JP4828690B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP4828690B2
JP4828690B2 JP2000282404A JP2000282404A JP4828690B2 JP 4828690 B2 JP4828690 B2 JP 4828690B2 JP 2000282404 A JP2000282404 A JP 2000282404A JP 2000282404 A JP2000282404 A JP 2000282404A JP 4828690 B2 JP4828690 B2 JP 4828690B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
weight
aqueous electrolyte
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000282404A
Other languages
Japanese (ja)
Other versions
JP2002093406A (en
Inventor
稔 橋本
孝之 中島
浩一 松本
信一 上林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000282404A priority Critical patent/JP4828690B2/en
Publication of JP2002093406A publication Critical patent/JP2002093406A/en
Application granted granted Critical
Publication of JP4828690B2 publication Critical patent/JP4828690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解液二次電池に関し、特に負極を改良した非水系電解液二次電池に係わる。
【0002】
【従来の技術】
近年、VTR、携帯電話、パソコンなどの各種電子機器、コードレスの携帯型電子機器の小型、軽量化に伴ない、それら機器の電源の高エネルギー密度の要求が高まり、負極活物質に金属リチウムを使用したリチウム二次電池に代表される非水系電解液二次電池が提案されている。しかしながら、負極活物質として金属リチウムを用いたリチウム二次電池は、放電時にリチウムイオンとして電解液中に溶解したリチウムが電解液中の非水溶媒と反応して一部不活性になる。このため、充放電を繰り返すと負極の表面の凸部にリチウムが電析してデンドライト状(樹枝状)に析出し、このデンドライト状リチウムがセパレータを貫通して正極と接することにより内部短絡を生じる問題があった。
【0003】
このようなことから、特開昭63−121260号公報には負極にカーボンを用いた軽量の二次電池が開示されている。その後、負極活物質としてコークス、グラファイト、樹脂焼成体、熱分解気相炭素等、種々の炭素材料を用いる、いわゆるリチウムイオン二次電池が提案され、実用化されている。
【0004】
前記リチウムイオン二次電池としては、正極にLiCoO2、LiNiO2、LiMn24等のカルコゲン化合物を用い、負極に前記炭素材料を用いたものが知られており、前記炭素材料の素材によって種々の特徴を有する。例えば、特開平5−89879号公報のように繊維径の断面方向にラメラ構造を持つ炭素繊維を負極活物質として含むリチウムイオン二次電池は優れた充放電特性を有する。また、黒鉛度の高いグラファイトを負極活物質として含むリチウムイオン二次電池は高い充電エネルギーを有する。さらに、前記リチウムイオン二次電池は金属リチウムを負極として用いた二次電池に比べて安全性が高く、各種の携帯端末の電源として広く利用されている。
【0005】
前述したようにコークス、グラファイト、樹脂焼成体、熱分解気相炭素等は負極の活物質として用いられているものの、これらの負極を備えたリチウムイオン二次電池において携帯端末の要求特性、例えば薄型化、軽量化、高容量化および高サイクル維持率を全て満足するに至っていない。
【0006】
【発明が解決しようとする課題】
本発明は、負極を改良することによって高温充放電サイクル特性を向上した非水系電解液二次電池を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明に係る非水系電解液二次電池は、リチウムを吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負極、セパレータおよび非水系電解液を備え、
前記正極および前記負極は、集電体にそれぞれ正極材料および負極材料を塗布した構造を有し、
前記負極材料は、繊維状炭素材(a),(b)と非繊維系炭素材(c)とを含む炭素質材を含有し、前記繊維状炭素材(b)がメソフェーズ低温焼成炭素であり、かつ
前記負極は、負極電位1V〜3V間の放電容量として15〜30mAh/gを有することを特徴とするものである。
【0008】
【発明の実施の形態】
以下、本発明に係わる非水系電解液二次電池を詳細に説明する。
【0009】
この非水系電解液二次電池は、リチウムを吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負極、セパレータおよび非水系電解液を備える。
【0010】
次に、前記負極、正極、セパレータおよび非水系電解液を説明する。
【0011】
1)負極
この負極は、集電体に負極材料を塗布した構造を有する。
【0012】
前記集電体としては、例えば銅板、銅メッシュ材等を挙げることができる。
【0013】
前記負極材料は、繊維状炭素材(a),(b)および非繊維状炭素材(c)と、結着剤を含有する。この繊維状炭素材(b)は、メソフェーズ低温焼成炭素である。
【0014】
前記繊維状炭素材(a)は、前記負極材料の主たる炭素材料として機能する。この繊維状炭素材(a)としては、例えばメソフェーズピッチ系カーボン繊維、PAN系炭素繊維、またはフェノール樹脂、ポリイミドからなる繊維状をなす炭素材、繊維状の気相成長炭素体等を挙げることができる。特に、メソフェーズピッチ系カーボン繊維が好ましい。
【0015】
前記繊維状炭素材(a)は、平均繊維径8〜18μm、平均繊維長10〜50μm、真密度2.24g/cc以上であることが好ましい。このような繊維状炭素材(a)は、充放電サイクル特性の向上に寄与する。特に、前記平均繊維長10μm未満にすると繊維形態を示す比率が少なくなって粉末状になり、充放電効率が低下する恐れがある。一方、前記平均繊維長が50μmを超えるとこの繊維状炭素材(a)を含む負極材料を備えた負極の物性、例えば集電体と負極材料との密着性が低下する恐れがある。
【0016】
前記繊維状炭素材(a)は、Cu−KαによるX線回折法での(101)回折ピークP101と(100)回折ピークP100の強度比(P101/P100)が1.2〜1.9であることがより好ましい。前記繊維状炭素材(a)は、面間隔(d002)が0.3354〜0.3370nm(より好ましくは0.3354〜0.3359nm)で、a軸方向の結晶子の大きさ(La)が60nm以上、c軸方向の結晶子の大きさ(Lc)が40nm以上であることがさらに望ましい。
【0017】
前記繊維状炭素材(a)は、ホウ素添加により黒鉛結晶の面間隔(d002)を拡大する、つまり黒鉛化度を高めることを許容する。
【0018】
前記繊維状メソフェーズ低温焼成炭素(b)は、比較低温で焼成され、負極容量の増大および充放電サイクル特性の向上に寄与する。この繊維状炭素(b)は、平均繊維径8〜20μm、平均繊維長8〜20μm、真密度1.50〜1.75g/ccであることが好ましい。
【0019】
前記非繊維状炭素材(c)としては、例えば片状または球塊状の黒鉛等を挙げることができ、単独もしくは2種以上の混合物の形態で用いることができる。この黒鉛は、3〜30μmの平均粒径を有することが好ましい。この黒鉛の平均粒径を3μm未満にすると、比表面積、吸油量が大きくなって負極材料を集電体に塗布する際の固形分比率が低下すると共に、負極の不可逆容量が大きくなる恐れがある。一方、前記黒鉛の平均粒径が30μmを超えると、集電体に対する負極材料の密着性が低下する等の物性劣化とプレス成形に際して必要とする圧下線圧が増大する恐れがある。
【0020】
前記繊維状炭素材(a),(b)と前記非繊維系炭素材(c)との配合割合は、前者が20〜85重量%、後者が15〜80重量%にすることが好ましい。前者の配合割合が85重量%を超えると、繊維状炭素材が多くなり、高い固形分率で負極スラリーの調製が可能になって製造面で有利になるものの、集電体に対する負極材料の密着性が低下して負極の材料の密度を高くすることが困難になる。一方、後者が80重量%を超えると、燐片状黒鉛のような非繊維状炭素材の量が多くなり、電極密度を高める上で有利であるものの、負極に対する非水電解液の浸透性が低下して充放電サイクル特性が低くなる恐れがある。
【0021】
前記繊維状炭素材(b)は、前記炭素質材に対して1〜10重量%、より好ましくは2〜9重量%配合されることが望ましい。この繊維状炭素材(b)の配合量を1重量%未満にすると、高容量化が困難になるばかりか、電極密度を高めることが困難になる。一方、前記繊維状炭素材(b)の配合量が10重量%を超えると、充放電サイクル寿命が短くなる恐れがある。
【0022】
前記負極は、前述した繊維状炭素材(a),(b)と非繊維系炭素材(c)とを含む炭素質材を含有した負極材料を有し、負極電位1V〜3V間の放電容量として15〜30mAh/gを有する。前記条件での負極の容量が前記範囲を逸脱すると、高温での充放電サイクル特性が低下する。より好ましい前記条件での負極の容量は、20〜25mAh/gである。
【0023】
前記結着剤は、PVdFに代表される有機溶媒に溶解性を持つ高分子材料、CMC、SBRに代表される水に分散し易い高分子材料等を用いることができるが、これらの高分子材料は一例に過ぎず特に制約を受けない。ただし、今後の環境の点も考慮すると水に分散し易い高分子材料が好ましい。
【0024】
前記結着剤は、負極材料に対して1.0〜6.0重量%配合されることが好ましい。この結着剤の配合量を1.0重量%未満にすると、容量の向上等の電極性能の点で好ましいものの、集電体に対する負極材料の密着性が低下して負極の加工時(特に裁断時)において欠けや剥離を生じ、また例えば正負極間にセパレータを介在した帯状物を捲回して電極群を作製する際にその電極群に微細な欠損物が混入して正負極の短絡等を招く恐れがある。一方、前記結着剤の配合量が6.0重量%を超えると、負極中に占める結着剤量が増大して容量の低下を招く恐れがある。
【0025】
2)正極
この正極は、集電体に正極材料を塗布した構造を有する。
【0026】
前記集電体としては、例えばアルミニウム板、アルミニウムメッシュ材等を挙げることができる。
【0027】
前記正極材料は、例えば活物質と結着剤とを含有する。前記活物質としては、例えば二酸化マンガン、二硫化モリブデン、LiCoO2、LiNiO2、LiMn24等のカルコゲン化合物を挙げることができる。これらのカルコゲン化合物は、2種以上の混合物で用いることができる。前記結着剤としては、例えば例えばフッ素系樹脂、ポリオレフィン樹脂、スチレン系樹脂、アクリル系樹脂のような熱可塑性エラストマー系樹脂、またはフッ素ゴムのようなゴム系樹脂を用いることができる。具体的には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリエチレン、ポリアクリロニトリル、ニトリルゴム、ポリブタジエン、ブチルゴム、ポリスチレン、スチレン−ブタジエンゴム、水添スチレン−ブタジエンゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、カルボキシメチルセルロース等が挙げられる。これらの結着剤の中でエラストマー、ゴム架橋体または極性基を導入した変成体は、前記集電体と前記正極材料との密着性の向上および過充電時における抵抗増大効果の向上の観点から好適である。
【0028】
前記正極材料には、導電補助材としてアセチレンブラック、粉末状膨張黒鉛などのグラファイト類、炭素繊維粉砕物、黒鉛化炭素繊維粉砕物、等をさらに含有することを許容する。
【0029】
3)セパレータ
このセパレータとしては、例えば20〜30μmの厚さを有するポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム等を用いることができる。
【0030】
4)非水系電解液
この非水系電解液は、例えばエチレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、γ−ブチロラクトンから選ばれる少なくとも1種からなる非水溶媒に過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、ホウフッ化リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)を溶解した組成のもの等を用いることができる。
【0031】
前記非水溶媒は、粘性との関係から単独で使用するよりも2〜3種類を混合して使用することが好ましく、この非水溶媒に溶解する電解質の濃度は0.5〜1.5モル/Lの範囲にすることが好ましい。特に、前記非水溶媒中にはγ−ブチロラクトンが10〜80重量%(より好ましくは45〜70重量%)含有することが望ましい。
【0032】
本発明に係る非水系電解液二次電池としては、次に説明する図1に示す円筒型、図2に示す角型、図3,図4に示す薄型の構造のものが挙げられる。
【0033】
(1)円筒型非水系電解液二次電池
図1に示すように有底円筒状をなす金属製外装缶1は、例えば負極端子を兼ね、底部内面に下部絶縁板2が配置されている。発電要素である電極体3は、前記外装缶1内に収納されている。前記電極体3は、負極4とセパレータ5と正極6とを前記セパレータ5が最外周に位置するように渦巻き状に捲回することにより作製したものである。前記負極4の下端面には、負極リードタブ7がせつぞくされ、かつこのリードタブ7の他端は前記外装缶1の底部内面に接続されている。中心付近に正極リードタブ取出穴を有する上部絶縁板8は、前記外装缶1内の前記電極体3上に配置されている。
【0034】
茫漠気孔を有する封口部材9は、正極端子を兼ね、前記外装缶1の上端開口部に絶縁ガスケット10を介してかしめ固定されている。この封口部材9は、中央付近にガス抜き穴11が開口された皿形封口板12と、この封口板12に前記ガス抜き穴11を覆うように固定された例えばアルミニウムからなる弁膜ラブチャ13と、前記封口板12の周縁に配置されたリング状のPTC(Positive temperature Coefficient)14と、複数のガス抜き孔15が開口された帽子形の正極端子16とから構成されている。前記封口板12の下面には、正極リードタブ17が接続され、かつこのリードタブ17の他端は前記上部絶縁板8のリード取出穴を通して前記電極3の正極6に接続されている。
【0035】
(2)角型非水系電解液二次電池
図2に示す有底矩形筒状をなす金属、例えばアルミニウムから作られる外装缶21は、例えば正極端子を兼ね、底部内面に絶縁フィルム22が配置されている。発電要素である電極体23は、前記外装缶21内に収納されている。なお、外装缶がステンレスまたは鉄からなる場合には負極端子を兼ねる。前記電極体23は、負極24とセパレータ25と正極26とを前記正極26が最外周に位置するように渦巻状に捲回した後、扁平状にプレス成形することにより作製したものである。中心付近にリード取出穴を有する例えば合成樹脂からなるスペーサ27は、前記外装缶21内の前記電極体23上に配置されている。
【0036】
金属製蓋体28は、前記外装缶1の上端開口部に例えばレーザ溶接により気密に接合されている。前記蓋体28の中心付近には、負極端子の取出穴29が開口されている。負極端子30は、前記蓋体28の穴29にガラス製または樹脂製の絶縁材31を介してハーメティックシールされている。前記負極端子30の下端面には、リード32が接続され、かつこのリード32の他端は前記電極体23の負極24に接続されている。
【0037】
上部側絶縁紙33は、前記蓋体28の外表面全体に被覆されている。スリット34を有する下部側絶縁紙35は、前記外装缶21の底面に配置されている。二つ折りされたPTC素子(Positive Temperature Coefficient)36は、一方の面が前記外装缶21の底面と前記下部側絶縁紙35の間に介装され、かつ他方の面が前記スリット34を通して前記絶縁紙35の外側に延出されている。外装チューブ37は、前記外装缶21の側面から上下面の絶縁紙33、35の周辺まで延出するように配置され、前記上部側絶縁紙33および下部側絶縁紙35を前記外装缶21に固定している。このような外装チューブ37の配置により、外部に延出された前記PTC素子36の他方の面が前記下部側絶縁紙35の底面に向けて折り曲げられる。
【0038】
(3)薄型非水系電解液二次電池
図3,図4に示すように発電要素41は、例えば活物質および結着剤を含む正極材料である正極活物質層42が集電体43の両面に担持された正極44とセパレータ45と活物質および結着剤を含む負極材料である負極活物質層46が集電体47の両面に担持された負極48とセパレータ45とを渦巻状に捲回し、さらに成形した扁平で矩形状をなす。前記正極44,負極48に接続された外部リード端子49,50は、それぞれ前記発電要素41の同一側面から外部に延出されている。
【0039】
前記発電要素41は、図3に示すように例えば2つ折りのカップ型外装フィルム51のカップ52内にその折曲げ部が前記発電要素41の前記外部リード端子49,50が延出された側面と反対側の側面側に位置するように包み込まれている。この外装フィルム51は、図4に示すように内面側に位置するシーラントフィルム53、アルミニウムまたはアルミニウム合金の箔54および剛性を有する有機樹脂フィルム55をこの順序で積層した構造を有する。前記外装フィルム51における前記折り曲げ部を除く前記発電要素1の2つの長側面および1つの短側面に対応する3つの側部は、前記シーラントフィルム53同士を熱シールして水平方向に延出したシール部56a,56b,56cが形成され、これらのシール部56a,56b,56cにより前記発電要素41を封口している。前記発電要素41の正極44、負極48に接続された外部端子49,50は、前記折り曲げ部と反対側のシール部56bを通して外部に延出されている。前記発電要素41内部および前記シール部56a,56b,56cで封口された前記外装フィルム51内には、非水系電解液が含浸・収容されている。
【0040】
なお、前記薄型非水系電解液二次電池において外装フィルムはカップ型に限らず、ピロー型、パウチ型にしてもよい。
【0041】
以上説明したように本発明に係る非水電解液二次電池は、リチウムを吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負極、セパレータおよび非水系電解液を備え、前記正極および前記負極が集電体にそれぞれ正極材料および負極材料を塗布した構造を有し、前記負極材料が繊維状炭素材(a),(b)と非繊維系炭素材(c)とを含む炭素質材を含有し、前記繊維状炭素材(b)がメソフェーズ低温焼成炭素であり、かつ前記負極が負極電位1V〜3V間の放電容量として15〜30mAh/gを有する。
【0042】
このような炭素質材として繊維状炭素材(a)、非繊維系炭素材(c)と共に繊維状メソフェーズ低温焼成炭素(b)を含む負極材料を集電体に塗布した構造を有し、かつ負極電位1V〜3V間の放電容量として15〜30mAh/gを有する(つまり、過放電領域においても所定の容量を有する)改良された負極を備えることによって、高温(例えば35〜60℃)における充放電サイクル特性を向上した非水電解二次電池を得ることができる。すなわち、負極が過放電領域において所定の容量を有することによって、放電後に高温環境下に長期間放置しても二次電池の能力が消失することなく、その後の充電により初期の充放電特性を発揮できる。
【0043】
特に、前記繊維状炭素材(a)として、平均繊維径8〜18μm、平均繊維長10〜50μm、真密度2.24g/cc以上(より好ましくはこれら特性に加えてCu−KαによるX線回折法での(101)回折ピークP101と(100)回折ピークP100の強度比(P101/P100)が1.2〜1.9であることがより好ましい。前記繊維状炭素材(a)は、面間隔(d002)が0.3354〜0.3370nmで、a軸方向の結晶子の大きさ(La)が60nm以上、c軸方向の結晶子の大きさ(Lc)が40nm以上)のものを用いることによって、より高温での充放電サイクル寿命を向上した非水電解二次電池を得ることができる。
【0044】
また、繊維状炭素材(b)として比較低温で焼成される。この繊維状炭素は、平均繊維径8〜20μm、平均繊維長8〜20μm、真密度1.50〜1.75g/ccのものを用いることによって、より一層高温での充放電サイクル寿命を向上した非水電解二次電池を得ることができる。
【0045】
さらに、前記非繊維状炭素材として片状または球塊状の黒鉛(好ましくは3〜30μmの平均粒径を有する黒鉛)を用いることによって、より一層高温での充放電サイクル寿命を向上した非水電解二次電池を得ることができる。
【0046】
さらに、前記非水系電解液の非水溶媒としてγ−ブチロラクトンを10〜80重量%(より好ましくは45〜70重量%)含有するものを用いることによって、前記負極の容量を増大させることに伴う正極の性能の低下を補償でき、高温充放電サイクル特性の向上が図られ、かつバランスのとれた性能を有する非水系電解液二次電池を得ることができる。
【0047】
【実施例】
以下、本発明の好ましい実施例を詳細に説明する。
【0048】
「繊維状炭素材(a)の作製」
メソフェーズピッチを紡糸、不融化し、アルゴン雰囲気下、680℃で炭化し、適度に粉砕した後、窒素雰囲気下で3000℃にて黒鉛化することにより繊維状炭素材を得た。
【0049】
得られた繊維状炭素材は、c軸方向の結晶子(Lc)の大きさ60nm、平均繊維径8.5μm、平均繊維長18.5μm、真密度2.26g/cc、面間隔(d002)0.3359nm、Cu−KαによるX線回折法での(101)回折ピークP101と(100)回折ピークP100の強度比(P101/P100)が1.45であった。
【0050】
「繊維状メソフェーズ低温焼成炭素材(b)の作製」
黒鉛化温度化を変えて焼成し、平均繊維径17μm、真密度1.50〜1.80g/ccを有する数種の繊維状メソフェーズ低温焼成炭素材を用意した。
【0051】
「黒鉛の作製」
天然系黒鉛を球塊状に解扮して所定の黒鉛を得た。この黒鉛は、平均粒径8.5μm、比表面積6.7m2/g、面間隔(d002)0.3358nmであった。
【0052】
(実施例1)
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.55g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)2重量部および前記球塊状黒鉛(c)48重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0053】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0054】
得られた負極について、負極電位1V〜3V間の放電容量を次のような手法で測定した。
【0055】
作製した負極から2×2cmの大きさに切り出したサンプルを全重量から集電体の重量を引いて活物質量(負極材料の量)を計算する。前記サンプルと対極リチウム金属の間にガラスフィルタを介在させ、参照極に金属リチウムを使用し、これらを三極端子付のガラス容器内に組み込む。このガラス容器にγ−ブチロラクトンおよびエチレンカーボネートの混合溶媒(混合体積比2:1)にLiBF4を1.5モル/L溶解した組成を有する電解液を注液した後、脱泡するために真空排気しガラスセルを組立てる。ここまでの作業は、ドライアルゴン雰囲気中のグローブボックス内で行なう。
【0056】
組立てたガラスセルを充放電器に繋ぎ、25℃の雰囲気中の恒温槽に入れる。前記充放電器では、前記サンプルと対極の間に電流を流した時の電圧電流と前記対極と前記サンプルの間の電圧をモニタする。充電条件は、活物質1g当たり320mAhを1Cとし、サンプル活物質重量に応じて1C電流を決める。
【0057】
1〜3サイクル目は、0.3C×10mV×8hの充電、0.3C×3.0Vカットオフの放電の条件で充放電を行ない、4サイクル目は0.3C×10mV×8hの充電、0.1C×1.0Vカットオフの放電の条件にて充放電行なう。ここで、充電とは負極サンプルにLiイオンがインターカレートする方向に電流が流れることを意味する。
【0058】
次いで、4サイクル目において、1Vまでの放電量から3Vまでの放電量を引いたものを1V〜3V間の放電容量(mAh/g)として計算する。
【0059】
このような試験、計算から、前記負極の電位1V〜3V間の放電容量は15mAh/gであった。
【0060】
<正極の作製>
まず、12重量%濃度のポリフッ化ビニリデン樹脂(PVdF)のN−メチルピロリドン溶液41.7重量部に活物質としてのLiCoO2粉末100重量部、導電フィラーとしてのグラファイト粉末(ロンザ社製商品名;KS4)5重量部を混合し、混練した。つづいて、この混合物にN−メチルピロリドン15重量部をさらに添加し、ビーズミルを用いて前記固形物を分散させて正極塗工スラリーを調製した。
【0061】
次いで、前記正極塗工スラリーを厚さ15μmのAl箔(集電体)の両面にそれそれ255g/m2になるように塗工し、乾燥した後、プレス、スリット加工を施すことにより厚さ167μm、幅42.00mmの正極を作製した。
【0062】
<二次電池の組立>
次いで、前記正負極の集電体にリードタブをそれぞれ接合し、自動捲回機を用いてポリエチレン製多孔膜を2枚介してスパイラル状に巻き上げ、さらにプレスすることにより扁平状の電極体を作製した。得られた電極体に直流電源から100Vの電圧を5秒間印加し、10μV以上流れるものを不良と判定して除外した。
【0063】
次いで、良品として判定された電極体を厚さ4.8mm、幅30mm、高さ47mmの有底矩形筒状をなすアルミニウム製外装缶内に挿入し、非水系電解液を注入した後、前記外装缶の開口部にアルミニウム製蓋体を気密に接合することにより前述した図2に示す角型リチウムイオン二次電池を組立てた。なお、前記非水系電解液はγ−ブチロラクトンおよびエチレンカーボネートの混合溶媒(混合体積比2:1)にLiBF4を1.5モル/L溶解した組成を有する。
【0064】
(実施例2)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0065】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.70g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)2重量部および前記球塊状黒鉛(c)48重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0066】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0067】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により16mAh/gであった。
【0068】
(実施例3)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0069】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.60g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)4重量部および前記球塊状黒鉛(c)46重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0070】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0071】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により20mAh/gであった。
【0072】
(実施例4)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0073】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.55g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)4重量部および前記球塊状黒鉛(c)46重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0074】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0075】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により5mAh/gであった。
【0076】
(実施例5)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0077】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.70g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)9重量部および前記球塊状黒鉛(c)41重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0078】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0079】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により30mAh/gであった。
【0084】
(比較例1)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0085】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部および前記球塊状黒鉛(c)50重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0086】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0087】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により7mAh/gであった。
【0088】
(比較例2)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0089】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.63g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)1重量部および前記球塊状黒鉛(c)49重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0090】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0091】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により10mAh/gであった。
【0092】
(比較例3)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0093】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.55g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)7重量部および前記球塊状黒鉛(c)43重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0094】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0095】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により40mAh/gであった。
【0096】
(比較例4)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0097】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.70g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)12重量部および前記球塊状黒鉛(c)38重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0098】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0099】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により40mAh/gであった。
【0100】
(比較例5)
負極として、以下に説明する方法で作製したものを用いた以外、実施例1と同様な構造の角型リチウムイオン二次電池を組立てた。なお、正負極、セパレータを有する電極体の作製後は、実施例1と同様な良・不良の判定を行ない、良品として判定された電極体のみを使用した。
【0101】
<負極の作製>
まず、カルボキシメチルセルロースの0.68重量%濃度の粘調水溶液177重量部に前記繊維状炭素材(a)50重量部、真密度が1.52g/ccの前記繊維状メソフェーズ低温焼成炭素材(b)13重量部および前記球塊状黒鉛(c)37重量部を添加した後、せん断分散した。つづいて、この混合物にSBRラテックス3.4重量部を添加し、均一の混合攪拌して負極塗工スラリーを調製した。
【0102】
次いで、前記塗工スラリーをナイフエッジコータにより厚さ15μmの銅箔(集電体)の両面にそれぞれ103g/m2になるように塗工し、乾燥した。この時の銅箔上の負極材料の密度は、1.23g/ccであった。その後、プレス、スリット加工を施して厚さ149μm(負極材料の密度;1.5g/cc)、幅43.25mmの帯状負極を作製した。
【0103】
得られた負極の電位1V〜3V間の放電容量は、実施例1と同様な試験、計算により70mAh/gであった。
【0104】
得られた実施例1〜6および比較例1〜5の二次電池について、25℃にて700mA、4.2V、6hの初充電を行ない、エージングを12時間施した後、25℃で700mA、3.0Vのカットオフで放電した時の平均容量を測定した。
【0105】
初充電終了後、各二次電池を60℃の雰囲気中に移し、12時間のエージングを行なった後、同温度下にて700mA、4.2V、6hの充電、700mA、3.0Vのカットオフの放電を1サイクルとし、100回繰り返した時の初期放電容量に対する放電容量維持率(サイクル特性)を測定した。
【0106】
これらの結果を下記表1に示す。なお、表1には実施例1〜6および比較例1〜5の二次電池に組み込まれる負極の電位1V〜3V間の放電容量を併記する。
【0107】
【表1】

Figure 0004828690
【0108】
前記表1から明らかなように3Vカットの放電以降、さらに3Vから1Vに向う深い放電時の容量として15〜30mAh/gを有する負極を備えた実施例1〜の二次電池は、前記負極の容量が15〜30mAh/gの範囲を外れる比較例1〜5の二次電池に比べて高温での充放電サイクルル特性が優れていることがわかる。
【0109】
なお、前述した実施例では図2に示す角型リチウムイオン二次電池について説明したが、本発明は前述した図1の円筒型リチウムイオン二次電池、図3および図4の薄型リチウムイオン二次電池に適用しても同様な優れた高温充放電サイクル特性を有する。
【0110】
【発明の効果】
以上詳述したように、本発明によれば負極を改良することによって高温充放電サイクル特性を向上した非水系電解液二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る非水系電解液二次電池の一形態ある円筒型非水系電解液二次電池(円筒型リチウムイオン二次電池)を示す部分断面図。
【図2】本発明に係る非水系電解液二次電池の他の形態ある角型非水系電解液二次電池(角型リチウムイオン二次電池)を示す部分切欠斜視図。
【図3】本発明に係る非水系電解液二次電池のさらに他の形態ある薄型非水系電解液二次電池(薄型リチウムイオン二次電池)を示す斜視図。
【図4】図3のIV−IV線に沿う断面図。
【符号の説明】
1、21…外装缶、
3,23電極体、
4,24,48…負極、
5,25,45…セパレータ、
6,26,44…正極、
12…封口板、
28…蓋体、
41…発電要素、
43,46…集電体、
51…外装フィルム。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having an improved negative electrode.
[0002]
[Prior art]
In recent years, with the reduction in size and weight of various electronic devices such as VTRs, mobile phones and personal computers, and cordless portable electronic devices, the demand for high energy density of these devices has increased, and metallic lithium has been used as the negative electrode active material. Non-aqueous electrolyte secondary batteries represented by such lithium secondary batteries have been proposed. However, in the lithium secondary battery using metallic lithium as the negative electrode active material, lithium dissolved in the electrolytic solution as lithium ions during discharge reacts with the nonaqueous solvent in the electrolytic solution and becomes partially inactive. For this reason, when charging and discharging are repeated, lithium is electrodeposited on the convex portion of the negative electrode surface and deposited in a dendritic shape (dendritic shape), and this dendritic lithium penetrates the separator and contacts the positive electrode, thereby causing an internal short circuit. There was a problem.
[0003]
For this reason, Japanese Patent Application Laid-Open No. 63-121260 discloses a lightweight secondary battery using carbon for the negative electrode. Thereafter, so-called lithium ion secondary batteries using various carbon materials such as coke, graphite, fired resin, pyrolytic vapor phase carbon, etc., have been proposed and put into practical use.
[0004]
As the lithium ion secondary battery, the positive electrode is LiCoO. 2 , LiNiO 2 , LiMn 2 O Four And the like using a carbon material for the negative electrode are known, and have various characteristics depending on the material of the carbon material. For example, as disclosed in JP-A-5-89879, a lithium ion secondary battery including carbon fibers having a lamellar structure in the cross-sectional direction of the fiber diameter as a negative electrode active material has excellent charge / discharge characteristics. Further, a lithium ion secondary battery containing graphite having a high degree of graphite as a negative electrode active material has high charging energy. Further, the lithium ion secondary battery has higher safety than a secondary battery using metallic lithium as a negative electrode, and is widely used as a power source for various portable terminals.
[0005]
As described above, coke, graphite, resin fired body, pyrolytic vapor phase carbon and the like are used as the active material of the negative electrode, but in the lithium ion secondary battery equipped with these negative electrodes, the required characteristics of the portable terminal, for example, thin , Weight reduction, high capacity, and high cycle maintenance ratio are not yet satisfied.
[0006]
[Problems to be solved by the invention]
The present invention seeks to provide a non-aqueous electrolyte secondary battery having improved high-temperature charge / discharge cycle characteristics by improving the negative electrode.
[0007]
[Means for Solving the Problems]
To achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention comprises a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator, and a non-aqueous electrolyte.
The positive electrode and the negative electrode have a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively.
The negative electrode material contains a carbonaceous material including fibrous carbon materials (a) and (b) and a non-fibrous carbon material (c), and the fibrous carbon material (b) is mesophase low-temperature calcined carbon. ,And
The negative electrode has a discharge capacity of 15 to 30 mAh / g between a negative electrode potential of 1 V and 3 V.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the non-aqueous electrolyte secondary battery according to the present invention will be described in detail.
[0009]
This non-aqueous electrolyte secondary battery includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator, and a non-aqueous electrolyte.
[0010]
Next, the negative electrode, the positive electrode, the separator, and the nonaqueous electrolytic solution will be described.
[0011]
1) Negative electrode
This negative electrode has a structure in which a negative electrode material is applied to a current collector.
[0012]
Examples of the current collector include a copper plate and a copper mesh material.
[0013]
The negative electrode material contains fibrous carbon materials (a) and (b), a non-fibrous carbon material (c), and a binder. This fibrous carbon material (b) is mesophase low-temperature calcined carbon.
[0014]
The fibrous carbon material (a) functions as a main carbon material of the negative electrode material. Examples of the fibrous carbon material (a) include mesophase pitch-based carbon fiber, PAN-based carbon fiber, or a carbon material in the form of a fiber made of phenol resin or polyimide, and a fibrous vapor-grown carbon body. it can. In particular, mesophase pitch-based carbon fibers are preferable.
[0015]
The fibrous carbon material (a) preferably has an average fiber diameter of 8 to 18 μm, an average fiber length of 10 to 50 μm, and a true density of 2.24 g / cc or more. Such a fibrous carbon material (a) contributes to the improvement of charge / discharge cycle characteristics. In particular, when the average fiber length is less than 10 μm, the ratio indicating the fiber form is reduced to form a powder and the charge / discharge efficiency may be reduced. On the other hand, when the average fiber length exceeds 50 μm, the physical properties of the negative electrode provided with the negative electrode material containing the fibrous carbon material (a), for example, the adhesion between the current collector and the negative electrode material may be reduced.
[0016]
The fibrous carbon material (a) has a (101) diffraction peak P in the X-ray diffraction method by Cu-Kα. 101 And (100) diffraction peak P 100 Intensity ratio (P 101 / P 100 ) Is more preferably 1.2 to 1.9. The fibrous carbon material (a) has a surface spacing (d 002 ) Is 0.3354 to 0.3370 nm (more preferably 0.3354 to 0.3359 nm), the crystallite size (La) in the a-axis direction is 60 nm or more, and the crystallite size (Lc in the c-axis direction) ) Is more preferably 40 nm or more.
[0017]
The fibrous carbon material (a) is formed by adding boron with an interval between graphite crystals (d 002 ) Is expanded, that is, it is allowed to increase the degree of graphitization.
[0018]
The fibrous mesophase low-temperature calcined carbon (b) is calcined at a comparatively low temperature and contributes to an increase in negative electrode capacity and an improvement in charge / discharge cycle characteristics. The fibrous carbon (b) preferably has an average fiber diameter of 8 to 20 μm, an average fiber length of 8 to 20 μm, and a true density of 1.50 to 1.75 g / cc.
[0019]
As the non-fibrous carbon material (c), for example, scale Examples thereof include flake-shaped or spherical block-like graphite, and the like can be used alone or in the form of a mixture of two or more. The graphite preferably has an average particle size of 3 to 30 μm. If the average particle size of the graphite is less than 3 μm, the specific surface area and the oil absorption amount are increased, and the solid content ratio when the negative electrode material is applied to the current collector is decreased, and the irreversible capacity of the negative electrode may be increased. . On the other hand, when the average particle diameter of the graphite exceeds 30 μm, physical properties such as a decrease in the adhesion of the negative electrode material to the current collector and a reduction linear pressure required for press molding may increase.
[0020]
The blending ratio of the fibrous carbon materials (a) and (b) and the non-fibrous carbon material (c) is preferably 20 to 85% by weight for the former and 15 to 80% by weight for the latter. If the former compounding ratio exceeds 85% by weight, the amount of fibrous carbon material increases, and the negative electrode slurry can be prepared with a high solid content ratio, which is advantageous in terms of production, but the negative electrode material adheres to the current collector. It becomes difficult to increase the density of the material of the negative electrode due to the decrease in properties. On the other hand, if the latter exceeds 80% by weight, the amount of non-fibrous carbon material such as flake graphite increases, which is advantageous in increasing the electrode density, but the permeability of the non-aqueous electrolyte to the negative electrode is high. The charge / discharge cycle characteristics may be lowered.
[0021]
The fibrous carbon material (b) is desirably blended in an amount of 1 to 10% by weight, more preferably 2 to 9% by weight, based on the carbonaceous material. When the blending amount of the fibrous carbon material (b) is less than 1% by weight, it is difficult not only to increase the capacity but also to increase the electrode density. On the other hand, when the amount of the fibrous carbon material (b) exceeds 10% by weight, the charge / discharge cycle life may be shortened.
[0022]
The negative electrode includes a negative electrode material containing a carbonaceous material including the fibrous carbon materials (a) and (b) and the non-fibrous carbon material (c) described above, and a discharge capacity between a negative electrode potential of 1 V to 3 V. As 15 to 30 mAh / g. If the capacity | capacitance of the negative electrode on the said conditions deviates from the said range, the charge / discharge cycle characteristic at high temperature will fall. The capacity | capacitance of the negative electrode on the said more preferable conditions is 20-25 mAh / g.
[0023]
As the binder, a polymer material having solubility in an organic solvent typified by PVdF, a polymer material easily dispersed in water typified by CMC, SBR, or the like can be used. Is just an example and is not particularly restricted. However, in consideration of the future environment, a polymer material that is easily dispersed in water is preferable.
[0024]
The binder is preferably blended in an amount of 1.0 to 6.0% by weight with respect to the negative electrode material. When the blending amount of the binder is less than 1.0% by weight, it is preferable in terms of electrode performance such as an increase in capacity, but the adhesion of the negative electrode material to the current collector is reduced and the negative electrode is processed (particularly cutting). For example, when producing a group of electrodes by winding a strip with a separator interposed between the positive and negative electrodes, a minute defect is mixed in the electrode group, causing a short circuit between the positive and negative electrodes, etc. There is a risk of inviting. On the other hand, if the amount of the binder exceeds 6.0% by weight, the amount of the binder in the negative electrode may increase, leading to a decrease in capacity.
[0025]
2) Positive electrode
This positive electrode has a structure in which a positive electrode material is applied to a current collector.
[0026]
Examples of the current collector include an aluminum plate and an aluminum mesh material.
[0027]
The positive electrode material contains, for example, an active material and a binder. Examples of the active material include manganese dioxide, molybdenum disulfide, and LiCoO. 2 , LiNiO 2 , LiMn 2 O Four And the like chalcogen compounds. These chalcogen compounds can be used in a mixture of two or more. As the binder, for example, a thermoplastic resin such as a fluororesin, a polyolefin resin, a styrene resin, an acrylic resin, or a rubber resin such as fluororubber can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polyethylene, polyacrylonitrile, nitrile rubber, polybutadiene, butyl rubber, polystyrene, styrene-butadiene rubber, hydrogenated styrene-butadiene rubber, polysulfide rubber, nitrocellulose , Cyanoethyl cellulose, carboxymethyl cellulose and the like. Among these binders, an elastomer, a rubber cross-linked body, or a modified body having a polar group introduced is from the viewpoint of improving the adhesion between the current collector and the positive electrode material and improving the resistance increase effect during overcharge. Is preferred.
[0028]
The positive electrode material is allowed to further contain, as a conductive auxiliary material, acetylene black, graphite such as powdered expanded graphite, pulverized carbon fiber, pulverized graphitized carbon fiber, and the like.
[0029]
3) Separator
As this separator, for example, a polyethylene porous film or a polypropylene porous film having a thickness of 20 to 30 μm can be used.
[0030]
4) Non-aqueous electrolyte
This non-aqueous electrolyte is composed of, for example, lithium perchlorate (LiClO) in a non-aqueous solvent composed of at least one selected from ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, and γ-butyrolactone. Four ), Lithium hexafluorophosphate (LiPF) 6 ), Lithium borofluoride (LiBF) Four ), Lithium hexafluoroarsenide (LiAsF) 6 And the like in which the composition is dissolved.
[0031]
The non-aqueous solvent is preferably used in a mixture of two to three types rather than being used alone because of viscosity, and the concentration of the electrolyte dissolved in the non-aqueous solvent is 0.5 to 1.5 mol. / L is preferable. In particular, the non-aqueous solvent preferably contains 10 to 80% by weight (more preferably 45 to 70% by weight) of γ-butyrolactone.
[0032]
Examples of the non-aqueous electrolyte secondary battery according to the present invention include a cylindrical type shown in FIG. 1 described below, a square type shown in FIG. 2, and a thin structure shown in FIGS.
[0033]
(1) Cylindrical non-aqueous electrolyte secondary battery
As shown in FIG. 1, a metal outer can 1 having a bottomed cylindrical shape also serves as a negative electrode terminal, for example, and a lower insulating plate 2 is disposed on the inner surface of the bottom. An electrode body 3 that is a power generation element is accommodated in the outer can 1. The electrode body 3 is produced by winding the negative electrode 4, the separator 5, and the positive electrode 6 in a spiral shape so that the separator 5 is located on the outermost periphery. A negative electrode lead tab 7 is provided on the lower end surface of the negative electrode 4, and the other end of the lead tab 7 is connected to the inner surface of the bottom of the outer can 1. An upper insulating plate 8 having a positive lead tab extraction hole in the vicinity of the center is disposed on the electrode body 3 in the outer can 1.
[0034]
A sealing member 9 having vague pores also serves as a positive electrode terminal, and is caulked and fixed to the upper end opening of the outer can 1 via an insulating gasket 10. The sealing member 9 includes a dish-shaped sealing plate 12 having a gas vent hole 11 opened in the vicinity of the center, and a valve membrane labcha 13 made of aluminum, for example, fixed to the sealing plate 12 so as to cover the gas vent hole 11; A ring-shaped PTC (Positive temperature Coefficient) 14 disposed on the periphery of the sealing plate 12 and a hat-shaped positive electrode terminal 16 having a plurality of vent holes 15 are formed. A positive electrode lead tab 17 is connected to the lower surface of the sealing plate 12, and the other end of the lead tab 17 is connected to the positive electrode 6 of the electrode 3 through a lead extraction hole of the upper insulating plate 8.
[0035]
(2) Square non-aqueous electrolyte secondary battery
An exterior can 21 made of a metal having a bottomed rectangular tube shape shown in FIG. 2, for example, aluminum, also serves as a positive electrode terminal, for example, and an insulating film 22 is disposed on the inner surface of the bottom. The electrode body 23 that is a power generation element is accommodated in the outer can 21. When the outer can is made of stainless steel or iron, it also serves as a negative electrode terminal. The electrode body 23 is manufactured by winding the negative electrode 24, the separator 25, and the positive electrode 26 in a spiral shape so that the positive electrode 26 is located on the outermost periphery, and then press-molding it into a flat shape. A spacer 27 made of, for example, synthetic resin having a lead extraction hole near the center is disposed on the electrode body 23 in the outer can 21.
[0036]
The metal lid 28 is airtightly joined to the upper end opening of the outer can 1 by, for example, laser welding. In the vicinity of the center of the lid body 28, an extraction hole 29 for the negative electrode terminal is opened. The negative electrode terminal 30 is hermetically sealed in the hole 29 of the lid 28 via an insulating material 31 made of glass or resin. A lead 32 is connected to the lower end surface of the negative electrode terminal 30, and the other end of the lead 32 is connected to the negative electrode 24 of the electrode body 23.
[0037]
The upper insulating paper 33 is covered on the entire outer surface of the lid 28. The lower insulating paper 35 having the slits 34 is disposed on the bottom surface of the outer can 21. A folded PTC element (Positive Temperature Coefficient) 36 has one surface interposed between the bottom surface of the outer can 21 and the lower insulating paper 35, and the other surface passing through the slit 34 and the insulating paper. 35 is extended to the outside. The outer tube 37 is disposed so as to extend from the side surface of the outer can 21 to the periphery of the upper and lower insulating papers 33 and 35, and the upper insulating paper 33 and the lower insulating paper 35 are fixed to the outer can 21. is doing. With such an arrangement of the outer tube 37, the other surface of the PTC element 36 extended to the outside is bent toward the bottom surface of the lower insulating paper 35.
[0038]
(3) Thin non-aqueous electrolyte secondary battery
As shown in FIG. 3 and FIG. 4, the power generation element 41 includes, for example, a positive electrode 44 in which a positive electrode active material layer 42 that is a positive electrode material containing an active material and a binder is supported on both surfaces of a current collector 43, a separator 45, and an active material. A negative electrode active material layer 46, which is a negative electrode material containing a substance and a binder, is formed by winding a negative electrode 48 supported on both surfaces of a current collector 47 and a separator 45 in a spiral shape, and forming a flat and rectangular shape. External lead terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 extend from the same side surface of the power generation element 41 to the outside.
[0039]
As shown in FIG. 3, the power generation element 41 has, for example, a side surface in which the external lead terminals 49 and 50 of the power generation element 41 are extended in a cup 52 of a two-fold cup-type exterior film 51. It is wrapped so as to be located on the opposite side. As shown in FIG. 4, the exterior film 51 has a structure in which a sealant film 53 located on the inner surface side, an aluminum or aluminum alloy foil 54 and a rigid organic resin film 55 are laminated in this order. Three side portions corresponding to the two long side surfaces and one short side surface of the power generation element 1 excluding the bent portion in the exterior film 51 are heat-sealed between the sealant films 53 and extended in a horizontal direction. Portions 56a, 56b, and 56c are formed, and the power generating element 41 is sealed by these seal portions 56a, 56b, and 56c. External terminals 49 and 50 connected to the positive electrode 44 and the negative electrode 48 of the power generation element 41 are extended to the outside through a seal portion 56b on the opposite side to the bent portion. A nonaqueous electrolytic solution is impregnated and contained in the power generation element 41 and the exterior film 51 sealed by the seal portions 56a, 56b, and 56c.
[0040]
In the thin non-aqueous electrolyte secondary battery, the exterior film is not limited to the cup type but may be a pillow type or a pouch type.
[0041]
As described above, the non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator, and a non-aqueous electrolyte, and the positive electrode and the negative electrode Has a structure in which a positive electrode material and a negative electrode material are respectively applied to a current collector, and the negative electrode material includes a carbonaceous material including a fibrous carbon material (a), (b) and a non-fibrous carbon material (c). And the fibrous carbon material (b) is mesophase low-temperature calcined carbon, and the negative electrode has a discharge capacity of 15 to 30 mAh / g between a negative electrode potential of 1 V and 3 V.
[0042]
As such a carbonaceous material, it has a structure in which a negative electrode material containing fibrous mesophase low-temperature calcined carbon (b) together with fibrous carbon material (a) and non-fibrous carbon material (c) is applied to a current collector, and By providing an improved negative electrode having a discharge capacity of 15 to 30 mAh / g between the negative electrode potential 1 V and 3 V (that is, having a predetermined capacity even in the overdischarge region), charging at a high temperature (for example, 35 to 60 ° C.) A non-aqueous electrolytic secondary battery with improved discharge cycle characteristics can be obtained. In other words, because the negative electrode has a predetermined capacity in the overdischarge region, even if it is left in a high temperature environment for a long time after discharge, the capacity of the secondary battery is not lost, and the initial charge / discharge characteristics are exhibited by subsequent charging. it can.
[0043]
In particular, the fibrous carbon material (a) has an average fiber diameter of 8 to 18 μm, an average fiber length of 10 to 50 μm, a true density of 2.24 g / cc or more (more preferably in addition to these characteristics, X-ray diffraction by Cu-Kα) (101) diffraction peak P 101 And (100) diffraction peak P 100 Intensity ratio (P 101 / P 100 ) Is more preferably 1.2 to 1.9. The fibrous carbon material (a) has a surface spacing (d 002 ) Is 0.3354 to 0.3370 nm, the crystallite size (La) in the a-axis direction is 60 nm or more, and the crystallite size (Lc) in the c-axis direction is 40 nm or more) A non-aqueous electrolytic secondary battery having an improved charge / discharge cycle life at a higher temperature can be obtained.
[0044]
Moreover, it is fired at a comparatively low temperature as the fibrous carbon material (b). The fibrous carbon has an average fiber diameter of 8 to 20 μm, an average fiber length of 8 to 20 μm, and a true density of 1.50 to 1.75 g / cc, thereby improving the charge / discharge cycle life at a higher temperature. A non-aqueous electrolytic secondary battery can be obtained.
[0045]
Further, as the non-fibrous carbon material scale By using flake-like or spherical block-like graphite (preferably graphite having an average particle diameter of 3 to 30 μm), it is possible to obtain a non-aqueous electrolytic secondary battery with improved charge / discharge cycle life at a higher temperature.
[0046]
Furthermore, the positive electrode accompanying increasing the capacity | capacitance of the said negative electrode by using what contains 10-80 weight% (more preferably 45-70 weight%) of (gamma) -butyrolactone as a nonaqueous solvent of the said nonaqueous electrolyte solution. Thus, a non-aqueous electrolyte secondary battery can be obtained in which high temperature charge / discharge cycle characteristics can be improved and balanced performance can be obtained.
[0047]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail.
[0048]
"Production of fibrous carbon material (a)"
A mesophase pitch was spun and infusible, carbonized at 680 ° C. in an argon atmosphere, pulverized appropriately, and then graphitized at 3000 ° C. in a nitrogen atmosphere to obtain a fibrous carbon material.
[0049]
The obtained fibrous carbon material has a c-axis direction crystallite (Lc) size of 60 nm, an average fiber diameter of 8.5 μm, an average fiber length of 18.5 μm, a true density of 2.26 g / cc, and a surface spacing (d 002 ) (101) Diffraction peak P in X-ray diffraction method with 0.3359 nm, Cu-Kα 101 And (100) diffraction peak P 100 Intensity ratio (P 101 / P 100 ) Was 1.45.
[0050]
“Fabrication of fibrous mesophase low-temperature calcined carbon material (b)”
Several types of fibrous mesophase low-temperature calcined carbon materials having an average fiber diameter of 17 μm and a true density of 1.50 to 1.80 g / cc were prepared by changing the graphitization temperature.
[0051]
"Production of graphite"
Natural graphite was unwound into a spherical shape to obtain predetermined graphite. This graphite has an average particle size of 8.5 μm and a specific surface area of 6.7 m. 2 / G, surface separation (d 002 ) 0.3358 nm.
[0052]
Example 1
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.55 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. 2 parts by weight and 48 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0053]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0054]
About the obtained negative electrode, the discharge capacity between negative electrode potentials 1V-3V was measured with the following methods.
[0055]
The amount of active material (amount of negative electrode material) is calculated by subtracting the weight of the current collector from the total weight of a sample cut out to a size of 2 × 2 cm from the produced negative electrode. A glass filter is interposed between the sample and the counter electrode lithium metal, metal lithium is used as a reference electrode, and these are incorporated in a glass container with a three electrode terminal. In this glass container, LiBF was added to a mixed solvent of γ-butyrolactone and ethylene carbonate (mixing volume ratio 2: 1). Four After injecting an electrolytic solution having a composition in which 1.5 mol / L is dissolved, the glass cell is assembled by evacuating to degas. The work so far is performed in a glove box in a dry argon atmosphere.
[0056]
The assembled glass cell is connected to a charger / discharger and placed in a thermostatic chamber in a 25 ° C. atmosphere. The charger / discharger monitors a voltage current when a current is passed between the sample and the counter electrode and a voltage between the counter electrode and the sample. As charging conditions, 320 mAh per 1 g of active material is set to 1 C, and 1 C current is determined according to the weight of the sample active material.
[0057]
The 1st to 3rd cycles were charged and discharged under the conditions of 0.3C × 10mV × 8h charge and 0.3C × 3.0V cutoff, and the 4th cycle was charged with 0.3C × 10mV × 8h. Charging / discharging is performed under the condition of 0.1 C × 1.0 V cutoff. Here, charging means that a current flows in a direction in which Li ions intercalate in the negative electrode sample.
[0058]
Then, in the fourth cycle, a value obtained by subtracting the discharge amount up to 3V from the discharge amount up to 1V is calculated as the discharge capacity (mAh / g) between 1V and 3V.
[0059]
From such tests and calculations, the discharge capacity between the negative electrode potential of 1 V and 3 V was 15 mAh / g.
[0060]
<Preparation of positive electrode>
First, 41.7 parts by weight of a 12% strength by weight polyvinylidene fluoride resin (PVdF) in N-methylpyrrolidone solution was added to LiCoO as an active material. 2 100 parts by weight of powder and 5 parts by weight of graphite powder (trade name, manufactured by Lonza Corporation; KS4) as a conductive filler were mixed and kneaded. Subsequently, 15 parts by weight of N-methylpyrrolidone was further added to the mixture, and the solid matter was dispersed using a bead mill to prepare a positive electrode coating slurry.
[0061]
Next, the positive electrode coating slurry was applied to both sides of a 15 μm thick Al foil (current collector) at 255 g / m. 2 After coating and drying, a positive electrode having a thickness of 167 μm and a width of 42.00 mm was produced by pressing and slitting.
[0062]
<Assembly of secondary battery>
Next, lead tabs were respectively joined to the positive and negative electrode current collectors, and a flat electrode body was produced by winding up and spiraling through two polyethylene porous membranes using an automatic winding machine. . A voltage of 100 V was applied to the obtained electrode body from a DC power source for 5 seconds, and those that flowed 10 μV or more were judged as defective and excluded.
[0063]
Next, the electrode body determined as a non-defective product was inserted into an aluminum outer can having a bottomed rectangular cylindrical shape having a thickness of 4.8 mm, a width of 30 mm, and a height of 47 mm, and after the nonaqueous electrolyte was injected, The above-described prismatic lithium ion secondary battery shown in FIG. 2 was assembled by airtightly bonding an aluminum lid to the opening of the can. The non-aqueous electrolyte is LiBF in a mixed solvent of γ-butyrolactone and ethylene carbonate (mixing volume ratio 2: 1). Four Is dissolved in 1.5 mol / L.
[0064]
(Example 2)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0065]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.70 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. 2 parts by weight and 48 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0066]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0067]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 16 mAh / g by the same tests and calculations as in Example 1.
[0068]
(Example 3)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0069]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.60 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 4 parts by weight and 46 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0070]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0071]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 20 mAh / g by the same tests and calculations as in Example 1.
[0072]
Example 4
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0073]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.55 g / cc is added to 177 parts by weight of a viscous aqueous solution of 0.68% by weight of carboxymethyl cellulose. ) 4 parts by weight and 46 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0074]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0075]
The discharge capacity between the potential of the obtained negative electrode 1 V to 3 V was determined by the same tests and calculations as in Example 1. 2 It was 5 mAh / g.
[0076]
(Example 5)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0077]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.70 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 9 parts by weight and 41 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0078]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0079]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 30 mAh / g by the same tests and calculations as in Example 1.
[0084]
(Comparative Example 1)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0085]
<Production of negative electrode>
First, 50 parts by weight of the fibrous carbon material (a) and 50 parts by weight of the spherical graphite (c) were added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0086]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0087]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 7 mAh / g by the same tests and calculations as in Example 1.
[0088]
(Comparative Example 2)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0089]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.63 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 1 part by weight and 49 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0090]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0091]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 10 mAh / g by the same tests and calculations as in Example 1.
[0092]
(Comparative Example 3)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0093]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.55 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 7 parts by weight and 43 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0094]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0095]
The discharge capacity between the potential 1V and 3V of the obtained negative electrode was 40 mAh / g by the same test and calculation as in Example 1.
[0096]
(Comparative Example 4)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0097]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.70 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 12 parts by weight and 38 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0098]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0099]
The discharge capacity between the potential 1V and 3V of the obtained negative electrode was 40 mAh / g by the same test and calculation as in Example 1.
[0100]
(Comparative Example 5)
A square lithium ion secondary battery having the same structure as that of Example 1 was assembled except that a negative electrode manufactured by the method described below was used. In addition, after preparation of the electrode body which has a positive / negative electrode and a separator, the quality determination same as Example 1 was performed, and only the electrode body determined as a non-defective product was used.
[0101]
<Production of negative electrode>
First, the fibrous mesophase low-temperature calcined carbon material (b) having 50 parts by weight of the fibrous carbon material (a) and a true density of 1.52 g / cc is added to 177 parts by weight of a viscous aqueous solution of carboxymethyl cellulose having a concentration of 0.68% by weight. ) 13 parts by weight and 37 parts by weight of the spherical graphite (c) were added, followed by shear dispersion. Subsequently, 3.4 parts by weight of SBR latex was added to the mixture, and uniform mixing and stirring were performed to prepare a negative electrode coating slurry.
[0102]
Next, 103 g / m each of the coating slurry was applied to both sides of a 15 μm thick copper foil (current collector) by a knife edge coater. 2 It was applied to become and dried. The density of the negative electrode material on the copper foil at this time was 1.23 g / cc. Thereafter, pressing and slitting were performed to produce a strip-shaped negative electrode having a thickness of 149 μm (negative electrode material density: 1.5 g / cc) and a width of 43.25 mm.
[0103]
The discharge capacity between the potential of 1 V and 3 V of the obtained negative electrode was 70 mAh / g by the same tests and calculations as in Example 1.
[0104]
The obtained secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5 were initially charged at 25 ° C. with 700 mA, 4.2 V, 6 h, subjected to aging for 12 hours, and then subjected to aging at 700 ° C. at 25 ° C. The average capacity when discharged with a 3.0 V cutoff was measured.
[0105]
After the completion of the initial charge, each secondary battery is transferred to an atmosphere of 60 ° C., subjected to aging for 12 hours, and then charged at 700 mA, 4.2 V, 6 h, and at a cutoff of 700 mA, 3.0 V at the same temperature. The discharge capacity retention ratio (cycle characteristics) with respect to the initial discharge capacity when the discharge was repeated 100 times was measured.
[0106]
These results are shown in Table 1 below. Table 1 also shows the discharge capacity between the negative electrode potentials 1 V to 3 V incorporated in the secondary batteries of Examples 1 to 6 and Comparative Examples 1 to 5.
[0107]
[Table 1]
Figure 0004828690
[0108]
As is clear from Table 1, Examples 1 to 5 having a negative electrode having a capacity of 15 to 30 mAh / g as a capacity at the time of deep discharge further from 3 V to 1 V after 3 V cut discharge. 5 It can be seen that the secondary battery of the present invention is superior in charge / discharge cycle characteristics at high temperatures as compared with the secondary batteries of Comparative Examples 1 to 5 in which the capacity of the negative electrode is outside the range of 15 to 30 mAh / g.
[0109]
In the above-described embodiment, the prismatic lithium ion secondary battery shown in FIG. 2 has been described. However, the present invention relates to the cylindrical lithium ion secondary battery shown in FIG. 1 and the thin lithium ion secondary battery shown in FIGS. Even when applied to a battery, it has the same excellent high-temperature charge / discharge cycle characteristics.
[0110]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having improved high-temperature charge / discharge cycle characteristics by improving the negative electrode.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a cylindrical non-aqueous electrolyte secondary battery (cylindrical lithium ion secondary battery) which is an embodiment of a non-aqueous electrolyte secondary battery according to the present invention.
FIG. 2 is a partially cutaway perspective view showing a prismatic nonaqueous electrolyte secondary battery (a prismatic lithium ion secondary battery) which is another form of the nonaqueous electrolyte secondary battery according to the present invention.
FIG. 3 is a perspective view showing a thin non-aqueous electrolyte secondary battery (thin lithium ion secondary battery) which is still another embodiment of the non-aqueous electrolyte secondary battery according to the present invention.
4 is a cross-sectional view taken along line IV-IV in FIG.
[Explanation of symbols]
1,21 ... Exterior can,
3,23 electrode bodies,
4, 24, 48 ... negative electrode,
5, 25, 45 ... separator,
6, 26, 44 ... positive electrode,
12 ... sealing plate,
28 ... the lid,
41 ... Power generation element,
43, 46 ... current collector,
51 ... Exterior film.

Claims (8)

リチウムを吸蔵・放出可能な正極、リチウムを吸蔵・放出可能な負極、セパレータおよび非水系電解液を備え、
前記正極および前記負極は、集電体にそれぞれ正極材料および負極材料を塗布した構造を有し、
前記負極材料は、繊維状炭素材(a),(b)と非繊維系炭素材(c)とを含む炭素質材を含有し、前記繊維状炭素材(b)がメソフェーズ低温焼成炭素であり、かつ
前記負極は、負極電位1V〜3V間の放電容量として15〜30mAh/gを有することを特徴とする非水系電解液二次電池。
Equipped with a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium, a separator and a non-aqueous electrolyte solution,
The positive electrode and the negative electrode have a structure in which a positive electrode material and a negative electrode material are applied to a current collector, respectively.
The negative electrode material contains a carbonaceous material including fibrous carbon materials (a) and (b) and a non-fibrous carbon material (c), and the fibrous carbon material (b) is mesophase low-temperature calcined carbon. And the said negative electrode has 15-30 mAh / g as discharge capacity between negative electrode potentials 1V-3V, The non-aqueous electrolyte secondary battery characterized by the above-mentioned.
前記繊維状炭素材(a)は、平均繊維径8〜18μm、平均繊維長10〜50μm、真密度2.24g/cc以上であることを特徴とする請求項1記載の非水系電解液二次電池。  The non-aqueous electrolyte secondary solution according to claim 1, wherein the fibrous carbon material (a) has an average fiber diameter of 8 to 18 µm, an average fiber length of 10 to 50 µm, and a true density of 2.24 g / cc or more. battery. 前記繊維状炭素材(b)は、平均繊維径8〜20μm、平均繊維長8〜20μm、真密度1.50〜1.75g/ccのメソフェーズ低温焼成炭素であることを特徴とする請求項1記載の非水系電解液二次電池。  The fibrous carbon material (b) is mesophase low-temperature calcined carbon having an average fiber diameter of 8 to 20 µm, an average fiber length of 8 to 20 µm, and a true density of 1.50 to 1.75 g / cc. The non-aqueous electrolyte secondary battery described. 前記非繊維系炭素材(c)は、片状または球塊状の黒鉛であることを特徴とする請求項1記載の非水系電解液二次電池。The non-fiber-based carbon material (c) is a non-aqueous electrolyte secondary battery according to claim 1, characterized in that the graphite scales flake or spherical mass. 前記繊維状炭素材(b)は、前記炭素質材に対して1〜10重量%配合されることを特徴とする請求項3記載の非水系電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 3, wherein the fibrous carbon material (b) is blended in an amount of 1 to 10% by weight with respect to the carbonaceous material. 前記繊維状炭素材(b)は、前記炭素質材に対して2〜9重量%配合されることを特徴とする請求項3記載の非水系電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 3, wherein the fibrous carbon material (b) is blended in an amount of 2 to 9% by weight with respect to the carbonaceous material. 前記非水系電解液は、非水溶媒としてγ−ブチロラクトンを含有することを特徴とする請求項1記載の非水系電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains γ-butyrolactone as a non-aqueous solvent. 前記γ−ブチロラクトンは、前記非水溶媒中に45〜70重量%占めることを特徴とする請求項7記載の非水系電解液二次電池。  The non-aqueous electrolyte secondary battery according to claim 7, wherein the γ-butyrolactone accounts for 45 to 70% by weight in the non-aqueous solvent.
JP2000282404A 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery Expired - Fee Related JP4828690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282404A JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282404A JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2002093406A JP2002093406A (en) 2002-03-29
JP4828690B2 true JP4828690B2 (en) 2011-11-30

Family

ID=18766931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282404A Expired - Fee Related JP4828690B2 (en) 2000-09-18 2000-09-18 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4828690B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138503A1 (en) * 2020-12-23 2022-06-30 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3727666B2 (en) * 1991-07-29 2005-12-14 株式会社東芝 Lithium secondary battery
JP3239302B2 (en) * 1991-12-20 2001-12-17 富士写真フイルム株式会社 Organic electrolyte secondary battery
JP3406843B2 (en) * 1993-03-10 2003-05-19 株式会社東芝 Lithium secondary battery
JP3556270B2 (en) * 1994-06-15 2004-08-18 株式会社東芝 Lithium secondary battery
JP3410291B2 (en) * 1996-06-07 2003-05-26 東芝電池株式会社 Coin type non-aqueous solvent secondary battery

Also Published As

Publication number Publication date
JP2002093406A (en) 2002-03-29

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR101290410B1 (en) Battery
JP5228576B2 (en) Lithium ion secondary battery and electric vehicle power supply
JP2002203562A (en) Non-aqueous electrolyte secondary battery
JP4746278B2 (en) Nonaqueous electrolyte secondary battery
JP2004006275A (en) Non-aqueous electrolytic solution rechargeable battery
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP3643522B2 (en) Nonaqueous electrolyte secondary battery
JP2002203609A (en) Charging method for nonaqueous electrolyte secondary battery
JP2005005113A (en) Non-aqueous electrolyte secondary battery
KR20190032096A (en) Designing method for electrode for lithium secondary battery and method for preparing electrode for lithium secondary battery comprising the same
US7452636B2 (en) Lithium secondary battery
JP2002110250A (en) Non-aqueous electrolyte secondary battery
US20230361292A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3732654B2 (en) Graphite particles, negative electrode for lithium secondary battery, and lithium secondary battery
JP4287123B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP3351765B2 (en) Non-aqueous electrolyte secondary battery
JP4750929B2 (en) Non-aqueous electrolyte secondary battery
JP4828690B2 (en) Non-aqueous electrolyte secondary battery
JP3927211B2 (en) Thin non-aqueous electrolyte secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JP2002110233A (en) Non-aqueous electrolyte secondary battery
JP2000195550A (en) Nonaqueous electrolyte secondary battery
JP3428184B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060413

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees