JPH09330716A - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JPH09330716A
JPH09330716A JP8145489A JP14548996A JPH09330716A JP H09330716 A JPH09330716 A JP H09330716A JP 8145489 A JP8145489 A JP 8145489A JP 14548996 A JP14548996 A JP 14548996A JP H09330716 A JPH09330716 A JP H09330716A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous solvent
negative electrode
solvent secondary
mesophase pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8145489A
Other languages
Japanese (ja)
Other versions
JP3410291B2 (en
Inventor
Aiichiro Fujiwara
愛一郎 藤原
Munehito Hayami
宗人 早見
Yoshikazu Kobayashi
義和 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP14548996A priority Critical patent/JP3410291B2/en
Publication of JPH09330716A publication Critical patent/JPH09330716A/en
Application granted granted Critical
Publication of JP3410291B2 publication Critical patent/JP3410291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous solvent secondary battery with its high capacity and superior cycle characteristics. SOLUTION: A non-aqueous solvent secondary battery having a positive 6, a negative electrode 4 composed of a carbonaceous material capable of storing and discharging lithium ions, and a lithium ion conductive electrolyte, wherein the non-aqueous solvent secondary battery is its main mixture of which the carbon material is 2 to 40μm in average fiber diameter, a graphitized mesophase pitch based carbon fiber is 10 to 100μmin average fiber length, and the coke-based carbon particles has 50 to 100μm average particle size. Here, it is preferable that the component ratio of graphitized mesophase pitch based carbon fiber in the carbonaceous material is 30 to 90wt.%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶媒二次電池
に係り、さらに詳しくは負極を改良した非水溶媒二次電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器の発達に伴い、小型で軽
量、かつ、エネルギー密度が高く、さらに、繰り返し充
放電可能な二次電池の開発が要望されている。
2. Description of the Related Art In recent years, with the development of electronic equipment, there has been a demand for development of a secondary battery that is small and lightweight, has a high energy density, and can be repeatedly charged and discharged.

【0003】この種の二次電池としては、負極活物質と
してリチウムもしくはリチウム合金を用い、正極活物質
としてモリブデン、バナジウム、チタン、ニオブなどの
酸化物、硫化物もしくはこれらのセレン化物などを用い
たものが知られている。しかし、リチウムもしくはリチ
ウム合金を負極活物質として構成した二次電池系では、
充放電を繰り返すと、負極面にリチウムのデンドライト
が発生するため、充放電サイクル寿命が短いという問題
がある。
In this type of secondary battery, lithium or a lithium alloy is used as the negative electrode active material, and oxides, sulfides or selenides of molybdenum, vanadium, titanium, niobium and the like are used as the positive electrode active material. Things are known. However, in a secondary battery system composed of lithium or a lithium alloy as the negative electrode active material,
When charge and discharge are repeated, dendrite of lithium is generated on the negative electrode surface, so that there is a problem that the charge and discharge cycle life is short.

【0004】このデンドライト発生問題については、リ
チウムおよび担持体としての炭素質材料で負極を形成す
ることが提案され、充放電サイクルの長寿命化が図られ
ている。また、この種の非水溶媒二次電池は、作動電圧
が高く、充放電サイクル寿命を大幅に向上させることが
可能な電池として注目されている。しかしながら、炭素
材料として黒鉛化したメソフェーズピッチ系炭素繊維を
単独で用いた場合は、負極成形体(負極)の充填密度が
充分に得られないため、充放電の繰り返しに伴って、負
極の劣化が生じ易く、結果的に、充放電サイクル特性に
悪影響を及ぼすという問題がある。
With respect to the problem of dendrite generation, it has been proposed to form a negative electrode with lithium and a carbonaceous material as a carrier, and it is attempted to extend the life of the charge / discharge cycle. In addition, this type of non-aqueous solvent secondary battery has a high operating voltage, and has been attracting attention as a battery capable of significantly improving charge / discharge cycle life. However, when the graphitized mesophase pitch-based carbon fiber is used alone as the carbon material, the filling density of the negative electrode molded body (negative electrode) cannot be sufficiently obtained, and therefore the negative electrode deteriorates with repeated charging and discharging. This is apt to occur, and as a result, there is a problem that charge / discharge cycle characteristics are adversely affected.

【0005】[0005]

【発明が解決しようとする課題】上記、リチウムもしく
はリチウム合金を負極活物質とした非水溶媒二次電池の
充放電サイクル特性の改良・改善策として、リチウムを
担持体する炭素質材料の選択がいろいろ試みられてい
る。たとえば、(a)X線回折法で求められる( 002)の
面間隔d002 が0.37nm以上,真密度が1.70g/cm3 未満の
非黒鉛炭素材料およびX線回折法で求められる( 002)
の面間隔d002 が0.34nm未満,真密度が 2.1g/cm3 以上
の黒鉛炭素材料の混合系、(b)メソフェーズピッチ系炭
素繊維(繊維長10〜 100μm ,繊維径 4〜15μm )で、
かつX線回折法で求められる( 002)の面間隔d002
0.338nm未満である炭素質材料および粒径15μm 以下の
粉末を70 Vom%以上含み、かつX線回折法で求められる
( 002)の面間隔d002 が 0.338〜 0.380nmである炭素
質材料の混合系、(c)単位面積の重量が10〜500g/m2
炭素繊維および平均粒径30μm 以下の炭素粉末の混合系
をリチウムの担持体とすることが提案されている(特開
昭7-192724号公報,特開昭 8-83608号公報,特開昭 8-8
3609号公報,特開昭 8-31405号公報など)。
As a measure for improving the charge / discharge cycle characteristics of a non-aqueous solvent secondary battery using lithium or a lithium alloy as a negative electrode active material, it is necessary to select a carbonaceous material carrying lithium. Various attempts have been made. For example, (a) a non-graphite carbon material having an interplanar spacing d 002 of (002) of 0.37 nm or more and a true density of less than 1.70 g / cm 3 of (002) determined by X-ray diffraction and X-ray diffraction (002)
A mixed system of graphite carbon materials having a surface spacing d 002 of less than 0.34 nm and a true density of 2.1 g / cm 3 or more, (b) mesophase pitch carbon fibers (fiber length 10 to 100 μm, fiber diameter 4 to 15 μm),
And the interplanar spacing d 002 of (002) determined by X-ray diffraction
Mixing of carbonaceous material of less than 0.338 nm and carbonaceous material containing 70 Vom% or more of powder having a particle size of 15 μm or less and having an interplanar spacing d 002 of (002) of 0.338 to 0.380 nm as determined by an X-ray diffraction method. It has been proposed to use a system, (c) a mixed system of carbon fibers having a unit area weight of 10 to 500 g / m 2 and carbon powder having an average particle size of 30 μm or less as a lithium carrier (JP-A-7- 192724, JP-A-8-83608, JP-A-8-8
3609, JP-A-8-31405, etc.).

【0006】しかしながら、上記構成の負極を組み込ん
だ非水溶媒二次電池の場合は、高容量化などの点で、な
お改善,向上が望まれる。すなわち、従来知られている
構成のリチウム−炭素質材料系負極の場合は、負極成形
体の充填密度が低く、結果的に、電池容量も比較的小さ
いため、電源としての使用も制約されるという問題があ
る。したがって、小形電源としての特長を十分に生かす
には、非水溶媒二次電池の高容量化を先ず図る必要があ
る。
However, in the case of a non-aqueous solvent secondary battery in which the negative electrode having the above-mentioned structure is incorporated, further improvement and improvement are desired in terms of high capacity and the like. That is, in the case of a lithium-carbonaceous material-based negative electrode having a conventionally known configuration, the packing density of the negative electrode molded body is low, and as a result, the battery capacity is relatively small, so that its use as a power source is also restricted. There's a problem. Therefore, in order to fully utilize the features of the small power source, it is necessary to first increase the capacity of the non-aqueous solvent secondary battery.

【0007】本発明は、上記問題を解決するためになさ
れたもので、高容量で、かつサイクル特性もすぐれた非
水溶媒二次電池の提供を目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a non-aqueous solvent secondary battery having a high capacity and excellent cycle characteristics.

【0008】[0008]

【課題を解決するための手段】請求項1の発明は、正極
と、リチウムイオンを吸蔵・放出可能な炭素質材料から
成る負極と、リチウムイオン伝導性電解液とを具備する
非水溶媒二次電池であって、前記炭素質材料が平均繊維
径 2〜40μm 、平均繊維長10〜 100μm の黒鉛化したメ
ソフェーズピッチ系炭素繊維、および平均粒径50〜 100
μm のコークス系炭素粒子の混合物を主体としているこ
とを特徴とする非水溶媒二次電池である。
According to a first aspect of the present invention, there is provided a non-aqueous solvent secondary comprising a positive electrode, a negative electrode made of a carbonaceous material capable of absorbing and releasing lithium ions, and a lithium ion conductive electrolyte. A battery, wherein the carbonaceous material is a graphitized mesophase pitch carbon fiber having an average fiber diameter of 2 to 40 μm and an average fiber length of 10 to 100 μm, and an average particle size of 50 to 100.
It is a non-aqueous solvent secondary battery characterized in that it is mainly composed of a mixture of coke-based carbon particles of μm.

【0009】請求項2の発明は、請求項1記載の非水溶
媒二次電池において、混合物は黒鉛化したメソフェーズ
ピッチ系炭素繊維を30〜90重量%含むことを特徴とす
る。
The invention of claim 2 is characterized in that, in the non-aqueous solvent secondary battery of claim 1, the mixture contains 30 to 90% by weight of graphitized mesophase pitch carbon fiber.

【0010】すなわち、リチウムイオンの吸蔵・放出機
能を有する負極材料として平均繊維径 2〜40μm ,平均
繊維長10〜 100μm の黒鉛系メソフェーズピッチ炭素繊
維と、平均粒径50〜 100μm のコークス系炭素粒子との
混合物を使用することを骨子としたものである。
That is, as a negative electrode material having a function of storing and releasing lithium ions, graphite mesophase pitch carbon fibers having an average fiber diameter of 2 to 40 μm and an average fiber length of 10 to 100 μm, and coke-based carbon particles having an average particle size of 50 to 100 μm. The main idea is to use a mixture with.

【0011】本発明において、コークス系炭素粒子の配
合比率は10〜70重量%、より好ましくは10〜50重量%で
ある。ここで、コークス系炭素粒子の配合比が10重量%
未満であると、負極成形体の充填密度がさほど向上せ
ず、充分な効果が得られない。また、70重量%を超える
と、増量に応じた負極成形体の充填密度の向上がなく、
コークス系炭素粒子に起因した影響で、反って容量の低
下を招来する傾向が認められるので、10〜70重量%の範
囲内で選択することが望ましい。
In the present invention, the mixing ratio of the coke-based carbon particles is 10 to 70% by weight, more preferably 10 to 50% by weight. Here, the mixing ratio of the coke-based carbon particles is 10% by weight.
If it is less than the above range, the packing density of the negative electrode molded body is not so improved, and a sufficient effect cannot be obtained. Further, if it exceeds 70% by weight, there is no improvement in the packing density of the negative electrode molded body according to the increase in the amount,
It is desirable to select the amount within the range of 10 to 70% by weight, because the tendency due to the effect of the coke-based carbon particles causing the reduction of the capacity is warped.

【0012】本発明において、黒鉛化したメソフェーズ
ピッチ系炭素繊維とは、石油ピッチ、コールタール、重
質油、有機樹脂、合成高分子材料などを原料として、不
活性ガス気流中もしくは大気中で焼成・炭素化して得ら
れた炭素質の繊維である。さらに具体的に言及すると、
使用する炭素繊維は、次のようにして得ることができ
る。すなわち、(1)石油ピッチ、コールタール、重質
油、有機樹脂、合成高分子材料などを素材(原料)と
し、これを窒素、アルゴンなどの不活性ガス中、 800〜
1000℃の温度および常圧もしくは加圧の条件下で炭素化
するか、(2)さらに不活性ガス中、1000〜3200℃の温度
および常圧もしくは加圧の条件下で黒鉛化することで得
られる。特に、メソフェーズピッチ系原料を溶融し、紡
糸して作成した繊維を不融化した後、炭素化もしくは黒
鉛化することによって製造し得る。
In the present invention, the graphitized mesophase pitch carbon fiber is made of petroleum pitch, coal tar, heavy oil, organic resin, synthetic polymer material or the like as a raw material and fired in an inert gas stream or in the air. -It is a carbonaceous fiber obtained by carbonization. More specifically,
The carbon fiber used can be obtained as follows. That is, (1) petroleum pitch, coal tar, heavy oil, organic resin, synthetic polymer material, etc. are used as raw materials, and this is used in an inert gas such as nitrogen, argon, etc.
Obtained by carbonizing under conditions of temperature of 1000 ℃ and normal pressure or pressure, or (2) by graphitizing in inert gas at temperature of 1000 to 3200 ℃ and conditions of normal pressure or pressure. To be In particular, it can be produced by melting a mesophase pitch-based raw material, spinning the fiber to make it infusible, and then carbonizing or graphitizing it.

【0013】ここで、炭素化の温度は、2000℃以下、好
ましくは 600〜1500℃であり、黒鉛化の温度は、1000〜
3200℃、好ましくは2500〜3200℃である。
The carbonization temperature is 2000 ° C. or lower, preferably 600 to 1500 ° C., and the graphitization temperature is 1000 to 1000 ° C.
It is 3200 ° C, preferably 2500-3200 ° C.

【0014】なお、炭素繊維は、いわゆる配向性を有す
るものであっても、配向性がランダムのものでも、ある
いは配向性を有する部分と配向性がランダムな部分とが
混在したものであってもよい。また、炭素繊維断面にお
ける炭素層の配向の仕方や形態としては、放射状構造,
繊維表面側で放射状構造かつ内部でランダム構造,短冊
構造,あるいはラメラ構造などが挙げられる。そして、
この炭素繊維の黒鉛構造は、X線回折によって得られる
( 002)面の面間隔(d002 )およびc軸方向の結晶子
の大きさ( Lc )によって規定され、面間隔(d002
の平均値が0336〜 0.380nm、結晶子の大きさ( Lc )の
平均値が 1〜70nmの黒鉛構造が望ましい。一方、コーク
ス系炭素粒子のX線回折によって得られる( 002)面の
面間隔(d002 )およびc軸方向の結晶子の大きさ( L
c )は、それぞれ 0.340〜 0.370nm、 0.5〜10nm程度が
好ましい。
The carbon fiber may have a so-called orientation, a random orientation, or a mixture of a portion having orientation and a portion having random orientation. Good. In addition, the orientation and the form of the carbon layer in the cross section of the carbon fiber include a radial structure,
Radial structure on the fiber surface side and random structure, strip structure, or lamella structure on the inside can be mentioned. And
Graphite structure of the carbon fibers is defined by obtained by X-ray diffraction (002) plane lattice spacing (d 002) and the c-axis direction of the crystallite size of the (L c), the surface spacing (d 002)
A graphite structure having an average value of 0336 to 0.380 nm and an average value of crystallite size (L c ) of 1 to 70 nm is desirable. On the other hand, the interplanar spacing (d 002 ) of the (002) plane obtained by X-ray diffraction of the coke-based carbon particles and the crystallite size (L
c ) is preferably 0.340 to 0.370 nm and 0.5 to 10 nm, respectively.

【0015】すなわち、面間隔(d002 )の平均値およ
び結晶子の大きさ( Lc )の平均値が、前記範囲を外れ
ると、負極でのリチウムイオン吸蔵・放出量の減少、黒
鉛構造の劣化、非水電解液中の溶媒の還元分解によるガ
ス発生などを招来して、二次電池の容量低下などの傾向
が認められる。
That is, when the average value of the interplanar spacing (d 002 ) and the average value of the crystallite size (L c ) are out of the above ranges, the lithium ion storage / release amount at the negative electrode is reduced, and the graphite structure is reduced. Deterioration, gas generation due to reductive decomposition of the solvent in the non-aqueous electrolyte, and the like are caused, and a tendency such as reduction in capacity of the secondary battery is recognized.

【0016】さらに、コークス系炭素粒子は、50〜 100
μm 、黒鉛化したメソフェーズピッチ系炭素繊維の径
は、 1〜 100μm ,好ましくは 2〜40μm ,より好まし
くは 4〜20μm である。また、繊維径,繊維長および粒
子の大きさが 1μm 未満では、正極との間に介挿するセ
パレータの孔を通り易くなり、正極との間で短絡を起こ
す恐れがあり、さらに、比表面積が大きいため、電解液
との副反応などを起こし易くなる。一方、繊維径および
繊維長が 100μm を超えると比表面積が低減し、リチウ
ムイオンの吸蔵・放出量が低下する。したがって、負極
を形成するに当たっては、炭素繊維、粒子を粉砕などし
て平均径、粒径などを、予め、前記範囲内に調整してお
くことが有効である。
Further, the coke-based carbon particles are 50-100
The diameter of the graphitized mesophase pitch carbon fiber is 1 to 100 μm, preferably 2 to 40 μm, and more preferably 4 to 20 μm. If the fiber diameter, fiber length, and particle size are less than 1 μm, it may easily pass through the holes of the separator that is interposed between the positive electrode and the positive electrode, and a short circuit may occur between the positive electrode and the specific surface area. Since it is large, side reactions with the electrolytic solution are likely to occur. On the other hand, if the fiber diameter and the fiber length exceed 100 μm, the specific surface area decreases, and the lithium ion storage / release amount decreases. Therefore, in forming the negative electrode, it is effective to adjust the average diameter, the particle diameter, and the like in advance within the above range by crushing carbon fibers and particles.

【0017】なお、黒鉛化したメソフェーズピッチ系炭
素繊維およびコークス系炭素粒子を混合したことによっ
て、形状の異なる粒子などが混在することになる。そし
て、その配合比を変化することにより、加圧プレスによ
って負極成形体の多孔度を制御することが可能で、負極
成形体の充填密度を向上させることができる。
By mixing the graphitized mesophase pitch carbon fiber and the coke carbon particles, particles having different shapes are mixed. Then, by changing the compounding ratio, it is possible to control the porosity of the negative electrode molded body by the pressure press and improve the packing density of the negative electrode molded body.

【0018】本発明において、正極としては、リチウム
塩と二酸化マンガンを原料とするリチウムマンガン化合
物、モリブデン,バナジウム,チタン,ニオブなどの酸
化物や硫化物などを活物質とし、これに導電性材料およ
び結着剤を配合し、たとえばペレット状態に成形したも
のが挙げられる。
In the present invention, as the positive electrode, a lithium manganese compound prepared from a lithium salt and manganese dioxide, an oxide or sulfide of molybdenum, vanadium, titanium, niobium or the like is used as an active material, and a conductive material and For example, a binder may be blended and molded into a pellet state.

【0019】ここで、導電性材料としては、アセチレン
ブラックをはじめとするカーボンブラック、ニッケル粉
末などが挙げられる。また、結着剤としては、ポリフル
オロエチレン、ポリエチレン、ポリプロピレン、ポリ
(メタ)アクリル酸、ポリ(メタ)アクリル酸塩、ポリ
(メタ)アクリル酸エステルならびに(メタ)アクリル
酸および/または(メタ)アクリル酸エステル他のコポ
リマーとの共重合体などが挙げられる。
Here, examples of the conductive material include carbon black such as acetylene black and nickel powder. Further, as the binder, polyfluoroethylene, polyethylene, polypropylene, poly (meth) acrylic acid, poly (meth) acrylic acid salt, poly (meth) acrylic acid ester and (meth) acrylic acid and / or (meth) Examples thereof include copolymers with acrylic acid esters and other copolymers.

【0020】本発明において、リチウムイオン伝導性電
解液としては、非水溶媒に、リチウム塩(電解液)を
0.5〜 1.5 mol/l 程度の割合で溶解した非水電解液
や、リチウムイオン伝導性の固体電解質を挙げることが
できる。
In the present invention, as the lithium ion conductive electrolytic solution, a lithium salt (electrolytic solution) is added to a non-aqueous solvent.
Examples thereof include a non-aqueous electrolytic solution dissolved at a rate of about 0.5 to 1.5 mol / l and a lithium ion conductive solid electrolyte.

【0021】ここで、非水溶媒としては、たとえばエチ
レンカーボネート、プロピレンカーボネート、ブチレン
カーボネート、γ−ブチロラクトン、スルホラン、アセ
トニトリル、1,2-ジメトキシメタン、1,3-ジメトキシプ
ロパン、ジメチルエーテル、テトラヒドロフラン、2-メ
チルテトラヒドロフラン、炭酸ジメチル、炭酸ジエチル
およびエチルメチルカーボネートから選ばれる1種もし
くは2種以上の混合系が挙げられる。一方、リチウム塩
(電解液)としては、過塩素酸リチウム( LiClO4 )、
へキサフルオロリン酸リチウム(LiPF6 )、テトラフル
オロホウ酸リチウム(LiBF4 )、ヘキサフルオロヒ酸リ
チウム( LiAsF6 )、トリフルオロメタンスルホン酸リ
チウム(LiCF3 SO3 )などが挙げられる。さらに、リチ
ウムイオン伝導性の固体電解質としては、たとえば高分
子化合物にリチウム塩を複合化した高分子固体電解質を
挙げることができる。
Here, as the non-aqueous solvent, for example, ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxymethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran, 2- One or a mixture of two or more selected from methyltetrahydrofuran, dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate can be mentioned. On the other hand, as lithium salt (electrolyte), lithium perchlorate (LiClO 4 ),
Examples include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), and the like. Further, as the lithium ion conductive solid electrolyte, for example, a polymer solid electrolyte in which a lithium salt is compounded with a polymer compound can be mentioned.

【0022】本発明において、正負極間に介挿され、か
つリチウムイオン伝導性電解液を担持する機能を成すセ
パレーターとしては、たとえばポリエチレン、ポリプロ
ピレンなどのポリオレフィン系樹脂の不織布や、これら
の多孔膜などが挙げられる。
In the present invention, the separator interposed between the positive and negative electrodes and having the function of carrying the lithium ion conductive electrolyte is, for example, a nonwoven fabric of polyolefin resin such as polyethylene or polypropylene, or a porous film of these. Is mentioned.

【0023】[0023]

【発明の実施の形態】以下、図1を参照して実施例を説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment will be described below with reference to FIG.

【0024】実施例1 (1) 正極の作製 活物質として五酸化バナジウム、導電性材料として人造
黒鉛、結着剤としてポリテトラフルオロエチレンをそれ
ぞれ用意した。次いで、これら活物質,導電性材料,結
着剤を重量比で90:10: 5の割合にて混合・混練し、こ
の混合物を加圧プレス機にてぺレット状に加圧成形して
正極を作製した。
Example 1 (1) Preparation of Positive Electrode Vanadium pentoxide was prepared as an active material, artificial graphite was prepared as a conductive material, and polytetrafluoroethylene was prepared as a binder. Next, the active material, the conductive material, and the binder are mixed and kneaded at a weight ratio of 90: 10: 5, and the mixture is pressure-molded by a pressure press machine into a pellet shape. Was produced.

【0025】(2) 負極の作製 メソフェーズピッチを原料とするピッチ系炭素繊維を細
かく粉砕し、2800℃の温度で焼成して得られた平均繊維
径 9μm ,平均繊維長40μm の炭素繊維と、コールター
ルを原料として、蒸留、高温熱処理を施して得られた平
均粒径75μm の炭素粒子とを、重量比で90:10の割合で
混ぜ合わせ、炭素質材料を調製した。次いで、この炭素
質材料95重量部当たり、結着剤としてブタジエン−スチ
レンラバーを 5重量部の割合で添加して混合・混練し、
この混合物を加圧プレス機でぺレット状に加圧成形して
負極を作製した。また、この負極成形体について、充填
密度を測定したところ、1.250g/cm3 であった。
(2) Preparation of Negative Electrode Pitch-based carbon fibers made from mesophase pitch were finely pulverized and fired at a temperature of 2800 ° C. to obtain carbon fibers having an average fiber diameter of 9 μm and an average fiber length of 40 μm. Using tar as a raw material, carbon particles having an average particle size of 75 μm obtained by subjecting to distillation and high temperature heat treatment were mixed at a weight ratio of 90:10 to prepare a carbonaceous material. Then, butadiene-styrene rubber was added as a binder at a ratio of 5 parts by weight to 95 parts by weight of this carbonaceous material, and mixed and kneaded.
This mixture was pressure-molded into a pellet shape with a pressure press to prepare a negative electrode. The packing density of this negative electrode molded article was 1.250 g / cm 3 .

【0026】(3) 電池の組み立て 図1は、この実施例に係るコイン形非水溶媒二次電池の
断面図であり、以下のようにして組み立てた。
(3) Assembly of Battery FIG. 1 is a cross-sectional view of a coin-shaped non-aqueous solvent secondary battery according to this example, which was assembled as follows.

【0027】先ず、ステンレス鋼からなる負極容器1の
内面に、直径12mm,厚さ0.05mmのニッケル製エキスパン
ドメタルからなる負極集電体2を溶接し、この負極容器
1と絶縁ガスケット3を一体化した。次に、前記負極集
電体2上に厚さ0.19mm,直径15mmの金属リチウム板を圧
着し、このリチウム板面上に負極4を着設した。なお、
前記金属リチウム板は、電池組立後において負極4に吸
蔵される。
First, a negative electrode current collector 2 made of nickel expanded metal having a diameter of 12 mm and a thickness of 0.05 mm is welded to the inner surface of the negative electrode container 1 made of stainless steel, and the negative electrode container 1 and the insulating gasket 3 are integrated. did. Next, a metal lithium plate having a thickness of 0.19 mm and a diameter of 15 mm was pressure-bonded onto the negative electrode current collector 2, and the negative electrode 4 was attached on the surface of the lithium plate. In addition,
The metallic lithium plate is inserted in the negative electrode 4 after the battery is assembled.

【0028】その後、前記負極4面上に、電解液を含浸
させたポリプロピレン不織布系のセパレータ5を載置し
た。すなわち、エチレンカーボネートとγ−ブチロラク
トンとを体積比で 2: 1に混合した非水溶媒に、ホウフ
ッ化リチウムを 1 mol/lの濃度になるように溶解した電
解液を、ポリプロピレン不織布に含浸させたセパレータ
5を負極4面上に載置した。
Then, a polypropylene non-woven separator 5 impregnated with an electrolytic solution was placed on the surface of the negative electrode 4. That is, a polypropylene non-woven fabric was impregnated with an electrolytic solution prepared by dissolving lithium borofluoride to a concentration of 1 mol / l in a non-aqueous solvent in which ethylene carbonate and γ-butyrolactone were mixed at a volume ratio of 2: 1. The separator 5 was placed on the surface of the negative electrode 4.

【0029】次いで、前記セパレータ5面上に正極(正
極成形体)6を載置してから、前記負極容器1の開口部
に、絶縁ガスケット3を介して、内面にコロイダルカー
ボン(正極集電体)7を塗布した正極容器8を嵌合し、
この正極容器8の開口部をかしめ加工して、負極容器1
と正極容器8内に、負極4、セパレー5、および正極6
を密閉して、外径20.0mm,厚さ 2.5mmのコイン形非水溶
媒二次電池を組み立てた。
Next, a positive electrode (positive electrode molded body) 6 is placed on the surface of the separator 5, and then colloidal carbon (a positive electrode current collector) is formed on the inner surface of the opening of the negative electrode container 1 via an insulating gasket 3. ) 7 is applied and the positive electrode container 8 is fitted,
The opening of this positive electrode container 8 is caulked to form the negative electrode container 1.
In the positive electrode container 8, the negative electrode 4, the separator 5, and the positive electrode 6 are provided.
Then, a coin type non-aqueous solvent secondary battery with an outer diameter of 20.0 mm and a thickness of 2.5 mm was assembled.

【0030】(4) 電池のエージング 上記組み立てたコイン形非水溶媒二次電池を室温で 7〜
14日間エージングを行った。このエージング後における
コイン形非水溶媒二次電池の電池開路電圧は 3.4Vであ
った。
(4) Battery Aging The assembled coin-shaped non-aqueous solvent secondary battery at room temperature
Aged for 14 days. The battery open circuit voltage of the coin type non-aqueous solvent secondary battery after this aging was 3.4V.

【0031】(5) 充放電サイクル試験 前記コイン形非水溶媒二次電池について、 1.0mAの定電
流で電池電圧 2.0 Vまで放電した後、 3.4 Vまで充電す
る充放電サイクル試験を、20℃の温度で50サイクル行っ
て、50サイクル目の放電容量を測定した。この条件で得
られた放電容量の初期(第1サイクル目)放電容量に対
する比を、50サイクルにおける放電容量維持率として求
めた結果を表1に示す。
(5) Charge / Discharge Cycle Test Regarding the coin type non-aqueous solvent secondary battery, a charge / discharge cycle test of discharging to a battery voltage of 2.0 V at a constant current of 1.0 mA and then charging to 3.4 V was conducted at 20 ° C. After 50 cycles at temperature, the discharge capacity at the 50th cycle was measured. Table 1 shows the results of the ratio of the discharge capacity obtained under these conditions to the initial (first cycle) discharge capacity as the discharge capacity retention ratio at 50 cycles.

【0032】(6) 高温貯蔵特性試験 前記と同様にエージングしたコイン形非水溶媒二次電池
を用意し、60℃で20日間貯蔵した後、 15kΩの定抵抗放
電を行って、 2.0 Vまでの放電容量を測定した結果を表
1に示す。
(6) High-temperature storage characteristic test A coin type non-aqueous solvent secondary battery aged in the same manner as above was prepared, stored at 60 ° C. for 20 days, and then subjected to constant resistance discharge of 15 kΩ to 2.0 V. The results of measuring the discharge capacity are shown in Table 1.

【0033】実施例2 黒鉛化したメソフェーズピッチ系炭素繊維とコークス系
炭素粒子の配合比率を75:25(重量%)に変更した以外
は、実施例1の場合と同様の条件で、コイン形リチウム
二次電池を組み立て、電池のエージングを行った後、充
放電サイクル試験および高温貯蔵特性試験を行った結果
を、負極成形体の充填密度とともに表1に併せて示す。
Example 2 Coin-type lithium was used under the same conditions as in Example 1 except that the compounding ratio of the graphitized mesophase pitch carbon fiber and the coke carbon particles was changed to 75:25 (wt%). After assembling the secondary battery and aging the battery, the results of the charge / discharge cycle test and the high temperature storage characteristic test are shown in Table 1 together with the packing density of the negative electrode molded body.

【0034】実施例3 黒鉛化したメソフェーズピッチ系炭素繊維とコークス系
炭素粒子の配合比率を30:70(重量%)に変更した以外
は、実施例1の場合と同様の条件で、コイン形非水溶媒
二次電池を組み立て、電池のエージングを行ってから、
充放電サイクル試験および高温貯蔵特性試験を行った結
果を、負極成形体の充填密度とともに表1に併せて示
す。
Example 3 Under the same conditions as in Example 1, except that the compounding ratio of the graphitized mesophase pitch carbon fiber and the coke carbon particles was changed to 30:70 (wt%), a coin-shaped After assembling the water solvent secondary battery and aging the battery,
The results of the charge / discharge cycle test and the high temperature storage characteristic test are shown in Table 1 together with the packing density of the negative electrode molded body.

【0035】比較例1 平均粒径 200μm のコークス系炭素粒子を用いるととも
に、黒鉛化したメソフェーズピッチ系炭素繊維との配合
比率を25:75(重量%)に変更した以外は、実施例1と
同様にして、コイン形非水溶媒二次電池を作製し、電池
のエージングを行ってから、充放電サイクル試験をおこ
なった結果を、負極成形体の充填密度とともに表1に示
す。
Comparative Example 1 Same as Example 1 except that coke-based carbon particles having an average particle size of 200 μm were used and the blending ratio with the graphitized mesophase pitch-based carbon fiber was changed to 25:75 (wt%). Then, a coin type non-aqueous solvent secondary battery was produced, the battery was aged, and then the charge and discharge cycle test was performed. The results are shown in Table 1 together with the packing density of the negative electrode molded body.

【0036】比較例2 平均粒径30μm のコークス系炭素粒子を用いるととも
に、黒鉛化したメソフェーズピッチ系炭素繊維との配合
比率を25:75(重量%)に変更した以外は、実施例1と
同様にして、コイン形非水溶媒二次電池を組み立て、電
池のエージングを行ってから、充放電サイクル試験をお
こなった結果を、負極成形体の充填密度とともに表1に
示す。
Comparative Example 2 Same as Example 1 except that coke-based carbon particles having an average particle diameter of 30 μm were used and the blending ratio with the graphitized mesophase pitch-based carbon fiber was changed to 25:75 (wt%). Then, the coin-shaped non-aqueous solvent secondary battery was assembled, the battery was aged, and then the charge and discharge cycle test was performed. The results are shown in Table 1 together with the packing density of the negative electrode molded body.

【0037】比較例3 平均繊維長 200μm 黒鉛化したメソフェーズピッチ系炭
素繊維を用いるとともに、コークス系炭素粒子との配合
比率を75:25(重量%)に変更した以外は、実施例1と
同様にして、コイン形非水溶媒二次電池を作製し、電池
のエージングを行ってから、充放電サイクル試験をおこ
なった結果を、負極成形体の充填密度とともに表1に示
す。
Comparative Example 3 Average fiber length 200 μm The same as Example 1 except that graphitized mesophase pitch carbon fiber was used and the blending ratio with coke carbon particles was changed to 75:25 (wt%). A coin type non-aqueous solvent secondary battery was produced, the battery was aged, and the charge / discharge cycle test was performed. The results are shown in Table 1 together with the packing density of the negative electrode molded body.

【0038】比較例4 平均繊維長 5μm 黒鉛化したメソフェーズピッチ系炭素
繊維を用いるとともに、コークス系炭素粒子との配合比
率を75:25(重量%)に変更した以外は、実施例1と同
様にして、コイン形非水溶媒二次電池を作製し、電池の
エージングを行ってから、充放電サイクル試験および高
温貯蔵特性試験をおこなった結果を、負極成形体の充填
密度とともに表1に示す。
Comparative Example 4 Same as Example 1 except that graphitized mesophase pitch carbon fiber having an average fiber length of 5 μm was used and the mixing ratio with coke carbon particles was changed to 75:25 (wt%). A coin type non-aqueous solvent secondary battery was produced, the battery was aged, and then the results of charge / discharge cycle test and high temperature storage characteristic test were shown in Table 1 together with the packing density of the negative electrode molded body.

【0039】 上記表1から分かるように、実施例のコイン形非水溶媒
二次電池に装着した負極成形体は、その充填密度が比較
的高くて、良好な充放電サイクル特性を呈するだけでな
く、電池容量も高くて小形電源として、すぐれた性能を
有する。
[0039] As can be seen from Table 1 above, the negative electrode molded body mounted on the coin-type non-aqueous solvent secondary battery of the example has a relatively high packing density and exhibits not only good charge / discharge cycle characteristics but also battery capacity. It is also high and has excellent performance as a compact power supply.

【0040】なお、本発明は上記実施例に限定されるも
のでなく、発明の趣旨を逸脱しない範囲でいろいろの変
形を採ることができる。たとえば、負極成形体の主体を
成す黒鉛化したメソフェーズピッチ系繊維の平均繊維
径,平均繊維長、コークス系炭素粒子の平均粒径を許容
された範囲内で、適宜変更しても同様の作用効果が得ら
れる。また、電池の形状もコイン形に以外の、円筒形出
会っても勿論よい。
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, even if the average fiber diameter, average fiber length, and average particle diameter of coke-based carbon particles of graphitized mesophase pitch-based fibers that form the main component of the negative electrode molded product are appropriately changed within the permissible range, the same operational effect is obtained. Is obtained. Further, the battery may have a cylindrical shape other than the coin shape.

【0041】[0041]

【発明の効果】本発明によれば、所定性状の黒鉛系メソ
フェーズピッチ炭素繊維、およびコークス系炭素粒子の
混合系を負極炭素質材料としたことに伴って、負極成形
体の充填密度が向上し、その結果、高容量でかつサイク
ル特性のすぐれた非水溶媒二次電池が提供される。
EFFECTS OF THE INVENTION According to the present invention, the packing density of the negative electrode compact is improved by using the negative electrode carbonaceous material as the mixed system of the graphite-based mesophase pitch carbon fiber having the predetermined properties and the coke-based carbon particles. As a result, a non-aqueous solvent secondary battery having high capacity and excellent cycle characteristics is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のコイン形非水溶媒二次電池の構成を示
す断面図。
FIG. 1 is a cross-sectional view showing a configuration of a coin type non-aqueous solvent secondary battery of an example.

【符号の説明】[Explanation of symbols]

1………負極容器 2………負極集電体 3………絶縁ガスケット 4………負極成形体 5………セパレータ 6………正極成形体 7………正極集電体 8………正極容器 1 ………… Negative electrode container 2 ………… Negative electrode current collector 3 ………… Insulation gasket 4 ………… Negative electrode molded body 5 ………… Separator 6 ………… Positive electrode molded body 7 ………… Positive electrode current collector 8 …… … Positive electrode container

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムイオンを吸蔵・放出可
能な炭素質材料から成る負極と、リチウムイオン伝導性
電解液とを具備する非水溶媒二次電池であって、 前記炭素質材料が平均繊維径 2〜40μm 、平均繊維長10
〜 100μm の黒鉛化したメソフェーズピッチ系炭素繊
維、および平均粒径50〜 100μm のコークス系炭素粒子
の混合物を主体としていることを特徴とする非水溶媒二
次電池。
1. A non-aqueous solvent secondary battery comprising a positive electrode, a negative electrode made of a carbonaceous material capable of inserting and extracting lithium ions, and a lithium ion conductive electrolyte, wherein the carbonaceous material is an average. Fiber diameter 2-40 μm, average fiber length 10
A non-aqueous solvent secondary battery, which is mainly composed of a mixture of graphitized mesophase pitch carbon fibers having a particle size of ˜100 μm and coke carbon particles having an average particle size of 50 μm to 100 μm.
【請求項2】 混合物は黒鉛化したメソフェーズピッチ
系炭素繊維を30〜90重量%含むことを特徴とする請求項
1記載の非水溶媒二次電池。
2. The non-aqueous solvent secondary battery according to claim 1, wherein the mixture contains 30 to 90% by weight of graphitized mesophase pitch carbon fiber.
JP14548996A 1996-06-07 1996-06-07 Coin type non-aqueous solvent secondary battery Expired - Fee Related JP3410291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14548996A JP3410291B2 (en) 1996-06-07 1996-06-07 Coin type non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14548996A JP3410291B2 (en) 1996-06-07 1996-06-07 Coin type non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH09330716A true JPH09330716A (en) 1997-12-22
JP3410291B2 JP3410291B2 (en) 2003-05-26

Family

ID=15386452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14548996A Expired - Fee Related JP3410291B2 (en) 1996-06-07 1996-06-07 Coin type non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3410291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002093406A (en) * 2000-09-18 2002-03-29 At Battery:Kk Nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002093406A (en) * 2000-09-18 2002-03-29 At Battery:Kk Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3410291B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
JP3556270B2 (en) Lithium secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
US5340670A (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US5312611A (en) Lithium secondary battery process for making carbonaceous material for a negative electrode of lithium secondary battery
US5474861A (en) Electrode for non-aqueous electrolyte secondary battery
JP4218098B2 (en) Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP4595145B2 (en) Non-aqueous electrolyte battery
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JPH05121066A (en) Negative electrode for nonaqueous battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH06302315A (en) Electrode for nonaqueous electrolytic secondary battery and its manufacture
JP3236400B2 (en) Non-aqueous secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3727666B2 (en) Lithium secondary battery
JP2637305B2 (en) Lithium secondary battery
JP3544015B2 (en) Non-aqueous electrolyte secondary battery
WO2002089235A1 (en) Carbonaceous material for nonaqueous electrolytic secondary cell and nonaqueous electrolytic secondary cell comprising the same
JP3863514B2 (en) Lithium secondary battery
JPH08162096A (en) Lithium secondary battery
JP3410291B2 (en) Coin type non-aqueous solvent secondary battery
JPH11111297A (en) Lithium secondary battery
JPH06231766A (en) Negative electrode for non-aqueous secondary battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery
JPH0521065A (en) Lithium secondary battery
JP2001185149A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

LAPS Cancellation because of no payment of annual fees