器15に入力
される。そして、相関器15においてこれら2つの音響
信号の相互相関係数が算出されるのである。
The sound captured by the microphones 13 and 14 is converted into an electric signal and input to the correlator 15. Then, the correlator 15 calculates the cross-correlation coefficient of these two acoustic signals.

【0022】この場合の相互相関係数は音響の伝達時間
差Δtとして与えられ、これを上記式(5) に代入するこ
とにより、測長の対象とする埋設支管16の先端部から
埋設本管18を介し隣接する埋設支管17の先端部に至
るまでの管路長Aを算出するのである。
The cross-correlation coefficient in this case is given as the sound transmission time difference Δt, and by substituting this into the above equation (5), the embedded main pipe 18 from the tip of the embedded branch pipe 16 to be measured is measured. The conduit length A up to the tip of the adjacent buried branch pipe 17 is calculated via the.

【0023】以下同様にして、測長の対象とする埋設支
管16の先端部から埋設本管18を介し隣接する埋設支
管19(図示しない)の先端部に至るまでの管路長B、
隣接する埋設支管17の先端部から埋設本管18を介し
隣接する埋設支管19の先端部に至るまでの管路長Cを
算出し、これらを上記式(4) に代入することにより埋設
支管16の管路長l1 を算出するのである。
Similarly, the pipe length B from the tip of the buried branch pipe 16 to be measured to the tip of the adjacent buried branch pipe 19 (not shown) via the buried main pipe 18,
The pipe length C from the tip of the adjacent buried branch pipe 17 to the tip of the adjacent buried branch pipe 19 via the buried main pipe 18 is calculated, and these are substituted into the above formula (4) to obtain the buried branch pipe 16 it is to calculate the pipe length l 1.

【0024】次に、本発明の埋設管路の測長方法を実施
して実際に管路長を測定した結果をもとに、より具体的
に説明する。
Next, a more concrete description will be given based on the result of actually measuring the pipeline length by carrying out the method for measuring a buried pipeline according to the present invention.

【0025】(実施例1)図4に示すような管路を構成
した。埋設支管P1 ,P2 ,P3 はそれぞれ管径25
A、管路長8.55m、埋設本管P0 は管径50Aのも
のを使用した。埋設支管P1 の先端部においてスピ−カ
−より白色雑音を放出して埋設支管P1 の管路長l1
測定した。測定結果は表1に示す通りであった。
Example 1 A pipe line as shown in FIG. 4 was constructed. Buried branch pipes P 1 , P 2 and P 3 each have a pipe diameter of 25.
A, the pipe length was 8.55 m, and the buried main pipe P 0 had a pipe diameter of 50 A. Spin at the distal end of the buried branch pipe P 1 - Ca - a conduit length l 1 of the buried branch pipe P 1 by emitting white noise was measured from. The measurement results are as shown in Table 1.

【0026】[0026]

【表1】 [Table 1]

【0027】図7〜図9に示すように相関図において明
確なピ−クを生じており、これより求めた埋設支管P1
の管路長l1 の測定値は8.50mであり、実際値との
誤差は0.05mしかなく、極めて精度のよい測長がで
きることがわかった。
As shown in FIGS. 7 to 9, there is a clear peak in the correlation diagram, and the buried branch pipe P 1 obtained from this is shown.
It was found that the measured value of the pipe line length l 1 of was 8.50 m, and the error from the actual value was only 0.05 m, and that the length measurement with extremely high accuracy was possible.

【0028】(比較例1)スピ−カ−より白色雑音を放
出する代わりにドライバ−の先端で管壁を擦ることによ
り雑音を発生し、その他は(実施例1)と同様の条件に
て埋設支管P1 の管路長l1 を測定した。測定結果は表
1に示す通りであった。
(Comparative Example 1) Instead of emitting white noise from the speaker, noise was generated by rubbing the tube wall with the tip of the driver, and the others were buried under the same conditions as in (Example 1). the pipe length l 1 of the branch pipe P 1 was measured. The measurement results are as shown in Table 1.

【0029】図10〜図12に示すように相関図におい
てピ−クを複数生じているが、最大ピ−クより求めた埋
設支管P1 の管路長l1 の測定値は8.795mであ
り、実際値との誤差は0.245mであり、(実施例
1)に比べて測定誤差が大きかった。
As shown in FIGS. 10 to 12, a plurality of peaks are generated in the correlation diagrams, but the measured value of the conduit length l 1 of the buried branch pipe P 1 obtained from the maximum peak is 8.795 m. However, the error from the actual value was 0.245 m, and the measurement error was large as compared with (Example 1).

【0030】(実施例2)図5に示すような管路を構成
した。埋設支管P4 ,P5 ,P6 はそれぞれ管径25
A、管路長16.55m、埋設本管P0 は管径50Aの
ものを使用した。埋設支管P4 の先端部においてスピ−
カ−より白色雑音を放出して埋設支管P4 の管路長l4
を測定した。測定結果は表1に示す通りであった。
Example 2 A pipe line as shown in FIG. 5 was constructed. Buried branch pipes P 4 , P 5 , and P 6 each have a pipe diameter of 25.
A, the pipe length was 16.55 m, and the buried main pipe P 0 had a pipe diameter of 50 A. At the tip of the buried branch pipe P 4 , a spin
Ca - from pipe length buried branch pipe P 4 to emit white noise l 4
Was measured. The measurement results are as shown in Table 1.

【0031】図13〜図15に示すように相関図におい
て(実施例1)に比べて波形が乱れているが、最大ピ−
クより求めた埋設支管P4 の管路長l4 の測定値は1
6.32mであり、実際値との誤差は0.23mであっ
たが、実用上十分な精度の測長ができることがわかっ
た。
As shown in FIGS. 13 to 15, in the correlation diagrams, the waveform is more disturbed than in the first embodiment, but the maximum peak
The measured value of the line length l 4 of the buried branch pipe P 4 obtained from
Although it was 6.32 m and the error from the actual value was 0.23 m, it was found that the length measurement with sufficient accuracy in practical use was possible.

【0032】(比較例2)スピ−カ−より白色雑音を放
出する代わりにドライバ−の先端で管壁を擦ることによ
り雑音を発生し、その他は(実施例2)と同様の条件に
て埋設支管P4 の管路長l4 を測定した。測定結果は表
1に示す通りである。
(Comparative Example 2) Instead of emitting white noise from the speaker, noise was generated by rubbing the tube wall with the tip of the driver, and the others were buried under the same conditions as (Example 2). the pipe length l 4 of the branch pipe P 4 were measured. The measurement results are as shown in Table 1.

【0033】図16に示すように相関図において波形が
乱れており、最大ピ−クを明確に指示しないため、埋設
支管P4 の管路長l4 の測定値を算出することができな
かった。
As shown in FIG. 16, since the waveform is disturbed in the correlation diagram and the maximum peak is not clearly indicated, the measured value of the conduit length l 4 of the buried branch pipe P 4 could not be calculated. ..

【0034】(実施例3)図6に示すような管路を構成
した。埋設支管P7 ,P8 ,P9 はそれぞれ管径25
A、管路長16.55m、埋設本管P0 は管径50Aの
ものを使用した。埋設支管P7 の先端部においてスピ−
カ−より白色雑音を放出して埋設支管P7 の管路長l7
を測定した。測定結果は表1に示す通りであった。
Example 3 A pipe line as shown in FIG. 6 was constructed. Buried branch pipes P 7 , P 8 and P 9 each have a pipe diameter of 25.
A, the pipe length was 16.55 m, and the buried main pipe P 0 had a pipe diameter of 50 A. At the tip of the buried branch pipe P 7 ,
White noise is emitted from the car and the line length of the buried branch pipe P 7 is l 7
Was measured. The measurement results are as shown in Table 1.

【0035】図17〜図19に示すように相関図におい
て(実施例1)に比べて波形が乱れているが、最大ピ−
クより求めた埋設支管P7 の管路長l7 の測定値は1
6.89mであり、実際値との誤差は0.34mであっ
たが、実用上十分な精度の測長ができることがわかっ
た。
As shown in FIGS. 17 to 19, in the correlation diagrams, the waveform is more disturbed than in the first embodiment, but the maximum peak
The measured value of the line length l 7 of the buried branch pipe P 7 obtained from
It was 6.89 m, and the error from the actual value was 0.34 m, but it was found that the measurement can be performed with sufficient accuracy in practical use.

【0036】(比較例3)スピ−カ−より白色雑音を放
出する代わりにドライバ−の先端で管壁を擦ることによ
り雑音を発生し、その他は(実施例3)と同様の条件に
て埋設支管P7 の管路長l7 を測定した。測定結果は表
1に示す通りである。
(Comparative Example 3) Instead of emitting white noise from the speaker, noise was generated by rubbing the tube wall with the tip of the driver, and the others were buried under the same conditions as in (Example 3). the pipe length l 7 of branch pipes P 7 was measured. The measurement results are as shown in Table 1.

【0037】図20に示すように相関図においてピ−ク
を複数生じており、最大ピ−クを明確に指示しないた
め、埋設支管P7 の管路長l7 の測定値を算出すること
ができなかった。
As shown in FIG. 20, a plurality of peaks are generated in the correlation diagram, and the maximum peak is not clearly indicated. Therefore, it is possible to calculate the measured value of the conduit length l 7 of the buried branch pipe P 7. could not.

【0038】以上の測定結果において、実際値より測定
値の方が若干大きいのは、長さ4mmの管をソケット又
はエルボ−により接続しているため、この分だけ管路長
が長くなるものと考えられる。又、スピ−カ−より白色
雑音を放出した場合に比べてドライバ−の先端で管壁を
擦ることにより雑音を発生した場合の方が相関波形に乱
れが見られるのは、前者の場合には音響のほとんどが管
内を伝搬するが、後者の場合には音響が管内及び管壁を
伝搬するためであると考えられる。さらに、相関波形に
おいて複数のピ−クが生じているのは、音響が管路の曲
折部において反射するためであると考えられる。
In the above measurement results, the measured value is slightly larger than the actual value because the pipe having a length of 4 mm is connected by the socket or the elbow, so that the pipe length becomes longer by this amount. Conceivable. In the former case, the correlation waveform is more disturbed when the noise is generated by rubbing the tube wall with the tip of the driver, as compared with the case where white noise is emitted from the speaker. Most of the sound propagates in the pipe, but in the latter case, it is considered that the sound propagates in the pipe and the wall of the pipe. Furthermore, it is considered that the plurality of peaks are generated in the correlation waveform because the sound is reflected at the bent portion of the conduit.

【0039】[0039]

【発明の効果】本発明の埋設管路の測長方法は、管路内
に白色雑音による音響を伝搬させ、この音響を2地点に
おいて捕獲して、その相互相関係数により伝搬時間差を
求めて管路長を算出するものであるから、埋設管の埋設
方向にかかわらず、又その材料にかかわらず、高精度に
管路長を測定することができる。
According to the method for measuring the length of the buried pipeline of the present invention, the sound due to the white noise is propagated in the pipeline, the sound is captured at two points, and the propagation time difference is obtained by the cross-correlation coefficient. Since the pipeline length is calculated, the pipeline length can be measured with high accuracy regardless of the burying direction of the buried pipe and the material thereof.

【0040】又、本発明の埋設管路の測長装置によれ
ば、この測長方法を効果的に実施することができる。
According to the buried pipe length measuring apparatus of the present invention, this length measuring method can be effectively implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】埋設支管及び埋設本管の配置を示す説明図であ
る。
FIG. 1 is an explanatory view showing an arrangement of a buried branch pipe and a buried main pipe.

【図2】管路長を測定する原理を示す説明図である。FIG. 2 is an explanatory diagram showing a principle of measuring a conduit length.

【図3】本発明の埋設管路の測長装置の設置状態を示す
説明図である。
FIG. 3 is an explanatory diagram showing an installed state of a length measuring device for a buried pipeline according to the present invention.

【図4】埋設管路の一構成例である。FIG. 4 is a structural example of a buried pipeline.

【図5】埋設管路の一構成例である。FIG. 5 is a configuration example of a buried pipeline.

【図6】埋設管路の一構成例である。FIG. 6 is a structural example of a buried pipeline.

【図7】音響信号の相関波形図である。FIG. 7 is a correlation waveform diagram of an acoustic signal.

【図8】音響信号の相関波形図である。FIG. 8 is a correlation waveform diagram of an acoustic signal.

【図9】音響信号の相関波形図である。FIG. 9 is a correlation waveform diagram of an acoustic signal.

【図10】音響信号の相関波形図である。FIG. 10 is a correlation waveform diagram of an acoustic signal.

【図11】音響信号の相関波形図である。FIG. 11 is a correlation waveform diagram of an acoustic signal.

【図12】音響信号の相関波形図である。FIG. 12 is a correlation waveform diagram of an acoustic signal.

【図13】音響信号の相関波形図である。FIG. 13 is a correlation waveform diagram of an acoustic signal.

【図14】音響信号の相関波形図である。FIG. 14 is a correlation waveform diagram of an acoustic signal.

【図15】音響信号の相関波形図である。FIG. 15 is a correlation waveform diagram of an acoustic signal.

【図16】音響信号の相関波形図である。FIG. 16 is a correlation waveform diagram of an acoustic signal.

【図17】音響信号の相関波形図である。FIG. 17 is a correlation waveform diagram of an acoustic signal.

【図18】音響信号の相関波形図である。FIG. 18 is a correlation waveform diagram of an acoustic signal.

【図19】音響信号の相関波形図である。FIG. 19 is a correlation waveform diagram of an acoustic signal.

【図20】音響信号の相関波形図である。FIG. 20 is a correlation waveform diagram of an acoustic signal.

【符号の説明】[Explanation of symbols]

11 白色雑音発生器 12 スピ−カ− 13 マイクロホン 14 マイクロホン 15 相関器 16 埋設支管 17 埋設支管 18 埋設本管 19 埋設支管 11 White Noise Generator 12 Speaker 13 Microphone 14 Microphone 15 Correlator 16 Buried branch pipe 17 Buried branch pipe 18 Buried main pipe 19 Buried branch pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 白色雑音を音響に変換して管路内に放出
し、管路内を伝搬する音響を異なる2地点にて捕獲し、
これら2地点における音響の相互相関係数を算出するこ
とにより管路長を測定する方法を、対象とする埋設管路
及びこれに隣接する両側の埋設管路において実施し、こ
れら測長結果から対象とする埋設管路の長さを測定する
ことを特徴とする埋設管路の測長方法。
1. The white noise is converted into sound and emitted into the pipe, and the sound propagating in the pipe is captured at two different points,
The method of measuring the pipeline length by calculating the cross-correlation coefficient of the acoustics at these two points was carried out in the target buried pipeline and the buried pipelines on both sides adjacent to it, and A method for measuring the length of a buried pipeline, which comprises measuring the length of the buried pipeline.
【請求項2】 白色雑音発生器と、発生した白色雑音信
号を音響に変換して管路内に放出するスピ−カ−と、管
路内を伝搬する音響を捕獲する2つのマイクロホンと、
捕獲した2つの音響の相互相関係数を算出する相関器と
からなる埋設管路の測長装置。
2. A white noise generator, a speaker that converts the generated white noise signal into sound and emits the sound into a pipe, and two microphones that capture the sound propagating in the pipe.
A buried pipe length measuring device comprising a correlator that calculates a cross-correlation coefficient of two captured sounds.
JP2461892A 1992-01-14 1992-01-14 Method and instrument for measuring length of buried pipeline Pending JPH05187851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2461892A JPH05187851A (en) 1992-01-14 1992-01-14 Method and instrument for measuring length of buried pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2461892A JPH05187851A (en) 1992-01-14 1992-01-14 Method and instrument for measuring length of buried pipeline

Publications (1)

Publication Number Publication Date
JPH05187851A true JPH05187851A (en) 1993-07-27

Family

ID=12143137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2461892A Pending JPH05187851A (en) 1992-01-14 1992-01-14 Method and instrument for measuring length of buried pipeline

Country Status (1)

Country Link
JP (1) JPH05187851A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122078A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Detection device of position in pipe
JP2017008529A (en) * 2015-06-19 2017-01-12 株式会社日立製作所 Water service pipe network management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122078A (en) * 2006-11-08 2008-05-29 Hitachi Ltd Detection device of position in pipe
JP2017008529A (en) * 2015-06-19 2017-01-12 株式会社日立製作所 Water service pipe network management system

Similar Documents

Publication Publication Date Title
US5531099A (en) Underground conduit defect localization
US9896929B2 (en) Acoustic illumination for flow-monitoring
US5127267A (en) Acoustic method for locating concealed pipe
US5412989A (en) Acoustic tracing of buried conduits
JPH05187851A (en) Method and instrument for measuring length of buried pipeline
JPH11142280A (en) Pipe-line inspecting method
JPH0196584A (en) Method for surveying position of piping buried under ground
JPH08271370A (en) Method and device for inspecting conduit
JP2009236691A (en) System and method for searching buried pipe
JPH11132896A (en) Inundation state inspecting method and inspecting apparatus
JPH1019716A (en) Method and apparatus for inspecting conduit
JP3786770B2 (en) Piping structure inspection method
JP2001280943A (en) Pipe inspecting method
JP2002228595A (en) In-pipe inspection device and method
JPH071168B2 (en) A method for investigating in-pipe conditions using reflected sound waves
JPH0196583A (en) Method for surveying position of piping buried under ground
JP3032090B2 (en) Water leak detection device
JP3023199B2 (en) Acoustic pipe length measuring instrument
GB2378756A (en) Apparatus for detecting leaks in or determing the nature of a pipe.
JP2005308724A (en) Method of determining leak portion in pipe, and pipe length measuring method
JP3113128B2 (en) A method for detecting pipe joints using acoustic waves.
JP2745165B2 (en) Acoustic pipe length measuring instrument
JP2001262634A (en) Piping structure investigation method and its device
SU934269A1 (en) Method of locating leakage in pressure pipeline
JPH10160615A (en) Acoustic device for specifying leakage position