JPH09326250A - Composite film for battery separator - Google Patents

Composite film for battery separator

Info

Publication number
JPH09326250A
JPH09326250A JP8163776A JP16377696A JPH09326250A JP H09326250 A JPH09326250 A JP H09326250A JP 8163776 A JP8163776 A JP 8163776A JP 16377696 A JP16377696 A JP 16377696A JP H09326250 A JPH09326250 A JP H09326250A
Authority
JP
Japan
Prior art keywords
polyolefin
weight
molecular weight
battery separator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8163776A
Other languages
Japanese (ja)
Other versions
JP3682120B2 (en
Inventor
Kotaro Takita
耕太郎 滝田
Takamitsu Kaimai
教充 開米
Soichiro Yamaguchi
総一郎 山口
Koichi Kono
公一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Tonen Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK, Tonen Chemical Corp filed Critical Tonen Sekiyu Kagaku KK
Priority to JP16377696A priority Critical patent/JP3682120B2/en
Priority to US08/864,079 priority patent/US5922492A/en
Priority to DE69724513T priority patent/DE69724513T2/en
Priority to EP97303786A priority patent/EP0811479B1/en
Priority to CA002206940A priority patent/CA2206940C/en
Priority to KR1019970022997A priority patent/KR100452784B1/en
Publication of JPH09326250A publication Critical patent/JPH09326250A/en
Application granted granted Critical
Publication of JP3682120B2 publication Critical patent/JP3682120B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite film for a battery separator which is excellent in permeability and mechanical strength and has a function of cutting off permeability at a low temperature and is excellent in safety by using a laminated composite film of a polyolefine microporous film and polypropylene nonwoven fabric as a battery separator. SOLUTION: A polyolefine microporous film is composed of a polyolefine composition containing polyolefine whose weight average molecular weight is not less than 5×10<5> or its component, and has specific porosity, an average through hole diameter and tensile rupture strength. A composite film for a battery separator is constituted by laminating this microporous film and polypropylene nonwoven fabric. When a composite film having such constitution is used, in the case where a temperature rises at abnormal time, since the polyolefine microporous film is first softens and melts at a lower temperature and blocks up a pore part, a short circuit current is reduced, and the polypropylene nonwoven fabric acts as a porosity support body, and maintains a function of reducing the short-circuit current up to a high temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム電池等の
非水溶媒電池に対応するセパレーターとして使用され
る、透過性能及び機械的強度に優れるとともに、短絡に
よる異常発熱時において低温で透過性を遮断する機能を
有し、かつ安全性の高い電池セパレーター用複合膜に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a separator corresponding to a non-aqueous solvent battery such as a lithium battery, and has excellent permeation performance and mechanical strength. And a highly safe composite membrane for a battery separator.

【0002】[0002]

【従来の技術】ポリオレフィン微多孔膜は、各種の分離
膜や、電池用セパレーター、電解コンデンサー用セパレ
ーター等に使用されている。特にリチウム電池において
は、リチウム金属、リチウムイオンが用いられているた
めに非プロトン性極性有機溶媒が電解液溶媒として用い
られ、また、電解質としては、リチウム塩を用いてい
る。したがって正極と負極との間に設置するセパレータ
ーには、有機溶媒に不溶でありかつ電解質や電極活物質
に対して安定なポリエチレン、ポリプロピレンなどのポ
リオレフィン系材料を微多孔膜や不織布に加工したもの
をセパレーターとして用いている。
2. Description of the Related Art Microporous polyolefin membranes are used for various separation membranes, separators for batteries, separators for electrolytic capacitors, and the like. Particularly in a lithium battery, since a lithium metal and lithium ion are used, an aprotic polar organic solvent is used as an electrolytic solution solvent, and a lithium salt is used as an electrolyte. Therefore, for the separator installed between the positive electrode and the negative electrode, a polyolefin-based material such as polyethylene or polypropylene that is insoluble in organic solvents and stable to electrolytes and electrode active materials is processed into a microporous membrane or nonwoven fabric. It is used as a separator.

【0003】最近、超高分子量のポリオレフィンを用い
て高強度および高弾性の微多孔膜が開発されてきてい
る。例えば、重量平均分子量が7×105 以上の超高分
子量ポリオレフィンを溶媒中で加熱溶解した溶液からゲ
ル状シートを成形し、前記ゲル状シート中の溶媒量を脱
溶媒処理により調整し、次いで加熱延伸した後、残留溶
媒を除去することにより、微多孔膜を製造する方法が提
案されている(特開昭60−242035号他)。ま
た、超高分子量ポリオレフィンの高濃度溶液からのポリ
オレフィン微多孔膜の製法として、超高分子量ポリオレ
フィンを含有するポリオレフィン組成物の分子量分布を
特定の値にする方法が提案されている(特開平3−64
334号)。
Recently, high-strength and high-elasticity microporous membranes have been developed using ultrahigh molecular weight polyolefins. For example, a gel-like sheet is formed from a solution obtained by heating and dissolving an ultra-high molecular weight polyolefin having a weight average molecular weight of 7 × 10 5 or more in a solvent, the amount of the solvent in the gel-like sheet is adjusted by desolvation treatment, and then heating is performed. A method for producing a microporous membrane by removing the residual solvent after stretching has been proposed (JP-A-60-242035, etc.). Further, as a method for producing a polyolefin microporous membrane from a high-concentration solution of ultra-high molecular weight polyolefin, a method has been proposed in which the molecular weight distribution of the polyolefin composition containing the ultra-high molecular weight polyolefin is set to a specific value (JP-A-3- 64
334).

【0004】ところで、上記ポリオレフィン微多孔膜を
リチウム電池用セパレーター等に用いる場合には、電極
が短絡して電池内部の温度が上昇した時に、発火等の事
故が生じるのを防止する必要がある。このため、リチウ
ムの発火以前に溶融してその孔を目詰りさせ、電流をシ
ャットダウンさせる機能をセパレーターに持たせる必要
がある。ところが上記各微多孔膜においては微多孔膜の
閉塞による透過性遮断温度が安全性の点で必ずしも十分
に低いものではなく、より一層安全性を向上させるため
には、さらに低い温度で電流のシャットダウンを起こす
セパレーターとすることが望ましい。したがって、低い
無孔化温度を有しているほど、かつ、無孔化温度と膜破
れ温度の差が大きいほど、高温特性が良好で安全性の高
い電池用セパレーターになりうると考えられる。
When the above-mentioned microporous polyolefin membrane is used as a separator for a lithium battery or the like, it is necessary to prevent accidents such as fire from occurring when the temperature inside the battery rises due to short-circuiting of the electrodes. For this reason, it is necessary for the separator to have a function of melting before lithium is ignited, clogging the holes, and shutting down the current. However, in each of the above microporous membranes, the permeability cutoff temperature due to blockage of the microporous membrane is not necessarily sufficiently low in terms of safety, and in order to further improve safety, current shutdown at a lower temperature It is desirable to use a separator that causes Therefore, it is considered that a battery separator having better high-temperature characteristics and higher safety can be obtained as it has a lower non-porous temperature and a larger difference between the non-porous temperature and the film breaking temperature.

【0005】電池用セパレーターの短絡時のシャットダ
ウン機能を付与する技術としては、特開昭60−239
54号公報に、電池が外部ショートした場合にジュール
熱により電池内温度が上昇してセパレーター部材が溶融
し、内部ショートして電池の発火、爆発等の事故防止を
する目的で、ポリプロピレンまたはポリエチレン製の単
層の微孔性フィルムを使用することが望ましいと開示さ
れている。
Japanese Patent Application Laid-Open No. Sho 60-239 discloses a technique for providing a shutdown function when a battery separator is short-circuited.
No. 54 discloses that when a battery is short-circuited externally, the temperature inside the battery rises due to Joule heat, the separator member is melted, and short-circuited internally to prevent accidents such as ignition and explosion of the battery. It is disclosed that it is desirable to use a single-layer microporous film.

【0006】ポリプロピレン及びポリエチレン製微孔性
フィルムを用いた電池では、外部ショートさせた場合、
ジュール熱で電池温度が上昇して各フィルム素材の有す
る溶融点に達すると微細孔が溶融物で塞がれ、電気的絶
縁は勿論のことイオンの移動も阻止する絶縁体となるた
め電流は流れなくなる。その結果、電池温度もそれ以上
に上昇することなく発火や爆発といった不都合は抑制さ
れることになると記載されている。しかしながら、上記
の非水電解液型セパレーターでは、ある程度安全性は向
上するものの、温度が上昇し、熱可塑性樹脂の融点近傍
では樹脂の凝集力が小さくなってしまい、セパレーター
が破れてしまう場合があり、発火、爆発の危険性の解決
には十分とはいえない。
In a battery using a microporous film made of polypropylene and polyethylene, when an external short circuit occurs,
When the temperature of the battery rises due to Joule heat and reaches the melting point of each film material, the micropores are closed with the melt, and the current flows because it becomes an insulator that prevents not only electrical insulation but also ion movement. Disappears. As a result, it is described that inconveniences such as ignition and explosion can be suppressed without increasing the battery temperature further. However, in the above non-aqueous electrolyte type separator, although the safety is improved to some extent, the temperature rises, the cohesive force of the resin becomes small in the vicinity of the melting point of the thermoplastic resin, and the separator may be broken. However, it is not enough to solve the danger of ignition and explosion.

【0007】[0007]

【発明が解決しようとする課題】したがって、本発明の
課題は、透過性能及び機械的強度に優れるとともに、低
温で透過性を遮断する機能を有する安全性に優れた電池
セパレーター用複合膜を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a composite membrane for a battery separator, which is excellent in permeation performance and mechanical strength and has a function of blocking permeation at low temperature. That is.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を達
成するため、超高分子量ポリオレフィンまたはその成分
を含有する組成物からなる微多孔膜とポリプロピレン製
不織布を積層することにより、透過性能及び機械的強度
に優れるとともに、低温で透過性を遮断しかつ安全性に
優れた複合膜が得られることを見いだし、本発明に想到
した。
In order to achieve the above-mentioned object, the present invention provides a polypropylene porous nonwoven fabric and a microporous membrane made of a composition containing an ultrahigh molecular weight polyolefin or a component thereof, and a polypropylene nonwoven fabric. The present invention has been accomplished by discovering that a composite membrane having excellent mechanical strength, blocking permeability and excellent safety can be obtained at low temperature, and the present invention has been accomplished.

【0009】すなわち、本発明の第一は、重量平均分子
量が5×105 以上のポリオレフィンまたはその成分を
含有するポリオレフィン組成物からなり、空孔率が30
〜95%、平均貫通孔径が0.001〜1μm、引張り
破断強度が500kg/cm2 以上であるポリオレフィ
ン微多孔膜に、ポリプロピレン製不織布を積層した電池
セパレーター用複合膜である。
That is, the first aspect of the present invention comprises a polyolefin composition having a weight average molecular weight of 5 × 10 5 or more or a component thereof, and has a porosity of 30.
It is a composite membrane for battery separators, which is obtained by laminating a polypropylene nonwoven fabric on a polyolefin microporous membrane having a pore size of ˜95%, an average through hole diameter of 0.001 to 1 μm, and a tensile breaking strength of 500 kg / cm 2 or more.

【0010】また、本発明の第二は、重量平均分子量が
5×105 以上のポリオレフィンまたはその成分を含有
するポリオレフィン組成物70〜95重量%と、重量平
均分子量が1000〜4000で、融点が80〜130
℃の低分子量ポリエチレン5〜30重量%からなり、空
孔率が30〜95%、平均貫通孔径が0.001〜1μ
m、引張り破断強度が500kg/cm2 以上であるポ
リオレフィン微多孔膜に、ポリプロピレン製不織布を積
層した電池セパレーター用複合膜である。
In a second aspect of the present invention, 70 to 95% by weight of a polyolefin composition containing a polyolefin having a weight average molecular weight of 5 × 10 5 or more or a component thereof, a weight average molecular weight of 1000 to 4000 and a melting point of 80-130
Consisting of 5 to 30% by weight of low molecular weight polyethylene at 30 ° C., porosity of 30 to 95%, and average through hole diameter of 0.001 to 1 μm
m is a composite membrane for a battery separator in which a polypropylene nonwoven fabric is laminated on a polyolefin microporous membrane having a tensile breaking strength of 500 kg / cm 2 or more.

【0011】さらに、本発明の第三は、重量平均分子量
が5×105 以上のポリオレフィンまたはその成分を含
有するポリオレフィン組成物70〜95%重量%と、低
密度ポリエチレンまたは直鎖状低密度ポリエチレン5〜
30重量%からなり、空孔率が30〜95%、平均貫通
孔径が0.001〜1μm、引張り破断強度が500k
g/cm2 以上であるポリオレフィン微多孔膜に、ポリ
プロピレン製不織布を積層した電池セパレーター用複合
膜である。
The third aspect of the present invention is to use a polyolefin composition having a weight average molecular weight of 5 × 10 5 or more or a polyolefin composition containing 70 to 95% by weight of the polyolefin, and low density polyethylene or linear low density polyethylene. 5-
30% by weight, porosity 30-95%, average through-hole diameter 0.001-1 μm, tensile breaking strength 500 k
A composite membrane for a battery separator, which is obtained by laminating a polypropylene non-woven fabric on a polyolefin microporous membrane having a g / cm 2 or more.

【0012】[0012]

【発明の実施の形態】本発明の電池セパレーター用複合
膜は、ポリオレフィン微多孔膜とポリプロピレン製不織
布を積層することによって得られる。以下複合膜につい
て詳細を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The composite membrane for battery separator of the present invention is obtained by laminating a polyolefin microporous membrane and a polypropylene nonwoven fabric. Hereinafter, the composite film will be described in detail.

【0013】(1)ポリオレフィン微多孔膜 本発明の微多孔膜の空孔率は30〜95%、好ましくは
30〜50%である。空孔率が30%未満では電解液の
空孔内への充填量が少なくなり、好ましくない。一方9
5%を超えると膜の機械的強度が小さくなり実用性に劣
る。
(1) Polyolefin Microporous Membrane The porosity of the microporous membrane of the present invention is 30 to 95%, preferably 30 to 50%. If the porosity is less than 30%, the filling amount of the electrolyte solution into the cavities decreases, which is not preferable. 9
If it exceeds 5%, the mechanical strength of the film becomes small and the practicality is poor.

【0014】微多孔膜の平均貫通孔径は0.001〜1
μm、好ましくは0.005〜0.5μmである。平均
貫通孔径が0.001μm未満であると、電解液の空孔
内への充填が物理的に困難となるとともに、イオンの通
過に支障をきたす。一方1μmを超える場合は、活物質
や反応生成物の拡散を防止することが困難となる。
The average through-pore diameter of the microporous membrane is 0.001-1.
μm, preferably 0.005 to 0.5 μm. If the average diameter of the through holes is less than 0.001 μm, it becomes physically difficult to fill the pores with the electrolytic solution and the passage of ions is hindered. On the other hand, when it exceeds 1 μm, it becomes difficult to prevent the diffusion of the active material and the reaction product.

【0015】引張り破断強度は500kg/cm2 以上
である。高強度で裂けにくいセパレーターとすることが
できる。
The tensile breaking strength is 500 kg / cm 2 or more. It can be a separator that has high strength and does not easily tear.

【0016】本発明のポリオレフィン微多孔膜のポリオ
レフィンは、重量平均分子量が5×105 以上、好まし
くは1×106 〜15×106 のものである。重量平均
分子量が5×105 未満では、微多孔膜の製造時の延伸
工程において最大延伸倍率が低く、目的の微多孔膜が得
られない。一方、上限は特に限定的ではないが15×1
6 を超えるものは、微多孔膜の製造時のゲル状成形物
の形成において成形性に劣る。
The polyolefin of the microporous polyolefin membrane of the present invention has a weight average molecular weight of 5 × 10 5 or more, preferably 1 × 10 6 to 15 × 10 6 . When the weight average molecular weight is less than 5 × 10 5 , the maximum draw ratio in the drawing step during the production of the microporous film is low, and the desired microporous film cannot be obtained. On the other hand, the upper limit is not particularly limited, but is 15 × 1
0 6 to exceed is inferior in moldability in forming the gel molding at the time of production of the microporous membrane.

【0017】また、本発明においては、後述のポリオレ
フィン溶液の高濃度化と微多孔膜の強度の向上を図るた
めに、重量平均分子量1×106 〜15×106 の超高
分子量ポリオレフィンと重量平均分子量1×105 以上
1×106 未満のポリオレフィンとの組成物を用いるこ
とができる。前記超高分子量ポリオレフィン成分のポリ
オレフィン組成物中の含有量は、ポリオレフィン組成物
全体を100重量%として1重量%以上が好ましく、よ
り好ましくは10〜70重量%である。前記超高分子量
ポリオレフィンが1重量%未満では、延伸性の向上に寄
与する超高分子量ポリオレフィンの分子鎖の絡み合いが
ほとんど形成されず、高強度の微多孔膜が得られない。
Further, in the present invention, in order to increase the concentration of the polyolefin solution described later and improve the strength of the microporous membrane, an ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 to 15 × 10 6 and a weight are used. A composition with a polyolefin having an average molecular weight of 1 × 10 5 or more and less than 1 × 10 6 can be used. The content of the ultra high molecular weight polyolefin component in the polyolefin composition is preferably 1% by weight or more, more preferably 10 to 70% by weight, based on 100% by weight of the entire polyolefin composition. If the ultra-high molecular weight polyolefin is less than 1% by weight, the entanglement of the molecular chains of the ultra-high molecular weight polyolefin that contributes to the improvement of the stretchability is hardly formed, and a high-strength microporous membrane cannot be obtained.

【0018】さらに、前記ポリオレフィンまたはそのポ
リオレフィン組成物の分子量分布の尺度として用いられ
る重量平均分子量/数平均分子量(以下「Mw/Mn」
という)は300以下が好ましく、より好ましくは5〜
50である。このMw/Mnが300を超えると、延伸
時に低分子量成分の破断が起り膜全体の強度が低下する
ため好ましくない。上記ポリオレフィンとしては、エチ
レン、プロピレン、1−ブテン、4−メチル−ペンテン
−1、1−ヘキセンなどを重合した結晶性の単独重合
体、2段重合体、または共重合体及びこれらのブレンド
物等が挙げられる。これらのうちではポリプロピレン、
ポリエチレン(特に高密度ポリエチレン)及びこれらの
組成物等が好ましい。
Furthermore, the weight average molecular weight / number average molecular weight (hereinafter referred to as “Mw / Mn”) used as a measure of the molecular weight distribution of the polyolefin or the polyolefin composition thereof.
Is preferably 300 or less, more preferably 5 to
50. If this Mw / Mn exceeds 300, the low molecular weight component is broken during stretching and the strength of the entire film is reduced, which is not preferable. As the above-mentioned polyolefin, a crystalline homopolymer, a two-stage polymer or a copolymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-pentene-1, 1-hexene and the like, and blends thereof, etc. Is mentioned. Among these, polypropylene,
Polyethylene (particularly high-density polyethylene) and compositions thereof are preferred.

【0019】また、ポリオレフィンまたはポリオレフィ
ン組成物にはポリオレフィン微多孔膜をリチウム電池等
のセパレーターとして用い、電極が短絡して電池内部の
温度が上昇した時、低温でシャットダウンする機能を付
与する物質を加えることができる。
In addition, a polyolefin microporous film is used as a separator for a lithium battery or the like in a polyolefin or a polyolefin composition, and a substance that gives a function of shutting down at a low temperature when an electrode short-circuits and the temperature inside the battery rises is added. be able to.

【0020】低温シャットダウン性を付与する物質とし
ては、低密度ポリエチレンや低分子量ポリエチレンが挙
げられる。低密度ポリエチレンとしては、高圧法の分岐
状ポリエチレン(LDPE)及び低圧法による直鎖状の
低密度ポリエチレン(LLDPE)が挙げられる。LD
PEの場合、その密度は通常0.9l〜0.93g/c
3 程度であり、またそのメルトインデックス(MI
190℃ 2.16kg荷重)は、0.1〜20g/1
0分であるのが好ましく、より好ましくは、0.5〜1
0g/10分である。LLDPEの場合、その密度は通
常0.9l〜0.93g/cm3 程度であり、またその
メルトインデックス(MI 190℃2.16kg荷
重)は、0.1〜25g/10分であるのが好ましく、
より好ましくは、0.5〜10g/10分である。ま
た、低分子量ポリエチレンとしては重量平均分子量が1
000〜4000で、融点が80〜130℃の低分子量
ポリエチレンである。
Examples of the substance imparting the low temperature shutdown property include low density polyethylene and low molecular weight polyethylene. Examples of the low density polyethylene include branched polyethylene (LDPE) prepared by the high pressure method and linear low density polyethylene (LLDPE) prepared by the low pressure method. LD
In the case of PE, its density is usually 0.91 to 0.93 g / c
m 3 and its melt index (MI
190 ° C 2.16 kg load) is 0.1 to 20 g / 1
It is preferably 0 minutes, more preferably 0.5 to 1
0 g / 10 minutes. In the case of LLDPE, its density is usually about 0.91 to 0.93 g / cm 3 , and its melt index (MI 190 ° C 2.16 kg load) is preferably 0.1 to 25 g / 10 minutes. ,
More preferably, it is 0.5 to 10 g / 10 minutes. In addition, the low molecular weight polyethylene has a weight average molecular weight of 1
It is a low molecular weight polyethylene having a melting point of 80 to 130 ° C. and a melting point of 80 to 130 ° C.

【0021】前記LDPE、LLDPE、低分子量ポリ
エチレン等の配合量は、ポリオレフィンまたはポリオレ
フィン組成物とLDPE、LLDPEもしくは低分子量
ポリエチレンの合計を100重量%として5〜30重量
%、好ましくは5〜25重量%である。5重量%以下で
は低温シャットダウン効果が低く、30重量%以上では
得られたポリオレフィン微多孔膜の強度が著しく損なわ
れる。
The amount of the LDPE, LLDPE, low molecular weight polyethylene, etc. to be blended is 5 to 30% by weight, preferably 5 to 25% by weight, based on 100% by weight of the total of polyolefin or polyolefin composition and LDPE, LLDPE or low molecular weight polyethylene. Is. If it is 5% by weight or less, the low temperature shutdown effect is low, and if it is 30% by weight or more, the strength of the obtained polyolefin microporous membrane is significantly impaired.

【0022】本発明のポリオレフィン微多孔膜は、ポリ
オレフィン、ポリオレフィン組成物またはこれらに低温
シャットダウン効果を付与するLDPE、LLDPEも
しくは、低分子量ポリエチレンを加えた樹脂成分(以
下、これらもポリオレフィン組成物という)に有機液状
体または固体を混合し、溶融混練後押出成形し、抽出、
延伸を施すことにより得られる。また、樹脂成分および
有機液状体または固体の混合物に、無機微粉体を添加し
ても何等差し支えない。本発明のポリオレフィン微多孔
膜を得る好ましい方法としては、ポリオレフィン組成
物、特に前記LDPE、LLDPEまたは低分子量ポリ
エチレンを配合したポリオレフィン組成物にポリオレフ
ィンの良溶媒を供給しポリオレフィン組成物の溶液を調
製して、この溶液を押出機のダイよりシート状に押し出
した後、冷却してゲル状組成物を形成して、このゲル組
成物を加熱延伸し、しかる後残存する溶媒を除去する方
法である。
The polyolefin microporous membrane of the present invention is a polyolefin, a polyolefin composition or a resin component (hereinafter also referred to as a polyolefin composition) obtained by adding LDPE, LLDPE or low molecular weight polyethylene which gives a low temperature shutdown effect thereto. Mixing organic liquid or solid, melt-kneading, then extrusion molding, extraction,
It can be obtained by stretching. Further, it does not matter even if the inorganic fine powder is added to the mixture of the resin component and the organic liquid or solid. A preferred method for obtaining the polyolefin microporous membrane of the present invention is to prepare a solution of the polyolefin composition by supplying a good solvent for the polyolefin to the polyolefin composition, particularly the polyolefin composition containing LDPE, LLDPE or low molecular weight polyethylene. This is a method in which the solution is extruded from a die of an extruder into a sheet and then cooled to form a gel composition, the gel composition is heated and stretched, and then the remaining solvent is removed.

【0023】本発明において、原料となるポリオレフィ
ンまたはポリオレフィン組成物の溶液は、上述のポリオ
レフィンまたはポリオレフィン組成物を、溶媒に加熱溶
解することにより調製する。この溶媒としては、ポリオ
レフィンまたはポリオレフィン組成物を十分に溶解でき
るものであれば特に限定されない。例えば、ノナン、デ
カン、ウンデカン、ドデカン、流動パラフィンなどの脂
肪族または環式の炭化水素、あるいは沸点がこれらに対
応する鉱油留分などがあげられるが、溶媒含有量が安定
なゲル状成形物を得るためには流動パラフィンのような
不揮発性の溶媒が好ましい。加熱溶解は、ポリオレフィ
ンまたはポリオレフィン組成物が完全に溶解する温度で
強力に攪拌または押出機で混練しながら行う。その温度
は、例えば140〜250℃の範囲が好ましい。また、
ポリオレフィンまたはポリオレフィン組成物の溶液の濃
度は、10〜80重量%好ましくは10〜50重量%で
ある。濃度が10重量%未満では、使用する溶媒量が多
く経済的でないばかりか、シート状に成形する際に、ダ
イス出口でスウェルやネックインが大きくシートの成形
が困難となる。なお、加熱溶解にあたってはポリオレフ
ィンまたはポリオレフィン組成物の酸化を防止するため
に酸化防止剤を添加するのが好ましい。
In the present invention, a solution of a polyolefin or a polyolefin composition as a raw material is prepared by heating and dissolving the above-mentioned polyolefin or polyolefin composition in a solvent. The solvent is not particularly limited as long as it can sufficiently dissolve the polyolefin or the polyolefin composition. Examples thereof include nonane, decane, undecane, dodecane, liquid paraffin and other aliphatic or cyclic hydrocarbons, or mineral oil fractions having a boiling point corresponding to these, etc. In order to obtain it, a non-volatile solvent such as liquid paraffin is preferable. Heat dissolution is carried out at a temperature at which the polyolefin or the polyolefin composition is completely dissolved, with vigorous stirring or kneading with an extruder. The temperature is preferably in the range of 140 to 250 ° C, for example. Also,
The concentration of the solution of the polyolefin or the polyolefin composition is 10 to 80% by weight, preferably 10 to 50% by weight. If the concentration is less than 10% by weight, not only is the amount of solvent used large and it is not economical, but also when forming into a sheet, swell and neck-in are large at the die outlet, making it difficult to form the sheet. In addition, at the time of heating and dissolving, it is preferable to add an antioxidant to prevent oxidation of the polyolefin or the polyolefin composition.

【0024】次に、このポリオレフィンまたはポリオレ
フィン組成物の加熱溶液を好ましくはダイスから押し出
して成形する。ダイスは、通常長方形の口金形状をした
シートダイスが用いられるが2重円筒状のインフレーシ
ョンダイスなども用いることができる。シートダイスを
用いた場合のダイスギャップは通常0.1〜5mmであ
り、押し出し成形温度は140〜250℃である。
Next, the heated solution of the polyolefin or the polyolefin composition is preferably extruded from a die to be molded. As the die, a sheet die having a rectangular base shape is usually used, but a double cylindrical inflation die can also be used. When a sheet die is used, the die gap is usually 0.1 to 5 mm, and the extrusion temperature is 140 to 250 ° C.

【0025】このようにしてダイスから押し出された溶
液は、冷却することによりゲル状組成物に成形される。
冷却方法としては、冷風、冷却水、その他の冷却媒体に
直接接触させる方法、冷媒で冷却したロールに接触させ
る方法などを用いることができる。なお、ダイスから押
し出された溶液は、冷却前あるいは冷却中に好ましくは
1〜10、より好ましくは1〜5の引き取り比で引取っ
てもよい。
The solution thus extruded from the die is cooled to form a gel composition.
As a cooling method, a method of directly contacting with cold air, cooling water, or other cooling medium, a method of contacting with a roll cooled with a refrigerant, or the like can be used. The solution extruded from the die may be taken up at a take-up ratio of preferably 1 to 10, more preferably 1 to 5, before or during cooling.

【0026】次に、このゲル状成形物に延伸を行う。延
伸はゲル状成形物を加熱し、通常のテンター法、ロール
法、インフレーション法、圧延法もしくはこれらの方法
の組み合わせによって所定の倍率で行う。延伸は一軸延
伸でも二軸延伸でもよいが、二軸延伸が好ましい。ま
た、二軸延伸の場合は、縦横同時延伸または逐次延伸の
いずれでもよい。延伸温度は、ポリオレフィンまたはポ
リオレフィン組成物の融点+10℃以下、好ましくは結
晶分散温度から結晶融点未満の範囲である。また延伸倍
率は原反の厚さによって異なるが、一軸延伸では2倍以
上が好ましく、より好ましくは3〜30倍である。二軸
延伸では面倍率で10倍以上が好ましく、より好ましく
は15〜400倍である。面倍率が10倍未満では延伸
が不十分で高弾性、高強度の微多孔膜が得られない。一
方、面倍率が400倍を超えると、延伸操作などで制約
が生じる。
Next, the gel-like molded product is stretched. The stretching is performed by heating the gel-like molded product and using a normal tenter method, roll method, inflation method, rolling method or a combination of these methods at a predetermined magnification. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. Further, in the case of biaxial stretching, either vertical and horizontal simultaneous stretching or sequential stretching may be used. The stretching temperature is equal to or lower than the melting point of the polyolefin or the polyolefin composition + 10 ° C., preferably in the range from the crystal dispersion temperature to the crystal melting point. The stretching ratio varies depending on the thickness of the raw fabric, but in uniaxial stretching, it is preferably 2 times or more, more preferably 3 to 30 times. In biaxial stretching, the surface magnification is preferably 10 times or more, more preferably 15 to 400 times. If the surface magnification is less than 10 times, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, if the area magnification exceeds 400 times, restrictions are imposed on the stretching operation and the like.

【0027】得られた延伸成形物は、溶剤で洗浄し残留
する溶媒を除去する。洗浄溶剤としては、ペンタン、ヘ
キサン、ヘプタンなどの炭化水素、塩化メチレン、四塩
炭素などの塩素化炭化水素、三フッ化エタンなどのフッ
化炭化水素、ジエチルエーテル、ジオキサンなどのエー
テル類などの易揮発性のものを用いることができる。こ
れらの溶剤はポリオレフィン組成物の溶解に用いた溶媒
に応じて適宜選択し、単独もしくは混合して用いる。洗
浄方法は、溶剤に侵漬し抽出する方法、溶剤をシャワー
する方法、またはこれらの組合せによる方法などにより
行うことができる。
The stretched molded product obtained is washed with a solvent to remove the residual solvent. Examples of cleaning solvents include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and tetrasalt carbon, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane. A volatile one can be used. These solvents are appropriately selected according to the solvent used for dissolving the polyolefin composition, and used alone or as a mixture. The washing method can be performed by a method of immersing in a solvent for extraction, a method of showering the solvent, a method of a combination thereof, or the like.

【0028】上述のような洗浄は、延伸成形物中の残留
溶媒が1重量%未満になるまで行う。その後洗浄溶剤を
乾燥するが、洗浄溶剤の乾燥方法は加熱乾燥、風乾など
の方法で行うことができる。乾燥した延伸成形物は、結
晶分散温度〜融点の温度範囲で熱固定することが望まし
い。
The above-mentioned washing is carried out until the residual solvent in the stretch-molded product is less than 1% by weight. Thereafter, the washing solvent is dried, and the washing solvent can be dried by a method such as heat drying or air drying. It is desirable that the dried stretch molded product is heat-set at a temperature in the range of the crystal dispersion temperature to the melting point.

【0029】以上のようにして製造したポリオレフィン
微多孔膜は、空孔率が30〜95%で平均貫通孔径が
0.001〜1μmで、かつ引張り破断強度が500k
g/cm2 以上である。またポリオレフィン微多孔膜の
厚さは5〜50μmである。
The polyolefin microporous membrane produced as described above has a porosity of 30 to 95%, an average through pore diameter of 0.001 to 1 μm, and a tensile breaking strength of 500 k.
g / cm 2 or more. The polyolefin microporous film has a thickness of 5 to 50 μm.

【0030】(2)ポリプロピレン製不織布 積層体に用いるポリプロピレン製不織布は、繊維径0.
1〜50μm、目付け5〜50g/m2 、好ましくは7
〜45g/m2 、通気度0.1〜100cc/cm2
秒、厚さが40〜500μmのものが好ましい。
(2) Polypropylene non-woven fabric The polypropylene non-woven fabric used for the laminate has a fiber diameter of 0.
1 to 50 μm, basis weight 5 to 50 g / m 2 , preferably 7
~ 45 g / m 2 , air permeability 0.1 to 100 cc / cm 2
Seconds and thicknesses of 40 to 500 μm are preferred.

【0031】(3)積層体 本発明の電池セパレーター用複合膜は上記ポリオレフィ
ン微多孔膜とポリプロピレン製不織布を積層処理するこ
とにより得られる。積層処理は通常のカレンダー処理に
より行う。
(3) Laminate The composite membrane for battery separator of the present invention is obtained by laminating the above-mentioned polyolefin microporous membrane and polypropylene nonwoven fabric. The laminating process is performed by an ordinary calendar process.

【0032】積層は、微多孔膜/不織布の2層、不織布
/微多孔膜/不織布の3層のように微多孔膜の片側又は
両側に不織布を積層してもよい。
As for the lamination, the nonwoven fabric may be laminated on one side or both sides of the microporous membrane such as two layers of microporous membrane / nonwoven fabric and three layers of nonwoven fabric / microporous membrane / nonwoven fabric.

【0033】積層体の膜厚は、電池用セパレーターとし
て用いることのできる範囲になるように予熱圧縮ロール
及び加熱圧縮ロールをコントロールするのが好ましい。
It is preferable to control the preheating compression roll and the heating compression roll so that the film thickness of the laminate is within a range that can be used as a battery separator.

【0034】[0034]

【実施例】以下に本発明について実施例を挙げてさらに
詳細に説明するが、本発明は実施例に特に限定されるも
のではない。なお、実施例における試験方法は次の通り
である。 (1)膜厚:断面を走査型電子顕微鏡により測定。 (2)空孔率:重量法により測定。 (3)平均貫通孔径:オムニソープ360(日機装
(株))によって測定。 (4)引張り破断強度:ASTM D882に準拠して
測定。 (5)透気度:JIS P8117に準拠して測定。 (6)シャットダウン温度:所定温度に加熱することに
よって、透気度が10万sec/100cc以上となる
温度。 (7)メルトダウン温度:所定温度に加熱することによ
って、膜が溶けて破膜する温度。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not particularly limited to the examples. In addition, the test method in an Example is as follows. (1) Film thickness: The cross section was measured with a scanning electron microscope. (2) Porosity: measured by a gravimetric method. (3) Average through-hole diameter: measured with Omnisorp 360 (Nikkiso Co., Ltd.). (4) Tensile breaking strength: measured according to ASTM D882. (5) Air permeability: Measured according to JIS P8117. (6) Shutdown temperature: A temperature at which the air permeability becomes 100,000 sec / 100 cc or more when heated to a predetermined temperature. (7) Meltdown temperature: The temperature at which the film melts and ruptures when heated to a predetermined temperature.

【0035】実施例1 重量平均分子量が2.5×106 の超高分子量ポリエチ
レン6重量部と重量平均分子量が3.5×105 の高密
度ポリエチレン24重量部のポリエチレン組成物100
重量部に酸化防止剤0.375重量部を加えたポリエチ
レン組成物を得た。このポリエチレン組成物30重量部
を二軸押出機(58mmφ、L/D=42、強混練タイ
プ)に投入した。またこの二軸押出機のサイドフィーダ
ーから流動パラフィン70重量部を供給し、溶融混練し
て、押出機中にてポリエチレン溶液を調製した。
Example 1 A polyethylene composition 100 comprising 6 parts by weight of ultra high molecular weight polyethylene having a weight average molecular weight of 2.5 × 10 6 and 24 parts by weight of high density polyethylene having a weight average molecular weight of 3.5 × 10 5.
A polyethylene composition having 0.375 parts by weight of an antioxidant added to parts by weight was obtained. 30 parts by weight of this polyethylene composition was charged into a twin-screw extruder (58 mmφ, L / D = 42, strong kneading type). Also, 70 parts by weight of liquid paraffin was supplied from a side feeder of the twin-screw extruder, melt-kneaded, and a polyethylene solution was prepared in the extruder.

【0036】続いて、この押出機の先端に設置されたT
ダイから190℃で押し出し、冷却ロールで引取りなが
らゲル状シートを成形した。続いてこのゲル状シート
を、115℃で5×5に同時2軸延伸を行い、延伸膜を
得た。得られた延伸膜を塩化メチレンで洗浄して残留す
る流動パラフィンを抽出除去した後、乾燥および熱処理
を行い厚さ25μmのポリエチレン微多孔膜を得た。
Subsequently, the T installed at the tip of the extruder
A gel-like sheet was formed by extruding from a die at 190 ° C. and taking it off with a cooling roll. Subsequently, the gel-like sheet was simultaneously biaxially stretched at 115 ° C. to 5 × 5 to obtain a stretched film. The obtained stretched membrane was washed with methylene chloride to extract and remove the remaining liquid paraffin, followed by drying and heat treatment to obtain a 25 μm-thick microporous polyethylene membrane.

【0037】メルトブローポリプロピレン製不織布(繊
維径:4μm、目付け:7g/m2、厚さ:60μm)
を上記ポリエチレン微多孔膜とカレンダー積層して複合
膜を得た。この積層複合膜の物性は表1のようであっ
た。
Melt blown polypropylene non-woven fabric (fiber diameter: 4 μm, basis weight: 7 g / m 2 , thickness: 60 μm)
Was laminated with the polyethylene microporous membrane by calendering to obtain a composite membrane. Table 1 shows the physical properties of the laminated composite film.

【0038】実施例2 実施例1において、ポリエチレン組成物にLDPEを5
重量部添加し、ポリエチレン微多孔膜の厚さを15μm
にする以外は実施例1と同様にして複合膜を得た。この
積層複合膜の物性は表1のようであった。
Example 2 In Example 1, 5 parts of LDPE was added to the polyethylene composition.
The weight of the polyethylene microporous film is 15 μm
A composite membrane was obtained in the same manner as in Example 1 except that Table 1 shows the physical properties of the laminated composite film.

【0039】実施例3 実施例1において、ポリエチレン組成物に融点が126
℃、分子量が4000の低分子量ポリエチレン(LMW
PE)を5重量部添加し、ポリエチレン微多孔膜の厚さ
を15μmにする以外は実施例1と同様にして複合膜を
得た。この積層複合膜の物性は表1のようであった。
Example 3 In Example 1, the polyethylene composition had a melting point of 126.
Low molecular weight polyethylene with a molecular weight of 4,000 at 4000 (LMW
PE) was added in an amount of 5 parts by weight, and a composite membrane was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane had a thickness of 15 μm. Table 1 shows the physical properties of the laminated composite film.

【0040】実施例4 実施例1において、ポリエチレン組成物に融点が116
℃、分子量が1000の低分子量ポリエチレン(LMW
PE)を5重量部添加し、ポリエチレン微多孔膜の厚さ
を15μmにする以外は実施例1と同様にして複合膜を
得た。この積層複合膜の物性は表1のようであった。
Example 4 In Example 1, the polyethylene composition had a melting point of 116.
Low molecular weight polyethylene (LMW) with a molecular weight of 1000
PE) was added in an amount of 5 parts by weight, and a composite membrane was obtained in the same manner as in Example 1 except that the polyethylene microporous membrane had a thickness of 15 μm. Table 1 shows the physical properties of the laminated composite film.

【0041】実施例5 実施例1の積層において、ポリプロピレン製不織布をポ
リエチレン微多孔膜の両側に積層して3層体にする以外
は実施例1と同様にして複合膜を得た。この積層複合膜
の物性は表1のようであった。
Example 5 A composite membrane was obtained in the same manner as in Example 1 except that polypropylene nonwoven fabric was laminated on both sides of a polyethylene microporous membrane to form a three-layer body. Table 1 shows the physical properties of the laminated composite film.

【0042】実施例6 実施例1のポリプロピレン製不織布として、繊維径:4
μm、目付け:40g/m2 、厚さ:440μmを用い
る以外は実施例1と同様にして複合膜を得た。この積層
複合膜の物性は表1のようであった。
Example 6 The polypropylene non-woven fabric of Example 1 had a fiber diameter of 4
A composite membrane was obtained in the same manner as in Example 1, except that the coating weight was 40 μm, the basis weight was 40 g / m 2 , and the thickness was 440 μm. Table 1 shows the physical properties of the laminated composite film.

【0043】実施例7 実施例1のポリプロピレン製不織布として、繊維径:4
μm、目付け:22g/m2 、厚さ:230μmを用い
る以外は実施例1と同様にして複合膜を得た。この積層
複合膜の物性は表1のようであった。
Example 7 The polypropylene nonwoven fabric of Example 1 had a fiber diameter of 4
A composite membrane was obtained in the same manner as in Example 1 except that the coating composition used was μm, basis weight: 22 g / m 2 , and thickness: 230 μm. Table 1 shows the physical properties of the laminated composite film.

【0044】比較例1 実施例1において得られたポリエチレン微多孔膜の物性
は表1のようであった。
Comparative Example 1 The physical properties of the polyethylene microporous membrane obtained in Example 1 are shown in Table 1.

【0045】[0045]

【表1】 表から明らかなように、本発明の方法による複合膜は低
いシャットダウン温度及び高いメルトダウン温度を有
し、電池用セパレーターとして有用であることがわか
る。
[Table 1] As is clear from the table, the composite membrane according to the method of the present invention has a low shutdown temperature and a high meltdown temperature, and is useful as a battery separator.

【0046】[0046]

【発明の効果】本発明のポリオレフィン微多孔膜とポリ
プロピレン不織布の積層複合膜を電池セパレーターとし
て用いた場合、異常時に温度が上昇した際には、ポリオ
レフィン微多孔膜の方がまず、より低温において軟化、
溶融してその孔部を閉塞することにより、短絡電流を減
少させるとともに、ポリプロピレン不織布は多孔性支持
体として作用し、短絡電流を減少させる機能を高温まで
維持しつつ、かつ、高温まで正負電極間の短絡を防止す
ることができ、リチウム電池用セパレーターとして用い
る場合は、安全性の点でおおいに信頼できる。
When the laminated composite membrane of the polyolefin microporous membrane and the polypropylene nonwoven fabric of the present invention is used as a battery separator, when the temperature rises in an abnormal condition, the polyolefin microporous membrane first softens at a lower temperature. ,
By melting and closing the pores, the short-circuit current is reduced, and the polypropylene nonwoven fabric acts as a porous support, maintaining the function of reducing the short-circuit current up to high temperature, and between the positive and negative electrodes up to high temperature. Can be prevented, and when used as a lithium battery separator, it is highly reliable in terms of safety.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 公一 神奈川県川崎市川崎区千鳥町3番1号 東 燃化学株式会社技術開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Kono 3-1, Chidoricho, Kawasaki-ku, Kawasaki-shi, Kanagawa Tonen Kagaku Co., Ltd. Technology Development Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量平均分子量が5×105 以上のポリ
オレフィンまたはその成分を含有するポリオレフィン組
成物からなり、空孔率が30〜95%、平均貫通孔径が
0.001〜1μm、引張り破断強度が500kg/c
2 以上であるポリオレフィン微多孔膜に、ポリプロピ
レン製不織布を積層した電池セパレーター用複合膜。
1. A polyolefin composition containing a polyolefin having a weight average molecular weight of 5 × 10 5 or more or a component thereof, having a porosity of 30 to 95%, an average through-pore diameter of 0.001 to 1 μm, and a tensile breaking strength. Is 500 kg / c
A composite membrane for a battery separator, which is obtained by laminating a polypropylene nonwoven fabric on a polyolefin microporous membrane having a size of m 2 or more.
【請求項2】 重量平均分子量が5×105 以上のポリ
オレフィンまたはその成分を含有するポリオレフィン組
成物70〜95重量%と、重量平均分子量が100〜4
000で、融点が80〜130℃の低分子量ポリエチレ
ン5〜30重量%からなり、空孔率が30〜95%、平
均貫通孔径が0.001〜1μm上、引張り破断強度が
500kg/cm2 以上であるポリオレフィン微多孔膜
に、ポリプロピレン製不織布を積層した電池セパレータ
ー用複合膜。
2. A polyolefin composition containing a polyolefin having a weight average molecular weight of 5 × 10 5 or more or a component thereof in an amount of 70 to 95% by weight and a weight average molecular weight of 100 to 4
000, a melting point of 80 to 130 ° C. of low molecular weight polyethylene of 5 to 30% by weight, a porosity of 30 to 95%, an average through hole diameter of 0.001 to 1 μm, and a tensile breaking strength of 500 kg / cm 2 or more. A composite membrane for a battery separator in which a polypropylene non-woven fabric is laminated on the polyolefin microporous membrane which is.
【請求項3】 重量平均分子量が5×105 以上のポリ
オレフィンまたはその成分を含有するポリオレフィン組
成物70〜95重量%と、低密度ポリエチレンまたは直
鎖状低密度ポリエチレン5〜30重量%からなり、空孔
率が30〜95%、平均貫通孔径が0.001〜1μ
m、引張り破断強度が500kg/cm2以上であるポ
リオレフィン微多孔膜に、ポリプロピレン製不織布を積
層した電池セパレーター用複合膜。
3. A polyolefin composition having a weight average molecular weight of 5 × 10 5 or more, or 70 to 95% by weight of a polyolefin composition containing the component, and 5 to 30% by weight of low-density polyethylene or linear low-density polyethylene. Porosity 30-95%, average through-hole diameter 0.001-1 μ
m, a composite membrane for a battery separator in which a polypropylene nonwoven fabric is laminated on a polyolefin microporous membrane having a tensile breaking strength of 500 kg / cm 2 or more.
JP16377696A 1996-06-04 1996-06-04 Composite membrane for battery separator and battery separator Expired - Fee Related JP3682120B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP16377696A JP3682120B2 (en) 1996-06-04 1996-06-04 Composite membrane for battery separator and battery separator
US08/864,079 US5922492A (en) 1996-06-04 1997-05-28 Microporous polyolefin battery separator
DE69724513T DE69724513T2 (en) 1996-06-04 1997-06-03 Microporous membrane of a polyolefin composition, process for its production and battery separator
EP97303786A EP0811479B1 (en) 1996-06-04 1997-06-03 Microporous polyolefin composition membrane, production method thereof and battery separator
CA002206940A CA2206940C (en) 1996-06-04 1997-06-03 Microporous polyolefin composition membrane, production method thereof and battery separator
KR1019970022997A KR100452784B1 (en) 1996-06-04 1997-06-04 Microporous Polyolefin Composite Membrane, Manufacturing Method Thereof and Battery Separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16377696A JP3682120B2 (en) 1996-06-04 1996-06-04 Composite membrane for battery separator and battery separator

Publications (2)

Publication Number Publication Date
JPH09326250A true JPH09326250A (en) 1997-12-16
JP3682120B2 JP3682120B2 (en) 2005-08-10

Family

ID=15780510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16377696A Expired - Fee Related JP3682120B2 (en) 1996-06-04 1996-06-04 Composite membrane for battery separator and battery separator

Country Status (1)

Country Link
JP (1) JP3682120B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
KR100373204B1 (en) * 2000-08-12 2003-02-25 주식회사 엘지화학 Multi-component composite membrane for polymer electrolyte and method of preparing the same
KR100406689B1 (en) * 2001-03-05 2003-11-21 주식회사 엘지화학 Multicomponent composite film for electrochemical device and method for preparing the same
JP2005209452A (en) * 2004-01-21 2005-08-04 Tonen Chem Corp Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
KR100558840B1 (en) * 1998-09-24 2006-07-03 에스케이씨 주식회사 Microporous separator and its manufacturing method
JP2008545586A (en) * 2005-11-15 2008-12-18 インターポア カンパニー リミテッド Fresh food or fermented food packaging film, packaging material and packaging container
JP2011063025A (en) * 2010-10-04 2011-03-31 Asahi Kasei E-Materials Corp Polyolefin-made microporous film
JP2013126765A (en) * 2013-02-04 2013-06-27 Asahi Kasei E-Materials Corp Microporous polyolefin film
JP2017191775A (en) * 2016-04-12 2017-10-19 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
JP2018055888A (en) * 2016-09-27 2018-04-05 トヨタ自動車株式会社 Secondary battery
CN112909428A (en) * 2021-01-26 2021-06-04 南京捷纳思新材料有限公司 Battery diaphragm and preparation method thereof
CN113809473A (en) * 2018-07-19 2021-12-17 河南义腾新能源科技有限公司 Polypropylene diaphragm and preparation method thereof
CN113840730A (en) * 2019-05-09 2021-12-24 布鲁克纳机械有限责任两合公司 Foil with at least two layers and method for the production thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPS61263043A (en) * 1985-05-17 1986-11-21 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH04167355A (en) * 1990-10-29 1992-06-15 Kuraray Co Ltd Separator sheet
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH05109434A (en) * 1991-10-17 1993-04-30 Fuji Elelctrochem Co Ltd Manufacture of coin type lithium secondary battery
JPH0722014A (en) * 1993-07-06 1995-01-24 Mitsubishi Chem Corp Separator for battery
JPH0773863A (en) * 1993-08-31 1995-03-17 Kanai Hiroyuki Separator for alkaline battery
JPH0820659A (en) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd Microporous membrane, its production and separator for non-aqueous electrolyte solution cell

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPS61263043A (en) * 1985-05-17 1986-11-21 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPH04167355A (en) * 1990-10-29 1992-06-15 Kuraray Co Ltd Separator sheet
JPH0525305A (en) * 1991-07-19 1993-02-02 Tonen Corp Polyethylene porous membrane, its production and battery separator made of the same membrane
JPH0594812A (en) * 1991-10-03 1993-04-16 Tonen Corp Polyolefine microporous membrane and its manufacture, and separator using such membrane
JPH05109434A (en) * 1991-10-17 1993-04-30 Fuji Elelctrochem Co Ltd Manufacture of coin type lithium secondary battery
JPH0722014A (en) * 1993-07-06 1995-01-24 Mitsubishi Chem Corp Separator for battery
JPH0773863A (en) * 1993-08-31 1995-03-17 Kanai Hiroyuki Separator for alkaline battery
JPH0820659A (en) * 1994-07-08 1996-01-23 Daicel Chem Ind Ltd Microporous membrane, its production and separator for non-aqueous electrolyte solution cell

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558840B1 (en) * 1998-09-24 2006-07-03 에스케이씨 주식회사 Microporous separator and its manufacturing method
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
KR100373204B1 (en) * 2000-08-12 2003-02-25 주식회사 엘지화학 Multi-component composite membrane for polymer electrolyte and method of preparing the same
KR100406689B1 (en) * 2001-03-05 2003-11-21 주식회사 엘지화학 Multicomponent composite film for electrochemical device and method for preparing the same
JP2005209452A (en) * 2004-01-21 2005-08-04 Tonen Chem Corp Method for producing microporous membrane and use of microporous membrane to be obtained by that producing method
JP2008545586A (en) * 2005-11-15 2008-12-18 インターポア カンパニー リミテッド Fresh food or fermented food packaging film, packaging material and packaging container
JP2011063025A (en) * 2010-10-04 2011-03-31 Asahi Kasei E-Materials Corp Polyolefin-made microporous film
JP2013126765A (en) * 2013-02-04 2013-06-27 Asahi Kasei E-Materials Corp Microporous polyolefin film
JP2017191775A (en) * 2016-04-12 2017-10-19 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. Separator for lithium secondary battery and lithium secondary battery including the same
JP2018055888A (en) * 2016-09-27 2018-04-05 トヨタ自動車株式会社 Secondary battery
CN113809473A (en) * 2018-07-19 2021-12-17 河南义腾新能源科技有限公司 Polypropylene diaphragm and preparation method thereof
CN113840730A (en) * 2019-05-09 2021-12-24 布鲁克纳机械有限责任两合公司 Foil with at least two layers and method for the production thereof
CN113840730B (en) * 2019-05-09 2023-09-22 布鲁克纳机械有限公司 Foil with at least two layers and method for producing the same
CN112909428A (en) * 2021-01-26 2021-06-04 南京捷纳思新材料有限公司 Battery diaphragm and preparation method thereof

Also Published As

Publication number Publication date
JP3682120B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
KR100452784B1 (en) Microporous Polyolefin Composite Membrane, Manufacturing Method Thereof and Battery Separator
US6566012B1 (en) Polyolefin microporous film and method for preparing the same
KR100667052B1 (en) Microporous Polyolefin Membrane And Method For Producing The Same
JP2011184671A (en) Heat resistant polyolefin microporous film and manufacturing method thereof
JP7395827B2 (en) porous polyolefin film
JP7207300B2 (en) porous polyolefin film
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JP4460668B2 (en) Polyolefin microporous membrane and method for producing the same
JP2000108249A (en) Laminated composite film
JP2018076476A (en) High temperature low heat shrinkable polyolefin multilayer microporous film and method for producing the same
WO2020203901A1 (en) Microporous polyolefin film, separator for battery, secondary battery, and method for producing microporous polyolefin film
JP3699561B2 (en) Polyolefin microporous membrane and method for producing the same
JP4008516B2 (en) Polyolefin porous membrane, method for producing the same, and battery separator using the same
JP4467114B2 (en) Multilayer composite film
JP4374105B2 (en) Multilayer composite film
JPH1012211A (en) Composite film for battery separator
JP2020164861A (en) Polyolefin microporous membrane, battery separator, secondary battery and method for producing polyolefin microporous membrane
JP2001072788A (en) Microporous polyolefin film and its production
JP4682347B2 (en) Method for producing polyolefin microporous membrane
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
WO2021015269A1 (en) Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries
JP2022082461A (en) Polyolefin microporous membrane, battery separator, and secondary battery
JP2020164860A (en) Polyolefin microporous membrane, battery separator, secondary battery and method for producing polyolefin microporous membrane
JP2021105166A (en) Polyolefin microporous film, and secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees