JP2002093406A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002093406A
JP2002093406A JP2000282404A JP2000282404A JP2002093406A JP 2002093406 A JP2002093406 A JP 2002093406A JP 2000282404 A JP2000282404 A JP 2000282404A JP 2000282404 A JP2000282404 A JP 2000282404A JP 2002093406 A JP2002093406 A JP 2002093406A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
weight
fibrous carbon
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000282404A
Other languages
Japanese (ja)
Other versions
JP4828690B2 (en
Inventor
Minoru Hashimoto
稔 橋本
Takayuki Nakajima
孝之 中島
Koichi Matsumoto
浩一 松本
Shinichi Kamibayashi
信一 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&T Battery Corp
Toshiba Development and Engineering Corp
AT Battery KK
Original Assignee
A&T Battery Corp
AT Battery KK
Toshiba Electronic Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&T Battery Corp, AT Battery KK, Toshiba Electronic Engineering Co Ltd filed Critical A&T Battery Corp
Priority to JP2000282404A priority Critical patent/JP4828690B2/en
Publication of JP2002093406A publication Critical patent/JP2002093406A/en
Application granted granted Critical
Publication of JP4828690B2 publication Critical patent/JP4828690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having an improved charging/discharging cycle characteristic at high temperatures by improving a negative electrode. SOLUTION: This secondary battery has a positive electrode capable of storing and releasing lithium, a negative electrode capable of storing and releasing lithium, a separator, and a nonaqueous electrolyte. The positive electrode and the negative electrode have respective structures in which respective collectors are coated with a positive electrode material and a negative electrode material, the negative electrode material contains carbonaceous material containing fibrous carbon materials a and b and non-fibrous carbon material c, the fibrous carbon material b is mesophase low temperature cold burning carbon, and the negative electrode has 15 to 30 mAh/g as a discharge capacity between 1 to 3V in negative electrode voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に関し、特に負極を改良した非水系電解液二次電池
に係わる。
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a non-aqueous electrolyte secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、VTR、携帯電話、パソコンなど
の各種電子機器、コードレスの携帯型電子機器の小型、
軽量化に伴ない、それら機器の電源の高エネルギー密度
の要求が高まり、負極活物質に金属リチウムを使用した
リチウム二次電池に代表される非水系電解液二次電池が
提案されている。しかしながら、負極活物質として金属
リチウムを用いたリチウム二次電池は、放電時にリチウ
ムイオンとして電解液中に溶解したリチウムが電解液中
の非水溶媒と反応して一部不活性になる。このため、充
放電を繰り返すと負極の表面の凸部にリチウムが電析し
てデンドライト状(樹枝状)に析出し、このデンドライ
ト状リチウムがセパレータを貫通して正極と接すること
により内部短絡を生じる問題があった。
2. Description of the Related Art In recent years, various types of electronic devices such as VTRs, mobile phones, and personal computers, and small-sized cordless portable electronic devices have been developed.
Along with the weight reduction, the demand for a high energy density of the power supply of such devices has been increased, and non-aqueous electrolyte secondary batteries represented by lithium secondary batteries using metallic lithium as a negative electrode active material have been proposed. However, in a lithium secondary battery using metallic lithium as the negative electrode active material, lithium dissolved in the electrolyte as lithium ions at the time of discharge reacts with the nonaqueous solvent in the electrolyte to become partially inactive. Therefore, when charge and discharge are repeated, lithium is electrodeposited on the convex portion on the surface of the negative electrode and precipitates in a dendrite shape (dendritic shape), and this dendrite-like lithium penetrates the separator and comes into contact with the positive electrode, thereby causing an internal short circuit. There was a problem.

【0003】このようなことから、特開昭63−121
260号公報には負極にカーボンを用いた軽量の二次電
池が開示されている。その後、負極活物質としてコーク
ス、グラファイト、樹脂焼成体、熱分解気相炭素等、種
々の炭素材料を用いる、いわゆるリチウムイオン二次電
池が提案され、実用化されている。
In view of the above, Japanese Patent Application Laid-Open No. 63-121
No. 260 discloses a lightweight secondary battery using carbon for the negative electrode. Thereafter, a so-called lithium ion secondary battery using various carbon materials such as coke, graphite, a resin fired body, and pyrolysis gas phase carbon as a negative electrode active material has been proposed and put into practical use.

【0004】前記リチウムイオン二次電池としては、正
極にLiCoO2、LiNiO2、LiMn24等のカル
コゲン化合物を用い、負極に前記炭素材料を用いたもの
が知られており、前記炭素材料の素材によって種々の特
徴を有する。例えば、特開平5−89879号公報のよ
うに繊維径の断面方向にラメラ構造を持つ炭素繊維を負
極活物質として含むリチウムイオン二次電池は優れた充
放電特性を有する。また、黒鉛度の高いグラファイトを
負極活物質として含むリチウムイオン二次電池は高い充
電エネルギーを有する。さらに、前記リチウムイオン二
次電池は金属リチウムを負極として用いた二次電池に比
べて安全性が高く、各種の携帯端末の電源として広く利
用されている。
As the lithium ion secondary battery, a lithium ion secondary battery using a chalcogen compound such as LiCoO 2 , LiNiO 2 or LiMn 2 O 4 for a positive electrode and using the carbon material for a negative electrode is known. It has various features depending on the material. For example, a lithium ion secondary battery containing carbon fibers having a lamellar structure in the cross-sectional direction of the fiber diameter as a negative electrode active material as disclosed in JP-A-5-89879 has excellent charge / discharge characteristics. Further, a lithium ion secondary battery containing graphite having a high degree of graphite as a negative electrode active material has high charging energy. Further, the lithium ion secondary battery has higher safety than a secondary battery using metallic lithium as a negative electrode, and is widely used as a power source for various portable terminals.

【0005】前述したようにコークス、グラファイト、
樹脂焼成体、熱分解気相炭素等は負極の活物質として用
いられているものの、これらの負極を備えたリチウムイ
オン二次電池において携帯端末の要求特性、例えば薄型
化、軽量化、高容量化および高サイクル維持率を全て満
足するに至っていない。
As described above, coke, graphite,
Resin fired bodies, pyrolytic gas-phase carbon, etc. are used as the active material of the negative electrode. However, in lithium ion secondary batteries equipped with these negative electrodes, the required characteristics of mobile terminals, such as thinning, lightening, and high capacity And all of the high cycle maintenance rates have not been satisfied.

【0006】[0006]

【発明が解決しようとする課題】本発明は、負極を改良
することによって高温充放電サイクル特性を向上した非
水系電解液二次電池を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a non-aqueous electrolyte secondary battery having improved high-temperature charge / discharge cycle characteristics by improving a negative electrode.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電解液二次電池は、リチウムを吸
蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備え、前記正極お
よび前記負極は、集電体にそれぞれ正極材料および負極
材料を塗布した構造を有し、前記負極材料は、繊維状炭
素材(a),(b)と非繊維系炭素材(c)とを含む炭
素質材を含有し、前記繊維状炭素材(b)がメソフェー
ズ低温焼成炭素であり、かつ前記負極は、負極電位1V
〜3V間の放電容量として15〜30mAh/gを有す
ることを特徴とするものである。
A non-aqueous electrolyte secondary battery according to the present invention for achieving the above object has a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator and a non-aqueous electrolyte. An aqueous electrolyte solution, wherein the positive electrode and the negative electrode have a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively, and the negative electrode material comprises fibrous carbon materials (a) and (b) and non-fiber And a carbonaceous material containing a base carbon material (c), the fibrous carbon material (b) is mesophase low-temperature calcined carbon, and the negative electrode has a negative electrode potential of 1 V
It has a discharge capacity of 15 to 30 mAh / g between -3 V.

【0008】[0008]

【発明の実施の形態】以下、本発明に係わる非水系電解
液二次電池を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a non-aqueous electrolyte secondary battery according to the present invention will be described in detail.

【0009】この非水系電解液二次電池は、リチウムを
吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負
極、セパレータおよび非水系電解液を備える。
This non-aqueous electrolyte secondary battery includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator, and a non-aqueous electrolyte.

【0010】次に、前記負極、正極、セパレータおよび
非水系電解液を説明する。
Next, the negative electrode, the positive electrode, the separator and the non-aqueous electrolyte will be described.

【0011】1)負極 この負極は、集電体に負極材料を塗布した構造を有す
る。
1) Negative Electrode The negative electrode has a structure in which a current collector is coated with a negative electrode material.

【0012】前記集電体としては、例えば銅板、銅メッ
シュ材等を挙げることができる。
Examples of the current collector include a copper plate and a copper mesh material.

【0013】前記負極材料は、繊維状炭素材(a),
(b)および非繊維状炭素材(c)と、結着剤を含有す
る。この繊維状炭素材(b)は、メソフェーズ低温焼成
炭素である。
The negative electrode material is a fibrous carbon material (a),
(B) and a non-fibrous carbon material (c), and a binder. This fibrous carbon material (b) is mesophase low-temperature calcined carbon.

【0014】前記繊維状炭素材(a)は、前記負極材料
の主たる炭素材料として機能する。この繊維状炭素材
(a)としては、例えばメソフェーズピッチ系カーボン
繊維、PAN系炭素繊維、またはフェノール樹脂、ポリ
イミドからなる繊維状をなす炭素材、繊維状の気相成長
炭素体等を挙げることができる。特に、メソフェーズピ
ッチ系カーボン繊維が好ましい。
The fibrous carbon material (a) functions as a main carbon material of the negative electrode material. Examples of the fibrous carbon material (a) include mesophase pitch-based carbon fiber, PAN-based carbon fiber, a fibrous carbon material made of phenol resin and polyimide, and a fibrous vapor-grown carbon body. it can. Particularly, mesophase pitch-based carbon fibers are preferable.

【0015】前記繊維状炭素材(a)は、平均繊維径8
〜18μm、平均繊維長10〜50μm、真密度2.2
4g/cc以上であることが好ましい。このような繊維
状炭素材(a)は、充放電サイクル特性の向上に寄与す
る。特に、前記平均繊維長10μm未満にすると繊維形
態を示す比率が少なくなって粉末状になり、充放電効率
が低下する恐れがある。一方、前記平均繊維長が50μ
mを超えるとこの繊維状炭素材(a)を含む負極材料を
備えた負極の物性、例えば集電体と負極材料との密着性
が低下する恐れがある。
The fibrous carbon material (a) has an average fiber diameter of 8
1818 μm, average fiber length 10-50 μm, true density 2.2
It is preferably at least 4 g / cc. Such a fibrous carbon material (a) contributes to an improvement in charge / discharge cycle characteristics. In particular, when the average fiber length is less than 10 μm, the ratio of showing the fiber morphology becomes small and the powder becomes powdery, which may lower the charge / discharge efficiency. On the other hand, the average fiber length is 50μ.
If it exceeds m, the physical properties of the negative electrode including the negative electrode material containing the fibrous carbon material (a), for example, the adhesion between the current collector and the negative electrode material may be reduced.

【0016】前記繊維状炭素材(a)は、Cu−Kαに
よるX線回折法での(101)回折ピークP101と(1
00)回折ピークP100の強度比(P101/P100)が
1.2〜1.9であることがより好ましい。前記繊維状
炭素材(a)は、面間隔(d002)が0.3354〜
0.3370nm(より好ましくは0.3354〜0.
3359nm)で、a軸方向の結晶子の大きさ(La)
が60nm以上、c軸方向の結晶子の大きさ(Lc)が
40nm以上であることがさらに望ましい。
The fibrous carbon material (a) has (101) diffraction peaks P 101 and (1) in the X-ray diffraction method using Cu-Kα.
00) More preferably, the intensity ratio (P 101 / P 100 ) of the diffraction peak P 100 is from 1.2 to 1.9. The fibrous carbon material (a) has a surface distance (d 002 ) of 0.3354 or more.
0.3370 nm (more preferably from 0.3354 to 0.3.
3359 nm), the size of the crystallite in the a-axis direction (La)
Is more preferably 60 nm or more, and the crystallite size (Lc) in the c-axis direction is 40 nm or more.

【0017】前記繊維状炭素材(a)は、ホウ素添加に
より黒鉛結晶の面間隔(d002)を拡大する、つまり黒
鉛化度を高めることを許容する。
The fibrous carbon material (a) permits the addition of boron to increase the interplanar spacing (d 002 ) of graphite crystals, that is, to increase the degree of graphitization.

【0018】前記繊維状メソフェーズ低温焼成炭素
(b)は、比較低温で焼成され、負極容量の増大および
充放電サイクル特性の向上に寄与する。この繊維状炭素
(b)は、平均繊維径8〜20μm、平均繊維長8〜2
0μm、真密度1.50〜1.75g/ccであること
が好ましい。
The fibrous mesophase low-temperature fired carbon (b) is fired at a comparatively low temperature, and contributes to an increase in negative electrode capacity and an improvement in charge / discharge cycle characteristics. This fibrous carbon (b) has an average fiber diameter of 8 to 20 μm and an average fiber length of 8 to 2
It is preferably 0 μm and a true density of 1.50 to 1.75 g / cc.

【0019】前記非繊維状炭素材(c)としては、例え
ば燐片状または球塊状の黒鉛等を挙げることができ、単
独もしくは2種以上の混合物の形態で用いることができ
る。この黒鉛は、3〜30μmの平均粒径を有すること
が好ましい。この黒鉛の平均粒径を3μm未満にする
と、比表面積、吸油量が大きくなって負極材料を集電体
に塗布する際の固形分比率が低下すると共に、負極の不
可逆容量が大きくなる恐れがある。一方、前記黒鉛の平
均粒径が30μmを超えると、集電体に対する負極材料
の密着性が低下する等の物性劣化とプレス成形に際して
必要とする圧下線圧が増大する恐れがある。
Examples of the non-fibrous carbon material (c) include scaly or spherical graphite, and they can be used alone or in the form of a mixture of two or more. This graphite preferably has an average particle size of 3 to 30 μm. When the average particle size of the graphite is less than 3 μm, the specific surface area and the oil absorption increase, the solid content ratio when the negative electrode material is applied to the current collector decreases, and the irreversible capacity of the negative electrode may increase. . On the other hand, when the average particle size of the graphite exceeds 30 μm, there is a possibility that physical properties such as a decrease in the adhesion of the negative electrode material to the current collector and the reduction linear pressure required for press molding may increase.

【0020】前記繊維状炭素材(a),(b)と前記非
繊維系炭素材(c)との配合割合は、前者が20〜85
重量%、後者が15〜80重量%にすることが好まし
い。前者の配合割合が85重量%を超えると、繊維状炭
素材が多くなり、高い固形分率で負極スラリーの調製が
可能になって製造面で有利になるものの、集電体に対す
る負極材料の密着性が低下して負極の材料の密度を高く
することが困難になる。一方、後者が80重量%を超え
ると、燐片状黒鉛のような非繊維状炭素材の量が多くな
り、電極密度を高める上で有利であるものの、負極に対
する非水電解液の浸透性が低下して充放電サイクル特性
が低くなる恐れがある。
The mixing ratio of the fibrous carbon materials (a) and (b) and the non-fibrous carbon material (c) is 20 to 85 for the former.
% By weight, and the latter preferably from 15 to 80% by weight. If the former compounding ratio exceeds 85% by weight, the amount of the fibrous carbon material increases and the preparation of the negative electrode slurry at a high solid content becomes possible, which is advantageous in terms of production, but the adhesion of the negative electrode material to the current collector is improved. It becomes difficult to increase the density of the material of the negative electrode due to the deterioration of the property. On the other hand, when the latter exceeds 80% by weight, the amount of non-fibrous carbon material such as flaky graphite increases, which is advantageous in increasing the electrode density. The charge / discharge cycle characteristics may be reduced.

【0021】前記繊維状炭素材(b)は、前記炭素質材
に対して1〜10重量%、より好ましくは2〜9重量%
配合されることが望ましい。この繊維状炭素材(b)の
配合量を1重量%未満にすると、高容量化が困難になる
ばかりか、電極密度を高めることが困難になる。一方、
前記繊維状炭素材(b)の配合量が10重量%を超える
と、充放電サイクル寿命が短くなる恐れがある。
The fibrous carbon material (b) accounts for 1 to 10% by weight, more preferably 2 to 9% by weight, based on the carbonaceous material.
It is desirable to be blended. If the amount of the fibrous carbon material (b) is less than 1% by weight, it is difficult not only to increase the capacity but also to increase the electrode density. on the other hand,
If the amount of the fibrous carbon material (b) exceeds 10% by weight, the charge / discharge cycle life may be shortened.

【0022】前記負極は、前述した繊維状炭素材
(a),(b)と非繊維系炭素材(c)とを含む炭素質
材を含有した負極材料を有し、負極電位1V〜3V間の
放電容量として15〜30mAh/gを有する。前記条
件での負極の容量が前記範囲を逸脱すると、高温での充
放電サイクル特性が低下する。より好ましい前記条件で
の負極の容量は、20〜25mAh/gである。
The negative electrode has a negative electrode material containing a carbonaceous material containing the above-mentioned fibrous carbon materials (a) and (b) and a non-fibrous carbon material (c), and has a negative electrode potential of 1 V to 3 V. Has a discharge capacity of 15 to 30 mAh / g. If the capacity of the negative electrode under the above conditions deviates from the above range, the charge / discharge cycle characteristics at high temperatures deteriorate. More preferably, the capacity of the negative electrode under the above conditions is 20 to 25 mAh / g.

【0023】前記結着剤は、PVdFに代表される有機
溶媒に溶解性を持つ高分子材料、CMC、SBRに代表
される水に分散し易い高分子材料等を用いることができ
るが、これらの高分子材料は一例に過ぎず特に制約を受
けない。ただし、今後の環境の点も考慮すると水に分散
し易い高分子材料が好ましい。
As the binder, a polymer material having solubility in an organic solvent represented by PVdF, a polymer material easily dispersed in water represented by CMC and SBR, and the like can be used. The polymer material is merely an example and is not particularly limited. However, in consideration of the environment in the future, a polymer material that is easily dispersed in water is preferable.

【0024】前記結着剤は、負極材料に対して1.0〜
6.0重量%配合されることが好ましい。この結着剤の
配合量を1.0重量%未満にすると、容量の向上等の電
極性能の点で好ましいものの、集電体に対する負極材料
の密着性が低下して負極の加工時(特に裁断時)におい
て欠けや剥離を生じ、また例えば正負極間にセパレータ
を介在した帯状物を捲回して電極群を作製する際にその
電極群に微細な欠損物が混入して正負極の短絡等を招く
恐れがある。一方、前記結着剤の配合量が6.0重量%
を超えると、負極中に占める結着剤量が増大して容量の
低下を招く恐れがある。
The binder is used in an amount of 1.0 to 1.0 with respect to the negative electrode material.
It is preferred to be blended at 6.0% by weight. When the compounding amount of the binder is less than 1.0% by weight, although it is preferable from the viewpoint of electrode performance such as improvement in capacity, the adhesiveness of the negative electrode material to the current collector is reduced and the negative electrode material is processed at the time of processing the negative electrode (particularly, cutting). Chip) at the time of chipping or peeling, and, for example, when winding a belt-like material having a separator between the positive and negative electrodes to produce an electrode group, minute defects are mixed into the electrode group and short-circuiting of the positive and negative electrodes may occur. May be invited. On the other hand, the compounding amount of the binder is 6.0% by weight.
If it exceeds 300, the amount of the binder occupying in the negative electrode may increase, leading to a decrease in capacity.

【0025】2)正極 この正極は、集電体に正極材料を塗布した構造を有す
る。
2) Positive electrode This positive electrode has a structure in which a positive electrode material is applied to a current collector.

【0026】前記集電体としては、例えばアルミニウム
板、アルミニウムメッシュ材等を挙げることができる。
Examples of the current collector include an aluminum plate and an aluminum mesh material.

【0027】前記正極材料は、例えば活物質と結着剤と
を含有する。前記活物質としては、例えば二酸化マンガ
ン、二硫化モリブデン、LiCoO2、LiNiO2、L
iMn24等のカルコゲン化合物を挙げることができ
る。これらのカルコゲン化合物は、2種以上の混合物で
用いることができる。前記結着剤としては、例えば例え
ばフッ素系樹脂、ポリオレフィン樹脂、スチレン系樹
脂、アクリル系樹脂のような熱可塑性エラストマー系樹
脂、またはフッ素ゴムのようなゴム系樹脂を用いること
ができる。具体的には、ポリテトラフルオロエチレン、
ポリフッ化ビニリデン、ポリフッ化ビニル、ポリエチレ
ン、ポリアクリロニトリル、ニトリルゴム、ポリブタジ
エン、ブチルゴム、ポリスチレン、スチレン−ブタジエ
ンゴム、水添スチレン−ブタジエンゴム、多硫化ゴム、
ニトロセルロース、シアノエチルセルロース、カルボキ
シメチルセルロース等が挙げられる。これらの結着剤の
中でエラストマー、ゴム架橋体または極性基を導入した
変成体は、前記集電体と前記正極材料との密着性の向上
および過充電時における抵抗増大効果の向上の観点から
好適である。
The positive electrode material contains, for example, an active material and a binder. Examples of the active material include manganese dioxide, molybdenum disulfide, LiCoO 2 , LiNiO 2 , L
Chalcogen compounds such as iMn 2 O 4 can be mentioned. These chalcogen compounds can be used in a mixture of two or more. As the binder, for example, a thermoplastic elastomer resin such as a fluorine resin, a polyolefin resin, a styrene resin, and an acrylic resin, or a rubber resin such as a fluorine rubber can be used. Specifically, polytetrafluoroethylene,
Polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber,
Examples include nitrocellulose, cyanoethylcellulose, carboxymethylcellulose, and the like. Among these binders, elastomers, cross-linked rubbers or modified compounds having polar groups introduced are preferably used in view of improving the adhesion between the current collector and the positive electrode material and improving the resistance increasing effect during overcharge. It is suitable.

【0028】前記正極材料には、導電補助材としてアセ
チレンブラック、粉末状膨張黒鉛などのグラファイト
類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさら
に含有することを許容する。
The cathode material is allowed to further contain graphite such as acetylene black and powdered expanded graphite, ground carbon fiber, ground graphite carbon fiber, and the like as a conductive auxiliary material.

【0029】3)セパレータ このセパレータとしては、例えば20〜30μmの厚さ
を有するポリエチレン多孔質フィルム、ポリプロピレン
多孔質フィルム等を用いることができる。
3) Separator As the separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.

【0030】4)非水系電解液 この非水系電解液は、例えばエチレンカーボネート、ジ
メチルカーボネート、メチルエチルカーボネート、ジエ
チルカーボネート、γ−ブチロラクトンから選ばれる少
なくとも1種からなる非水溶媒に過塩素酸リチウム(L
iClO4)、六フッ化リン酸リチウム(LiPF6)、
ホウフッ化リチウム(LiBF4)、六フッ化砒素リチ
ウム(LiAsF6)を溶解した組成のもの等を用いる
ことができる。
4) Non-Aqueous Electrolyte This non-aqueous electrolyte is prepared by mixing a non-aqueous solvent containing at least one selected from ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and γ-butyrolactone with lithium perchlorate ( L
iClO 4 ), lithium hexafluorophosphate (LiPF 6 ),
For example, those having a composition in which lithium borofluoride (LiBF 4 ) or lithium arsenic hexafluoride (LiAsF 6 ) is dissolved can be used.

【0031】前記非水溶媒は、粘性との関係から単独で
使用するよりも2〜3種類を混合して使用することが好
ましく、この非水溶媒に溶解する電解質の濃度は0.5
〜1.5モル/Lの範囲にすることが好ましい。特に、
前記非水溶媒中にはγ−ブチロラクトンが10〜80重
量%(より好ましくは45〜70重量%)含有すること
が望ましい。
The non-aqueous solvent is preferably used in combination of two or three types rather than used alone in view of viscosity. The concentration of the electrolyte dissolved in this non-aqueous solvent is 0.5%.
It is preferably in the range of 1.5 mol / L. In particular,
The non-aqueous solvent desirably contains 10-80% by weight (more preferably 45-70% by weight) of γ-butyrolactone.

【0032】本発明に係る非水系電解液二次電池として
は、次に説明する図1に示す円筒型、図2に示す角型、
図3,図4に示す薄型の構造のものが挙げられる。
The non-aqueous electrolyte secondary battery according to the present invention includes a cylindrical type shown in FIG. 1 and a rectangular type shown in FIG.
3 and 4 have a thin structure.

【0033】(1)円筒型非水系電解液二次電池 図1に示すように有底円筒状をなす金属製外装缶1は、
例えば負極端子を兼ね、底部内面に下部絶縁板2が配置
されている。発電要素である電極体3は、前記外装缶1
内に収納されている。前記電極体3は、負極4とセパレ
ータ5と正極6とを前記セパレータ5が最外周に位置す
るように渦巻き状に捲回することにより作製したもので
ある。前記負極4の下端面には、負極リードタブ7がせ
つぞくされ、かつこのリードタブ7の他端は前記外装缶
1の底部内面に接続されている。中心付近に正極リード
タブ取出穴を有する上部絶縁板8は、前記外装缶1内の
前記電極体3上に配置されている。
(1) Cylindrical Nonaqueous Electrolyte Secondary Battery As shown in FIG. 1, a metal outer can 1 having a bottomed cylindrical shape is
For example, the lower insulating plate 2 is disposed on the inner surface of the bottom portion also serving as a negative electrode terminal. The electrode body 3 as a power generating element is provided with the outer can 1
Is housed inside. The electrode body 3 is manufactured by spirally winding the negative electrode 4, the separator 5, and the positive electrode 6 such that the separator 5 is located at the outermost periphery. A negative electrode lead tab 7 is formed on the lower end surface of the negative electrode 4, and the other end of the lead tab 7 is connected to the bottom inner surface of the outer can 1. An upper insulating plate 8 having a positive electrode lead tab extraction hole near the center is disposed on the electrode body 3 in the outer can 1.

【0034】茫漠気孔を有する封口部材9は、正極端子
を兼ね、前記外装缶1の上端開口部に絶縁ガスケット1
0を介してかしめ固定されている。この封口部材9は、
中央付近にガス抜き穴11が開口された皿形封口板12
と、この封口板12に前記ガス抜き穴11を覆うように
固定された例えばアルミニウムからなる弁膜ラブチャ1
3と、前記封口板12の周縁に配置されたリング状のP
TC(Positive temperature Coefficient)14と、複
数のガス抜き孔15が開口された帽子形の正極端子16
とから構成されている。前記封口板12の下面には、正
極リードタブ17が接続され、かつこのリードタブ17
の他端は前記上部絶縁板8のリード取出穴を通して前記
電極3の正極6に接続されている。
A sealing member 9 having a stunning pore also serves as a positive electrode terminal, and an insulating gasket 1 is provided at an upper end opening of the outer can 1.
It is swaged and fixed through 0. This sealing member 9
Dish-shaped sealing plate 12 with vent hole 11 opened near the center
And a valve membrane latch 1 made of, for example, aluminum fixed to the sealing plate 12 so as to cover the gas vent hole 11.
3 and a ring-shaped P disposed on the periphery of the sealing plate 12.
TC (Positive Temperature Coefficient) 14 and hat-shaped positive electrode terminal 16 having a plurality of vent holes 15
It is composed of A positive electrode lead tab 17 is connected to the lower surface of the sealing plate 12 and
Is connected to the positive electrode 6 of the electrode 3 through a lead extraction hole of the upper insulating plate 8.

【0035】(2)角型非水系電解液二次電池 図2に示す有底矩形筒状をなす金属、例えばアルミニウ
ムから作られる外装缶21は、例えば正極端子を兼ね、
底部内面に絶縁フィルム22が配置されている。発電要
素である電極体23は、前記外装缶21内に収納されて
いる。なお、外装缶がステンレスまたは鉄からなる場合
には負極端子を兼ねる。前記電極体23は、負極24と
セパレータ25と正極26とを前記正極26が最外周に
位置するように渦巻状に捲回した後、扁平状にプレス成
形することにより作製したものである。中心付近にリー
ド取出穴を有する例えば合成樹脂からなるスペーサ27
は、前記外装缶21内の前記電極体23上に配置されて
いる。
(2) Rectangular Nonaqueous Electrolyte Secondary Battery An outer can 21 made of a metal having a bottomed rectangular cylindrical shape, for example, aluminum as shown in FIG. 2 also serves as, for example, a positive electrode terminal.
An insulating film 22 is disposed on the inner surface of the bottom. The electrode body 23 as a power generation element is housed in the outer can 21. When the outer can is made of stainless steel or iron, it also serves as the negative electrode terminal. The electrode body 23 is formed by spirally winding the negative electrode 24, the separator 25, and the positive electrode 26 such that the positive electrode 26 is located at the outermost periphery, and then press-molding the flat electrode into a flat shape. Spacer 27 made of, for example, synthetic resin and having a lead extraction hole near the center
Is disposed on the electrode body 23 in the outer can 21.

【0036】金属製蓋体28は、前記外装缶1の上端開
口部に例えばレーザ溶接により気密に接合されている。
前記蓋体28の中心付近には、負極端子の取出穴29が
開口されている。負極端子30は、前記蓋体28の穴2
9にガラス製または樹脂製の絶縁材31を介してハーメ
ティックシールされている。前記負極端子30の下端面
には、リード32が接続され、かつこのリード32の他
端は前記電極体23の負極24に接続されている。
The metal lid 28 is hermetically joined to the upper end opening of the outer can 1 by, for example, laser welding.
In the vicinity of the center of the lid 28, an extraction hole 29 for a negative electrode terminal is opened. The negative electrode terminal 30 is connected to the hole 2 of the lid 28.
9 is hermetically sealed via an insulating material 31 made of glass or resin. A lead 32 is connected to the lower end surface of the negative electrode terminal 30, and the other end of the lead 32 is connected to the negative electrode 24 of the electrode body 23.

【0037】上部側絶縁紙33は、前記蓋体28の外表
面全体に被覆されている。スリット34を有する下部側
絶縁紙35は、前記外装缶21の底面に配置されてい
る。二つ折りされたPTC素子(Positive Temperatur
e Coefficient)36は、一方の面が前記外装缶21の
底面と前記下部側絶縁紙35の間に介装され、かつ他方
の面が前記スリット34を通して前記絶縁紙35の外側
に延出されている。外装チューブ37は、前記外装缶2
1の側面から上下面の絶縁紙33、35の周辺まで延出
するように配置され、前記上部側絶縁紙33および下部
側絶縁紙35を前記外装缶21に固定している。このよ
うな外装チューブ37の配置により、外部に延出された
前記PTC素子36の他方の面が前記下部側絶縁紙35
の底面に向けて折り曲げられる。
The upper insulating paper 33 covers the entire outer surface of the lid 28. The lower insulating paper 35 having the slit 34 is disposed on the bottom surface of the outer can 21. PTC element (Positive Temperatur)
e Coefficient) 36, one surface is interposed between the bottom surface of the outer can 21 and the lower insulating paper 35, and the other surface is extended outside the insulating paper 35 through the slit 34. I have. The outer tube 37 is made of the outer can 2.
The upper insulating paper 33 and the lower insulating paper 35 are fixed to the outer can 21 so as to extend from the side surface 1 to the periphery of the insulating papers 33 and 35 on the upper and lower surfaces. Due to such an arrangement of the outer tube 37, the other surface of the PTC element 36 extended to the outside is connected to the lower insulating paper 35.
It is bent toward the bottom of.

【0038】(3)薄型非水系電解液二次電池 図3,図4に示すように発電要素41は、例えば活物質
および結着剤を含む正極材料である正極活物質層42が
集電体43の両面に担持された正極44とセパレータ4
5と活物質および結着剤を含む負極材料である負極活物
質層46が集電体47の両面に担持された負極48とセ
パレータ45とを渦巻状に捲回し、さらに成形した扁平
で矩形状をなす。前記正極44,負極48に接続された
外部リード端子49,50は、それぞれ前記発電要素4
1の同一側面から外部に延出されている。
(3) Thin Non-Aqueous Electrolyte Secondary Battery As shown in FIGS. 3 and 4, the power generating element 41 is formed by a positive electrode active material layer 42 which is a positive electrode material containing, for example, an active material and a binder. The positive electrode 44 and the separator 4 supported on both surfaces of the negative electrode 43
5, a negative electrode active material layer 46, which is a negative electrode material containing an active material and a binder, spirally winds a negative electrode 48 supported on both surfaces of a current collector 47 and a separator 45, and further forms a flat and rectangular shape. Make External lead terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 are connected to the power generating element 4 respectively.
1 extend outside from the same side.

【0039】前記発電要素41は、図3に示すように例
えば2つ折りのカップ型外装フィルム51のカップ52
内にその折曲げ部が前記発電要素41の前記外部リード
端子49,50が延出された側面と反対側の側面側に位
置するように包み込まれている。この外装フィルム51
は、図4に示すように内面側に位置するシーラントフィ
ルム53、アルミニウムまたはアルミニウム合金の箔5
4および剛性を有する有機樹脂フィルム55をこの順序
で積層した構造を有する。前記外装フィルム51におけ
る前記折り曲げ部を除く前記発電要素1の2つの長側面
および1つの短側面に対応する3つの側部は、前記シー
ラントフィルム53同士を熱シールして水平方向に延出
したシール部56a,56b,56cが形成され、これ
らのシール部56a,56b,56cにより前記発電要素
41を封口している。前記発電要素41の正極44、負
極48に接続された外部端子49,50は、前記折り曲
げ部と反対側のシール部56bを通して外部に延出され
ている。前記発電要素41内部および前記シール部56
a,56b,56cで封口された前記外装フィルム51内
には、非水系電解液が含浸・収容されている。
As shown in FIG. 3, the power generating element 41 includes a cup 52 of a two-fold cup-shaped exterior film 51, for example.
The bent portion is enclosed so as to be located on the side surface opposite to the side surface on which the external lead terminals 49 and 50 of the power generation element 41 extend. This exterior film 51
Is a sealant film 53 located on the inner side as shown in FIG.
4 and a rigid organic resin film 55 laminated in this order. Three side portions corresponding to two long side surfaces and one short side surface of the power generation element 1 excluding the bent portion in the exterior film 51 are seals extending in the horizontal direction by heat sealing the sealant films 53 to each other. Parts 56a, 56b, 56c are formed, and the power generating element 41 is sealed by these seal parts 56a, 56b, 56c. External terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 of the power generation element 41 extend to the outside through a seal portion 56b on the opposite side to the bent portion. Inside the power generating element 41 and the seal portion 56
A non-aqueous electrolytic solution is impregnated and contained in the exterior film 51 sealed by a, 56b, and 56c.

【0040】なお、前記薄型非水系電解液二次電池にお
いて外装フィルムはカップ型に限らず、ピロー型、パウ
チ型にしてもよい。
In the thin non-aqueous electrolyte secondary battery, the exterior film is not limited to the cup type, but may be a pillow type or a pouch type.

【0041】以上説明したように本発明に係る非水電解
液二次電池は、リチウムを吸蔵・放出可能な正極、リチ
ウムを吸蔵・放出可能な負極、セパレータおよび非水系
電解液を備え、前記正極および前記負極が集電体にそれ
ぞれ正極材料および負極材料を塗布した構造を有し、前
記負極材料が繊維状炭素材(a),(b)と非繊維系炭
素材(c)とを含む炭素質材を含有し、前記繊維状炭素
材(b)がメソフェーズ低温焼成炭素であり、かつ前記
負極が負極電位1V〜3V間の放電容量として15〜3
0mAh/gを有する。
As described above, the non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. And a structure in which the negative electrode has a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively, and the negative electrode material includes fibrous carbon materials (a) and (b) and a non-fibrous carbon material (c). The fibrous carbon material (b) is a mesophase low-temperature fired carbon, and the negative electrode has a discharge capacity of 15 to 3 as a discharge capacity between negative electrode potentials 1 V to 3 V.
0 mAh / g.

【0042】このような炭素質材として繊維状炭素材
(a)、非繊維系炭素材(c)と共に繊維状メソフェー
ズ低温焼成炭素(b)を含む負極材料を集電体に塗布し
た構造を有し、かつ負極電位1V〜3V間の放電容量と
して15〜30mAh/gを有する(つまり、過放電領
域においても所定の容量を有する)改良された負極を備
えることによって、高温(例えば35〜60℃)におけ
る充放電サイクル特性を向上した非水電解二次電池を得
ることができる。すなわち、負極が過放電領域において
所定の容量を有することによって、放電後に高温環境下
に長期間放置しても二次電池の能力が消失することな
く、その後の充電により初期の充放電特性を発揮でき
る。
As such a carbonaceous material, a negative electrode material containing a fibrous mesophase low-temperature fired carbon (b) together with a fibrous carbon material (a) and a non-fibrous carbon material (c) is applied to a current collector. In addition, by providing an improved negative electrode having a discharge capacity of 15 to 30 mAh / g between the negative electrode potentials of 1 V to 3 V (that is, having a predetermined capacity even in the overdischarge region), high temperature (for example, 35 to 60 ° C.) ), A non-aqueous electrolytic secondary battery having improved charge / discharge cycle characteristics can be obtained. In other words, since the negative electrode has a predetermined capacity in the overdischarge area, even if the secondary battery is left in a high-temperature environment for a long time after discharging, the capacity of the secondary battery is not lost, and the initial charge and discharge characteristics are exhibited by subsequent charging. it can.

【0043】特に、前記繊維状炭素材(a)として、平
均繊維径8〜18μm、平均繊維長10〜50μm、真
密度2.24g/cc以上(より好ましくはこれら特性
に加えてCu−KαによるX線回折法での(101)回
折ピークP101と(100)回折ピークP100の強度比
(P101/P100)が1.2〜1.9であることがより好
ましい。前記繊維状炭素材(a)は、面間隔(d002
が0.3354〜0.3370nmで、a軸方向の結晶
子の大きさ(La)が60nm以上、c軸方向の結晶子
の大きさ(Lc)が40nm以上)のものを用いること
によって、より高温での充放電サイクル寿命を向上した
非水電解二次電池を得ることができる。
In particular, as the fibrous carbon material (a), the average fiber diameter is 8 to 18 μm, the average fiber length is 10 to 50 μm, the true density is 2.24 g / cc or more (more preferably, in addition to these properties, Cu-Kα and more preferably in the X-ray diffraction method (101) and the diffraction peak P 101 (100) intensity ratio of the diffraction peak P 100 (P 101 / P 100 ) is 1.2 to 1.9. the fibrous carbon The material (a) is the surface distance (d 002 )
Is 0.3354 to 0.3370 nm, the crystallite size in the a-axis direction (La) is 60 nm or more, and the crystallite size in the c-axis direction (Lc) is 40 nm or more). A non-aqueous electrolytic secondary battery having improved charge / discharge cycle life at high temperatures can be obtained.

【0044】また、繊維状炭素材(b)として比較低温
で焼成される。この繊維状炭素は、平均繊維径8〜20
μm、平均繊維長8〜20μm、真密度1.50〜1.
75g/ccのものを用いることによって、より一層高
温での充放電サイクル寿命を向上した非水電解二次電池
を得ることができる。
Further, it is fired at a comparatively low temperature as the fibrous carbon material (b). This fibrous carbon has an average fiber diameter of 8-20.
μm, average fiber length 8-20 μm, true density 1.50-1.
By using a battery of 75 g / cc, it is possible to obtain a non-aqueous electrolytic secondary battery having an improved charge / discharge cycle life at a higher temperature.

【0045】さらに、前記非繊維状炭素材として燐片状
または球塊状の黒鉛(好ましくは3〜30μmの平均粒
径を有する黒鉛)を用いることによって、より一層高温
での充放電サイクル寿命を向上した非水電解二次電池を
得ることができる。
Further, the use of flake-like or spheroidal graphite (preferably graphite having an average particle diameter of 3 to 30 μm) as the non-fibrous carbon material further improves the charge / discharge cycle life at higher temperatures. The obtained non-aqueous electrolytic secondary battery can be obtained.

【0046】さらに、前記非水系電解液の非水溶媒とし
てγ−ブチロラクトンを10〜80重量%(より好まし
くは45〜70重量%)含有するものを用いることによ
って、前記負極の容量を増大させることに伴う正極の性
能の低下を補償でき、高温充放電サイクル特性の向上が
図られ、かつバランスのとれた性能を有する非水系電解
液二次電池を得ることができる。
Further, the capacity of the negative electrode can be increased by using a non-aqueous solvent containing 10-80% by weight (more preferably 45-70% by weight) of γ-butyrolactone as a non-aqueous solvent for the non-aqueous electrolyte. Thus, it is possible to obtain a non-aqueous electrolyte secondary battery that can compensate for a decrease in the performance of the positive electrode due to the above, improve the high-temperature charge / discharge cycle characteristics, and have balanced performance.

【0047】[0047]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail.

【0048】「繊維状炭素材(a)の作製」メソフェー
ズピッチを紡糸、不融化し、アルゴン雰囲気下、680
℃で炭化し、適度に粉砕した後、窒素雰囲気下で300
0℃にて黒鉛化することにより繊維状炭素材を得た。
"Preparation of fibrous carbon material (a)" A mesophase pitch was spun and made infusible, and 680 under an argon atmosphere.
Carbonized at 300 ° C and pulverized to an appropriate degree.
By graphitizing at 0 ° C., a fibrous carbon material was obtained.

【0049】得られた繊維状炭素材は、c軸方向の結晶
子(Lc)の大きさ60nm、平均繊維径8.5μm、
平均繊維長18.5μm、真密度2.26g/cc、面
間隔(d002)0.3359nm、Cu−KαによるX
線回折法での(101)回折ピークP101と(100)
回折ピークP100の強度比(P101/P100)が1.45
であった。
The obtained fibrous carbon material had a crystallite (Lc) size of 60 nm in the c-axis direction, an average fiber diameter of 8.5 μm,
Average fiber length 18.5 μm, true density 2.26 g / cc, spacing (d 002 ) 0.3359 nm, X by Cu-Kα
(101) diffraction peaks P101 and (100)
The intensity ratio (P 101 / P 100 ) of the diffraction peak P 100 is 1.45.
Met.

【0050】「繊維状メソフェーズ低温焼成炭素材
(b)の作製」黒鉛化温度化を変えて焼成し、平均繊維
径17μm、真密度1.50〜1.80g/ccを有す
る数種の繊維状メソフェーズ低温焼成炭素材を用意し
た。
[Preparation of Fibrous Mesophase Low-Temperature Carbon Material (b)] Several types of fibrous materials having an average fiber diameter of 17 μm and a true density of 1.50 to 1.80 g / cc were fired by changing the graphitization temperature. A mesophase low-temperature calcined carbon material was prepared.

【0051】「黒鉛の作製」天然系黒鉛を球塊状に解扮
して所定の黒鉛を得た。この黒鉛は、平均粒径8.5μ
m、比表面積6.7m2/g、面間隔(d002)0.33
58nmであった。
[Preparation of Graphite] Natural graphite was disassembled into spherical lumps to obtain predetermined graphite. This graphite has an average particle size of 8.5μ.
m, specific surface area 6.7 m 2 / g, spacing (d 002 ) 0.33
It was 58 nm.

【0052】(実施例1) <負極の作製>まず、カルボキシメチルセルロースの
0.68重量%濃度の粘調水溶液177重量部に前記繊
維状炭素材(a)50重量部、真密度が1.55g/c
cの前記繊維状メソフェーズ低温焼成炭素材(b)2重
量部および前記球塊状黒鉛(c)48重量部を添加した
後、せん断分散した。つづいて、この混合物にSBRラ
テックス3.4重量部を添加し、均一の混合攪拌して負
極塗工スラリーを調製した。
Example 1 <Preparation of Negative Electrode> First, 177 parts by weight of a viscous aqueous solution of carboxymethylcellulose having a concentration of 0.68% by weight was added to 50 parts by weight of the fibrous carbon material (a) and the true density was 1.55 g. / C
After adding 2 parts by weight of the fibrous mesophase low temperature calcined carbon material (b) and 48 parts by weight of the spherical graphite (c), the mixture was shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0053】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm to a thickness of 103 g / m 2 by a knife edge coater and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0054】得られた負極について、負極電位1V〜3
V間の放電容量を次のような手法で測定した。
With respect to the obtained negative electrode, a negative electrode potential of 1 V to 3
The discharge capacity between V was measured by the following method.

【0055】作製した負極から2×2cmの大きさに切
り出したサンプルを全重量から集電体の重量を引いて活
物質量(負極材料の量)を計算する。前記サンプルと対
極リチウム金属の間にガラスフィルタを介在させ、参照
極に金属リチウムを使用し、これらを三極端子付のガラ
ス容器内に組み込む。このガラス容器にγ−ブチロラク
トンおよびエチレンカーボネートの混合溶媒(混合体積
比2:1)にLiBF 4を1.5モル/L溶解した組成
を有する電解液を注液した後、脱泡するために真空排気
しガラスセルを組立てる。ここまでの作業は、ドライア
ルゴン雰囲気中のグローブボックス内で行なう。
Cut to a size of 2 × 2 cm from the prepared negative electrode.
Subtract the weight of the current collector from the total weight
The amount of the substance (the amount of the negative electrode material) is calculated. Pair with the sample
Intermediate glass filter between lithium metal
Use metallic lithium for the poles
In a container. Γ-butyrolact is added to this glass container.
Ton and ethylene carbonate mixed solvent (mixed volume
Ratio 2: 1) to LiBF Four1.5mol / L dissolved
Evacuated to remove bubbles after injecting electrolyte with
Assemble the glass cell. The work up to this point is
Perform in a glove box in Lugon atmosphere.

【0056】組立てたガラスセルを充放電器に繋ぎ、2
5℃の雰囲気中の恒温槽に入れる。前記充放電器では、
前記サンプルと対極の間に電流を流した時の電圧電流と
前記対極と前記サンプルの間の電圧をモニタする。充電
条件は、活物質1g当たり320mAhを1Cとし、サ
ンプル活物質重量に応じて1C電流を決める。
The assembled glass cell is connected to a charger / discharger, and 2
Place in a thermostat in an atmosphere of 5 ° C. In the charger / discharger,
The voltage and current when a current flows between the sample and the counter electrode and the voltage between the counter electrode and the sample are monitored. The charging condition is such that 320 mAh per gram of the active material is 1 C, and the 1 C current is determined according to the weight of the sample active material.

【0057】1〜3サイクル目は、0.3C×10mV
×8hの充電、0.3C×3.0Vカットオフの放電の
条件で充放電を行ない、4サイクル目は0.3C×10
mV×8hの充電、0.1C×1.0Vカットオフの放
電の条件にて充放電行なう。ここで、充電とは負極サン
プルにLiイオンがインターカレートする方向に電流が
流れることを意味する。
In the first to third cycles, 0.3 C × 10 mV
The charge and discharge were performed under the conditions of × 8h charge and 0.3C × 3.0V cutoff, and the fourth cycle was 0.3C × 10
The charging and discharging are performed under the conditions of charging of mV × 8h and discharging of cutoff of 0.1 C × 1.0V. Here, charging means that a current flows in a direction in which Li ions are intercalated in the negative electrode sample.

【0058】次いで、4サイクル目において、1Vまで
の放電量から3Vまでの放電量を引いたものを1V〜3
V間の放電容量(mAh/g)として計算する。
Next, in the fourth cycle, the value obtained by subtracting the discharge amount up to 3V from the discharge amount up to 1V is 1V to 3V.
It is calculated as the discharge capacity between V (mAh / g).

【0059】このような試験、計算から、前記負極の電
位1V〜3V間の放電容量は15mAh/gであった。
From these tests and calculations, the discharge capacity of the negative electrode at a potential of 1 V to 3 V was 15 mAh / g.

【0060】<正極の作製>まず、12重量%濃度のポ
リフッ化ビニリデン樹脂(PVdF)のN−メチルピロ
リドン溶液41.7重量部に活物質としてのLiCoO
2粉末100重量部、導電フィラーとしてのグラファイ
ト粉末(ロンザ社製商品名;KS4)5重量部を混合
し、混練した。つづいて、この混合物にN−メチルピロ
リドン15重量部をさらに添加し、ビーズミルを用いて
前記固形物を分散させて正極塗工スラリーを調製した。
<Preparation of Positive Electrode> First, LiCoO as an active material was added to 41.7 parts by weight of an N-methylpyrrolidone solution of polyvinylidene fluoride (PVdF) having a concentration of 12% by weight.
2 100 parts by weight of powder and 5 parts by weight of graphite powder (trade name: KS4, manufactured by Lonza) as a conductive filler were mixed and kneaded. Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to the mixture, and the solid was dispersed using a bead mill to prepare a positive electrode coating slurry.

【0061】次いで、前記正極塗工スラリーを厚さ15
μmのAl箔(集電体)の両面にそれそれ255g/m
2になるように塗工し、乾燥した後、プレス、スリット
加工を施すことにより厚さ167μm、幅42.00m
mの正極を作製した。
Next, the positive electrode coating slurry was applied to a thickness of 15
255 g / m on both sides of μm Al foil (current collector)
2 and dried, then pressed and slit to a thickness of 167 μm and a width of 42.00 m
m of the positive electrode was produced.

【0062】<二次電池の組立>次いで、前記正負極の
集電体にリードタブをそれぞれ接合し、自動捲回機を用
いてポリエチレン製多孔膜を2枚介してスパイラル状に
巻き上げ、さらにプレスすることにより扁平状の電極体
を作製した。得られた電極体に直流電源から100Vの
電圧を5秒間印加し、10μV以上流れるものを不良と
判定して除外した。
<Assembly of Secondary Battery> Next, a lead tab is joined to each of the positive and negative electrode current collectors, spirally wound through two polyethylene porous membranes using an automatic winding machine, and further pressed. Thus, a flat electrode body was manufactured. A voltage of 100 V was applied from a DC power supply to the obtained electrode body for 5 seconds, and a current flowing at 10 μV or more was judged to be defective and excluded.

【0063】次いで、良品として判定された電極体を厚
さ4.8mm、幅30mm、高さ47mmの有底矩形筒
状をなすアルミニウム製外装缶内に挿入し、非水系電解
液を注入した後、前記外装缶の開口部にアルミニウム製
蓋体を気密に接合することにより前述した図2に示す角
型リチウムイオン二次電池を組立てた。なお、前記非水
系電解液はγ−ブチロラクトンおよびエチレンカーボネ
ートの混合溶媒(混合体積比2:1)にLiBF4
1.5モル/L溶解した組成を有する。
Next, the electrode body determined as a non-defective product was inserted into an aluminum outer can having a bottomed rectangular cylindrical shape having a thickness of 4.8 mm, a width of 30 mm, and a height of 47 mm, and then a non-aqueous electrolyte was injected. The above-mentioned prismatic lithium ion secondary battery shown in FIG. 2 was assembled by hermetically bonding an aluminum lid to the opening of the outer can. The non-aqueous electrolyte has a composition in which 1.5 mol / L of LiBF 4 is dissolved in a mixed solvent of γ-butyrolactone and ethylene carbonate (mixing volume ratio 2: 1).

【0064】(実施例2)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Example 2) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0065】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
70g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)2重量部および前記球塊状黒鉛(c)48重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) and 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight and a true density of 1.
After adding 2 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 70 g / cc and 48 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0066】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a copper foil (current collector) having a thickness of 15 μm by a knife edge coater so as to have a thickness of 103 g / m 2 and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0067】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により16mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 16 mAh / by the same test and calculation as in Example 1.
g.

【0068】(実施例3)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Example 3) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0069】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
60g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)4重量部および前記球塊状黒鉛(c)46重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight was added to 50 parts by weight of the fibrous carbon material (a) and the true density was 1.
After adding 4 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 60 g / cc and 46 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0070】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a 15 μm-thick copper foil (current collector) with a knife edge coater so as to have a thickness of 103 g / m 2 , respectively, and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0071】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により20mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 20 mAh /
g.

【0072】(実施例4)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Example 4) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0073】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
55g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)4重量部および前記球塊状黒鉛(c)46重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) was added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and the true density was 1.
After adding 4 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 55 g / cc and 46 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0074】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm to a thickness of 103 g / m 2 by a knife edge coater and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0075】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により15mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 15 mAh /
g.

【0076】(実施例5)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Example 5) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0077】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
70g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)9重量部および前記球塊状黒鉛(c)41重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight was mixed with 50 parts by weight of the fibrous carbon material (a) and the true density was 1.
After adding 9 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 70 g / cc and 41 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0078】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a 15 μm-thick copper foil (current collector) with a knife edge coater so as to have a thickness of 103 g / m 2 , respectively, and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0079】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により30mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 30 mAh / by the same test and calculation as in Example 1.
g.

【0080】(実施例6)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Example 6) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0081】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
55g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)4重量部および前記球塊状黒鉛(c)46重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and the true density was 1.
After adding 4 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 55 g / cc and 46 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0082】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both surfaces of a 15 μm-thick copper foil (current collector) with a knife edge coater so as to obtain 103 g / m 2 , and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0083】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により30mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 30 mAh / by the same test and calculation as in Example 1.
g.

【0084】(比較例1)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Comparative Example 1) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0085】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部および前記球塊
状黒鉛(c)50重量部を添加した後、せん断分散し
た。つづいて、この混合物にSBRラテックス3.4重
量部を添加し、均一の混合攪拌して負極塗工スラリーを
調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) and 50 parts by weight of the spheroidal graphite (c) were added to 177 parts by weight of a viscous aqueous solution having a concentration of 0.68% by weight of carboxymethyl cellulose. After addition, the mixture was sheared and dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0086】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm with a knife edge coater so as to have a thickness of 103 g / m 2 and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0087】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により7mAh/g
であった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 7 mAh / g by the same test and calculation as in Example 1.
Met.

【0088】(比較例2)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Comparative Example 2) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0089】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
63g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)1重量部および前記球塊状黒鉛(c)49重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and the true density was 1.
After adding 1 part by weight of the fibrous mesophase low-temperature fired carbon material (b) of 63 g / cc and 49 parts by weight of the spheroidal graphite (c), the mixture was shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0090】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a 15 μm-thick copper foil (current collector) by a knife edge coater so as to be 103 g / m 2 , and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0091】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により10mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 10 mAh /
g.

【0092】(比較例3)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Comparative Example 3) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0093】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
55g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)7重量部および前記球塊状黒鉛(c)43重量部
を添加した後、せん断分散した。つづいて、この混合物
にSBRラテックス3.4重量部を添加し、均一の混合
攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) were added to 177 parts by weight of a viscous aqueous solution of 0.68% by weight of carboxymethylcellulose, and the true density was 1.
After adding 7 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 55 g / cc and 43 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0094】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm by a knife edge coater so as to have a thickness of 103 g / m 2 and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0095】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により40mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 40 mAh / by the same test and calculation as in Example 1.
g.

【0096】(比較例4)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Comparative Example 4) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0097】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
70g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)12重量部および前記球塊状黒鉛(c)38重量
部を添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.4重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and the true density was 1.
After adding 12 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) of 70 g / cc and 38 parts by weight of the spheroidal graphite (c), they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0098】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a 15 μm-thick copper foil (current collector) with a knife edge coater so as to obtain 103 g / m 2 , and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0099】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により40mAh/
gであった。
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was determined to be 40 mAh /
g.

【0100】(比較例5)負極として、以下に説明する
方法で作製したものを用いた以外、実施例1と同様な構
造の角型リチウムイオン二次電池を組立てた。なお、正
負極、セパレータを有する電極体の作製後は、実施例1
と同様な良・不良の判定を行ない、良品として判定され
た電極体のみを使用した。
(Comparative Example 5) A prismatic lithium ion secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode produced by the method described below was used. After the production of the electrode body having the positive and negative electrodes and the separator, Example 1 was used.
The same good / bad judgment was made as in the above, and only the electrode bodies judged as good were used.

【0101】<負極の作製>まず、カルボキシメチルセ
ルロースの0.68重量%濃度の粘調水溶液177重量
部に前記繊維状炭素材(a)50重量部、真密度が1.
52g/ccの前記繊維状メソフェーズ低温焼成炭素材
(b)13重量部および前記球塊状黒鉛(c)37重量
部を添加した後、せん断分散した。つづいて、この混合
物にSBRラテックス3.4重量部を添加し、均一の混
合攪拌して負極塗工スラリーを調製した。
<Preparation of Negative Electrode> First, 50 parts by weight of the fibrous carbon material (a) were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, and the true density was 1.
After adding 13 parts by weight of the fibrous mesophase low-temperature calcined carbon material (b) and 37 parts by weight of the spheroidal graphite (c) at 52 g / cc, they were shear-dispersed. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and the mixture was uniformly mixed and stirred to prepare a negative electrode coating slurry.

【0102】次いで、前記塗工スラリーをナイフエッジ
コータにより厚さ15μmの銅箔(集電体)の両面にそ
れぞれ103g/m2になるように塗工し、乾燥した。
この時の銅箔上の負極材料の密度は、1.23g/cc
であった。その後、プレス、スリット加工を施して厚さ
149μm(負極材料の密度;1.5g/cc)、幅4
3.25mmの帯状負極を作製した。
Next, the coating slurry was applied to both sides of a copper foil (current collector) having a thickness of 15 μm by a knife edge coater so as to have a thickness of 103 g / m 2 and dried.
At this time, the density of the negative electrode material on the copper foil was 1.23 g / cc.
Met. After that, it is subjected to pressing and slitting to have a thickness of 149 μm (density of the negative electrode material; 1.5 g / cc) and a width of 4 μm.
A 3.25 mm strip-shaped negative electrode was produced.

【0103】得られた負極の電位1V〜3V間の放電容
量は、実施例1と同様な試験、計算により70mAh/
gであった。
The discharge capacity at a potential of 1 V to 3 V of the obtained negative electrode was determined to be 70 mAh / by the same test and calculation as in Example 1.
g.

【0104】得られた実施例1〜6および比較例1〜5
の二次電池について、25℃にて700mA、4.2
V、6hの初充電を行ない、エージングを12時間施し
た後、25℃で700mA、3.0Vのカットオフで放
電した時の平均容量を測定した。
The obtained Examples 1 to 6 and Comparative Examples 1 to 5
700 mA at 25 ° C., 4.2
After initial charging at V and 6 h, and aging for 12 hours, the average capacity when discharging at 25 ° C. at 700 mA and a cutoff of 3.0 V was measured.

【0105】初充電終了後、各二次電池を60℃の雰囲
気中に移し、12時間のエージングを行なった後、同温
度下にて700mA、4.2V、6hの充電、700m
A、3.0Vのカットオフの放電を1サイクルとし、1
00回繰り返した時の初期放電容量に対する放電容量維
持率(サイクル特性)を測定した。
After the completion of the initial charging, each secondary battery was moved to an atmosphere of 60 ° C., aged for 12 hours, and then charged at the same temperature at 700 mA, 4.2 V, 6 h, 700 m
A, a discharge with a cutoff of 3.0 V as one cycle,
The discharge capacity retention ratio (cycle characteristics) with respect to the initial discharge capacity when the test was repeated 00 times was measured.

【0106】これらの結果を下記表1に示す。なお、表
1には実施例1〜6および比較例1〜5の二次電池に組
み込まれる負極の電位1V〜3V間の放電容量を併記す
る。
The results are shown in Table 1 below. Table 1 also shows the discharge capacities of the negative electrodes incorporated in the secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 between the potentials of 1 V and 3 V.

【0107】[0107]

【表1】 [Table 1]

【0108】前記表1から明らかなように3Vカットの
放電以降、さらに3Vから1Vに向う深い放電時の容量
として15〜30mAh/gを有する負極を備えた実施
例1〜6の二次電池は、前記負極の容量が15〜30m
Ah/gの範囲を外れる比較例1〜5の二次電池に比べ
て高温での充放電サイクルル特性が優れていることがわ
かる。
As is clear from Table 1, after the 3V cut discharge, the secondary batteries of Examples 1 to 6 provided with the negative electrodes having a capacity of 15 to 30 mAh / g as a deep discharge from 3 V to 1 V during discharge are as follows. , The capacity of the negative electrode is 15 to 30 m
It can be seen that the charge / discharge cycling characteristics at high temperatures are superior to the secondary batteries of Comparative Examples 1 to 5, which are out of the range of Ah / g.

【0109】なお、前述した実施例では図2に示す角型
リチウムイオン二次電池について説明したが、本発明は
前述した図1の円筒型リチウムイオン二次電池、図3お
よび図4の薄型リチウムイオン二次電池に適用しても同
様な優れた高温充放電サイクル特性を有する。
In the above-described embodiment, the rectangular lithium ion secondary battery shown in FIG. 2 has been described. However, the present invention is not limited to the cylindrical lithium ion secondary battery shown in FIG. Even when applied to an ion secondary battery, it has the same excellent high-temperature charge / discharge cycle characteristics.

【0110】[0110]

【発明の効果】以上詳述したように、本発明によれば負
極を改良することによって高温充放電サイクル特性を向
上した非水系電解液二次電池を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having improved high-temperature charge / discharge cycle characteristics by improving the negative electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る非水系電解液二次電池の一形態あ
る円筒型非水系電解液二次電池(円筒型リチウムイオン
二次電池)を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery (cylindrical lithium ion secondary battery) as one embodiment of the non-aqueous electrolyte secondary battery according to the present invention.

【図2】本発明に係る非水系電解液二次電池の他の形態
ある角型非水系電解液二次電池(角型リチウムイオン二
次電池)を示す部分切欠斜視図。
FIG. 2 is a partially cutaway perspective view showing a prismatic nonaqueous electrolyte secondary battery (square lithium ion secondary battery) as another embodiment of the nonaqueous electrolyte secondary battery according to the present invention.

【図3】本発明に係る非水系電解液二次電池のさらに他
の形態ある薄型非水系電解液二次電池(薄型リチウムイ
オン二次電池)を示す斜視図。
FIG. 3 is a perspective view showing a thin non-aqueous electrolyte secondary battery (thin lithium ion secondary battery) as still another embodiment of the non-aqueous electrolyte secondary battery according to the present invention.

【図4】図3のIV−IV線に沿う断面図。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3;

【符号の説明】[Explanation of symbols]

1、21…外装缶、 3,23電極体、 4,24,48…負極、 5,25,45…セパレータ、 6,26,44…正極、 12…封口板、 28…蓋体、 41…発電要素、 43,46…集電体、 51…外装フィルム。 1, 21: exterior can, 3,23 electrode body, 4, 24, 48 ... negative electrode, 5, 25, 45 ... separator, 6, 26, 44 ... positive electrode, 12 ... sealing plate, 28 ... lid, 41 ... power generation Elements, 43, 46: current collector, 51: exterior film.

フロントページの続き (72)発明者 中島 孝之 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 松本 浩一 東京都品川区南品川3丁目4番10号 株式 会社エイ・ティーバッテリー内 (72)発明者 上林 信一 神奈川県川崎市川崎区日進町7番地1 東 芝電子エンジニアリング株式会社内 Fターム(参考) 5H029 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ04 BJ14 DJ04 HJ01 HJ04 HJ08 HJ19 5H050 AA07 BA17 CA08 CA09 CA29 CB07 CB08 DA03 EA23 EA24 HA01 HA04 HA08 HA19 Continued on the front page (72) Inventor Takayuki Nakajima 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Inside A / T Battery Inc. (72) Inventor Koichi Matsumoto 3-4-1 Minamishinagawa, Shinagawa-ku, Tokyo Stock (72) Inventor Shinichi Uebayashi 7-1-1 Nisshin-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture F-term (reference) 5H029 AJ05 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ04 BJ14 DJ04 HJ01 HJ04 HJ08 HJ19 5H050 AA07 BA17 CA08 CA09 CA29 CB07 CB08 DA03 EA23 EA24 HA01 HA04 HA08 HA19

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを吸蔵・放出可能な正極、リチ
ウムを吸蔵・放出可能な負極、セパレータおよび非水系
電解液を備え、 前記正極および前記負極は、集電体にそれぞれ正極材料
および負極材料を塗布した構造を有し、 前記負極材料は、繊維状炭素材(a),(b)と非繊維
系炭素材(c)とを含む炭素質材を含有し、前記繊維状
炭素材(b)がメソフェーズ低温焼成炭素であり、かつ
前記負極は、負極電位1V〜3V間の放電容量として1
5〜30mAh/gを有することを特徴とする非水系電
解液二次電池。
1. A positive electrode capable of occluding and releasing lithium, a negative electrode capable of occluding and releasing lithium, a separator, and a non-aqueous electrolyte. The positive electrode and the negative electrode each include a positive electrode material and a negative electrode material as a current collector. The negative electrode material contains a carbonaceous material including fibrous carbon materials (a) and (b) and a non-fibrous carbon material (c), and the fibrous carbon material (b) Is mesophase low-temperature calcined carbon, and the negative electrode has a discharge capacity of 1 V to 3 V as a discharge capacity of 1 V to 3 V.
A non-aqueous electrolyte secondary battery having 5 to 30 mAh / g.
【請求項2】 前記繊維状炭素材(a)は、平均繊維径
8〜18μm、平均繊維長10〜50μm、真密度2.
24g/cc以上であることを特徴とする請求項1記載
の非水系電解液二次電池。
2. The fibrous carbon material (a) has an average fiber diameter of 8 to 18 μm, an average fiber length of 10 to 50 μm, and a true density of 2.
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is at least 24 g / cc.
【請求項3】 前記繊維状炭素材(b)は、平均繊維径
8〜20μm、平均繊維長8〜20μm、真密度1.5
0〜1.75g/ccのメソフェーズ低温焼成炭素であ
ることを特徴とする請求項1記載の非水系電解液二次電
池。
3. The fibrous carbon material (b) has an average fiber diameter of 8 to 20 μm, an average fiber length of 8 to 20 μm, and a true density of 1.5.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a mesophase low-temperature fired carbon of 0 to 1.75 g / cc.
【請求項4】 前記非繊維系炭素材(c)は、燐片状ま
たは球塊状の黒鉛であることを特徴とする請求項1記載
の非水系電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-fibrous carbon material (c) is scaly or spherical graphite.
【請求項5】 前記繊維状炭素材(b)は、前記炭素質
材に対して1〜10重量%配合されることを特徴とする
請求項3記載の非水系電解液二次電池。
5. The non-aqueous electrolyte secondary battery according to claim 3, wherein the fibrous carbon material (b) is blended in an amount of 1 to 10% by weight based on the carbonaceous material.
【請求項6】 前記繊維状炭素材(b)は、前記炭素質
材に対して2〜9重量%配合されることを特徴とする請
求項3記載の非水系電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 3, wherein the fibrous carbon material (b) is blended in an amount of 2 to 9% by weight based on the carbonaceous material.
【請求項7】 前記非水系電解液は、非水溶媒としてγ
−ブチロラクトンを含有することを特徴とする請求項1
記載の非水系電解液二次電池。
7. The non-aqueous electrolytic solution comprises γ as a non-aqueous solvent.
-Butyrolactone is contained.
The non-aqueous electrolyte secondary battery according to the above.
【請求項8】 前記γ−ブチロラクトンは、前記非水溶
媒中に45〜70重量%占めることを特徴とする請求項
7記載の非水系電解液二次電池。
8. The non-aqueous electrolyte secondary battery according to claim 7, wherein the γ-butyrolactone accounts for 45 to 70% by weight of the non-aqueous solvent.
JP2000282404A 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4828690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282404A JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282404A JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002093406A true JP2002093406A (en) 2002-03-29
JP4828690B2 JP4828690B2 (en) 2011-11-30

Family

ID=18766931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282404A Expired - Fee Related JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4828690B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138503A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589879A (en) * 1991-07-29 1993-04-09 Toshiba Corp Lithium secondary battery
JPH05174820A (en) * 1991-12-20 1993-07-13 Fuji Photo Film Co Ltd Organic electrolytic solution secondary battery
JPH087885A (en) * 1994-06-15 1996-01-12 Toshiba Corp Lithium secondary battery
JPH09330716A (en) * 1996-06-07 1997-12-22 Toshiba Battery Co Ltd Non-aqueous solvent secondary battery
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589879A (en) * 1991-07-29 1993-04-09 Toshiba Corp Lithium secondary battery
JPH05174820A (en) * 1991-12-20 1993-07-13 Fuji Photo Film Co Ltd Organic electrolytic solution secondary battery
JPH11111297A (en) * 1993-03-10 1999-04-23 Toshiba Corp Lithium secondary battery
JPH087885A (en) * 1994-06-15 1996-01-12 Toshiba Corp Lithium secondary battery
JPH09330716A (en) * 1996-06-07 1997-12-22 Toshiba Battery Co Ltd Non-aqueous solvent secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138503A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP4828690B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
KR101290410B1 (en) Battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
JP2000235868A (en) Nonaqueous electrolyte secondary battery
JP2002203562A (en) Non-aqueous electrolyte secondary battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2003282148A (en) Thin lithium ion secondary battery
JP2000149997A (en) Nonaqueous electrolyte secondary battery and its manufacture
JP2006134758A (en) Secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2002110250A (en) Non-aqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery
US20220077503A1 (en) Non-aqueous electrolyte secondary battery and method for manufacturing same
JP2005071712A (en) Manufacturing method of positive electrode
JP4828690B2 (en) Non-aqueous electrolyte secondary battery
JP3428184B2 (en) Non-aqueous electrolyte secondary battery
JP4938923B2 (en) Secondary battery
JP4346395B2 (en) Nonaqueous electrolyte secondary battery
JP2002100410A (en) Nonaqueous electrolyte secondary battery
JP2005019086A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees