WO2021015269A1 - Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries - Google Patents

Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2021015269A1
WO2021015269A1 PCT/JP2020/028547 JP2020028547W WO2021015269A1 WO 2021015269 A1 WO2021015269 A1 WO 2021015269A1 JP 2020028547 W JP2020028547 W JP 2020028547W WO 2021015269 A1 WO2021015269 A1 WO 2021015269A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
less
polyolefin
unopened
ratio
Prior art date
Application number
PCT/JP2020/028547
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 直樹
光隆 坂本
寛子 田中
龍太 中嶋
聡士 藤原
石原 毅
大倉 正寿
渡辺 充
優奈 梶原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020217032254A priority Critical patent/KR20220041777A/en
Publication of WO2021015269A1 publication Critical patent/WO2021015269A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0239Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention is a polyolefin microporous membrane widely used as a separation membrane used for separation of substances, selective permeation, etc., and a separating material for an electrochemical reaction device such as an alkaline battery, a lithium secondary battery, a fuel cell, and a capacitor. Also referred to as a porous polyolefin film).
  • the present invention is a polyolefin microporous film preferably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, which exhibits excellent battery characteristics and is high as compared with a conventional polyolefin microporous film. Used as a safe separator.
  • Polyolefin microporous membranes are used as filters, fuel cell separators, condenser separators, etc. In particular, it is suitably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason is that the polyolefin microporous membrane has excellent mechanical strength, shutdown characteristics, and ion permeation performance.
  • lithium-ion secondary batteries have been used for in-vehicle applications, so it is necessary to shorten the charging time and improve acceleration, and the required characteristics of batteries include quick charging (large current charging) and increased power consumption (large current). Discharge) is required. Along with this, the improvement of output characteristics has become even higher as a requirement for separators.
  • Patent Document 1 describes a method for improving ionic conductivity by blending polyethylene (PE) and polypropylene (PP) to increase the porosity and controlling the number of pores, the pore diameter and the curvature ratio. It is disclosed.
  • Patent Document 2 discloses a method of controlling the pore structure on the surface and the inside, improving the impregnation property of the electrolytic solution, and improving the output characteristics.
  • Patent Document 3 discloses a method for improving output characteristics and cycle characteristics by controlling the volatility of the porosity per unit volume and forming a uniform pore structure.
  • Patent Document 4 discloses a method of reducing the fiber diameter (fibril diameter) of the microporous membrane to improve the output characteristics.
  • Patent Document 5 as a method of achieving both strength and shrinkage characteristics, polyethylene having a molecular weight of 280,000 and polyethylene having a molecular weight of 2 million are blended, and under the condition of a resin concentration of 32 wt%, 7.0 times in the MD direction and 6. in the TD direction. A method of stretching 4 times, washing and drying, and then stretching 1.2 times (area magnification 54 times) is described.
  • Patent Documents 6 and 7 high molecular weight polyethylene is stretched to 6.4 ⁇ 6.0 times (area magnification 38.4 times) to control the ratio of crystal portions contained in the fiber structure (fibril structure). Discloses a method of arranging ion permeability, strength and shutdown characteristics side by side.
  • Japanese Patent Application Laid-Open No. 2017-140840 Japanese Patent Application Laid-Open No. 2012-48987 Japanese Patent Application Laid-Open No. 2016-191069 Japanese Patent Application Laid-Open No. 2014-15697 Japanese Patent Application Laid-Open No. 2006-124652 Japanese Patent Application Laid-Open No. 2018-147858 Japanese Patent Application Laid-Open No. 2018-147690
  • the pore ratio is as high as 70%, and it is considered that there is a problem in achieving both strength and strength.
  • Patent Documents 5 to 7 describe methods for improving the balance between strength and shrinkage rate and strength and output characteristic battery.
  • the thin film of the separator, high strength, low shrinkage rate, and the like as the capacity of the battery increases. It was not sufficient from the viewpoint of parallelizing high output characteristics.
  • an object of the present invention is to provide a polyolefin microporous membrane having better output characteristics, strength, and shrinkage rate than before.
  • the present inventors have described the lumpy portion of a separator having a fibrous network structure composed of a resin component (hereinafter referred to as an unopened portion, which is not fibrillated by stretching, or the fibrils are fused in a heat treatment step.
  • an unopened portion which is not fibrillated by stretching, or the fibrils are fused in a heat treatment step.
  • a polyolefin microporous membrane having excellent output characteristics, strength, and shrinkage rate can be obtained as compared with the prior art, and the present invention has been completed. That is, the present invention adopts the following configuration.
  • the surface SEM observation image of the polyolefin microporous film according to the embodiment of the present invention which has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h and is obtained by observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • a 7 ⁇ m ⁇ 9.4 ⁇ m rectangular field is divided into 0.5 ⁇ m images in each of the vertical and horizontal directions, and the total resin area (unopened hole portion a on the surface) in the section satisfying the relationship of R2 ⁇ R1 is the surface SEM observation image. It is 20 ⁇ m 2 or less at 11.7 ⁇ m ⁇ 9.4 ⁇ m. It is characterized by having a fibril diameter of 10 to 50 nm.
  • the unopened hole portion a on the surface is the area (F1) and the hole area of the fibrils in which the total length of the fibrils in one divided section is 0.875 ⁇ m, and the total length of the fibrils is multiplied by the fibril diameter calculated by the palm porometer.
  • the ratio (F1 / P1) of (P1) is R1
  • the ratio (F2 / P2) of the resin area (F2) and the hole area (P2) in each of the divided sections is defined as R2. It refers to the total area of the resin in each section that satisfies the relationship of R2 ⁇ R1.
  • the ion resistance, strength, and shrinkage rate are excellent as compared with the conventional polyolefin microporous membrane, so that the capacity retention rate at high output
  • a microporous polyolefin membrane with excellent properties and high safety can be obtained.
  • the polyolefin microporous membrane having few unopened pores is excellent in ion resistance, strength, and shrinkage rate, and is therefore useful as a separator for batteries, and has excellent safety and output characteristics. doing.
  • the present invention can be realized by satisfying the fibril structure (the fibril diameter and the area of the unopened hole portion) described later. That is, the present invention is included in the polyolefin microporous membrane as a result of studying the problem of achieving both the output characteristics and safety of the battery when the polyolefin microporous membrane having a mesh-like fibril structure is used as the battery separator.
  • microporous Microporous Membrane The microporous polyolefin membrane according to the embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h, and can be obtained by observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • Surface SEM observation image 11.7 ⁇ m ⁇ 9.4 ⁇ m rectangular field of view is divided into 0.5 ⁇ m images in each of the vertical and horizontal directions, and the total resin area in the section satisfying the relationship of R2 ⁇ R1 (unopened hole portion a on the surface).
  • the unopened hole portion a on the surface is the area (F1) and the hole area of the fibrils in which the total length of the fibrils in one divided section is 0.875 ⁇ m, and the total length of the fibrils is multiplied by the fibril diameter calculated by the palm porometer.
  • the ratio (F1 / P1) of (P1) is R1
  • the ratio (F2 / P2) of the resin area (F2) and the hole area (P2) in each of the divided sections is defined as R2. It refers to the total area of the resin in each section that satisfies the relationship of R2 ⁇ R1.
  • the polyolefin microporous membrane according to the embodiment of the present invention is characterized in that the area of the surface unopened portion measured by the method described later is 20 ⁇ m 2 / 11.7 ⁇ 9.4 ⁇ m 2 or less.
  • the area of the unopened portion is 20 ⁇ m 2 or less, when used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, there is no structure that blocks the flow of ions, and good ion permeability can be obtained. As a result, an increase in ion resistance can be suppressed. Therefore, it is preferable that the area of the unopened portion is small.
  • Area unopened hole is preferably not more 18 [mu] m 2 or less, more preferably 17 .mu.m 2 or less, more preferably 16 [mu] m 2 or less.
  • the surface unopened portion of the polyolefin microporous membrane has a structure in which fibrils are fused in an unstretched portion that has not been fibrillated by stretching or in a heat treatment step, and the unstretched portion is not fibrillated, so that the strength is reduced. ..
  • the structure formed by melting and fusion of fibrils has an unstable crystal structure, it is easy to relax at high temperatures, leading to deterioration of the shrinkage rate. Therefore, if the area of the unopened portion observed by the SEM is larger than 20 ⁇ m 2, it becomes difficult to reduce the ion resistance, maintain a high capacity in a high output discharge, maintain a high strength, and achieve a low shrinkage rate, which are the objects of the present invention.
  • the lower limit of the area of the unopened portion is preferably 0.1 ⁇ m 2 or more, and more preferably 1.0 ⁇ m 2 or more.
  • the polyolefin microporous film according to another embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h, and is a surface SEM observation image obtained by observation using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the area ratio of the unopened hole portion b on the surface to the total area of the field of view is 25% or less, and the fibril diameter is 10 to 50 nm.
  • the unopened portion b on the surface is an opening in which the ratio of the resin portion is calculated from the total area of the surface SEM observation image in each division in which the surface SEM observation image is divided into sections of 0.5 ⁇ m each in length and width.
  • the area ratio of the surface unopened portion b is the ratio of the total area of the surface unopened portion to the total area of the visual field of the surface SEM observation image.
  • the average diameter of the fibril diameter measured by the method described later is 10 to 50 nm.
  • the fibril diameter is in the range of 10 to 50 nm, since it has a high surface area, good electrolyte retention is obtained and the battery characteristics are improved. Further, by making the fibril diameter fine and uniform, it is possible to suppress the damming of ions due to the thick fibril structure and suppress the increase in resistance, and the number of fibrils per unit volume is increased, so that high strength can be obtained. Therefore, the fibril diameter is preferably 30 nm or less, more preferably 19 nm or less, further preferably 17 nm or less, further preferably 16 nm or less, and particularly preferably 15 nm or less.
  • the crystallinity is increased by orienting a crystalline polyolefin such as polyethylene or polypropylene by stretching, and fine fibrils are formed to increase the strength. Therefore, the residual stress of the fibril structure of polyolefin increases, and the shrinkage rate increases as the strength increases.
  • the fibril diameter is preferably 10 nm or more, more preferably 12 nm or more.
  • the average pore size in the surface SEM observation image of the polyolefin microporous film measured by the method described later is preferably 30 to 55 nm.
  • the average pore diameter is 55 nm or less, short circuits due to the growth of dendrites can be suppressed, a good number of pores can be obtained, and the ion transmission path increases, so that excellent battery characteristics can be obtained.
  • the average pore diameter is preferably 53 nm or less, more preferably 50 nm or less.
  • the average pore diameter is 30 nm or more, a good aperture ratio can be obtained and high ion permeability can be obtained. Therefore, the average pore diameter is preferably 30 nm or more, more preferably 35 nm or more, further preferably 40 nm or more, and even more preferably 45 nm or more.
  • the number of holes in the surface SEM observation image measured by the method described later is preferably 75 holes / ⁇ m 2 or more.
  • the electrolytic solution is electrochemically decomposed inside the battery to generate solid products such as organic substances and gases such as ethylene and hydrogen. These products block the pores in the microporous polyolefin membrane, degrading battery characteristics.
  • the decomposition reaction is likely to proceed due to the bias in the ion permeation path. Therefore, from these viewpoints, it is preferable that the number of ion permeation paths is large.
  • the number of holes is preferably 80 / ⁇ m 2 or more, more preferably 85 / ⁇ m 2 or more, and even more preferably 90 / ⁇ m 2 or more. Moreover, since an increase in the number of holes leads to an increase of thinning or stoma diameter, tortuosity of the fibrils diameter, number of holes is preferably 200 pieces / [mu] m 2 or less, more preferably 150 pieces / [mu] m 2 or less, 100 cells / It is more preferably ⁇ m 2 or less.
  • the microporous polyolefin membrane according to the embodiment of the present invention has an unopened cross section with respect to a rectangular viewing area of 11.7 ⁇ m ⁇ 9.4 ⁇ m in cross section SEM observation image obtained by observation using a scanning electron microscope (SEM).
  • the area ratio of the holes is preferably 22% or less.
  • the unopened portion of the cross section is a resin portion in a section in which the cross-sectional SEM observation image is divided into sections of 0.3 ⁇ m in length and width, and the resin ratio contained in the divided sections is 80% or more.
  • the area ratio of the unopened portion of the cross section is the ratio of the total area of the unopened portion of the cross section to the total area of the visual field of the cross section SEM observation image.
  • the area ratio of the non-perforated portion in the cross section is 22% or less, when used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, the structure that blocks the flow of ions disappears and good ion permeability is obtained. Be done. As a result, an increase in ion resistance can be suppressed. Therefore, it is preferable that the area of the unopened portion is small.
  • the area ratio of the unperforated portion in the cross section is preferably 22% or less, more preferably 20% or less, further preferably 19% or less, still more preferably 18% or less, and particularly preferably 6% or less. Is.
  • the unopened portion of the polyolefin microporous membrane has a structure in which the unstretched portion is not fibrillated by stretching and the fibrils are fused in the heat treatment step, etc., and the unstretched portion is not fibrillated, so that the strength is lowered.
  • the structure formed by melting and fusion of fibrils has an unstable crystal structure, it is easy to relax at high temperatures, leading to deterioration of the shrinkage rate. Therefore, by setting the area ratio of the unopened cross-section observed by SEM to 22% or less, it is possible to reduce the ion resistance, maintain high capacity in high output discharge, maintain high strength, and have a low shrinkage rate, which are the objects of the present invention. It will be easier to achieve.
  • the average pore size in the cross-sectional SEM observation image of the polyolefin microporous film measured by the method described later is preferably 20 to 85 nm.
  • the average cross-sectional pore diameter is 85 nm or less, short circuits due to the growth of dendrites can be suppressed, a good number of pores can be obtained, and the ion transmission path increases, so that excellent battery characteristics can be obtained.
  • the average cross-sectional pore diameter is preferably 85 nm or less, more preferably 80 nm or less, further preferably 78 nm or less, further preferably 76 nm or less, and particularly preferably 75 nm or less.
  • the average pore diameter is preferably 20 nm or more, more preferably 50 nm or more, and even more preferably 70 nm or more.
  • the number of holes in the cross-sectional direction measured by the method described later is preferably 60 holes / ⁇ m 2 or more.
  • the electrolytic solution is electrochemically decomposed inside the battery to generate solid products such as organic substances and gases such as ethylene and hydrogen. These products block the pores in the microporous polyolefin membrane, degrading battery characteristics.
  • the decomposition reaction is likely to proceed due to the bias in the ion permeation path. Therefore, from these viewpoints, it is preferable that the number of ion permeation paths is large. Therefore, the number of holes is preferably 65 / ⁇ m 2 or more, and more preferably 68 / ⁇ m 2 or more.
  • the number of holes is preferably 100 / ⁇ m 2 or less, and more preferably 70 / ⁇ m 2 or less.
  • the porosity of the microporous polyolefin membrane according to the embodiment of the present invention is preferably 35% or more, more preferably 40% or more, still more preferably 45, from the viewpoint of permeation performance and electrolyte content. % Or more.
  • the porosity is 35% or more, the balance between permeability, strength and electric field liquid content is improved, and the non-uniformity of the battery reaction is eliminated. As a result, the generation of dendrites is suppressed and the battery can be used without impairing the performance of the conventional battery, and can be suitably used as a separator for a secondary battery.
  • the porosity is preferably 50% or less, more preferably 48% or less.
  • the number of holes affects the ion permeability in the battery reaction, and as the number of holes increases, the ion transmission path increases, so that the resistance decreases and charging / discharging at high output becomes possible.
  • the piercing strength is an index showing the strength in the depth direction of the film, and when the number of holes per unit volume increases, the ratio of voids increases and the amount of resin decreases, so that the piercing strength decreases.
  • the number of unopened holes is reduced to eliminate the damming structure that hinders the permeation of ions, and a uniform fine fibril structure is formed to increase the number of fibrils per unit volume.
  • a method of increasing the puncture strength is effective.
  • the puncture strength of the polyolefin microporous film in which the film thickness is converted to 7 ⁇ m is preferably 3.0 N or more, more preferably 3.5 N or more, still more preferably 4.0 N or more. 4.3N or more is even more preferable, and 5.0N or more is particularly preferable.
  • the puncture strength is 3.0 N or more, a short circuit due to a foreign substance or the like in the battery is suppressed, and good battery safety can be obtained.
  • ultra-high molecular weight polyolefin In order to increase the puncture strength, it is advisable to use ultra-high molecular weight polyolefin and increase the number of Thai molecules connecting the lamella crystals from the viewpoint of the crystal structure of fibril. From the viewpoint of reducing the unstretched portion, a uniform stress load on the resin layer due to increased entanglement of molecular chains in the stretching step is preferable, and in order to suppress the unopened portion structure caused by melting and fusion of fibrils in the heat fixing step and the like. Is preferably a high molecular weight polyolefin having a small molecular weight component and a sharp molecular weight distribution. Further, by applying the raw material, the resin concentration, and the draw ratio described later, the unopened portion is reduced and good piercing strength can be obtained.
  • the term "piercing strength” is used to mean “piercing strength when the film thickness is converted to 7 ⁇ m".
  • the microporous polyolefin membrane according to the embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h. Further, it is preferably 3.0% or more.
  • the shrinkage rate in the MD direction is in this range, the balance between the shape stability of the polyolefin microporous film and the shutdown property is improved. If the shrinkage rate exceeds 10%, the shape stability at high temperature deteriorates, and an internal short circuit occurs when abnormal heat is generated locally, which lowers safety.
  • the shrinkage rate in the MD direction is preferably 9% or less, more preferably 8% or less, still more preferably 7% or less. Further, 5% or more is more preferable, and 6% or more is further preferable.
  • the shrinkage rate in the TD direction at 105 ° C./8 h is preferably 1.0 to 15% from the viewpoint of heat resistance such as stress relaxation characteristics.
  • the shrinkage rate is in this range, the balance between the shape stability and the shutdown property of the polyolefin microporous membrane is improved.
  • the shrinkage rate is 1.0% or more, deterioration of the fluidity of polyolefin can be suppressed, and deterioration of shutdown characteristics can be prevented.
  • the shrinkage rate is 15% or less, deterioration of shape stability at high temperature can be suppressed, internal short circuit can be prevented from occurring when abnormal heat is locally generated, and safety can be maintained.
  • the shrinkage rate in the TD direction is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less. Further, 3% or more is more preferable, and 4% or more is further preferable.
  • the shrinkage rate in the MD direction and the TD direction at 105 ° C./8 h can be measured by the method described in Examples.
  • the polyolefin microporous membrane obtained by the present invention has a uniform fine fibril structure with a small area of unopened pores, it shrinks uniformly. Therefore, even if abnormal heat is generated locally, the expansion of the internal short circuit can be prevented and the influence can be minimized, and high safety can be obtained.
  • the tensile (breaking) strength in the MD direction and the TD direction (hereinafter, also simply referred to as "MD strength” and “TD strength”) is preferably 150 MPa or more, more preferably 180 MPa or more, further preferably 200 MPa or more, and 220 MPa or more. Even more preferable.
  • MD strength and the TD strength are 150 MPa or more, it is possible to prevent a short circuit due to a foreign substance or the like in the battery and maintain the safety of the battery.
  • the higher the tensile strength the more preferable, but since there are many cases where there is a trade-off between the tensile strength and the shrinkage rate, 330 MPa or less is preferable, and 280 MPa or less is more preferable.
  • the raw material composition of the polyolefin microporous film is in the range described later, and the stretching conditions at the time of forming the polyolefin microporous film are in the range described later.
  • the tensile (breaking) elongation in the MD direction and the TD direction is preferably 30% or more, more preferably 40% or more, and more preferably 50%. The above is more preferable, and 60% or more is even more preferable. ..
  • both MD elongation and TD elongation are preferably 150% or less, more preferably 80% or less, still more preferably 70% or less. It is preferable that the MD elongation and the TD elongation are 150% or less because both strength and elongation can be achieved at the same time.
  • the tensile strength and tensile elongation in the MD direction and the TD direction can be measured by a tensile test defined by ASTM D882 (Standard Test Method for Tensile Properties of Thin Plastic Sheeting) as described in Examples.
  • the direction parallel to the film forming direction of the polyolefin microporous film is referred to as the film forming direction, the longitudinal direction or the MD direction, and the direction orthogonal to the film forming direction within the polyolefin microporous film surface is the width direction.
  • the TD direction the direction parallel to the film forming direction of the polyolefin microporous film.
  • the air permeability refers to a value measured in accordance with JIS P 8117 (2009). Unless otherwise specified, the term "air permeability” is used in the present specification to mean “air permeability when the film thickness is 7 ⁇ m".
  • the air permeability measured for a polyolefin microporous membrane having a film thickness of T1 ( ⁇ m) is p1 (sec / 100 cm 3 )
  • sec / 100 cm 3 is the air permeability when the film thickness is 7 ⁇ m.
  • the air permeability (Gurley value) is not more than 100 sec / 100 cm 3, more preferably of 80 sec / 100 cm 3 or less, and more preferably 60 sec / 100 cm 3 or less.
  • the air permeability is 100 sec / 100 cm 3 or less, good ion permeability can be obtained and the electric resistance can be reduced.
  • the resistance of the microporous polyolefin membrane according to the embodiment of the present invention increases as the film thickness increases, and the output characteristics of the battery deteriorate.
  • the film thickness is preferably 12 ⁇ m or less, more preferably 10 ⁇ m or less, further preferably 8 ⁇ m or less, and even more preferably 7 ⁇ m or less. Further, the thinner the film thickness, the lower the strength and the lower the safety. From the viewpoint of safety, it is preferably 3 ⁇ m or more, and more preferably 4 ⁇ m or more.
  • the resin raw material in the polyolefin microporous film according to the embodiment of the present invention may have a single composition, may be a composition in which a main raw material and an auxiliary raw material are combined, and may be composed of two or more kinds of polyolefin resins. It may be a polyolefin resin mixture (polyolefin resin composition).
  • the raw material form of the polyolefin microporous membrane is preferably a polyolefin resin, and examples of the polyolefin resin include polyethylene and polypropylene, and a single composition is preferable.
  • the polyolefin resin is preferably a homopolymer such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and particularly preferably an ethylene homopolymer (polyethylene).
  • Polyethylene may be a copolymer containing a homopolymer of ethylene and another ⁇ -olefin.
  • ⁇ -olefins include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, or alkene having a carbon number of more than that, vinyl acetate, methyl methacrylate, styrene, and the like. Can be mentioned.
  • Polyethylene is preferable as the type of polyolefin resin, high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ⁇ 0.94g / cm 3, density of 0 used. Examples thereof include low density polyethylene lower than 93 g / cm 3 and linear low density polyethylene.
  • the polyolefin resin from the viewpoint of the number of unopened pores, the number of pores, and the film strength, it is preferable to use an ultra-high molecular weight polyolefin having a weight average molecular weight (Mw) of 900,000 or more alone.
  • Mw weight average molecular weight
  • Ultra-high molecular weight polyolefin has a weight average molecular weight is preferably preferably 0.9 ⁇ 10 6 or more and 1.0 ⁇ 10 7 or less.
  • a weight average molecular weight of 0.9 ⁇ 10 6 or more since the increase in the stretching temperature and the heat treatment temperature relaxation time is not too short is suppressed, a fine fibrils are melted, some savage holes to fuse increases At the same time, it is possible to prevent the number of holes from decreasing and the output and characteristics from deteriorating.
  • the weight average molecular weight is used 0.9 ⁇ 10 6 or more polyolefins, for entanglement density of the amorphous region increases uniformly stress the polyolefin resin layer in the stretching process is loaded, unopened hole Can be reduced and a fine fibril structure can be formed. Therefore, good output characteristics can be obtained.
  • Thailand number of molecules is increased by a weight-average molecular weight is used 0.9 ⁇ 10 6 or more polyolefin resins, high strength can be obtained.
  • ultra-high molecular weight polyethylene has a long relaxation time, melting and fusion of fine fibrils during stretching and heat fixation at high temperature are suppressed, and the balance between shrinkage rate and unopened portion is improved. Therefore, the trade-offs of ion resistance, strength, and shrinkage are improved, and both battery safety and output characteristics can be achieved at the same time.
  • the weight average molecular weight of the order ultrahigh molecular weight polyolefin is preferably 1.0 ⁇ 10 6 or more, more preferably 1.5 ⁇ 10 6 or more, more preferably 2.0 ⁇ 10 6 or more, particularly preferably 3. It is 0 ⁇ 106 or more.
  • the weight average molecular weight is preferably 1.0 ⁇ 10 7 or less, more preferably 8.0 ⁇ 10 6 or less, more preferably 6.0 ⁇ 10 6 or less, still more preferably 5.0 ⁇ 10 6 or less , Particularly preferably 4.0 ⁇ 106 or less.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the ultrahigh molecular weight polyolefin is preferably in the range of 3.0 to 100.
  • the narrower the molecular weight distribution the more unified the system is and the more uniform micropores can be obtained. Therefore, the narrower the molecular weight distribution is, the more preferable, but the narrower the distribution, the lower the molding processability. Therefore, the lower limit of the molecular weight distribution is preferably 4.0 or more, more preferably 5.0 or more, and further preferably 6.0 or more.
  • the upper limit is preferably 80 or less, more preferably 50 or less, still more preferable. Is 20 or less, particularly preferably 10 or less. Within the above range, good molding processability can be obtained and uniform micropores can be obtained because the system is unified.
  • the ultra-high molecular weight polyolefin inter alia, primitive holes, film strength, moldability from the viewpoint, the weight average molecular weight (Mw) of 0.9 ⁇ 10 6 or more 1.5 ⁇ 10 6 or less ultra high molecular weight polyethylene Is particularly preferable.
  • a plasticizer for the purpose of improving molding processability.
  • the blending ratio of the polyolefin resin and the plasticizer may be appropriately adjusted as long as the molding processability is not impaired, but the ratio of the polyolefin resin is 10 to 50% by mass, where the total of the polyolefin resin and the plasticizer is 100% by mass. It is preferable to have.
  • the proportion of polyolefin resin is 10% by mass or more (the proportion of plasticizer is 90% by mass or less), swell and neck-in can be suppressed at the outlet of the base when molding into a sheet, and the formability and film forming property of the sheet can be suppressed. Is improved.
  • the proportion of the polyolefin resin is 50% by mass or less (the proportion of the plasticizer is 50% by mass or more), the pressure increase in the film forming process can be suppressed and good molding processability can be obtained.
  • the proportion of the polyolefin resin is preferably 10% by mass or more, more preferably 16% by mass or more, further preferably 17% by mass or more, and particularly preferably 20% by mass or more. preferable.
  • the proportion of the polyolefin resin By increasing the proportion of the polyolefin resin, the overlapping density of the molecular chains in the presence of the plasticizer is increased, the uniformity of stretching is improved, and the unopened portions can be reduced. Further, by increasing the proportion of the polyolefin resin, it is possible to suppress an increase in the draw ratio and "crushing of holes" in the washing and drying process, leading to higher strength and reduction of unopened holes.
  • the proportion of the polyolefin resin is preferably 30% by mass or less, with the total of the polyolefin resin and the plasticizer being 100% by mass, from the viewpoint of pressure and stretching stress in the film forming process. Less than 28.5% by mass is more preferable, and less than 25% by mass is further preferable.
  • a polyolefin resin having an Mw of less than 900,000 is more likely to have a lower melting point due to a plasticizing effect than a polyolefin resin having an Mw of 900,000 or more, and the diffusion rate of the polyolefin is faster. Therefore, melting and fusion in the stretching / heat fixing process Is likely to occur, and the number of unopened holes increases. Therefore, a proportion of a polyolefin resin having an Mw of 900,000 or more of 20% by mass or more and a plasticizer of less than 80% is particularly preferable.
  • the polyolefin microporous membrane according to the embodiment of the present invention includes antioxidants, heat stabilizers and antistatic agents, ultraviolet absorbers, and further blocking inhibitors and fillers as long as the effects of the present invention are not impaired.
  • Various additives such as the above may be contained.
  • antioxidants examples include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris (3,5-tris).
  • Di-t-butyl-4-hydroxybenzyl) benzene eg, BASF's "Irganox”® 1330: molecular weight 775.2
  • tetrakis [methylene-3 (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate]
  • methane for example, "Irganox" (registered trademark) 1010: molecular weight 1177.7 manufactured by BASF.
  • Appropriate selection of the type and amount of antioxidant and heat stabilizer is important for adjusting or enhancing the characteristics of the polyolefin microporous membrane.
  • the layer structure of the polyolefin microporous membrane according to the embodiment of the present invention may be a single layer or a laminated layer, and the laminated layer is preferable from the viewpoint of physical property balance.
  • the high output characteristic layer contains 50% by mass or more in the total film thickness.
  • the method for producing a microporous polyolefin membrane according to the embodiment of the present invention preferably has the following steps (a) to (e).
  • Step of melt-kneading a polymer material containing one or more kinds of polyolefin resins and, if necessary, a solvent to prepare a polyolefin resin solution (b) Extruding the solution and molding it into a sheet. Step of cooling and solidifying (c) Step of stretching the obtained sheet by a roll method or a tenter method (d) Then, a step of extracting a plasticizer from the obtained stretched film and drying the film (e) Heat treatment / re-stretching Process to do
  • Step of preparing a polyolefin resin solution The above polymer material is heated and dissolved in a plasticizer to prepare a polyolefin resin solution.
  • the plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably a liquid at room temperature in order to enable stretching at a relatively high magnification.
  • Solvents include aliphatic, cyclic aliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil distillates having corresponding boiling points, and dibutylphthalates. Examples thereof include phthalates that are liquid at room temperature, such as dioctyl phthalates.
  • a non-volatile liquid solvent such as liquid paraffin
  • a solid solvent may be mixed with the liquid solvent.
  • a solid solvent include stearyl alcohol, ceryl alcohol, paraffin wax and the like. However, if only a solid solvent is used, uneven stretching may occur.
  • the viscosity of the liquid solvent is preferably 20 to 200 cSt at 40 ° C.
  • the viscosity of the liquid solvent is the viscosity measured at 40 ° C. using an Ubbelohde viscometer.
  • the method for uniformly melt-kneading the polyolefin resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin resin solution, it is preferably performed in a twin-screw extruder. .. If necessary, metal soaps such as calcium stearate, ultraviolet absorbers, light stabilizers, antistatic agents and other known additives are also added as long as the effects of the present invention are not impaired without impairing the film-forming property. You may. In particular, it is preferable to add an antioxidant in order to prevent oxidation of the polyolefin resin.
  • the polyolefin resin solution is uniformly mixed at a temperature at which the polyolefin resin completely melts.
  • the melt-kneading temperature varies depending on the polyolefin resin used, but is preferably (melting point of the polyolefin resin + 10 ° C.) to (melting point of the polyolefin resin + 120 ° C.). More preferably, it is (melting point of polyolefin resin + 20 ° C.) to (melting point of polyolefin resin + 100 ° C.).
  • the melting point means a value measured by DSC (Differential scanning calorimetry) based on JIS K7121 (1987) (hereinafter, the same applies).
  • the melt-kneading temperature of the polyethylene-based resin is preferably in the range of 140 to 250 ° C. More preferably, it is 160 to 230 ° C, and most preferably 170 to 200 ° C.
  • the melt-kneading temperature is preferably 140 to 250 ° C., most preferably 180 to 230 ° C.
  • the melt-kneading temperature is low, but if it is lower than the above-mentioned temperature, unmelted material is generated in the extruded product extruded from the die, and film rupture or the like is caused in the subsequent stretching step. It may cause it.
  • the temperature is higher than the above temperature, the thermal decomposition of the polyolefin resin becomes severe, and the physical properties of the obtained polyolefin microporous film, for example, strength and porosity may deteriorate.
  • the decomposed product precipitates on a chill roll, a roll in the stretching process, or the like and adheres to the sheet, which leads to deterioration of the appearance. Therefore, it is preferable that the melt-kneading temperature is within the above range.
  • a gel-like sheet is obtained by cooling the obtained extruded product, and the microphase of the polyolefin resin separated by the solvent can be immobilized by cooling.
  • cooling method there are a method of directly contacting with cold air, cooling water, and other cooling media, a method of contacting with a roll cooled with a refrigerant, a method of using a casting drum, and the like.
  • the polyolefin microporous membrane according to the embodiment of the present invention is not limited to a single layer, and may be a laminated body.
  • the number of layers is not particularly limited, and may be two layers or three or more layers.
  • the laminated portion may contain a desired resin in addition to the polyolefin resin to the extent that the effects of the present invention are not impaired.
  • a conventional method can be used as a method for forming a polyolefin microporous film as a laminate.
  • desired resins are prepared as needed, these resins are separately fed to an extruder to melt at the desired temperature and merge in a polymer tube or die to achieve the desired thickness of each laminate.
  • (C) Stretching Step The obtained gel-like (including laminated sheet) sheet is stretched.
  • the stretching methods used include rolling and uniaxial stretching in the sheet transport direction (MD direction) by a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, roll stretching machine and tenter, or tenter and tenter. Examples include sequential biaxial stretching by the combination of the above and simultaneous biaxial stretching by the simultaneous biaxial tenter.
  • the stretching ratio varies depending on the thickness of the gel-like sheet from the viewpoint of uniformity of film thickness, but it is preferable to stretch 7 times or more in any direction.
  • the area magnification is preferably 45 times or more, more preferably 60 times or more, further preferably 80 times or more, and particularly preferably 100 times or more. If the area magnification is less than 45 times, the stretching is insufficient and unopened holes are likely to be formed.
  • the area magnification is preferably 150 times or less. When the area magnification is large, tearing is likely to occur frequently during the production of the polyolefin microporous film, and the productivity is lowered.
  • a preferable form of the stretching ratio and the raw material composition is to wet-stretch a raw material having an Mw of 900,000 or more by 60 times or more, more preferably 80 times or more, still more preferably 100.
  • the above is the wet stretching.
  • a particularly preferable form is to stretch a raw material having a Mw of 1 million or more in a wet manner 60 times or more, more preferably 70 times or more, and most preferably 90 times or more.
  • the stretching temperature is preferably in the range of (melting point of the gel-like sheet + 10 ° C. or lower) to (crystal dispersion temperature of polyolefin resin Tcd) to (melting point of the gel-like sheet + 5 ° C.).
  • the stretching temperature is preferably 100 to 130 ° C., more preferably 115 to 125 ° C., and further preferably 117. It is 5 to 125 ° C.
  • the crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065 (2012).
  • the stretching temperature is less than 100 ° C.
  • the pores are insufficiently opened due to the low temperature stretching, it is difficult to obtain the uniformity of the film thickness, and the pore ratio is also low.
  • the stretching temperature is higher than 130 ° C., the sheet melts and the pores are likely to be closed.
  • polyethylene having a weight average molecular weight of less than 900,000 is stretched at a temperature of 115 ° C. or higher, fibrils are melted and fused, and unopened portions are likely to be formed.
  • the relaxation time is longer than that of polyethylene having a weight average molecular weight of less than 900,000 and it is difficult to be deformed by stretching. Therefore, the temperature is higher than when polyethylene having a weight average molecular weight of less than 900,000 is used. It is preferable to form a film at a temperature of 117.5 ° C. or higher because the unopened portion can be reduced even if the film is stretched with.
  • the polyolefin microporous membrane according to the embodiment of the present invention is suitable for a battery separator. Since the polyolefin microporous film of the present application has a uniform fine structure, bleed-out of plasticizers and the like is small even when stretched at a higher stretching temperature than in the prior art, and process stability is improved.
  • the polyolefin resin is in a state of being sufficiently plasticized and softened, so that the higher-order structure can be cleaved smoothly and the crystal phase can be uniformly refined. it can.
  • the higher-order structure is easily cleaved by stretching before removing the plasticizer, strain during stretching is less likely to remain, and the shrinkage rate can be lowered as compared with the case of stretching after removing the plasticizer. it can.
  • cleaning solvent examples include saturated hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, and ethane trifluoride. Chain fluorocarbon and the like can be mentioned.
  • These cleaning solvents have low surface tension (eg, 24 mN / m or less at 25 ° C.). By using a cleaning solvent with a low surface tension, in a network structure that forms microporous, shrinkage due to surface tension at the gas-liquid interface is suppressed during drying after cleaning, and polyolefin microporous with excellent porosity and permeability. A film is obtained.
  • These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
  • Examples of the cleaning method include a method of immersing the gel-like sheet in a cleaning solvent and extracting it, a method of showering the gel-like sheet with the cleaning solvent, or a method of combining these.
  • the amount of the cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more with respect to 100 parts by mass of the gel sheet.
  • the cleaning temperature may be 15 to 30 ° C, and if necessary, heat to 80 ° C or less.
  • the mechanical property of the polyolefin microporous film From the viewpoint of improving the physical and electrical characteristics, the longer the gel sheet is immersed in the cleaning solvent, the better.
  • the above-mentioned cleaning is preferably performed until the residual solvent in the gel-like sheet after cleaning, that is, the polyolefin microporous membrane becomes less than 1% by mass.
  • the solvent in the polyolefin microporous membrane is dried and removed in the drying step.
  • the drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected.
  • the drying temperature is preferably 40 to 100 ° C, more preferably 40 to 80 ° C. If the drying is insufficient, the porosity of the polyolefin microporous membrane will decrease in the subsequent heat treatment, and the permeability will deteriorate.
  • the dried polyolefin microporous film may be stretched (re-stretched) at least in the uniaxial direction.
  • the re-stretching can be performed by the tenter method or the like in the same manner as the above-mentioned stretching while heating the microporous polyolefin membrane.
  • the re-stretching may be uniaxial stretching or biaxial stretching. In the case of multi-stage stretching, simultaneous biaxial or sequential stretching is performed in combination.
  • the re-stretching temperature is preferably equal to or lower than the melting point of the polyolefin resin composition, and more preferably within the range of (Tcd-20 ° C. of the polyolefin resin composition) to the melting point of the polyolefin resin composition.
  • the re-stretching temperature is preferably 70 to 135 ° C., more preferably 110 to 135 ° C., further preferably 125 to 135 ° C., and even more preferably 130 to 135 ° C.
  • the relaxation time is subjected to heat treatment temperature of above 130 ° C. for a short, pores with the fine fibrils are melted, savage holes is increased to fuse The rate and the number of holes decrease, leading to a decrease in output characteristics.
  • it is possible to suppress melting and fusion of the weight average molecular weight is also fine to implement the stretching and heat setting at 0.9 ⁇ 10 6 or more polyethylene relaxation time is long for 130 ° C. or higher temperatures fibrils, high Heat can be fixed by temperature. Therefore, the balance between the shrinkage rate and the unopened portion is improved. It is preferable to heat-set at 130 ° C. or higher when the weight average molecular weight is used 0.9 ⁇ 10 6 or more polyethylene.
  • the re-stretching ratio is preferably 1.01 to 2.0 times, particularly preferably 1.1 to 1.6 times, and more preferably 1.2 to 1.4 times in the TD direction. ..
  • biaxial stretching it is preferable to stretch 1.01 to 2.0 times in the MD direction and the TD direction, respectively.
  • the re-stretching magnification may be different in the MD direction and the TD direction.
  • the relaxation rate from the maximum re-stretching ratio is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less.
  • the relaxation rate is 20% or less, a uniform fibril structure can be obtained.
  • the polyolefin microporous membrane can be hydrophilized.
  • the hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like.
  • the monomer graft is preferably carried out after the cross-linking treatment.
  • the polyolefin microporous film is crosslinked by irradiation with ionizing radiation such as ⁇ -ray, ⁇ -ray, ⁇ -ray, and electron beam.
  • ionizing radiation such as ⁇ -ray, ⁇ -ray, ⁇ -ray, and electron beam.
  • electron beam irradiation an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable.
  • the cross-linking treatment raises the meltdown temperature of the microporous polyolefin membrane.
  • any of nonionic surfactant, cationic surfactant, anionic surfactant or amphoteric surfactant can be used, but nonionic surfactant is preferable.
  • the polyolefin microporous membrane is immersed in water or a solution prepared by dissolving a surfactant in a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the polyolefin microporous membrane by the doctor blade method.
  • the polyolefin microporous film according to the embodiment of the present invention is a fluororesin porous body such as polyvinylene sulfide fluoride or polytetrafluoroethylene for the purpose of improving meltdown characteristics and heat resistance when used as a battery separator.
  • a fluororesin porous body such as polyvinylene sulfide fluoride or polytetrafluoroethylene
  • Polyimide, polyphenylene sulfide, and other porous materials may be surface-coated, and ceramics and other inorganic coatings may be applied.
  • the porous polyolefin film obtained by the present invention has finely and uniformly controlled pore diameter and fibril structure, clogging due to the coating material can be suppressed, and the coating suitability is excellent.
  • the microporous polyolefin membrane obtained as described above can be used for various purposes such as filters, separators for fuel cells, separators for capacitors, etc., but is particularly excellent in safety and output characteristics when used as a separator for batteries. .. Therefore, the separator can be preferably used as a separator for a non-aqueous electrolytic solution secondary battery that requires high energy density, high capacity, and high output for electric vehicles and the like.
  • Weight average molecular weight (Mw) The weight average molecular weights of ultra high molecular weight polyethylene (UHPE) and high density polyethylene (HDPE) were determined by gel permeation chromatography (GPC) under the following conditions.
  • -Measuring device GPC-150C manufactured by WATERS CORPORATION -Column: SHODEX UT806M manufactured by Showa Denko KK -Column temperature: 135 ° C -Solvent (mobile phase): O-dichlorobenzene-Solvent flow rate: 1.0 mL / min-Sample concentration: 0.1 wt% (dissolution condition: 135 ° C / 1H)
  • -Injection amount 500 ⁇ L -Detector: WATERS CORPORATION differential refractometer (RI detector) -Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
  • the microporous membrane obtained in the examples was Pt-deposited, and the surface of the microporous membrane was secondary to the surface of the microporous membrane with a field of view of 11.7 ⁇ m ⁇ 9.4 ⁇ m at a magnification of 10000 times at an acceleration voltage of 2 kV using a scanning electron microscope (SEM). It was observed with an electron image.
  • SEM observation image was divided into squares having a side of 0.5 ⁇ m and binarized using HALCON 13 manufactured by MVTec Software.
  • an image having an acceleration voltage of 2 kV, a magnification of 10000 times, 11.7 ⁇ m ⁇ 9.4 ⁇ m (1280 pixels ⁇ 1024 pixels), and 8 bits (256 gradations) gray scale was used.
  • noise is removed from the surface SEM observation image by averaging 3 pixels x 3 pixels, and then the image obtained by averaging 21 pixels x 21 pixels is dynamically binarized with -30 gradations as a threshold value.
  • the dark part was extracted (image processing) and the binarization process was performed.
  • the ratio of the dark part to the total area of the visual field was defined as the surface average aperture ratio (aperture ratio calculated from the total area of the surface SEM observation image) (%). Also for each partition of each square divided, Plot size (0.5 ⁇ m ⁇ 0.5 ⁇ m) - calculating the area of the resin portion from the area ([mu] m 2) of the openings (dark portion) ([mu] m 2), in each compartment The ratio of the resin part was calculated. The total area of the resin part in the compartment where the ratio of the resin part is the surface average aperture ratio (%) -2 (%) or more is defined as the area of the surface SEM unopened part, and the total area of the field of view (11.7 ⁇ m ⁇ 9. The area ratio of the unopened portion at 4 ⁇ m) was calculated.
  • the average pore diameter was converted from the pressure at the intersection of the pressure and the half slope of the flow rate curve in the Dry-up measurement and the pressure at the intersection of the Wet-up measurement curve. The following formula was used to convert the pressure and the average pore size.
  • d C ⁇ ⁇ / P (In the above formula, “d ( ⁇ m)” is the average pore size of the polyolefin microporous membrane, “ ⁇ (mN / m)” is the surface tension of the liquid, “P (Pa)” is the pressure, and “C” is a constant. .)
  • the total length of the fibrils in one section is set to 0.875 ⁇ m, and the area of the fibrils (F1) obtained by multiplying the total length of the fibrils by the fibril diameter calculated by the palm poromometer and the hole area (P1) calculated by surface SEM observation.
  • R2 and R1 in each of the above compartments are compared, and the resin portion in the compartment satisfying the relationship of R2 ⁇ R1 is defined as the unopened portion, and the total area of the resin in the unopened compartment is defined as the unopened portion area.
  • the area of the unopened hole in 7.7 ⁇ 9.4 ⁇ m 2 was calculated.
  • an image having an acceleration voltage of 2 kV, a magnification of 10000 times, 11.7 ⁇ m ⁇ 9.4 ⁇ m (1280 pixels ⁇ 1024 pixels), and 8 bits (256 gradations) gray scale was used.
  • the binarization process is performed by removing noise from the cross-sectional SEM observation image with an average of 3 pixels ⁇ 3 pixels, and then dynamically binarizing the image obtained by averaging 21 pixels ⁇ 21 pixels with a threshold value of -20 gradations. By performing the binarization process, the dark part was extracted (image processing) and the binarization process was performed.
  • the dark part was defined as the opening, and the ratio of the dark part to the total area of the visual field was defined as the cross-sectional average aperture ratio (%). Also for each partition of each square divided, Plot size (0.3 ⁇ m ⁇ 0.3 ⁇ m) - calculating the area of the resin portion from the area ([mu] m 2) of the openings (dark portion) ([mu] m 2), in each compartment The ratio of the resin part was calculated. The area ratio of the unopened portion in the total area of the visual field (11.7 ⁇ m ⁇ 9.4 ⁇ m) was calculated by using the total area of the resin portion of the section where the ratio of the resin portion is 80% or more as the area of the cross-sectional SEM unopened portion. ..
  • Average hole diameter of cross section SEM was calculated from the total area of the opened portion (dark portion) and the number of surface holes in the cross-section SEM observation image processed in (8) above.
  • Air permeability (sec / 100 cm 3 )
  • an air permeability meter made by Asahi Seiko Co., Ltd., EGO-1T
  • JIS P-8117 for a polyolefin microporous membrane with a film thickness of T1 ( ⁇ m).
  • Tensile breaking strength (MPa), tensile breaking elongation (%) MD is calculated by scoring 3 points from the central part of the polyolefin microporous film in the width direction and calculating the average value of the measurement results measured under the conditions of a chuck distance of 20 mm and a strain rate of 100 mm / min for each of the strip-shaped test pieces having a width of 10 mm.
  • the tensile breaking strength (MPa) and the tensile breaking elongation (%) of each of the direction and the TD direction were determined.
  • Shrinkage rate (%) at 105 ° C. for 8 hours Three test pieces cut into 50 mm squares were scored from the central portion of the polyolefin microporous membrane in the width direction, and the shrinkage rate (heat shrinkage rate) in the MD direction when each was held at 105 ° C. for 8 hours was measured. The average value was taken as the shrinkage rate (%) in the MD direction. Further, the same measurement was performed in the TD direction, and the shrinkage rate in the TD direction was determined.
  • the polyolefin microporous membrane is incorporated as a separator into a non-aqueous electrolyte secondary battery composed of a positive electrode, a negative electrode, a separator and an electrolyte, and is charged and discharged. The test was performed.
  • NMC532 Lithium Nickel Manganese Cobalt Composite Oxide (Li 1.05 Ni 0.50 Mn 0.29 Co 0.21) at 9.5 mg / cm 2 on an aluminum foil with a width of 38 mm, a length of 33 mm and a thickness of 20 ⁇ m. O 2 )) is laminated on the cathode, and natural graphite with a density of 1.45 g / cm 3 is laminated on a copper foil having a width of 40 mm, a length of 35 mm, and a thickness of 10 ⁇ m at a unit area mass of 5.5 mg / cm 2.
  • the positive electrode and the negative electrode were dried and used in a vacuum oven at 120 ° C.
  • a microporous polyolefin membrane having a length of 50 mm and a width of 50 mm was dried in a vacuum oven at room temperature and used.
  • the electrolytic solution is a mixture of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (30/35/35, volume ratio) in which vinylene carbonate (VC) and LiPF 6 are dissolved, and the VC concentration is 0.5% by mass, LiPF 6.
  • a solution of concentration: 1 mol / L was prepared.
  • the positive electrode, the separator, and the negative electrode are stacked, the obtained laminate is placed in the laminate pouch, the electrolytic solution is injected into the laminate pouch, and the laminate pouch is vacuum-sealed to form a non-aqueous electrolyte secondary battery. Made.
  • the prepared non-aqueous electrolyte secondary battery was charged for 10 to 15% at a temperature of 35 ° C. and 0.1 C, and left at 35 ° C. overnight (12 hours or more) for degassing.
  • CC-CV charging with a temperature of 35 ° C., a voltage range of 2.75 to 4.2 V, and a charging current value of 0.1 C (constant current constant voltage charging (termination current condition 0.02 C)), discharge current value 0. 1C CC discharge (constant current discharge) was carried out.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • the time when 2C CC discharge (constant current charging) was performed for 3 cycles was defined as the initial stage of the non-aqueous electrolyte secondary battery.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • a temperature of 35 ° C., a voltage range; 2.75 to 4.2V, and a charging current value of 0.2C is performed, and then at 15 ° C.
  • a 0.2 C CC discharge was performed, and the discharge capacity at that time was set to a 0.2 C capacity.
  • CC-CV charging constant current constant voltage charging (termination current condition 0.05C)
  • Example 1 Mw as the starting material was used an ultra-high molecular weight polyethylene of 10 ⁇ 10 5. 83 parts by mass of liquid paraffin is added to 17 parts by mass of ultra-high molecular weight polyethylene, and 0.5 parts by mass of 2,6-di-t-butyl-p-cresol and 0.7 mass by mass based on the mass of ultra-high molecular weight polyethylene. A polyethylene resin solution was prepared by adding tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and mixing them.
  • the obtained polyethylene resin solution was put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, and the extruded product was cooled with a cooling roll controlled at 15 ° C. to form a gel-like sheet.
  • the obtained gel-like sheet was sequentially biaxially stretched 10 times in the longitudinal direction and the width direction at 117.5 ° C. by a tenter stretching machine, and the sheet width was fixed in the tenter stretching machine as it was, and the temperature was 117.5 ° C. Was held for 10 seconds.
  • the stretched gel-like sheet was immersed in a methylene chloride bath in a washing tank, and after removing liquid paraffin, it was dried to obtain a polyolefin microporous membrane. Finally, using an oven, heat fixation was carried out at a temperature of 130 ° C. for 10 minutes without stretching.
  • Table 1 shows the raw material formulation and film forming conditions of the polyolefin microporous film
  • Table 3 shows the evaluation results of the polyolefin microporous film.
  • Examples 2 to 10, 12, 14, Comparative Examples 1 to 9 A polyolefin microporous film was prepared in the same manner as in Example 1 except that the raw material formulation and the film forming conditions were changed as shown in Tables 1 and 2.
  • Example 11 Mw as the starting material was used an ultra-high molecular weight polyethylene of 9.0 ⁇ 10 5. 75 parts by mass of liquid paraffin is added to 25 parts by mass of ultra-high molecular weight polyethylene, and 0.5 parts by mass of 2,6-di-t-butyl-p-cresol and 0.7 mass by mass based on the mass of ultra-high molecular weight polyethylene.
  • a polyethylene resin solution was prepared by adding tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and mixing them.
  • the obtained polyethylene resin solution was put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, and the extruded product was cooled with a cooling roll controlled at 15 ° C. to form a gel-like sheet.
  • the obtained gel-like sheet was sequentially biaxially stretched 9.0 times in the longitudinal direction and 6.7 times in the width direction at 118 ° C. by a tenter stretching machine, and the sheet width was fixed as it was in the tenter stretching machine at 118 ° C. It was held at temperature for 10 seconds.
  • the stretched gel-like sheet was immersed in a methylene chloride bath in a washing tank, and after removing liquid paraffin, it was dried to obtain a polyolefin microporous membrane. After removing the liquid paraffin, the dried film was stretched 1.4 times in the width direction at 135.5 ° C. and heat-fixed for 3 minutes.
  • Example 13 Comparative Examples 10 and 11
  • a polyolefin microporous film was prepared in the same manner as in Example 11 except that the raw material formulation and the film forming conditions were changed as shown in Tables 1 and 2.
  • the ion resistance, strength, and shrinkage rate are excellent as compared with the conventional polyolefin microporous membrane, so that the capacity retention rate at high output
  • a microporous polyolefin membrane with excellent properties and high safety can be obtained.

Abstract

The present invention relates to a microporous polyolefin membrane which has a shrinkage ratio of less than 10% in the MD direction at 105°C/8h and a fibril diameter of from 10 nm to 50 nm, wherein if a 11.7 μm × 9.4 μm rectangular field of view of a surface SEM observation image as obtained by the observation with a scanning electron microscope (SEM) is divided into 0.5 μm × 0.5 μm pieces, the sum of resin areas in the pieces satisfying R2 ≥ R1, namely (non-opening parts a in the surface) is 20 μm2 or less in the 11.7 μm × 9.4 μm area of the surface SEM observation image.

Description

ポリオレフィン微多孔膜、及び非水電解液二次電池用セパレータPolyolefin microporous membrane and separator for non-aqueous electrolyte secondary battery
 本発明は、物質の分離、選択透過等に用いられる分離膜、及びアルカリ電池、リチウム二次電池、燃料電池、コンデンサー等電気化学反応装置の隔離材等として広く使用されているポリオレフィン微多孔膜(多孔性ポリオレフィンフィルムともいう)に関する。特に本発明は、リチウムイオン電池等の非水電解液二次電池用セパレータとして好適に使用されるポリオレフィン微多孔膜であり、従来のポリオレフィン微多孔膜に比べ優れた電池特性を発揮するとともに、高い安全性を有するセパレータとして用いられる。 The present invention is a polyolefin microporous membrane widely used as a separation membrane used for separation of substances, selective permeation, etc., and a separating material for an electrochemical reaction device such as an alkaline battery, a lithium secondary battery, a fuel cell, and a capacitor. Also referred to as a porous polyolefin film). In particular, the present invention is a polyolefin microporous film preferably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, which exhibits excellent battery characteristics and is high as compared with a conventional polyolefin microporous film. Used as a safe separator.
 ポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータ等として用いられている。特にノート型パーソナルコンピュータや携帯電話、デジタルカメラ等に広く使用さるリチウムイオン電池等の非水電解液二次電池用のセパレータとして好適に使用されている。その理由は、ポリオレフィン微多孔膜が優れた機械強度やシャットダウン特性、イオン透過性能を有していることが挙げられる。 Polyolefin microporous membranes are used as filters, fuel cell separators, condenser separators, etc. In particular, it is suitably used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason is that the polyolefin microporous membrane has excellent mechanical strength, shutdown characteristics, and ion permeation performance.
 特に、近年リチウムイオン二次電池は車載用途で使用されるため、充電時間の短縮や加速性の向上が必要であり、電池の要求特性として急速充電(大電流充電)や消費電力増加(大電流放電)が求められる。それに伴いセパレータの要求事項として出力特性の改善も一層高いものとなってきている。 In particular, in recent years, lithium-ion secondary batteries have been used for in-vehicle applications, so it is necessary to shorten the charging time and improve acceleration, and the required characteristics of batteries include quick charging (large current charging) and increased power consumption (large current). Discharge) is required. Along with this, the improvement of output characteristics has become even higher as a requirement for separators.
 また、自動車の航続距離増加に伴い電池の高容量化が進み、セパレータの薄膜化が一層求められている。しかし、セパレータを薄膜化すると強度が低下するため、電極や異物による短絡(耐異物性)や電池が衝撃を受けた際に破膜(耐衝撃性の低下)が起こりやすく、電池の安全性が低下する。そのため、従来よりもさらなる高強度が求められる。加えて、高いエネルギーを有する電池においては、セパレータが有するシャットダウン機能により電気化学反応の進行をストップさせても電池内の温度が上昇し続け、その結果、セパレータが熱収縮して破膜し、両極が短絡(ショート)するという問題がある。そのため、セパレータには高強度、低収縮率、及び高出力特性の並立が求められる。 In addition, as the cruising range of automobiles increases, the capacity of batteries is increasing, and there is a further demand for thinner separators. However, thinning the separator reduces its strength, so short circuits due to electrodes and foreign matter (foreign matter resistance) and film rupture (decrease in impact resistance) when the battery is impacted are likely to occur, and the safety of the battery is reduced. descend. Therefore, higher strength than before is required. In addition, in a battery with high energy, the temperature inside the battery continues to rise even if the progress of the electrochemical reaction is stopped by the shutdown function of the separator, and as a result, the separator heat shrinks and ruptures, and both electrodes. Has a problem of short-circuiting. Therefore, the separator is required to have high strength, low shrinkage, and high output characteristics.
 出力特性を改善する手法として、特許文献1にはポリエチレン(PE)とポリプロピレン(PP)をブレンドし空孔率を増加させ孔数と孔径と曲路率を制御しイオン伝導性を改善する手法が開示されている。 As a method for improving the output characteristics, Patent Document 1 describes a method for improving ionic conductivity by blending polyethylene (PE) and polypropylene (PP) to increase the porosity and controlling the number of pores, the pore diameter and the curvature ratio. It is disclosed.
 特許文献2には表面と内部の孔構造を制御し、電解液含浸性を向上させ出力特性を改善する手法が開示されている。 Patent Document 2 discloses a method of controlling the pore structure on the surface and the inside, improving the impregnation property of the electrolytic solution, and improving the output characteristics.
 特許文献3には単位体積当たりの空隙率の変動率を制御し、均一な孔構造を形成することで、出力特性とサイクル特性を改善する手法が開示されている。 Patent Document 3 discloses a method for improving output characteristics and cycle characteristics by controlling the volatility of the porosity per unit volume and forming a uniform pore structure.
 特許文献4には微多孔膜の繊維径(フィブリル径)を微細化し出力特性を改善する手法が開示されている。 Patent Document 4 discloses a method of reducing the fiber diameter (fibril diameter) of the microporous membrane to improve the output characteristics.
 また、高強度化の手法として、通常延伸倍率を上げるまたは樹脂濃度を増加する、高分子量の原料を用いるといった手法がとられる。特許文献5には強度と収縮特性とを両立する手法として分子量28万のポリエチレンと分子量200万のポリエチレンをブレンドし、樹脂濃度32wt%の条件でMD方向に7.0倍、TD方向に6.4倍延伸し洗浄乾燥後に1.2倍(面積倍率54倍)に延伸する手法が記載されている。 In addition, as a method for increasing the strength, a method such as increasing the draw ratio, increasing the resin concentration, or using a high molecular weight raw material is usually taken. In Patent Document 5, as a method of achieving both strength and shrinkage characteristics, polyethylene having a molecular weight of 280,000 and polyethylene having a molecular weight of 2 million are blended, and under the condition of a resin concentration of 32 wt%, 7.0 times in the MD direction and 6. in the TD direction. A method of stretching 4 times, washing and drying, and then stretching 1.2 times (area magnification 54 times) is described.
 また、特許文献6および7には高分子量ポリエチレンを6.4×6.0倍(面積倍率38.4倍)に延伸し、繊維構造(フィブリル構造)に含まれる結晶部の割合を制御することで、イオン透過性、強度及びシャットダウン特性を並立する手法が開示されている。 Further, in Patent Documents 6 and 7, high molecular weight polyethylene is stretched to 6.4 × 6.0 times (area magnification 38.4 times) to control the ratio of crystal portions contained in the fiber structure (fibril structure). Discloses a method of arranging ion permeability, strength and shutdown characteristics side by side.
日本国特開2017-140840号公報Japanese Patent Application Laid-Open No. 2017-140840 日本国特開2012-48987号公報Japanese Patent Application Laid-Open No. 2012-48987 日本国特開2016-191069号公報Japanese Patent Application Laid-Open No. 2016-191069 日本国特開2014-15697号公報Japanese Patent Application Laid-Open No. 2014-15697 日本国特開2006-124652号公報Japanese Patent Application Laid-Open No. 2006-124652 日本国特開2018-147885号公報Japanese Patent Application Laid-Open No. 2018-147858 日本国特開2018-147690号公報Japanese Patent Application Laid-Open No. 2018-147690
 しかしながら、特許文献1~3に記載されているような従来の微多孔膜は、出力特性を改善するために空孔率を増加し、孔数および貫通孔を増加するといった孔構造を制御する必要があるため、十分な強度が得られず、車載用途等に求められる高い出力特性と強度の両立に対して不十分であった。 However, in the conventional microporous membranes as described in Patent Documents 1 to 3, it is necessary to control the pore structure such as increasing the pore ratio and increasing the number of pores and through holes in order to improve the output characteristics. Therefore, sufficient strength could not be obtained, and it was insufficient to achieve both high output characteristics and strength required for in-vehicle applications and the like.
 特許文献4に記載されるフィブリル径を微細化する手法においても、空孔率が70%と非常に高く、強度との両立に課題があると考えられる。 Even in the method of miniaturizing the fibril diameter described in Patent Document 4, the pore ratio is as high as 70%, and it is considered that there is a problem in achieving both strength and strength.
 特許文献5~7には、強度と収縮率や強度と出力特性電池のバランスを改善する手法が記載されているが、電池の高容量化に伴うセパレータの薄膜、高強度、低収縮率、及び高出力特性を並立するという観点において十分ではなかった。 Patent Documents 5 to 7 describe methods for improving the balance between strength and shrinkage rate and strength and output characteristic battery. However, the thin film of the separator, high strength, low shrinkage rate, and the like as the capacity of the battery increases. It was not sufficient from the viewpoint of parallelizing high output characteristics.
 上記事情に鑑み、本発明は、従来よりも優れた出力特性と強度、収縮率を有するポリオレフィン微多孔膜を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a polyolefin microporous membrane having better output characteristics, strength, and shrinkage rate than before.
 そこで本発明者らは、樹脂成分で構成される繊維状の網目構造を備えるセパレータの塊状部(以下、未開孔部と称し、延伸によりフィブリル化していない未延伸部や熱処理工程においてフィブリルが融着した構造等を表す)と抵抗値および高出力放電時の容量維持率との関係に着目した。その結果、セパレータの未開孔部の面積を低減することで、従来技術に比べ出力特性と強度、収縮率に優れたポリオレフィン微多孔膜が得られることを見出し、本発明を完成するに至った。すなわち、本発明は以下の構成を採用する。 Therefore, the present inventors have described the lumpy portion of a separator having a fibrous network structure composed of a resin component (hereinafter referred to as an unopened portion, which is not fibrillated by stretching, or the fibrils are fused in a heat treatment step. We focused on the relationship between the resistance value and the capacity retention rate during high-power discharge. As a result, they have found that by reducing the area of the unopened portion of the separator, a polyolefin microporous membrane having excellent output characteristics, strength, and shrinkage rate can be obtained as compared with the prior art, and the present invention has been completed. That is, the present invention adopts the following configuration.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、105℃/8hのMD方向の収縮率が10%未満であり、走査型電子顕微鏡(SEM)を用いた観察により得られる表面SEM観察画像11.7μm×9.4μmの長方形状の視野を縦横それぞれ0.5μm画に分割し、R2≧R1の関係を満たす区画中の樹脂面積の総和(表面の未開孔部a)が、前記表面SEM観察画像11.7μm×9.4μmにおいて20μm以下であり、
 フィブリル径が10~50nmであることを特徴とする。
ここで表面の未開孔部aとは、分割した1区画内のフィブリル総長さを0.875μmとし、フィブリル総長さにパームポロメータにより算出したフィブリル径を乗じたフィブリルの面積(F1)と孔面積(P1)の比(F1/P1)をR1、
前記分割した区画それぞれにおける樹脂面積(F2)と孔面積(P2)の比(F2/P2)をR2とし、
 R2≧R1の関係を満たす各区画中の樹脂面積の総和のことをいう。
The surface SEM observation image of the polyolefin microporous film according to the embodiment of the present invention, which has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h and is obtained by observation using a scanning electron microscope (SEM). A 7 μm × 9.4 μm rectangular field is divided into 0.5 μm images in each of the vertical and horizontal directions, and the total resin area (unopened hole portion a on the surface) in the section satisfying the relationship of R2 ≧ R1 is the surface SEM observation image. It is 20 μm 2 or less at 11.7 μm × 9.4 μm.
It is characterized by having a fibril diameter of 10 to 50 nm.
Here, the unopened hole portion a on the surface is the area (F1) and the hole area of the fibrils in which the total length of the fibrils in one divided section is 0.875 μm, and the total length of the fibrils is multiplied by the fibril diameter calculated by the palm porometer. The ratio (F1 / P1) of (P1) is R1,
The ratio (F2 / P2) of the resin area (F2) and the hole area (P2) in each of the divided sections is defined as R2.
It refers to the total area of the resin in each section that satisfies the relationship of R2 ≧ R1.
 本発明の実施形態は、未開孔部の少ないポリオレフィン微多孔膜を用いることで、従来のポリオレフィン微多孔膜と比較してイオン抵抗、強度、及び収縮率に優れるため、高出力での容量維持率に優れるとともに高い安全性を有したポリオレフィン微多孔膜が得られる。 In the embodiment of the present invention, by using a polyolefin microporous membrane having few unopened pores, the ion resistance, strength, and shrinkage rate are excellent as compared with the conventional polyolefin microporous membrane, so that the capacity retention rate at high output A microporous polyolefin membrane with excellent properties and high safety can be obtained.
 本発明の実施形態にかかる未開孔部の少ないポリオレフィン微多孔膜は、イオン抵抗、強度、及び収縮率に優れているため、電池用のセパレータとして有用であり、優れた安全性と出力特性を有している。本発明は後述するフィブリル構造(フィブリル径と未開孔部の面積)を満足させることにより実現できる。
 すなわち、本発明は網目状のフィブリル構造からなるポリオレフィン微多孔膜を電池用セパレータとして用いた場合の電池の出力特性と安全性との両立という課題に対し検討した結果、ポリオレフィン微多孔膜に含まれる未開孔部がイオンの透過を妨げ抵抗が増加するとともに、強度の低下や収縮率の増加につながること突き止め、未開孔部の面積が小さい均一な微細フィブリル構造からなるポリオレフィン微多孔膜を用いることで、従来トレードオフの関係にあった電池の出力特性と安全性の両立につながることを見出したものである。
The polyolefin microporous membrane having few unopened pores according to the embodiment of the present invention is excellent in ion resistance, strength, and shrinkage rate, and is therefore useful as a separator for batteries, and has excellent safety and output characteristics. doing. The present invention can be realized by satisfying the fibril structure (the fibril diameter and the area of the unopened hole portion) described later.
That is, the present invention is included in the polyolefin microporous membrane as a result of studying the problem of achieving both the output characteristics and safety of the battery when the polyolefin microporous membrane having a mesh-like fibril structure is used as the battery separator. By finding out that the unopened part hinders the permeation of ions and increases the resistance, which leads to a decrease in strength and an increase in the shrinkage rate, and by using a polyolefin microporous membrane having a uniform fine fibril structure with a small area of the unopened part. , It was found that it leads to both the output characteristics and safety of the battery, which has been in a trade-off relationship in the past.
 以下、本発明についてさらに詳述する。
[1]ポリオレフィン微多孔膜
 本発明の実施形態にかかるポリオレフィン微多孔膜は、105℃/8hのMD方向の収縮率が10%未満であり、走査型電子顕微鏡(SEM)を用いた観察により得られる表面SEM観察画像11.7μm×9.4μmの長方形状の視野を縦横それぞれ0.5μm画に分割し、R2≧R1の関係を満たす区画中の樹脂面積の総和(表面の未開孔部a)が、前記表面SEM観察画像11.7μm×9.4μmにおいて20μm以下であり、フィブリル径が10~50nmである。
 ここで表面の未開孔部aとは、分割した1区画内のフィブリル総長さを0.875μmとし、フィブリル総長さにパームポロメータにより算出したフィブリル径を乗じたフィブリルの面積(F1)と孔面積(P1)の比(F1/P1)をR1、
前記分割した区画それぞれにおける樹脂面積(F2)と孔面積(P2)の比(F2/P2)をR2とし、
R2≧R1の関係を満たす各区画中の樹脂面積の総和のことをいう。
Hereinafter, the present invention will be described in more detail.
[1] Polyporous Microporous Membrane The microporous polyolefin membrane according to the embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h, and can be obtained by observation using a scanning electron microscope (SEM). Surface SEM observation image 11.7 μm × 9.4 μm rectangular field of view is divided into 0.5 μm images in each of the vertical and horizontal directions, and the total resin area in the section satisfying the relationship of R2 ≧ R1 (unopened hole portion a on the surface). However, in the surface SEM observation image 11.7 μm × 9.4 μm, it is 20 μm 2 or less, and the fibril diameter is 10 to 50 nm.
Here, the unopened hole portion a on the surface is the area (F1) and the hole area of the fibrils in which the total length of the fibrils in one divided section is 0.875 μm, and the total length of the fibrils is multiplied by the fibril diameter calculated by the palm porometer. The ratio (F1 / P1) of (P1) is R1,
The ratio (F2 / P2) of the resin area (F2) and the hole area (P2) in each of the divided sections is defined as R2.
It refers to the total area of the resin in each section that satisfies the relationship of R2 ≧ R1.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、後述する手法により測定される表面未開孔部の面積が20μm/11.7×9.4μm以下であることを特徴とする。未開孔部の面積が20μm以下であると、リチウムイオン電池等の非水電解液二次電池のセパレータとして用いた際に、イオンの流れをせき止める構造がなくなり良好なイオン透過性が得られる。その結果、イオン抵抗の上昇を抑制できる。したがって、未開孔部の面積は小さければ小さいほど好ましい。未開孔部の面積は好ましくは18μm以下であり、より好ましくは17μm以下であり、さらに好ましくは16μm以下である。 The polyolefin microporous membrane according to the embodiment of the present invention is characterized in that the area of the surface unopened portion measured by the method described later is 20 μm 2 / 11.7 × 9.4 μm 2 or less. When the area of the unopened portion is 20 μm 2 or less, when used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, there is no structure that blocks the flow of ions, and good ion permeability can be obtained. As a result, an increase in ion resistance can be suppressed. Therefore, it is preferable that the area of the unopened portion is small. Area unopened hole is preferably not more 18 [mu] m 2 or less, more preferably 17 .mu.m 2 or less, more preferably 16 [mu] m 2 or less.
 ポリオレフィン微多孔膜の表面未開孔部は、延伸によりフィブリル化していない未延伸部や熱処理工程等においてフィブリルが融着した構造を有しており、未延伸部はフィブリル化していないため強度が低下する。また、フィブリルの溶融・融着により生じた構造は不安定な結晶構造をとるため、高温下で緩和しやすく収縮率の悪化につながる。そのため、SEMで観察される未開孔部の面積が20μmより大きいと本発明の目的であるイオン抵抗の低減および高出力放電における高容量維持、高強度、及び低収縮率の実現が難しくなる。 The surface unopened portion of the polyolefin microporous membrane has a structure in which fibrils are fused in an unstretched portion that has not been fibrillated by stretching or in a heat treatment step, and the unstretched portion is not fibrillated, so that the strength is reduced. .. In addition, since the structure formed by melting and fusion of fibrils has an unstable crystal structure, it is easy to relax at high temperatures, leading to deterioration of the shrinkage rate. Therefore, if the area of the unopened portion observed by the SEM is larger than 20 μm 2, it becomes difficult to reduce the ion resistance, maintain a high capacity in a high output discharge, maintain a high strength, and achieve a low shrinkage rate, which are the objects of the present invention.
 イオン透過性の観点から表面未開孔部の面積は小さければ小さいほど好ましいが、未開孔部0μmは繊維状構造となり、電池用セパレータとして好適に使用される網目状構造とならない。そのため十分なシャットダウン性を得るためには、未開孔部の面積の下限としては0.1μm以上が好ましく、1.0μm以上がより好ましい。 From the viewpoint of ion permeability, the smaller the area of the surface unopened portion is, the more preferable it is. However, the unopened portion 0 μm 2 has a fibrous structure and does not have a network structure preferably used as a battery separator. Therefore, in order to obtain sufficient shutdown property, the lower limit of the area of the unopened portion is preferably 0.1 μm 2 or more, and more preferably 1.0 μm 2 or more.
 本発明の他の実施形態にかかるポリオレフィン微多孔膜は、105℃/8hのMD方向の収縮率が10%未満であり、走査型電子顕微鏡(SEM)を用いた観察により得られる表面SEM観察画像の視野の総面積に対して表面の未開孔部bの面積比率が25%以下であり、フィブリル径が10~50nmである。
 ここで、表面の未開孔部bとは、表面SEM観察画像を縦横それぞれ0.5μmの区画に分割した各区画において、樹脂部の比率が(前記表面SEM観察画像の総面積から算出される開孔率(%)-2(%))以上である区画の樹脂部であり、
表面の未開孔部bの面積比率は、前記表面SEM観察画像の視野の総面積に対する表面未開孔部の面積の総和の比率である。
The polyolefin microporous film according to another embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h, and is a surface SEM observation image obtained by observation using a scanning electron microscope (SEM). The area ratio of the unopened hole portion b on the surface to the total area of the field of view is 25% or less, and the fibril diameter is 10 to 50 nm.
Here, the unopened portion b on the surface is an opening in which the ratio of the resin portion is calculated from the total area of the surface SEM observation image in each division in which the surface SEM observation image is divided into sections of 0.5 μm each in length and width. It is a resin part of a section having a pore ratio (%) -2 (%) or more.
The area ratio of the surface unopened portion b is the ratio of the total area of the surface unopened portion to the total area of the visual field of the surface SEM observation image.
 本発明において、後述する手法により測定されるフィブリル径は、平均直径が10~50nmである。フィブリル径が10~50nmの範囲であると、高い表面積を有するため良好な電解液保持性が得られ電池特性が向上する。また、フィブリル径が微細、均一化することで、太いフィブリル構造に起因するイオンのせき止めを抑制し抵抗の上昇を抑制できるとともに、単位体積当たりのフィブリル数が増加するため、高い強度が得られる。そのためフィブリル径は30nm以下が好ましく、19nm以下がより好ましく、17nm以下がさらに好ましく、16nm以下がよりさらに好ましく、15nm以下が特に好ましい。通常ポリオレフィン微多孔膜はポリエチレンやポリプロピレンなどの結晶性のポリオレフィンを延伸により配向させることで結晶化度が増加し、微細なフィブリルが形成されて強度が増加する。そのため、ポリオレフィンのフィブリル構造の残留応力が増加し、強度の増加にともない収縮率が増加する。収縮率の観点からフィブリル径は10nm以上が好ましく、12nm以上がより好ましい。 In the present invention, the average diameter of the fibril diameter measured by the method described later is 10 to 50 nm. When the fibril diameter is in the range of 10 to 50 nm, since it has a high surface area, good electrolyte retention is obtained and the battery characteristics are improved. Further, by making the fibril diameter fine and uniform, it is possible to suppress the damming of ions due to the thick fibril structure and suppress the increase in resistance, and the number of fibrils per unit volume is increased, so that high strength can be obtained. Therefore, the fibril diameter is preferably 30 nm or less, more preferably 19 nm or less, further preferably 17 nm or less, further preferably 16 nm or less, and particularly preferably 15 nm or less. Usually, in a polyolefin microporous film, the crystallinity is increased by orienting a crystalline polyolefin such as polyethylene or polypropylene by stretching, and fine fibrils are formed to increase the strength. Therefore, the residual stress of the fibril structure of polyolefin increases, and the shrinkage rate increases as the strength increases. From the viewpoint of shrinkage, the fibril diameter is preferably 10 nm or more, more preferably 12 nm or more.
 本発明において、後述する手法により測定されるポリオレフィン微多孔膜の表面SEM観察画像における平均孔径は30~55nmであることが好ましい。平均孔径が55nm以下であるとデンドライトの成長などによる短絡を抑制できるとともに、良好な孔数が得られ、イオンの透過経路が増加するため優れた電池特性が得られる。平均孔径は53nm以下が好ましく、50nm以下がより好ましい。平均孔径が30nm以上であると良好な開孔率が得られ高いイオン透過性が得られる。そのため、平均孔径は30nm以上が好ましく、35nm以上がより好ましく、40nm以上がさらに好ましく、45nm以上がよりさらに好ましい。 In the present invention, the average pore size in the surface SEM observation image of the polyolefin microporous film measured by the method described later is preferably 30 to 55 nm. When the average pore diameter is 55 nm or less, short circuits due to the growth of dendrites can be suppressed, a good number of pores can be obtained, and the ion transmission path increases, so that excellent battery characteristics can be obtained. The average pore diameter is preferably 53 nm or less, more preferably 50 nm or less. When the average pore diameter is 30 nm or more, a good aperture ratio can be obtained and high ion permeability can be obtained. Therefore, the average pore diameter is preferably 30 nm or more, more preferably 35 nm or more, further preferably 40 nm or more, and even more preferably 45 nm or more.
 本発明において、後述する手法により測定される表面SEM観察画像における孔数は75個/μm以上であることが好ましい。通常、電池の充放電過程において電池内部で電解液が電気化学的に分解し、有機物等の固体生成物やエチレン、水素といったガスが生成する。これらの生成物がポリオレフィン微多孔膜中の孔を閉塞するため電池特性が悪化する。また、イオンの透過経路に偏りが生じることで、分解反応が進行しやすくなる。そのため、これらの観点からはイオンの透過経路は多いほど好ましい。したがって、孔数は80個/μm以上が好ましく、85個/μm以上がより好ましく、90個/μm以上がさらに好ましい。また、孔数の増加はフィブリル径の細化や小孔径化、曲路の増加につながるため、孔数は200個/μm以下が好ましく、150個/μm以下がより好ましく、100個/μm以下がさらに好ましい。 In the present invention, the number of holes in the surface SEM observation image measured by the method described later is preferably 75 holes / μm 2 or more. Normally, in the process of charging and discharging a battery, the electrolytic solution is electrochemically decomposed inside the battery to generate solid products such as organic substances and gases such as ethylene and hydrogen. These products block the pores in the microporous polyolefin membrane, degrading battery characteristics. In addition, the decomposition reaction is likely to proceed due to the bias in the ion permeation path. Therefore, from these viewpoints, it is preferable that the number of ion permeation paths is large. Therefore, the number of holes is preferably 80 / μm 2 or more, more preferably 85 / μm 2 or more, and even more preferably 90 / μm 2 or more. Moreover, since an increase in the number of holes leads to an increase of thinning or stoma diameter, tortuosity of the fibrils diameter, number of holes is preferably 200 pieces / [mu] m 2 or less, more preferably 150 pieces / [mu] m 2 or less, 100 cells / It is more preferably μm 2 or less.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、走査型電子顕微鏡(SEM)を用いた観察により得られる断面SEM観察画像11.7μm×9.4μmの長方形状の視野面積に対して断面の未開孔部の面積比率が22%以下であることが好ましい。
 ここで、断面の未開孔部とは、断面SEM観察画像を縦横それぞれ0.3μmの区画に分割し、分割した1区画に含まれる樹脂比率が80%以上の区画中の樹脂部であり、
断面の未開孔部の面積比率は、前記断面SEM観察画像の視野の総面積に対する断面未開孔部の面積の総和の比率である。
 断面未開孔部の面積比率が22%以下であると、リチウムイオン電池等の非水電解液二次電池のセパレータとして用いた際に、イオンの流れをせき止める構造がなくなり良好なイオン透過性が得られる。その結果、イオン抵抗の上昇を抑制できる。したがって、未開孔部の面積は小さければ小さいほど好ましい。断面未開孔部の面積比率は好ましくは22%以下であり、より好ましくは20%以下であり、さらに好ましくは19%以下であり、よりさらに好ましくは18%以下であり、特に好ましくは6%以下である。
The microporous polyolefin membrane according to the embodiment of the present invention has an unopened cross section with respect to a rectangular viewing area of 11.7 μm × 9.4 μm in cross section SEM observation image obtained by observation using a scanning electron microscope (SEM). The area ratio of the holes is preferably 22% or less.
Here, the unopened portion of the cross section is a resin portion in a section in which the cross-sectional SEM observation image is divided into sections of 0.3 μm in length and width, and the resin ratio contained in the divided sections is 80% or more.
The area ratio of the unopened portion of the cross section is the ratio of the total area of the unopened portion of the cross section to the total area of the visual field of the cross section SEM observation image.
When the area ratio of the non-perforated portion in the cross section is 22% or less, when used as a separator for a non-aqueous electrolyte secondary battery such as a lithium ion battery, the structure that blocks the flow of ions disappears and good ion permeability is obtained. Be done. As a result, an increase in ion resistance can be suppressed. Therefore, it is preferable that the area of the unopened portion is small. The area ratio of the unperforated portion in the cross section is preferably 22% or less, more preferably 20% or less, further preferably 19% or less, still more preferably 18% or less, and particularly preferably 6% or less. Is.
 ポリオレフィン微多孔膜の未開孔部は延伸によりフィブリル化していない未延伸部や熱処理工程等においてフィブリルが融着した構造を有しており、未延伸部はフィブリル化していないため強度が低下する。また、フィブリルの溶融・融着により生じた構造は不安定な結晶構造をとるため、高温下で緩和しやすく収縮率の悪化につながる。そのため、SEMで観察される断面未開孔部の面積比率を22%以下とすることで、本発明の目的であるイオン抵抗の低減および高出力放電における高容量維持、高強度、及び低収縮率が達成しやすくなる。 The unopened portion of the polyolefin microporous membrane has a structure in which the unstretched portion is not fibrillated by stretching and the fibrils are fused in the heat treatment step, etc., and the unstretched portion is not fibrillated, so that the strength is lowered. In addition, since the structure formed by melting and fusion of fibrils has an unstable crystal structure, it is easy to relax at high temperatures, leading to deterioration of the shrinkage rate. Therefore, by setting the area ratio of the unopened cross-section observed by SEM to 22% or less, it is possible to reduce the ion resistance, maintain high capacity in high output discharge, maintain high strength, and have a low shrinkage rate, which are the objects of the present invention. It will be easier to achieve.
 本発明において、後述する手法により測定されるポリオレフィン微多孔膜の断面SEM観察画像における平均孔径は20~85nmであることが好ましい。断面平均孔径が85nm以下であるとデンドライトの成長などによる短絡を抑制できるとともに、良好な孔数が得られ、イオンの透過経路が増加するため優れた電池特性が得られる。断面平均孔径は85nm以下が好ましく、80nm以下がより好ましく、78nm以下がさらに好ましく、76nm以下がよりさらに好ましく、75nm以下が特に好ましい。断面平均孔径が20nm以上であると良好な開孔率が得られ高いイオン透過性が得られる。平均孔径は20nm以上が好ましく、50nm以上がより好ましく、70nm以上がさらに好ましい。 In the present invention, the average pore size in the cross-sectional SEM observation image of the polyolefin microporous film measured by the method described later is preferably 20 to 85 nm. When the average cross-sectional pore diameter is 85 nm or less, short circuits due to the growth of dendrites can be suppressed, a good number of pores can be obtained, and the ion transmission path increases, so that excellent battery characteristics can be obtained. The average cross-sectional pore diameter is preferably 85 nm or less, more preferably 80 nm or less, further preferably 78 nm or less, further preferably 76 nm or less, and particularly preferably 75 nm or less. When the average cross-sectional pore diameter is 20 nm or more, a good aperture ratio can be obtained and high ion permeability can be obtained. The average pore diameter is preferably 20 nm or more, more preferably 50 nm or more, and even more preferably 70 nm or more.
 本発明において後述する手法により測定される断面方向の孔数は60個/μm以上であることが好ましい。通常、電池の充放電過程において電池内部で電解液が電気化学的に分解し、有機物等の固体生成物やエチレン、水素といったガスが生成する。これらの生成物がポリオレフィン微多孔膜中の孔を閉塞するため電池特性が悪化する。また、イオンの透過経路に偏りが生じることで、分解反応が進行しやすくなる。そのため、これらの観点からはイオンの透過経路は多いほど好ましい。したがって、孔数は65個/μm以上が好ましく、68個/μm以上がより好ましい。また、孔数の増加はフィブリル径の細化や小孔径化やボイドの形成につながるため、孔数は100個/μm以下が好ましく、70個/μm以下がより好ましい。 In the present invention, the number of holes in the cross-sectional direction measured by the method described later is preferably 60 holes / μm 2 or more. Normally, in the process of charging and discharging a battery, the electrolytic solution is electrochemically decomposed inside the battery to generate solid products such as organic substances and gases such as ethylene and hydrogen. These products block the pores in the microporous polyolefin membrane, degrading battery characteristics. In addition, the decomposition reaction is likely to proceed due to the bias in the ion permeation path. Therefore, from these viewpoints, it is preferable that the number of ion permeation paths is large. Therefore, the number of holes is preferably 65 / μm 2 or more, and more preferably 68 / μm 2 or more. Further, since an increase in the number of holes leads to a reduction in the diameter of the fibril, a reduction in the diameter of the fibrils, and the formation of voids, the number of holes is preferably 100 / μm 2 or less, and more preferably 70 / μm 2 or less.
 本発明の実施形態にかかるポリオレフィン微多孔膜の空孔率は、透過性能および電解液含有量の観点から、35%以上であることが好ましく、より好ましくは40%以上であり、さらに好ましくは45%以上である。空孔率が35%以上であると透過性、強度および電界液含有量のバランスが良くなり、電池反応の不均一性が解消される。その結果、デンドライトの発生が抑制され従来の電池性能を損ねることなく使用でき、二次電池用セパレータとして好適に用いることができる。また、空孔率を増加することで良好な出力特性が得られるが、突刺強度の低下と収縮率の増加等、電池の安全性が低下する。そのため空孔率は50%以下が好ましく、48%以下がより好ましい。空孔率は、以下の式で表され、実施例に記載の方法で測定できる。
  空孔率=[(体積-質量/ポリマー密度)/体積]×100
The porosity of the microporous polyolefin membrane according to the embodiment of the present invention is preferably 35% or more, more preferably 40% or more, still more preferably 45, from the viewpoint of permeation performance and electrolyte content. % Or more. When the porosity is 35% or more, the balance between permeability, strength and electric field liquid content is improved, and the non-uniformity of the battery reaction is eliminated. As a result, the generation of dendrites is suppressed and the battery can be used without impairing the performance of the conventional battery, and can be suitably used as a separator for a secondary battery. Further, although good output characteristics can be obtained by increasing the pore ratio, the safety of the battery is lowered due to a decrease in puncture strength and an increase in shrinkage rate. Therefore, the porosity is preferably 50% or less, more preferably 48% or less. The porosity is expressed by the following formula and can be measured by the method described in Examples.
Pore ratio = [(volume-mass / polymer density) / volume] x 100
 本発明の実施形態にかかるポリオレフィン微多孔膜の突刺強度は、電池内の異物による短絡抑制などの安全性に影響するため、高いほど好ましい。また、孔数は電池反応におけるイオン透過性に影響し、孔数が多いほどイオンの透過経路が増加するため抵抗が低下し、高出力での充放電が可能となる。しかし、突刺強度はフィルムの深さ方向の強度を表す指標であり、単位体積当たりの孔数が増加すると空隙の割合が増加し樹脂量が低下するため突刺強度が低下する。そのため、突刺強度と高出力での電池特性を両立するためには未開孔部を減らしイオンの透過を妨げるせき止め構造をなくすとともに、均一な微細フィブリル構造を形成し、単位体積当たりのフィブリル数を増加し突刺強度を増加する手法が有効である。 The higher the puncture strength of the polyolefin microporous membrane according to the embodiment of the present invention is, the more preferable it is because it affects safety such as suppression of short circuit due to foreign matter in the battery. In addition, the number of holes affects the ion permeability in the battery reaction, and as the number of holes increases, the ion transmission path increases, so that the resistance decreases and charging / discharging at high output becomes possible. However, the piercing strength is an index showing the strength in the depth direction of the film, and when the number of holes per unit volume increases, the ratio of voids increases and the amount of resin decreases, so that the piercing strength decreases. Therefore, in order to achieve both piercing strength and battery characteristics at high output, the number of unopened holes is reduced to eliminate the damming structure that hinders the permeation of ions, and a uniform fine fibril structure is formed to increase the number of fibrils per unit volume. A method of increasing the puncture strength is effective.
 電極活物質等による破膜防止の観点から、膜厚を7μmに換算したポリオレフィン微多孔膜の突刺強度は、3.0N以上が好ましく、3.5N以上がより好ましく、4.0N以上がさらに好ましく、4.3N以上がよりさらに好ましく、5.0N以上が特に好ましい。突刺強度が3.0N以上であると、電池内の異物等による短絡を抑制し、良好な電池の安全性が得られる。 From the viewpoint of preventing film rupture due to the electrode active material or the like, the puncture strength of the polyolefin microporous film in which the film thickness is converted to 7 μm is preferably 3.0 N or more, more preferably 3.5 N or more, still more preferably 4.0 N or more. 4.3N or more is even more preferable, and 5.0N or more is particularly preferable. When the puncture strength is 3.0 N or more, a short circuit due to a foreign substance or the like in the battery is suppressed, and good battery safety can be obtained.
 突刺強度を増加するためにはフィブリルの結晶構造の観点では超高分子量ポリオレフィンを用いラメラ晶をつなぐタイ分子数を増加するとよい。未延伸部を減らすという観点では延伸工程における分子鎖の絡み合い増加による樹脂層への均一な応力負荷が好ましく、熱固定工程等におけるフィブリルの溶融・融着により生じる未開孔部構造を抑制するためには低分子量成分の少ない分子量分布がシャープな高分子量ポリオレフィンが好ましい。また、後述する原料や樹脂濃度、延伸倍率を適用することで未開孔部が減少し、良好な突刺強度が得られる。 In order to increase the puncture strength, it is advisable to use ultra-high molecular weight polyolefin and increase the number of Thai molecules connecting the lamella crystals from the viewpoint of the crystal structure of fibril. From the viewpoint of reducing the unstretched portion, a uniform stress load on the resin layer due to increased entanglement of molecular chains in the stretching step is preferable, and in order to suppress the unopened portion structure caused by melting and fusion of fibrils in the heat fixing step and the like. Is preferably a high molecular weight polyolefin having a small molecular weight component and a sharp molecular weight distribution. Further, by applying the raw material, the resin concentration, and the draw ratio described later, the unopened portion is reduced and good piercing strength can be obtained.
 膜厚を7μmと換算したときの突刺強度とは、膜厚T1(μm)のポリオレフィン微多孔膜において突刺強度がL1(N)であったとき、式:L2=(L1×7)/T1によって算出される突刺強度L2(N)のことを指す。なお、以下では、膜厚について特に記載がない限り、「突刺強度」という語句を「膜厚を7μmと換算したときの突刺強度」の意味で用いる。 The puncture strength when the film thickness is converted to 7 μm is determined by the formula: L2 = (L1 × 7) / T1 when the puncture strength is L1 (N) in the polyolefin microporous film having a film thickness of T1 (μm). It refers to the calculated puncture strength L2 (N). In the following, unless otherwise specified, the term "piercing strength" is used to mean "piercing strength when the film thickness is converted to 7 μm".
 電池ではMD方向にテンションがかかっているため、MD方向の収縮率が高いと破膜し短絡につながる。そのため、本発明の実施形態にかかるポリオレフィン微多孔膜は、105℃/8hにおけるMD方向の収縮率が10%未満である。また、3.0%以上であることが好ましい。MD方向の収縮率がこの範囲にある場合、ポリオレフィン微多孔膜の形状安定性とシャットダウン特性のバランスが改善される。収縮率が10%を超えると、高温時の形状安定性が悪くなり、局所的に異常発熱した際に内部短絡が起こり、安全性が低下する。また、収縮率が3.0%以上であれば、ポリオレフィンの流動性の悪化を抑制でき、シャットダウン特性の低下を防ぐことができる。MD方向の収縮率は9%以下が好ましく、8%以下がより好ましく、7%以下がさらに好ましい。また、5%以上がより好ましく、6%以上がさらに好ましい。 Batteries are tensioned in the MD direction, so if the shrinkage rate in the MD direction is high, the film will break and a short circuit will occur. Therefore, the microporous polyolefin membrane according to the embodiment of the present invention has a shrinkage rate of less than 10% in the MD direction at 105 ° C./8 h. Further, it is preferably 3.0% or more. When the shrinkage rate in the MD direction is in this range, the balance between the shape stability of the polyolefin microporous film and the shutdown property is improved. If the shrinkage rate exceeds 10%, the shape stability at high temperature deteriorates, and an internal short circuit occurs when abnormal heat is generated locally, which lowers safety. Further, when the shrinkage rate is 3.0% or more, deterioration of the fluidity of polyolefin can be suppressed, and deterioration of shutdown characteristics can be prevented. The shrinkage rate in the MD direction is preferably 9% or less, more preferably 8% or less, still more preferably 7% or less. Further, 5% or more is more preferable, and 6% or more is further preferable.
 また、本発明の実施形態にかかるポリオレフィン微多孔膜は、105℃/8hおけるTD方向の収縮率は、応力緩和特性など耐熱性の観点から1.0~15%であることが好ましい。収縮率がこの範囲にある場合、ポリオレフィン微多孔膜の形状安定性とシャットダウン特性のバランスが改善される。収縮率が1.0%以上であれば、ポリオレフィンの流動性の悪化を抑制でき、シャットダウン特性の低下を防止できる。また、収縮率が15%以下であれば、高温時の形状安定性の悪化を抑制でき、局所的に異常発熱した際に内部短絡が起こることを防止でき、安全性を維持できる。TD方向の収縮率は10%以下が好ましく、7%以下がより好ましく、5%以下がさらに好ましい。また、3%以上がより好ましく、4%以上がさらに好ましい。 Further, in the polyolefin microporous membrane according to the embodiment of the present invention, the shrinkage rate in the TD direction at 105 ° C./8 h is preferably 1.0 to 15% from the viewpoint of heat resistance such as stress relaxation characteristics. When the shrinkage rate is in this range, the balance between the shape stability and the shutdown property of the polyolefin microporous membrane is improved. When the shrinkage rate is 1.0% or more, deterioration of the fluidity of polyolefin can be suppressed, and deterioration of shutdown characteristics can be prevented. Further, when the shrinkage rate is 15% or less, deterioration of shape stability at high temperature can be suppressed, internal short circuit can be prevented from occurring when abnormal heat is locally generated, and safety can be maintained. The shrinkage rate in the TD direction is preferably 10% or less, more preferably 7% or less, still more preferably 5% or less. Further, 3% or more is more preferable, and 4% or more is further preferable.
 105℃/8hにおけるMD方向及びTD方向の収縮率は、実施例に記載の方法で測定できる。 The shrinkage rate in the MD direction and the TD direction at 105 ° C./8 h can be measured by the method described in Examples.
 また、本発明により得られるポリオレフィン微多孔膜は未開孔部の面積が小さい均一な微細フィブリル構造を有するため、均一に収縮する。そのため局所的に異常発熱した場合にも、内部短絡の拡大を防止して影響を最小限に抑えることができ高い安全性が得られる。 Further, since the polyolefin microporous membrane obtained by the present invention has a uniform fine fibril structure with a small area of unopened pores, it shrinks uniformly. Therefore, even if abnormal heat is generated locally, the expansion of the internal short circuit can be prevented and the influence can be minimized, and high safety can be obtained.
 MD方向およびTD方向の引張(破断)強度(以下、単に「MD強度」「TD強度」とも記す)は、いずれも150MPa以上が好ましく、180MPa以上がより好ましく、200MPa以上がさらに好ましく、220MPa以上がよりさらに好ましい。MD強度およびTD強度が150MPa以上であると、電池内の異物等による短絡が生じることを防ぎ、電池の安全性を維持できる。安全性向上の観点からは引張強度は高いほど好ましいが、引張強度と収縮率はトレードオフとなる場合が多いため、330MPa以下が好ましく、280MPa以下がより好ましい。引張強度を上記範囲とするには、ポリオレフィン微多孔膜の原料組成を後述する範囲とし、また、ポリオレフィン微多孔膜製膜時の延伸条件を後述する範囲内とすることが好ましい。 The tensile (breaking) strength in the MD direction and the TD direction (hereinafter, also simply referred to as "MD strength" and "TD strength") is preferably 150 MPa or more, more preferably 180 MPa or more, further preferably 200 MPa or more, and 220 MPa or more. Even more preferable. When the MD strength and the TD strength are 150 MPa or more, it is possible to prevent a short circuit due to a foreign substance or the like in the battery and maintain the safety of the battery. From the viewpoint of improving safety, the higher the tensile strength, the more preferable, but since there are many cases where there is a trade-off between the tensile strength and the shrinkage rate, 330 MPa or less is preferable, and 280 MPa or less is more preferable. In order to set the tensile strength in the above range, it is preferable that the raw material composition of the polyolefin microporous film is in the range described later, and the stretching conditions at the time of forming the polyolefin microporous film are in the range described later.
 また、MD方向およびTD方向の引張(破断)伸度(以下、単に「MD伸度」「TD伸度」とも記す)は、いずれも30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましく、60%以上がよりさらに好ましい。。MD伸度およびTD伸度が30%以上であると、捲回時や電池内の異物などによる短絡を抑制し良好な安全性が得られるため好ましい。また、MD伸度およびTD伸度はいずれも150%以下が好ましく、80%以下がより好ましく、70%以下がさらに好ましい。MD伸度およびTD伸度が150%以下であると、強度と伸度を両立できであるため好ましい。 Further, the tensile (breaking) elongation in the MD direction and the TD direction (hereinafter, also simply referred to as “MD elongation” and “TD elongation”) is preferably 30% or more, more preferably 40% or more, and more preferably 50%. The above is more preferable, and 60% or more is even more preferable. .. When the MD elongation and the TD elongation are 30% or more, short circuits due to foreign matter in the battery or the like during winding are suppressed, and good safety can be obtained, which is preferable. Further, both MD elongation and TD elongation are preferably 150% or less, more preferably 80% or less, still more preferably 70% or less. It is preferable that the MD elongation and the TD elongation are 150% or less because both strength and elongation can be achieved at the same time.
 MD方向およびTD方向の引張強度及び引張伸度は、実施例に記載のようにASTM D882(Standard Test Method for Tensile Properties of Thin Plastic Sheeting)で規定される引張試験により測定できる。 The tensile strength and tensile elongation in the MD direction and the TD direction can be measured by a tensile test defined by ASTM D882 (Standard Test Method for Tensile Properties of Thin Plastic Sheeting) as described in Examples.
 なお、本発明においては、ポリオレフィン微多孔膜の製膜する方向に平行な方向を製膜方向、長手方向あるいはMD方向と称し、ポリオレフィン微多孔膜面内で製膜方向に直交する方向を幅方向あるいはTD方向と称する。 In the present invention, the direction parallel to the film forming direction of the polyolefin microporous film is referred to as the film forming direction, the longitudinal direction or the MD direction, and the direction orthogonal to the film forming direction within the polyolefin microporous film surface is the width direction. Alternatively, it is referred to as the TD direction.
 本発明の実施形態にかかるポリオレフィン微多孔膜において、透気度はJIS P 8117(2009)に準拠して測定した値をいう。本明細書では膜厚について特に記載がない限り、「透気度」という語句を「膜厚を7μmとしたときの透気度」の意味で用いる。膜厚T1(μm)のポリオレフィン微多孔膜について測定した透気度がp1(sec/100cm)であったとき、式:p2=(p1×7)/T1によって算出される透気度p2(sec/100cm)を、膜厚を7μmとしたときの透気度とする。 In the polyolefin microporous membrane according to the embodiment of the present invention, the air permeability refers to a value measured in accordance with JIS P 8117 (2009). Unless otherwise specified, the term "air permeability" is used in the present specification to mean "air permeability when the film thickness is 7 μm". When the air permeability measured for a polyolefin microporous membrane having a film thickness of T1 (μm) is p1 (sec / 100 cm 3 ), the air permeability p2 (p2) calculated by the formula: p2 = (p1 × 7) / T1. sec / 100 cm 3 ) is the air permeability when the film thickness is 7 μm.
 透気度(ガーレー値)は100sec/100cm以下であることが好ましく、80sec/100cm以下であることがより好ましく、60sec/100cm以下であることがさらに好ましい。透気度が100sec/100cm以下であると良好なイオン透過性が得られ、電気抵抗を低下させることができる。 Preferably the air permeability (Gurley value) is not more than 100 sec / 100 cm 3, more preferably of 80 sec / 100 cm 3 or less, and more preferably 60 sec / 100 cm 3 or less. When the air permeability is 100 sec / 100 cm 3 or less, good ion permeability can be obtained and the electric resistance can be reduced.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、膜厚の増加に伴い抵抗が増加し、電池の出力特性が低下する。電池の出力特性の観点から、膜厚が12μm以下であることが好ましく、10μm以下であることがより好ましく、8μm以下であることがさらに好ましく、7μm以下であることがもっと好ましい。また、膜厚が薄くなればなるほど強度が低下し安全性が低下する。安全性の観点から、3μm以上であることが好ましく、4μm以上であることがより好ましい。 The resistance of the microporous polyolefin membrane according to the embodiment of the present invention increases as the film thickness increases, and the output characteristics of the battery deteriorate. From the viewpoint of the output characteristics of the battery, the film thickness is preferably 12 μm or less, more preferably 10 μm or less, further preferably 8 μm or less, and even more preferably 7 μm or less. Further, the thinner the film thickness, the lower the strength and the lower the safety. From the viewpoint of safety, it is preferably 3 μm or more, and more preferably 4 μm or more.
[2]ポリオレフィン樹脂
 本発明の実施形態にかかるポリオレフィン微多孔膜における樹脂原料は単一組成であってよく、主原料と副原料を組み合わせた組成物であってよく、2種以上のポリオレフィン樹脂からなるポリオレフィン樹脂混合物(ポリオレフィン樹脂組成物)であってもよい。ポリオレフィン微多孔膜における原料形態は、ポリオレフィン樹脂であることが好ましく、ポリオレフィン樹脂としては、例えばポリエチレン、ポリプロピレン等が挙げられ、単一組成であることが好ましい。
[2] Polyolefin Resin The resin raw material in the polyolefin microporous film according to the embodiment of the present invention may have a single composition, may be a composition in which a main raw material and an auxiliary raw material are combined, and may be composed of two or more kinds of polyolefin resins. It may be a polyolefin resin mixture (polyolefin resin composition). The raw material form of the polyolefin microporous membrane is preferably a polyolefin resin, and examples of the polyolefin resin include polyethylene and polypropylene, and a single composition is preferable.
 ポリオレフィン樹脂はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン等の単独重合体が好ましく、エチレンの単独重合体(ポリエチレン)が特に好ましい。ポリエチレンはエチレンの単独重合体と他のα-オレフィンを含有する共重合体であってもよい。 The polyolefin resin is preferably a homopolymer such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and particularly preferably an ethylene homopolymer (polyethylene). Polyethylene may be a copolymer containing a homopolymer of ethylene and another α-olefin.
 他のα-オレフィンとしてはプロピレン、ブテン-1、ヘキセン-1、ペンテン-1、4-メチルペンテン-1、オクテン、またはそれ以上の炭素数を有するアルケン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。 Other α-olefins include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, or alkene having a carbon number of more than that, vinyl acetate, methyl methacrylate, styrene, and the like. Can be mentioned.
 用いるポリオレフィン樹脂の種類としてはポリエチレンが好ましく、密度が0.94g/cmを越えるような高密度ポリエチレン、密度が0.93~0.94g/cmの範囲の中密度ポリエチレン、密度が0.93g/cmより低い低密度ポリエチレン、直鎖状低密度ポリエチレン等が挙げられる。 Polyethylene is preferable as the type of polyolefin resin, high density polyethylene such as density exceeding 0.94 g / cm 3, density polyethylene in the range density of 0.93 ~ 0.94g / cm 3, density of 0 used. Examples thereof include low density polyethylene lower than 93 g / cm 3 and linear low density polyethylene.
 また、ポリオレフィン樹脂は、未開孔部数と孔数および膜強度の観点から、重量平均分子量(Mw)90万以上の超高分子量のポリオレフィンを単独で使用することが好ましい。 Further, as the polyolefin resin, from the viewpoint of the number of unopened pores, the number of pores, and the film strength, it is preferable to use an ultra-high molecular weight polyolefin having a weight average molecular weight (Mw) of 900,000 or more alone.
 超高分子量ポリオレフィンは、重量平均分子量が0.9×10以上が好ましく、また1.0×10以下が好ましい。
 重量平均分子量が0.9×10以上であれば、緩和時間が短くなりすぎず延伸温度や熱処理温度の上昇が抑えられるため、微細なフィブリルが溶融し、融着するため未開孔部が増加するとともに孔数が減少し出力と特性が低下してしまうのを防ぐことができる。
 また、重量平均分子量が0.9×10以上のポリオレフィンを用いることで、非晶部領域の絡み合い密度が上昇し、延伸工程においてポリオレフィン樹脂層に均一に応力が負荷されるため、未開孔部が減少するとともに微細なフィブリル構造を形成できる。そのため、良好な出力特性が得られる。
 また、重量平均分子量が0.9×10以上のポリオレフィン樹脂を用いることでタイ分子数が増加し、高い強度が得られる。また、超高分子量ポリエチレンは緩和時間が長いため、高温での延伸・熱固定における微細なフィブリルの溶融・融着が抑制され、収縮率と未開孔部のバランスが改善される。そのため、トレードオフの関係にあるイオン抵抗、強度、収縮が改善され、電池の安全性と出力特性の両立が可能となる。
Ultra-high molecular weight polyolefin has a weight average molecular weight is preferably preferably 0.9 × 10 6 or more and 1.0 × 10 7 or less.
When the weight-average molecular weight of 0.9 × 10 6 or more, since the increase in the stretching temperature and the heat treatment temperature relaxation time is not too short is suppressed, a fine fibrils are melted, some savage holes to fuse increases At the same time, it is possible to prevent the number of holes from decreasing and the output and characteristics from deteriorating.
Further, since the weight average molecular weight is used 0.9 × 10 6 or more polyolefins, for entanglement density of the amorphous region increases uniformly stress the polyolefin resin layer in the stretching process is loaded, unopened hole Can be reduced and a fine fibril structure can be formed. Therefore, good output characteristics can be obtained.
Moreover, Thailand number of molecules is increased by a weight-average molecular weight is used 0.9 × 10 6 or more polyolefin resins, high strength can be obtained. In addition, since ultra-high molecular weight polyethylene has a long relaxation time, melting and fusion of fine fibrils during stretching and heat fixation at high temperature are suppressed, and the balance between shrinkage rate and unopened portion is improved. Therefore, the trade-offs of ion resistance, strength, and shrinkage are improved, and both battery safety and output characteristics can be achieved at the same time.
 そのため超高分子量ポリオレフィンの重量平均分子量は、好ましくは1.0×10以上であり、より好ましくは1.5×10以上、さらに好ましくは2.0×10以上、特に好ましくは3.0×10以上である。また、重量平均分子量は、好ましくは1.0×10以下、より好ましくは8.0×10以下、さらに好ましくは6.0×10以下、よりさらに好ましくは5.0×10以下、特に好ましくは4.0×10以下である。 The weight average molecular weight of the order ultrahigh molecular weight polyolefin is preferably 1.0 × 10 6 or more, more preferably 1.5 × 10 6 or more, more preferably 2.0 × 10 6 or more, particularly preferably 3. It is 0 × 106 or more. The weight average molecular weight is preferably 1.0 × 10 7 or less, more preferably 8.0 × 10 6 or less, more preferably 6.0 × 10 6 or less, still more preferably 5.0 × 10 6 or less , Particularly preferably 4.0 × 106 or less.
 超高分子量ポリオレフィンの分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は3.0~100の範囲内であることが好ましい。分子量分布が狭いほど系が単一化され均一な微細孔が得られやすいため、分子量分布が狭いほど好ましいが、分布が狭くなるほど成形加工性が低下する。そのため、分子量分布の下限は好ましくは4.0以上、より好ましくは5.0以上、さらに好ましくは6.0以上である。分子量分布が増加すると低分子量成分が増加するため強度の低下や延伸・熱固定における微細なフィブリルの溶融・融着が起こりやすくなるため、上限は好ましくは80以下、より好ましくは50以下、さらに好ましくは20以下、特に好ましくは10以下である。上記範囲とすることで、良好な成形加工性が得られるとともに、系が単一化されるため均一な微細孔が得られる。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the ultrahigh molecular weight polyolefin is preferably in the range of 3.0 to 100. The narrower the molecular weight distribution, the more unified the system is and the more uniform micropores can be obtained. Therefore, the narrower the molecular weight distribution is, the more preferable, but the narrower the distribution, the lower the molding processability. Therefore, the lower limit of the molecular weight distribution is preferably 4.0 or more, more preferably 5.0 or more, and further preferably 6.0 or more. As the molecular weight distribution increases, the low molecular weight components increase, which tends to reduce the strength and melt / fuse fine fibrils during stretching / heat fixation. Therefore, the upper limit is preferably 80 or less, more preferably 50 or less, still more preferable. Is 20 or less, particularly preferably 10 or less. Within the above range, good molding processability can be obtained and uniform micropores can be obtained because the system is unified.
 上記超高分子量ポリオレフィンは、なかでも、未開孔部、膜強度、成型加工性の観点から、重量平均分子量(Mw)が0.9×10以上1.5×10以下の超高分子ポリエチレンであることが特に好ましい。 The ultra-high molecular weight polyolefin, inter alia, primitive holes, film strength, moldability from the viewpoint, the weight average molecular weight (Mw) of 0.9 × 10 6 or more 1.5 × 10 6 or less ultra high molecular weight polyethylene Is particularly preferable.
 本発明の実施形態にかかるポリオレフィン微多孔膜の製造工程においては、成形加工性を向上させる目的で可塑剤を添加することが好ましい。ポリオレフィン樹脂と可塑剤との配合割合は成形加工性を損ねない範囲で適宜調整してよいが、ポリオレフィン樹脂と可塑剤との合計を100質量%として、ポリオレフィン樹脂の割合が10~50質量%であることが好ましい。ポリオレフィン樹脂の割合が10質量%以上(可塑剤の割合が90質量%以下)では、シート状に成形する際に、口金の出口でスウエルやネックインを抑制でき、シートの成形性および製膜性が向上する。一方、ポリオレフィン樹脂の割合が50質量%以下(可塑剤の割合が50質量%以上)では製膜工程の圧力上昇を抑制でき良好な成形加工性が得られる。 In the process for producing a microporous polyolefin membrane according to the embodiment of the present invention, it is preferable to add a plasticizer for the purpose of improving molding processability. The blending ratio of the polyolefin resin and the plasticizer may be appropriately adjusted as long as the molding processability is not impaired, but the ratio of the polyolefin resin is 10 to 50% by mass, where the total of the polyolefin resin and the plasticizer is 100% by mass. It is preferable to have. When the proportion of polyolefin resin is 10% by mass or more (the proportion of plasticizer is 90% by mass or less), swell and neck-in can be suppressed at the outlet of the base when molding into a sheet, and the formability and film forming property of the sheet can be suppressed. Is improved. On the other hand, when the proportion of the polyolefin resin is 50% by mass or less (the proportion of the plasticizer is 50% by mass or more), the pressure increase in the film forming process can be suppressed and good molding processability can be obtained.
 ポリオレフィン樹脂と可塑剤との合計を100質量%としたときのポリオレフィン樹脂の割合は10質量%以上が好ましく、16質量%以上がより好ましく、17質量%以上がさらに好ましく、20質量%以上が特に好ましい。ポリオレフィン樹脂の割合が増加することで可塑剤存在下における分子鎖の重なり密度が増加し、延伸の均一性が向上し未開孔部を減らすことができる。また、ポリオレフィン樹脂の割合が増加することで、延伸倍率増加や洗浄乾燥工程における「孔のつぶれ」を抑制し、高強度化と未開孔部の低減につながる。 When the total of the polyolefin resin and the plasticizer is 100% by mass, the proportion of the polyolefin resin is preferably 10% by mass or more, more preferably 16% by mass or more, further preferably 17% by mass or more, and particularly preferably 20% by mass or more. preferable. By increasing the proportion of the polyolefin resin, the overlapping density of the molecular chains in the presence of the plasticizer is increased, the uniformity of stretching is improved, and the unopened portions can be reduced. Further, by increasing the proportion of the polyolefin resin, it is possible to suppress an increase in the draw ratio and "crushing of holes" in the washing and drying process, leading to higher strength and reduction of unopened holes.
 Mwが90万以上のポリオレフィン樹脂を用いる場合、製膜工程の圧力や延伸応力の観点からポリオレフィン樹脂の割合は、ポリオレフィン樹脂と可塑剤との合計を100質量%として、30質量%以下が好ましく、28.5質量%未満がより好ましく、25質量%未満がさらに好ましい。 When a polyolefin resin having an Mw of 900,000 or more is used, the proportion of the polyolefin resin is preferably 30% by mass or less, with the total of the polyolefin resin and the plasticizer being 100% by mass, from the viewpoint of pressure and stretching stress in the film forming process. Less than 28.5% by mass is more preferable, and less than 25% by mass is further preferable.
 また、Mwが90万未満のポリオレフィン樹脂はMwが90万以上のポリオレフィン樹脂に比べ、可塑化効果による低融点化が起こりやすくポリオレフィンの拡散速度速くなるため、延伸・熱固定工程における溶融、融着が生じやすく、未開孔部が増加する。そのため、Mwが90万以上のポリオレフィン樹脂20質量%以上、可塑剤80%未満の割合が特に好ましい。 Further, a polyolefin resin having an Mw of less than 900,000 is more likely to have a lower melting point due to a plasticizing effect than a polyolefin resin having an Mw of 900,000 or more, and the diffusion rate of the polyolefin is faster. Therefore, melting and fusion in the stretching / heat fixing process Is likely to occur, and the number of unopened holes increases. Therefore, a proportion of a polyolefin resin having an Mw of 900,000 or more of 20% by mass or more and a plasticizer of less than 80% is particularly preferable.
 その他、本発明の実施形態にかかるポリオレフィン微多孔膜には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤や帯電防止剤、紫外線吸収剤、さらにはブロッキング防止剤や充填材等の各種添加剤を含有させてもよい。特に、ポリオレフィン樹脂の熱履歴による酸化劣化を抑制する目的で、酸化防止剤を添加することが好ましい。 In addition, the polyolefin microporous membrane according to the embodiment of the present invention includes antioxidants, heat stabilizers and antistatic agents, ultraviolet absorbers, and further blocking inhibitors and fillers as long as the effects of the present invention are not impaired. Various additives such as the above may be contained. In particular, it is preferable to add an antioxidant for the purpose of suppressing oxidative deterioration due to the thermal history of the polyolefin resin.
 酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT:分子量220.4)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(例えば、BASF社製“Irganox”(登録商標)1330:分子量775.2)、テトラキス[メチレン-3(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン(例えば、BASF社製“Irganox”(登録商標)1010:分子量1177.7)等から選ばれる1種類以上を用いることが好ましい。 Examples of the antioxidant include 2,6-di-t-butyl-p-cresol (BHT: molecular weight 220.4), 1,3,5-trimethyl-2,4,6-tris (3,5-tris). Di-t-butyl-4-hydroxybenzyl) benzene (eg, BASF's "Irganox"® 1330: molecular weight 775.2), tetrakis [methylene-3 (3,5-di-t-butyl-4) -Hydroxyphenyl) propionate] It is preferable to use one or more selected from methane (for example, "Irganox" (registered trademark) 1010: molecular weight 1177.7) manufactured by BASF.
 酸化防止剤や熱安定剤の種類および添加量を適宜選択することはポリオレフィン微多孔膜の特性の調整又は増強として重要である。 Appropriate selection of the type and amount of antioxidant and heat stabilizer is important for adjusting or enhancing the characteristics of the polyolefin microporous membrane.
 また、本発明の実施形態にかかるポリオレフィン微多孔膜の層構成は単層でも積層でもよく、物性バランスの観点から積層が好ましい。上記処方を積層し高出力特性層として用いる場合、高出力特性層がトータル膜厚中に50質量%以上含有していることが好ましい。 Further, the layer structure of the polyolefin microporous membrane according to the embodiment of the present invention may be a single layer or a laminated layer, and the laminated layer is preferable from the viewpoint of physical property balance. When the above formulations are laminated and used as a high output characteristic layer, it is preferable that the high output characteristic layer contains 50% by mass or more in the total film thickness.
[3]ポリオレフィン微多孔膜の製造方法
 次に、本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法を具体的に説明する。本発明の実施形態にかかるポリオレフィン微多孔膜の製造方法は、以下の(a)~(e)の工程を有することが好ましい。
[3] Method for Producing Polyolefin Microporous Membrane Next, the method for producing the polyolefin microporous membrane according to the embodiment of the present invention will be specifically described. The method for producing a microporous polyolefin membrane according to the embodiment of the present invention preferably has the following steps (a) to (e).
(a)1種又は2種以上のポリオレフィン樹脂と、必要に応じて溶媒とを含むポリマー材料を溶融混練し、ポリオレフィン樹脂溶液を調製する工程
(b)溶解物を押出し、シート状に成型して冷却固化する工程
(c)得られたシートをロール方式またはテンター方式により延伸を行う工程
(d)その後、得られた延伸フィルムから可塑剤を抽出しフィルムを乾燥する工程
(e)熱処理/再延伸を行う工程
(A) Step of melt-kneading a polymer material containing one or more kinds of polyolefin resins and, if necessary, a solvent to prepare a polyolefin resin solution (b) Extruding the solution and molding it into a sheet. Step of cooling and solidifying (c) Step of stretching the obtained sheet by a roll method or a tenter method (d) Then, a step of extracting a plasticizer from the obtained stretched film and drying the film (e) Heat treatment / re-stretching Process to do
 以下、各工程について説明する。
 (a)ポリオレフィン樹脂溶液の調製工程
 上記ポリマー材料を、可塑剤に加熱溶解させ、ポリオレフィン樹脂溶液を調製する。可塑剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であれば特に限定されないが、比較的高倍率の延伸を可能とするため、溶剤は室温で液体であることが好ましい。
Hereinafter, each step will be described.
(A) Step of preparing a polyolefin resin solution The above polymer material is heated and dissolved in a plasticizer to prepare a polyolefin resin solution. The plasticizer is not particularly limited as long as it is a solvent capable of sufficiently dissolving the polyolefin resin, but the solvent is preferably a liquid at room temperature in order to enable stretching at a relatively high magnification.
 溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。 Solvents include aliphatic, cyclic aliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil distillates having corresponding boiling points, and dibutylphthalates. Examples thereof include phthalates that are liquid at room temperature, such as dioctyl phthalates.
 液体溶剤の含有量が安定なゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。 In order to obtain a gel-like sheet with a stable liquid solvent content, it is preferable to use a non-volatile liquid solvent such as liquid paraffin.
 溶融混練状態では、ポリオレフィン樹脂と混和するが室温では固体の溶剤を液体溶剤に混合してもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。ただし、固体溶剤のみを使用すると、延伸ムラ等が発生する恐れがある。 In the melt-kneaded state, it is miscible with the polyolefin resin, but at room temperature, a solid solvent may be mixed with the liquid solvent. Examples of such a solid solvent include stearyl alcohol, ceryl alcohol, paraffin wax and the like. However, if only a solid solvent is used, uneven stretching may occur.
 液体溶剤の粘度は40℃において20~200cStであることが好ましい。40℃における粘度を20cSt以上とすれば、ダイからポリオレフィン樹脂溶液を押し出したシートが不均一になりにくい。一方、40℃における粘度を200cSt以下とすれば液体溶剤の除去が容易である。なお、液体溶剤の粘度は、ウベローデ粘度計を用いて40℃で測定した粘度である。 The viscosity of the liquid solvent is preferably 20 to 200 cSt at 40 ° C. When the viscosity at 40 ° C. is 20 cSt or more, the sheet obtained by extruding the polyolefin resin solution from the die is unlikely to become non-uniform. On the other hand, if the viscosity at 40 ° C. is 200 cSt or less, the liquid solvent can be easily removed. The viscosity of the liquid solvent is the viscosity measured at 40 ° C. using an Ubbelohde viscometer.
 (b)押出物の形成およびゲル状シートの形成
 ポリオレフィン樹脂溶液の均一な溶融混練方法は、特に限定されないが、高濃度のポリオレフィン樹脂溶液を調製したい場合、二軸押出機中で行うことが好ましい。必要に応じて、ステアリン酸カルシウム等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤など公知の添加剤も、製膜性を損なうことなく、本発明の効果を損なわない範囲で添加してもよい。特にポリオレフィン樹脂の酸化を防止するために酸化防止剤を添加することが好ましい。
(B) Formation of Extruded Product and Formation of Gel-like Sheet The method for uniformly melt-kneading the polyolefin resin solution is not particularly limited, but when it is desired to prepare a high-concentration polyolefin resin solution, it is preferably performed in a twin-screw extruder. .. If necessary, metal soaps such as calcium stearate, ultraviolet absorbers, light stabilizers, antistatic agents and other known additives are also added as long as the effects of the present invention are not impaired without impairing the film-forming property. You may. In particular, it is preferable to add an antioxidant in order to prevent oxidation of the polyolefin resin.
 押出機中では、ポリオレフィン樹脂が完全に溶融する温度で、ポリオレフィン樹脂溶液を均一に混合する。溶融混練温度は、使用するポリオレフィン樹脂によってことなるが、(ポリオレフィン樹脂の融点+10℃)~(ポリオレフィン樹脂の融点+120℃)とするのが好ましい。さらに好ましくは(ポリオレフィン樹脂の融点+20℃)~(ポリオレフィン樹脂の融点+100℃)である。 In the extruder, the polyolefin resin solution is uniformly mixed at a temperature at which the polyolefin resin completely melts. The melt-kneading temperature varies depending on the polyolefin resin used, but is preferably (melting point of the polyolefin resin + 10 ° C.) to (melting point of the polyolefin resin + 120 ° C.). More preferably, it is (melting point of polyolefin resin + 20 ° C.) to (melting point of polyolefin resin + 100 ° C.).
 ここで、融点とは、JIS K7121(1987)に基づき、DSC(Differential scanning calorimetry)により測定した値をいう(以下、同じ)。例えば、ポリオレフィン系樹脂がポリエチレンの場合、ポリエチレン系樹脂の溶融混練温度は140~250℃の範囲が好ましい。さらに好ましくは、160~230℃、最も好ましくは170~200℃である。具体的には、ポリエチレン組成物は約130~140℃の融点を有するので、溶融混練温度は140~250℃が好ましく、180~230℃が最も好ましい。 Here, the melting point means a value measured by DSC (Differential scanning calorimetry) based on JIS K7121 (1987) (hereinafter, the same applies). For example, when the polyolefin-based resin is polyethylene, the melt-kneading temperature of the polyethylene-based resin is preferably in the range of 140 to 250 ° C. More preferably, it is 160 to 230 ° C, and most preferably 170 to 200 ° C. Specifically, since the polyethylene composition has a melting point of about 130 to 140 ° C., the melt-kneading temperature is preferably 140 to 250 ° C., most preferably 180 to 230 ° C.
 ポリオレフィン樹脂の劣化を抑制する観点から溶融混練温度は低い方が好ましいが、上述の温度よりも低いとダイから押出された押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となる場合がある。また、上述の温度より高いと、ポリオレフィン樹脂の熱分解が激しくなり、得られるポリオレフィン微多孔膜の物性、例えば、強度や空孔率等が悪化する場合がある。また、分解物がチルロールや延伸工程上のロール等に析出し、シートに付着することで外観悪化につながる。そのため、溶融混練温度は上記範囲内で混練することが好ましい。 From the viewpoint of suppressing deterioration of the polyolefin resin, it is preferable that the melt-kneading temperature is low, but if it is lower than the above-mentioned temperature, unmelted material is generated in the extruded product extruded from the die, and film rupture or the like is caused in the subsequent stretching step. It may cause it. On the other hand, if the temperature is higher than the above temperature, the thermal decomposition of the polyolefin resin becomes severe, and the physical properties of the obtained polyolefin microporous film, for example, strength and porosity may deteriorate. In addition, the decomposed product precipitates on a chill roll, a roll in the stretching process, or the like and adheres to the sheet, which leads to deterioration of the appearance. Therefore, it is preferable that the melt-kneading temperature is within the above range.
 次に、得られた押出物を冷却することによりゲル状シートが得られ、冷却により、溶剤によって分離されたポリオレフィン樹脂のミクロ相を固定化することができる。冷却工程においてゲル状シートを10~50℃まで冷却するのが好ましい。これは、最終冷却温度を結晶化終了温度以下とするためで、高次構造を細かくすることで、その後の延伸において均一延伸が行いやすくなる。そのため、冷却は少なくともゲル化温度以下までは30℃/分以上の速度で行うのが好ましい。 Next, a gel-like sheet is obtained by cooling the obtained extruded product, and the microphase of the polyolefin resin separated by the solvent can be immobilized by cooling. In the cooling step, it is preferable to cool the gel sheet to 10 to 50 ° C. This is because the final cooling temperature is set to be equal to or lower than the crystallization end temperature, and by making the higher-order structure finer, uniform stretching can be easily performed in the subsequent stretching. Therefore, cooling is preferably performed at a rate of 30 ° C./min or higher at least up to the gelation temperature or lower.
 一般に冷却速度が遅いと、比較的大きな結晶が形成されるため、ゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、小さく均一な結晶が形成されるため、ゲル状シートの高次構造が密となり、均一延伸に加え未開孔部低減につながる。 Generally, when the cooling rate is slow, relatively large crystals are formed, so that the higher-order structure of the gel-like sheet becomes coarse, and the gel structure that forms it also becomes large. On the other hand, when the cooling rate is high, small and uniform crystals are formed, so that the higher-order structure of the gel-like sheet becomes dense, which leads to uniform stretching and reduction of unopened holes.
 冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラム等を用いる方法等がある。 As a cooling method, there are a method of directly contacting with cold air, cooling water, and other cooling media, a method of contacting with a roll cooled with a refrigerant, a method of using a casting drum, and the like.
 これまでポリオレフィン微多孔膜が単層の場合を説明してきたが、本発明の実施形態にかかるポリオレフィン微多孔膜は、単層に限定されるものではなく、積層体にしてもよい。積層数は特に限定は無く、2層積層であっても3層以上の積層であってもよい。積層部分は、上述したようにポリオレフィン樹脂の他に、本発明の効果を損なわない程度にそれぞれ所望の樹脂を含んでもよい。 Although the case where the polyolefin microporous membrane is a single layer has been described so far, the polyolefin microporous membrane according to the embodiment of the present invention is not limited to a single layer, and may be a laminated body. The number of layers is not particularly limited, and may be two layers or three or more layers. As described above, the laminated portion may contain a desired resin in addition to the polyolefin resin to the extent that the effects of the present invention are not impaired.
 ポリオレフィン微多孔膜を積層体とする方法としては、従来の方法を用いることができる。例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して所望の温度で溶融させ、ポリマー管あるいはダイ内で合流させて、目的とするそれぞれの積層の厚みでスリット状ダイから押出しを行う等して、積層体を形成する方法がある。 A conventional method can be used as a method for forming a polyolefin microporous film as a laminate. For example, desired resins are prepared as needed, these resins are separately fed to an extruder to melt at the desired temperature and merge in a polymer tube or die to achieve the desired thickness of each laminate. There is a method of forming a laminated body by extruding from a slit-shaped die.
 (c)延伸工程
 得られたゲル状(積層シートを含む)シートを延伸する。用いられる延伸方法としては、圧延やロール延伸機によるシート搬送方向(MD方向)への一軸延伸、テンターによるシート幅方向(TD方向)への一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸や同時二軸テンターによる同時二軸延伸等が挙げられる。
(C) Stretching Step The obtained gel-like (including laminated sheet) sheet is stretched. The stretching methods used include rolling and uniaxial stretching in the sheet transport direction (MD direction) by a roll stretching machine, uniaxial stretching in the sheet width direction (TD direction) by a tenter, roll stretching machine and tenter, or tenter and tenter. Examples include sequential biaxial stretching by the combination of the above and simultaneous biaxial stretching by the simultaneous biaxial tenter.
 延伸倍率は、膜厚の均一性の観点より、ゲル状シートの厚さによって異なるが、いずれの方向でも7倍以上に延伸することが好ましい。 The stretching ratio varies depending on the thickness of the gel-like sheet from the viewpoint of uniformity of film thickness, but it is preferable to stretch 7 times or more in any direction.
 面積倍率は、45倍以上が好ましく、より好ましくは60倍以上、さらに好ましくは80倍以上、特に好ましくは100倍以上である。面積倍率が45倍未満では、延伸が不十分で未開孔部ができやすい。面積倍率は150倍以下が好ましい。面積倍率が大きくなるとポリオレフィン微多孔膜の製造中に破れが多発しやすくなり、生産性が低下する。 The area magnification is preferably 45 times or more, more preferably 60 times or more, further preferably 80 times or more, and particularly preferably 100 times or more. If the area magnification is less than 45 times, the stretching is insufficient and unopened holes are likely to be formed. The area magnification is preferably 150 times or less. When the area magnification is large, tearing is likely to occur frequently during the production of the polyolefin microporous film, and the productivity is lowered.
 延伸工程における延伸均一性向上の観点から延伸倍率と原料構成の好ましい形態はMwが90万以上の原料を60倍以上に湿式で延伸することであり、より好ましくは80倍以上、さらに好ましくは100以上に湿式で延伸することである。特に好ましい形態はMw100万以上の原料を60倍以上さらに好ましくは70倍以上に湿式で延伸することであり、最も好ましくは90倍以上に湿式で延伸することである。 From the viewpoint of improving the stretching uniformity in the stretching step, a preferable form of the stretching ratio and the raw material composition is to wet-stretch a raw material having an Mw of 900,000 or more by 60 times or more, more preferably 80 times or more, still more preferably 100. The above is the wet stretching. A particularly preferable form is to stretch a raw material having a Mw of 1 million or more in a wet manner 60 times or more, more preferably 70 times or more, and most preferably 90 times or more.
 延伸温度はゲル状シートの融点+10℃以下にすることが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、ポリエチレン組成物の場合は約90~110℃の結晶分散温度を有するので、延伸温度は好ましくは100~130℃であり、より好ましくは115~125℃であり、さらに好ましく117.5~125℃である。結晶分散温度TcdはASTM D 4065(2012)に従って測定した動的粘弾性の温度特性から求める。 The stretching temperature is preferably in the range of (melting point of the gel-like sheet + 10 ° C. or lower) to (crystal dispersion temperature of polyolefin resin Tcd) to (melting point of the gel-like sheet + 5 ° C.). Specifically, since the polyethylene composition has a crystal dispersion temperature of about 90 to 110 ° C., the stretching temperature is preferably 100 to 130 ° C., more preferably 115 to 125 ° C., and further preferably 117. It is 5 to 125 ° C. The crystal dispersion temperature Tcd is obtained from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D 4065 (2012).
 延伸温度が100℃未満であると低温延伸のため開孔が不十分となり膜厚の均一性が得られにくく、空孔率も低くなる。延伸温度は130℃より高いと、シートの融解が起こり、孔の閉塞が起こりやすくなる。特に、重量平均分子量90万未満のポリエチレンを115℃以上の温度で延伸すると、フィブリルの溶融・融着が起こり、未開孔部ができやすい。対して、重量平均分子量90万以上のポリエチレンを用いる場合、重量平均分子量90万未満のポリエチレンに比べ緩和時間が長く延伸により変形しにくいため重量平均分子量90万未満のポリエチレンを用いた場合より高い温度で延伸しても未開孔部を低減できるため、117.5℃以上の温度で製膜することが好ましい。 If the stretching temperature is less than 100 ° C., the pores are insufficiently opened due to the low temperature stretching, it is difficult to obtain the uniformity of the film thickness, and the pore ratio is also low. If the stretching temperature is higher than 130 ° C., the sheet melts and the pores are likely to be closed. In particular, when polyethylene having a weight average molecular weight of less than 900,000 is stretched at a temperature of 115 ° C. or higher, fibrils are melted and fused, and unopened portions are likely to be formed. On the other hand, when polyethylene having a weight average molecular weight of 900,000 or more is used, the relaxation time is longer than that of polyethylene having a weight average molecular weight of less than 900,000 and it is difficult to be deformed by stretching. Therefore, the temperature is higher than when polyethylene having a weight average molecular weight of less than 900,000 is used. It is preferable to form a film at a temperature of 117.5 ° C. or higher because the unopened portion can be reduced even if the film is stretched with.
 以上のような延伸によりゲルシートの高次構造の開裂が起こり、結晶相が微細化し、多数のフィブリルが形成される。フィブリルは三次元的に不規則に連結した網目構造を形成する。延伸により機械的強度が向上するとともに、細孔形成されるため本発明の実施形態にかかるポリオレフィン微多孔膜が電池用セパレータに好適となる。本願のポリオレフィン微多孔膜は均一な微細構造を有するため従来技術に比べ高い延伸温度で延伸しても可塑剤などのブリードアウトが少なく、工程安定性が向上する。 Due to the above stretching, the higher-order structure of the gel sheet is cleaved, the crystal phase becomes finer, and a large number of fibrils are formed. Fibrils form a three-dimensionally irregularly connected network structure. Since the mechanical strength is improved by stretching and pores are formed, the polyolefin microporous membrane according to the embodiment of the present invention is suitable for a battery separator. Since the polyolefin microporous film of the present application has a uniform fine structure, bleed-out of plasticizers and the like is small even when stretched at a higher stretching temperature than in the prior art, and process stability is improved.
 また、可塑剤を除去する前に延伸することにより、ポリオレフィン樹脂が十分に可塑化し軟化した状態であるために、高次構造の開裂がスムーズになり、結晶相の微細化を均一に行うことができる。また、可塑剤を除去する前に延伸することで容易に高次構造が開裂するため、延伸時のひずみが残りにくく、可塑剤を除去した後に延伸する場合に比べて収縮率を低くすることができる。 Further, by stretching before removing the plasticizer, the polyolefin resin is in a state of being sufficiently plasticized and softened, so that the higher-order structure can be cleaved smoothly and the crystal phase can be uniformly refined. it can. In addition, since the higher-order structure is easily cleaved by stretching before removing the plasticizer, strain during stretching is less likely to remain, and the shrinkage rate can be lowered as compared with the case of stretching after removing the plasticizer. it can.
 (d)可塑剤抽出(洗浄)・乾燥工程
 次に、ゲル状シート中に残留する可塑剤(溶剤)を、洗浄溶剤を用いて除去する。ポリオレフィン樹脂相と溶媒相とは分離しているため、溶剤を除去することによりポリオレフィン微多孔膜が得られる。
(D) Plasticizer extraction (cleaning) / drying step Next, the plasticizer (solvent) remaining in the gel sheet is removed using a cleaning solvent. Since the polyolefin resin phase and the solvent phase are separated, a polyolefin microporous membrane can be obtained by removing the solvent.
 洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン等の鎖状フルオロカーボン等が挙げられる。 Examples of the cleaning solvent include saturated hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, ethers such as diethyl ether and dioxane, ketones such as methyl ethyl ketone, and ethane trifluoride. Chain fluorocarbon and the like can be mentioned.
 これらの洗浄溶剤は低い表面張力(例えば、25℃で24mN/m以下)を有する。低い表面張力の洗浄溶剤を用いることにより、微多孔を形成する網状構造において、洗浄後の乾燥時に気-液界面の表面張力による収縮が抑制され、空孔率および透過性に優れたポリオレフィン微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独または混合して用いる。 These cleaning solvents have low surface tension (eg, 24 mN / m or less at 25 ° C.). By using a cleaning solvent with a low surface tension, in a network structure that forms microporous, shrinkage due to surface tension at the gas-liquid interface is suppressed during drying after cleaning, and polyolefin microporous with excellent porosity and permeability. A film is obtained. These cleaning solvents are appropriately selected according to the plasticizer and used alone or in combination.
 洗浄方法は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等が挙げられる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。 Examples of the cleaning method include a method of immersing the gel-like sheet in a cleaning solvent and extracting it, a method of showering the gel-like sheet with the cleaning solvent, or a method of combining these. The amount of the cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more with respect to 100 parts by mass of the gel sheet.
 洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、洗浄溶剤の洗浄効果を高める観点、得られるポリオレフィン微多孔膜の物性(例えば、TD方向および/またはMD方向の物性)が不均一にならないようにする観点、ポリオレフィン微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長いほど良い。 The cleaning temperature may be 15 to 30 ° C, and if necessary, heat to 80 ° C or less. At this time, from the viewpoint of enhancing the cleaning effect of the cleaning solvent, from the viewpoint of preventing the physical properties of the obtained polyolefin microporous film (for example, the physical properties in the TD direction and / or the MD direction) from becoming non-uniform, the mechanical property of the polyolefin microporous film From the viewpoint of improving the physical and electrical characteristics, the longer the gel sheet is immersed in the cleaning solvent, the better.
 上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン微多孔膜中の残留溶剤が1質量%未満になるまで行うのが好ましい。 The above-mentioned cleaning is preferably performed until the residual solvent in the gel-like sheet after cleaning, that is, the polyolefin microporous membrane becomes less than 1% by mass.
 その後、乾燥工程でポリオレフィン微多孔膜中の溶剤を乾燥させ除去する。乾燥方法としては、特に限定は無く、金属加熱ロールを用いる方法や熱風を用いる方法等を選択することができる。乾燥温度は40~100℃であることが好ましく、40~80℃がより好ましい。乾燥が不十分であると、後の熱処理でポリオレフィン微多孔膜の空孔率が低下し、透過性が悪化する。 After that, the solvent in the polyolefin microporous membrane is dried and removed in the drying step. The drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, or the like can be selected. The drying temperature is preferably 40 to 100 ° C, more preferably 40 to 80 ° C. If the drying is insufficient, the porosity of the polyolefin microporous membrane will decrease in the subsequent heat treatment, and the permeability will deteriorate.
 (e)熱処理/再延伸工程
 乾燥したポリオレフィン微多孔膜を少なくとも一軸方向に延伸(再延伸)してもよい。再延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。多段延伸の場合は、同時二軸または逐次延伸を組み合わせることにより行う。
(E) Heat Treatment / Re-stretching Step The dried polyolefin microporous film may be stretched (re-stretched) at least in the uniaxial direction. The re-stretching can be performed by the tenter method or the like in the same manner as the above-mentioned stretching while heating the microporous polyolefin membrane. The re-stretching may be uniaxial stretching or biaxial stretching. In the case of multi-stage stretching, simultaneous biaxial or sequential stretching is performed in combination.
 再延伸の温度は、ポリオレフィン樹脂組成物の融点以下にすることが好ましく、(ポリオレフィン樹脂組成物のTcd-20℃)~ポリオレフィン樹脂組成物の融点の範囲内にするのがより好ましい。具体的には、ポリエチレン組成物の場合、再延伸の温度は、70~135℃が好ましく、110~135℃がより好ましく、125~135℃がさらに好ましく、130~135℃がよりさらに好ましい。 The re-stretching temperature is preferably equal to or lower than the melting point of the polyolefin resin composition, and more preferably within the range of (Tcd-20 ° C. of the polyolefin resin composition) to the melting point of the polyolefin resin composition. Specifically, in the case of the polyethylene composition, the re-stretching temperature is preferably 70 to 135 ° C., more preferably 110 to 135 ° C., further preferably 125 to 135 ° C., and even more preferably 130 to 135 ° C.
 特に重量平均分子量が0.9×10未満であると、緩和時間が短いため130℃以上の熱処理温度をおこなうと、微細フィブリルが溶融し、融着するため未開孔部が増加するとともに空孔率や孔数が減少し出力特性の低下につながる。対して、重量平均分子量が0.9×10以上のポリエチレンは緩和時間が長いため130℃以上の温度において延伸・熱固定を実施しても微細なフィブリルの溶融・融着を抑制でき、高い温度で熱固定が行える。そのため収縮率と未開孔部のバランスが改善される。重量平均分子量が0.9×10以上のポリエチレンを用いる場合130℃以上で熱固定する事が好ましい。 Especially the weight-average molecular weight is less than 0.9 × 10 6, the relaxation time is subjected to heat treatment temperature of above 130 ° C. for a short, pores with the fine fibrils are melted, savage holes is increased to fuse The rate and the number of holes decrease, leading to a decrease in output characteristics. Against it, it is possible to suppress melting and fusion of the weight average molecular weight is also fine to implement the stretching and heat setting at 0.9 × 10 6 or more polyethylene relaxation time is long for 130 ° C. or higher temperatures fibrils, high Heat can be fixed by temperature. Therefore, the balance between the shrinkage rate and the unopened portion is improved. It is preferable to heat-set at 130 ° C. or higher when the weight average molecular weight is used 0.9 × 10 6 or more polyethylene.
 再延伸の倍率は、一軸延伸の場合、1.01~2.0倍が好ましく、特にTD方向の倍率は1.1~1.6倍が好ましく、1.2~1.4倍がより好ましい。二軸延伸を行う場合、MD方向およびTD方向にそれぞれ1.01~2.0倍延伸するのが好ましい。なお、再延伸の倍率は、MD方向とTD方向で異なってもよい。上述の範囲内で再延伸することで、空孔率および透過性が上昇すると共に、ネックによるフィブリルの凝集を抑制できポリオレフィン微多孔膜の未開孔部が減少する。 In the case of uniaxial stretching, the re-stretching ratio is preferably 1.01 to 2.0 times, particularly preferably 1.1 to 1.6 times, and more preferably 1.2 to 1.4 times in the TD direction. .. When biaxial stretching is performed, it is preferable to stretch 1.01 to 2.0 times in the MD direction and the TD direction, respectively. The re-stretching magnification may be different in the MD direction and the TD direction. By re-stretching within the above range, the porosity and permeability are increased, the aggregation of fibrils due to the neck can be suppressed, and the unopened portion of the polyolefin microporous membrane is reduced.
 収縮率及びしわやたるみの観点より、再延伸最大倍率からの緩和率は20%以下が好ましく、10%以下であることがより好ましく、5%以下が更に好ましい。当該緩和率が20%以下であると、均一なフィブリル構造が得られる。 From the viewpoint of shrinkage rate and wrinkles and sagging, the relaxation rate from the maximum re-stretching ratio is preferably 20% or less, more preferably 10% or less, still more preferably 5% or less. When the relaxation rate is 20% or less, a uniform fibril structure can be obtained.
 (f)その他の工程
 さらに、その他用途に応じて、ポリオレフィン微多孔膜に親水化処理を施すこともできる。親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。
(F) Other Steps Further, depending on other uses, the polyolefin microporous membrane can be hydrophilized. The hydrophilization treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. The monomer graft is preferably carried out after the cross-linking treatment.
 ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射により架橋処理を施すのが好ましい。電子線の照射の場合、0.1~100Mradの電子線量が好ましく、100~300kVの加速電圧が好ましい。架橋処理によりポリオレフィン微多孔膜のメルトダウン温度が上昇する。 It is preferable that the polyolefin microporous film is crosslinked by irradiation with ionizing radiation such as α-ray, β-ray, γ-ray, and electron beam. In the case of electron beam irradiation, an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable. The cross-linking treatment raises the meltdown temperature of the microporous polyolefin membrane.
 界面活性剤処理の場合、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤又は両イオン系界面活性剤のいずれも使用できるが、ノニオン系界面活性剤が好ましい。界面活性剤を水又はメタノール、エタノール、イソプロピルアルコール等の低級アルコールに溶解してなる溶液中にポリオレフィン微多孔膜を浸漬するか、ポリオレフィン微多孔膜にドクターブレード法により溶液を塗布する。 In the case of surfactant treatment, any of nonionic surfactant, cationic surfactant, anionic surfactant or amphoteric surfactant can be used, but nonionic surfactant is preferable. The polyolefin microporous membrane is immersed in water or a solution prepared by dissolving a surfactant in a lower alcohol such as methanol, ethanol, or isopropyl alcohol, or the solution is applied to the polyolefin microporous membrane by the doctor blade method.
 本発明の実施形態にかかるポリオレフィン微多孔膜は、電池用セパレータとして用いた場合のメルトダウン特性や耐熱性を向上する目的で、ポリビニリデンフルオライド、ポリテトラフルオロエチレン等のフッ素系樹脂多孔質体やポリイミド、ポリフェニレンスルフィド等の多孔質体等の表面コーティングやセラミック等の無機コーティング等を行ってもよい。特に本発明により得られるポリオレフィン多孔膜は孔径やフィブリル構造が微細かつ均一に制御されていることから、塗材による目詰まりなどを抑制でき、コート適性に優れる。 The polyolefin microporous film according to the embodiment of the present invention is a fluororesin porous body such as polyvinylene sulfide fluoride or polytetrafluoroethylene for the purpose of improving meltdown characteristics and heat resistance when used as a battery separator. , Polyimide, polyphenylene sulfide, and other porous materials may be surface-coated, and ceramics and other inorganic coatings may be applied. In particular, since the porous polyolefin film obtained by the present invention has finely and uniformly controlled pore diameter and fibril structure, clogging due to the coating material can be suppressed, and the coating suitability is excellent.
 以上のようにして得られたポリオレフィン微多孔膜は、フィルター、燃料電池用セパレータ、コンデンサー用セパレータ等様々な用途で用いることができるが、特に電池用セパレータとして用いたとき安全性および出力特性に優れる。よって、当該セパレータは、電気自動車等の高エネルギー密度化、高容量化、および高出力化を必要とする非水電解液二次電池用のセパレータとして好ましく用いることができる。 The microporous polyolefin membrane obtained as described above can be used for various purposes such as filters, separators for fuel cells, separators for capacitors, etc., but is particularly excellent in safety and output characteristics when used as a separator for batteries. .. Therefore, the separator can be preferably used as a separator for a non-aqueous electrolytic solution secondary battery that requires high energy density, high capacity, and high output for electric vehicles and the like.
 本発明を実施例により、さらに詳細に説明するが、本発明の実施態様は、これらの実施例に限定されるものではない。
 なお、実施例で用いた評価方法、分析方法は、以下の通りである。
The present invention will be described in more detail by way of examples, but the embodiments of the present invention are not limited to these examples.
The evaluation method and analysis method used in the examples are as follows.
(1)重量平均分子量(Mw)
 超高分子量ポリエチレン(UHPE)、及び高密度ポリエチレン(HDPE)の重量平均分子量は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
 ・測定装置:WATERS CORPORATION製GPC-150C
 ・カラム:昭和電工株式会社製SHODEX UT806M
 ・カラム温度:135℃
 ・溶媒(移動相):O-ジクロルベンゼン
 ・溶媒流速:1.0mL/分
 ・試料濃度:0.1wt%(溶解条件:135℃/1H)
 ・インジェクション量:500μL
 ・検出器:WATERS CORPORATION製ディファレンシャルリフラクトメーター(RI検出器)
 ・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、所定の換算定数を用いて作成した。
(1) Weight average molecular weight (Mw)
The weight average molecular weights of ultra high molecular weight polyethylene (UHPE) and high density polyethylene (HDPE) were determined by gel permeation chromatography (GPC) under the following conditions.
-Measuring device: GPC-150C manufactured by WATERS CORPORATION
-Column: SHODEX UT806M manufactured by Showa Denko KK
-Column temperature: 135 ° C
-Solvent (mobile phase): O-dichlorobenzene-Solvent flow rate: 1.0 mL / min-Sample concentration: 0.1 wt% (dissolution condition: 135 ° C / 1H)
-Injection amount: 500 μL
-Detector: WATERS CORPORATION differential refractometer (RI detector)
-Calibration curve: Prepared from a calibration curve obtained using a monodisperse polystyrene standard sample using a predetermined conversion constant.
(2)膜厚(μm)
 ポリオレフィン微多孔膜の95mm×95mmの範囲内における任意の無作為に抽出した箇所で5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、5点の膜厚の平均値を求めた。
(2) Film thickness (μm)
The film thickness at 5 points was measured with a contact thickness meter (Lightmatic Co., Ltd., manufactured by Mitutoyo Co., Ltd.) at arbitrary randomly selected points within the range of 95 mm × 95 mm of the polyolefin microporous film, and the average value of the film thickness at 5 points. Asked.
(3)表面の未開孔部の面積比率(%)
 実施例で得られた微多孔膜をPt蒸着し、走査型電子顕微鏡(SEM)を用いて加速電圧2kVで倍率10000倍、11.7μm×9.4μmの視野で微多孔膜の表面を二次電子像で観察した。撮影した表面SEM観察画像を1辺0.5μmの正方形で分割し、MVTec Software社のHALCON 13を用いて二値化処理した。二値化処理前の画像は加速電圧2kV、倍率10000倍、11.7μm×9.4μm(1280画素×1024画素)、8bit(256階調)グレースケールの画像を用いた。二値化処理は、表面SEM観察画像に対して、3画素×3画素平均にてノイズ除去を行った後に、21画素×21画素平均した画像から-30階調をしきい値として動的二値化処理をすることで、暗部を抽出(画像処理)し、二値化処理を行った。暗部を開孔部として、視野の総面積に対して暗部が占める割合を表面平均開孔率(表面SEM観察画像の総面積から算出される開孔率)(%)とした。また分割した各正方形の区画ごとに、区画面積(0.5μm×0.5μm)-開孔部(暗部)の面積(μm)から樹脂部の面積(μm)を算出し、各区画における樹脂部の比率を求めた。樹脂部の比率が表面平均開孔率(%)-2(%)以上となる区画中の樹脂部の総面積を表面SEM未開孔部の面積として、視野の総面積(11.7μm×9.4μm)における未開孔部の面積比率を算出した。
(3) Area ratio (%) of unopened holes on the surface
The microporous membrane obtained in the examples was Pt-deposited, and the surface of the microporous membrane was secondary to the surface of the microporous membrane with a field of view of 11.7 μm × 9.4 μm at a magnification of 10000 times at an acceleration voltage of 2 kV using a scanning electron microscope (SEM). It was observed with an electron image. The photographed surface SEM observation image was divided into squares having a side of 0.5 μm and binarized using HALCON 13 manufactured by MVTec Software. As the image before the binarization process, an image having an acceleration voltage of 2 kV, a magnification of 10000 times, 11.7 μm × 9.4 μm (1280 pixels × 1024 pixels), and 8 bits (256 gradations) gray scale was used. In the binarization process, noise is removed from the surface SEM observation image by averaging 3 pixels x 3 pixels, and then the image obtained by averaging 21 pixels x 21 pixels is dynamically binarized with -30 gradations as a threshold value. By performing the binarization process, the dark part was extracted (image processing) and the binarization process was performed. With the dark part as the opening part, the ratio of the dark part to the total area of the visual field was defined as the surface average aperture ratio (aperture ratio calculated from the total area of the surface SEM observation image) (%). Also for each partition of each square divided, Plot size (0.5μm × 0.5μm) - calculating the area of the resin portion from the area ([mu] m 2) of the openings (dark portion) ([mu] m 2), in each compartment The ratio of the resin part was calculated. The total area of the resin part in the compartment where the ratio of the resin part is the surface average aperture ratio (%) -2 (%) or more is defined as the area of the surface SEM unopened part, and the total area of the field of view (11.7 μm × 9. The area ratio of the unopened portion at 4 μm) was calculated.
(5)表面の孔数
 上記(3)で画像処理した表面SEM観察画像において、1μmあたりに存在する独立した暗部を表面孔数としてカウントして表面孔数(個/μm)とした。
(5) Number of holes on the surface In the surface SEM observation image image-processed in (3) above, the number of independent dark areas existing per 1 μm 2 was counted as the number of surface holes to obtain the number of surface holes (pieces / μm 2 ).
(5)表面の平均孔径
 上記(3)で画像処理した表面SEM観察画像における開孔部(暗部)の総面積と表面孔数から表面SEM平均孔径(nm)を算出した。
 表面の平均孔径=(孔の総面積÷表面孔数÷3.14)0.5×2
(5) Average pore diameter of the surface The average pore diameter (nm) of the surface SEM was calculated from the total area of the opened portions (dark portions) and the number of surface pores in the surface SEM observation image processed in (3) above.
Average hole diameter on the surface = (total area of holes ÷ number of surface holes ÷ 3.14) 0.5 × 2
(6)フィブリル径
 パームポロメータ(PMI社製、CFP-1500A)を用いて、Dry-up、Wet-upの順で、最大孔径及び平均孔径を測定した。Wet-upには表面張力が15.6dynes/cmのPMI社製Galwick(商品名)で十分に浸したポリオレフィン微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。
(6) Fibril diameter Using a palm polo meter (manufactured by PMI, CFP-1500A), the maximum pore diameter and the average pore diameter were measured in the order of Dry-up and Wet-up. For Wet-up, pressure is applied to a polyolefin microporous membrane sufficiently immersed with PMI's Galwick (trade name) having a surface tension of 15.6 dynes / cm, and the maximum pore diameter converted from the pressure at which air begins to penetrate is the maximum pore diameter. And said.
 Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から平均孔径を換算した。圧力と平均孔径の換算は下記の数式を用いた。 The average pore diameter was converted from the pressure at the intersection of the pressure and the half slope of the flow rate curve in the Dry-up measurement and the pressure at the intersection of the Wet-up measurement curve. The following formula was used to convert the pressure and the average pore size.
 d=C・γ/P
(上記式中、「d(μm)」はポリオレフィン微多孔膜の平均孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。)
d = C · γ / P
(In the above formula, "d (μm)" is the average pore size of the polyolefin microporous membrane, "γ (mN / m)" is the surface tension of the liquid, "P (Pa)" is the pressure, and "C" is a constant. .)
 次いで、セパレータ内の空気の流れはKnudsen流れに従うと仮定し、Kozeny-Carmanの式(1)を用い、ポロメータ測定で得られる圧力と透気度から比表面積(Sv)を算出した。 Next, assuming that the air flow in the separator follows the Knudsen flow, the specific surface area (Sv) was calculated from the pressure and air permeability obtained by the poromometer measurement using the Kozeny-Carman equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Q:Dry-upで測定される2000kPa時の空気の流量
 l:膜厚(μm)
 δPa: Dry-upで測定される2000kPa圧力
 a:断面積(mm
 ε:空孔率(%)
 k(定数):5(Kozeny係数)
 Sv:比表面積(m/g)
 η(20℃の空気粘度):1.8×10-5Pas
Q: Air flow rate at 2000 kPa measured by Dry-up l: Film thickness (μm)
δPa: 2000 kPa pressure measured by Dry-up a: Cross-sectional area (mm 2 )
ε: Pore ratio (%)
k (constant): 5 (Kozeny coefficient)
Sv: Specific surface area (m 2 / g)
η (air viscosity at 20 ° C): 1.8 × 10-5 Pas
 その後、フィブリルが円柱と仮定して上記比表面積に基づきフィブリル径を、式(2)を用いて算出した。
R=4×(1-ε)/Sv/d  ・・・式(2)
 R:フィブリル径(nm)
 Sv:比表面積(m/g)
 d:体積密度(g/m
 ε:空孔率(%)
Then, assuming that the fibril is a cylinder, the fibril diameter was calculated using the formula (2) based on the specific surface area.
R = 4 × (1-ε) / Sv / d ・ ・ ・ Equation (2)
R: Fibril diameter (nm)
Sv: Specific surface area (m 2 / g)
d: Volumetric density (g / m 3 )
ε: Pore ratio (%)
(7)表面の未開孔部面積算出(μm2)
上記(3)表面の未開孔部で画像処理した表面SEM観察画像のうち、分割した各正方形の区画ごとにおける暗部の面積を算出し各区画の孔面積とし、各区画の面積(0.5μm×0.5μm)-各区画中の孔面積(暗部:P2)から各区画中の樹脂面積(F2)を算出し、各区画の孔面積(P2)と樹脂面積(F2)の比R2を求めた(R2=F2/F2)。
 続いて、1区画内のフィブリル総長さを0.875μmとし、フィブリル総長さにパームポロメータにより算出したフィブリル径を乗じたフィブリルの面積(F1)と表面SEM観察により算出した孔面積(P1)の比R1を求めた(R1=F1/P1)。上記区画の各々におけるR2とR1を比較し、R2≧R1の関係を満たす区画内の樹脂部を未開孔部として、未開孔部区画内の樹脂面積の総和を未開孔部面積とし、解析範囲11.7×9.4μm中の未開孔部面積を算出した。
(7) Calculation of the area of unopened holes on the surface (μm 2 )
Of the surface SEM observation images image-processed in the unopened portion of the surface (3), the area of the dark portion in each divided square section is calculated and used as the hole area of each section, and the area of each section (0.5 μm × 0.5 μm) -The resin area (F2) in each section was calculated from the hole area (dark area: P2) in each section, and the ratio R2 of the hole area (P2) and the resin area (F2) in each section was obtained. (R2 = F2 / F2).
Subsequently, the total length of the fibrils in one section is set to 0.875 μm, and the area of the fibrils (F1) obtained by multiplying the total length of the fibrils by the fibril diameter calculated by the palm poromometer and the hole area (P1) calculated by surface SEM observation. The ratio R1 was determined (R1 = F1 / P1). R2 and R1 in each of the above compartments are compared, and the resin portion in the compartment satisfying the relationship of R2 ≧ R1 is defined as the unopened portion, and the total area of the resin in the unopened compartment is defined as the unopened portion area. The area of the unopened hole in 7.7 × 9.4 μm 2 was calculated.
(8)断面の未開孔部の面積比率
 実施例で得られた微多孔膜をPt蒸着し、走査型電子顕微鏡(SEM)を用いて加速電圧2kVで倍率10000倍、11.7μm×9.4μmの視野で微多孔膜の断面を二次電子像で観察した。撮影した断面SEM観察画像を1辺0.3μmの正方形で分割し、MVTec Software社のHALCON 13を用いて二値化処理した。二値化処理前の画像は加速電圧2kV、倍率10000倍、11.7μm×9.4μm(1280画素×1024画素)、8bit(256階調)グレースケールの画像を用いた。二値化処理は、断面SEM観察画像に対して、3画素×3画素平均にてノイズ除去を行った後に、21画素×21画素平均した画像から-20階調をしきい値として動的二値化処理をすることで、暗部を抽出(画像処理)し、二値化処理を行った。暗部を開孔部として、視野の総面積に対して暗部が占める割合を断面平均開孔率(%)とした。また分割した各正方形の区画ごとに、区画面積(0.3μm×0.3μm)-開孔部(暗部)の面積(μm)から樹脂部の面積(μm)を算出し、各区画における樹脂部の比率を求めた。樹脂部の比率が80%以上となる区画の樹脂部の総面積を断面SEM未開孔部の面積として、視野の総面積(11.7μm×9.4μm)における未開孔部の面積比率を算出した。
(8) Area ratio of unopened portion of cross section Pt-deposited microporous film obtained in Example, using a scanning electron microscope (SEM) at an acceleration voltage of 2 kV, magnification of 10000 times, 11.7 μm × 9.4 μm The cross section of the microporous film was observed with a secondary electron image in the field of view. The photographed cross-sectional SEM observation image was divided into squares having a side of 0.3 μm, and binarized using HALCON 13 manufactured by MVTec Software. As the image before the binarization process, an image having an acceleration voltage of 2 kV, a magnification of 10000 times, 11.7 μm × 9.4 μm (1280 pixels × 1024 pixels), and 8 bits (256 gradations) gray scale was used. The binarization process is performed by removing noise from the cross-sectional SEM observation image with an average of 3 pixels × 3 pixels, and then dynamically binarizing the image obtained by averaging 21 pixels × 21 pixels with a threshold value of -20 gradations. By performing the binarization process, the dark part was extracted (image processing) and the binarization process was performed. The dark part was defined as the opening, and the ratio of the dark part to the total area of the visual field was defined as the cross-sectional average aperture ratio (%). Also for each partition of each square divided, Plot size (0.3μm × 0.3μm) - calculating the area of the resin portion from the area ([mu] m 2) of the openings (dark portion) ([mu] m 2), in each compartment The ratio of the resin part was calculated. The area ratio of the unopened portion in the total area of the visual field (11.7 μm × 9.4 μm) was calculated by using the total area of the resin portion of the section where the ratio of the resin portion is 80% or more as the area of the cross-sectional SEM unopened portion. ..
(9)断面の孔数
 上記(8)で画像処理した断面SEM観察画像において、1μmあたりに存在する独立した暗部を表面孔数としてカウントして断面孔数(個/μm)とした。
(9) Number of holes in cross section In the cross-section SEM observation image image-processed in (8) above, the number of independent dark areas existing per 1 μm 2 was counted as the number of surface holes to obtain the number of holes in cross section (pieces / μm 2 ).
(10)断面の平均孔径
 上記(8)で画像処理した断面SEM観察画像における開孔部(暗部)の総面積と表面孔数から断面SEM平均孔径を算出した。
(10) Average hole diameter of cross section The average hole diameter of cross section SEM was calculated from the total area of the opened portion (dark portion) and the number of surface holes in the cross-section SEM observation image processed in (8) above.
(11)透気度(sec/100cm
 膜厚T1(μm)のポリオレフィン微多孔膜に対してJIS P-8117に準拠して透気度計(旭精工株式会社製、EGO-1T)で空気を100cm透過させるために必要な時間である透気度p1(sec/cm)を測定し、式:P2=(P1×7)/T1により、膜厚を7μmとしたときの透気度p2(sec/cm)を算出した。
(11) Air permeability (sec / 100 cm 3 )
In the time required to permeate 100 cm 3 of air with an air permeability meter (made by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P-8117 for a polyolefin microporous membrane with a film thickness of T1 (μm). A certain air permeability p1 (sec / cm 3 ) was measured, and the air permeability p2 (sec / cm 3 ) when the film thickness was 7 μm was calculated by the formula: P2 = (P1 × 7) / T1.
(12)空孔率(%)
 5cm角の試料をポリオレフィン微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらとポリマー密度0.99(g/cm)より、次式を用いて計算した。以上の測定を同じポリオレフィン微多孔膜中の異なる任意の無作為に抽出した箇所で3点行い、3点の空孔率(%)の平均値を求めた。
 空孔率=[(体積-質量/ポリマー密度)/体積]×100
(12) Pore ratio (%)
A 5 cm square sample was cut from a microporous polyolefin membrane, and its volume (cm 3 ) and mass (g) were determined, and the volume (cm 3 ) and mass (g) were calculated from them and the polymer density of 0.99 (g / cm 3 ) using the following formula. The above measurement was performed at 3 points at different random sampling points in the same polyolefin microporous membrane, and the average value of the porosity (%) at the 3 points was obtained.
Pore ratio = [(volume-mass / polymer density) / volume] x 100
(13)突刺強度(N)
 MARUBISHI社製の突刺計を用い、先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T1(μm)、ポリオレフィン微多孔膜を2mm/秒の速度で突刺したときの最大荷重を突刺強度(N)とした。
(13) Puncture strength (N)
When a needle with a spherical tip (radius of curvature R: 0.5 mm) and a diameter of 1 mm is used to pierce a polyolefin microporous film with a film thickness of T1 (μm) at a speed of 2 mm / sec using a piercing meter manufactured by MARUBISHI. The maximum load was defined as the piercing strength (N).
 また、最大荷重の測定値L1(N)を、式:L2=L1/T1×7により、膜厚を7μmとしたときの最大荷重L2に換算し、膜厚7μm換算突刺強度とした。 Further, the measured value L1 (N) of the maximum load was converted into the maximum load L2 when the film thickness was 7 μm by the formula: L2 = L1 / T1 × 7, and the piercing strength was converted into the film thickness 7 μm.
(14)引張破断強度(MPa)、引張破断伸度(%)
 幅10mmの短冊状試験片をポリオレフィン微多孔膜の幅方向の中心部分より3点取り、各々についてチャック間距離20mm、ひずみ速度100mm/minの条件により測定した測定結果の平均値を算出することによりMD方向およびTD方向それぞれの引張破断強度(MPa)および引張破断伸度(%)を求めた。
(14) Tensile breaking strength (MPa), tensile breaking elongation (%)
MD is calculated by scoring 3 points from the central part of the polyolefin microporous film in the width direction and calculating the average value of the measurement results measured under the conditions of a chuck distance of 20 mm and a strain rate of 100 mm / min for each of the strip-shaped test pieces having a width of 10 mm. The tensile breaking strength (MPa) and the tensile breaking elongation (%) of each of the direction and the TD direction were determined.
(15)105℃8hの収縮率(%)
 50mm角に切り出した試験片をポリオレフィン微多孔膜の幅方向の中心部分より3点取り、各々について105℃にて8時間保持したときのMD方向における収縮率(熱収縮率)を測定し、それらの平均値をMD方向の収縮率(%)とした。また、TD方向についても同様の測定を行い、TD方向の収縮率を求めた。
(15) Shrinkage rate (%) at 105 ° C. for 8 hours
Three test pieces cut into 50 mm squares were scored from the central portion of the polyolefin microporous membrane in the width direction, and the shrinkage rate (heat shrinkage rate) in the MD direction when each was held at 105 ° C. for 8 hours was measured. The average value was taken as the shrinkage rate (%) in the MD direction. Further, the same measurement was performed in the TD direction, and the shrinkage rate in the TD direction was determined.
(16)10Cにおける容量維持率
 ポリオレフィン微多孔膜のレート特性を評価するために、正極、負極、セパレータおよび電解質からなる非水電解液二次電池にポリオレフィン微多孔膜をセパレータとして組み込んで、充放電試験を行った。
(16) Capacity retention rate at 10C In order to evaluate the rate characteristics of the polyolefin microporous membrane, the polyolefin microporous membrane is incorporated as a separator into a non-aqueous electrolyte secondary battery composed of a positive electrode, a negative electrode, a separator and an electrolyte, and is charged and discharged. The test was performed.
 幅38mm×長さ33mm×厚さ20μmのアルミニウム箔上に目付け9.5mg/cmにてNMC532(リチウムニッケルマンガンコバルト複合酸化物(Li1.05Ni0.50Mn0.29Co0.21))を積層したカソード、および、幅40mm×長さ35mm×厚さ10μmの銅箔上に密度1.45g/cmの天然黒鉛を単位面積質量5.5mg/cmで積層したアノードを用いた。正極および負極は120℃の真空オーブンで乾燥して使用した。 NMC532 (Lithium Nickel Manganese Cobalt Composite Oxide (Li 1.05 Ni 0.50 Mn 0.29 Co 0.21) at 9.5 mg / cm 2 on an aluminum foil with a width of 38 mm, a length of 33 mm and a thickness of 20 μm. O 2 )) is laminated on the cathode, and natural graphite with a density of 1.45 g / cm 3 is laminated on a copper foil having a width of 40 mm, a length of 35 mm, and a thickness of 10 μm at a unit area mass of 5.5 mg / cm 2. Was used. The positive electrode and the negative electrode were dried and used in a vacuum oven at 120 ° C.
 セパレータは、長さ50mm、幅50mmのポリオレフィン微多孔膜を室温の真空オーブンで乾燥して使用した。電解液はエチレンカーボネート、エチルメチルカーボネート、ジメチルカーボネートの混合物(30/35/35、体積比)中に、ビニレンカーボネート(VC)及びLiPFを溶解させ、VC濃度:0.5質量%、LiPF濃度:1mol/Lの溶液を調製した。 As the separator, a microporous polyolefin membrane having a length of 50 mm and a width of 50 mm was dried in a vacuum oven at room temperature and used. The electrolytic solution is a mixture of ethylene carbonate, ethyl methyl carbonate, and dimethyl carbonate (30/35/35, volume ratio) in which vinylene carbonate (VC) and LiPF 6 are dissolved, and the VC concentration is 0.5% by mass, LiPF 6. A solution of concentration: 1 mol / L was prepared.
 正極、セパレータおよび負極を積み重ね、得られた積層体をラミネートパウチ内に配置し、ラミネートパウチ内に電解液を注液し、当該ラミネートパウチを真空シールすることにより、非水電解液二次電池を作製した。 The positive electrode, the separator, and the negative electrode are stacked, the obtained laminate is placed in the laminate pouch, the electrolytic solution is injected into the laminate pouch, and the laminate pouch is vacuum-sealed to form a non-aqueous electrolyte secondary battery. Made.
 作製した非水電解液二次電池を初回充電として、温度35℃、0.1Cにて10~15%充電し、35℃にて1晩(12時間以上)放置し、ガス抜きを実施した。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.1CのCC-CV充電(定電流定電圧充電(終止電流条件0.02C))、放電電流値0.1CのCC放電(定電流放電)を実施した。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.2CのCC-CV充電(定電流定電圧充電(終止電流条件0.05C))、放電電流値0.2CのCC放電(定電流充電)を3サイクル行った時点を非水電解液二次電池の初期とした。 The prepared non-aqueous electrolyte secondary battery was charged for 10 to 15% at a temperature of 35 ° C. and 0.1 C, and left at 35 ° C. overnight (12 hours or more) for degassing. Next, CC-CV charging with a temperature of 35 ° C., a voltage range of 2.75 to 4.2 V, and a charging current value of 0.1 C (constant current constant voltage charging (termination current condition 0.02 C)), discharge current value 0. 1C CC discharge (constant current discharge) was carried out. Next, CC-CV charging (constant current constant voltage charging (termination current condition 0.05C)) with temperature 35 ° C., voltage range; 2.75 to 4.2V, charging current value 0.2C, discharge current value 0. The time when 2C CC discharge (constant current charging) was performed for 3 cycles was defined as the initial stage of the non-aqueous electrolyte secondary battery.
 次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.2CのCC-CV充電(定電流定電圧充電(終止電流条件0.05C))、した後に15℃で0.2CのCC放電(定電流放電)をして、その時の放電容量を0.2C容量とした。次に、温度35℃、電圧範囲;2.75~4.2V、充電電流値0.5CでCC-CV充電(定電流定電圧充電(終止電流条件0.05C))した後に、15℃で非水電解液二次電池の10C(306mA、24.48mA/cm)におけるレート試験を行った。この結果より、0.2C容量に対する10C容量の割合{(10C容量/0.2C容量)×100}(%)を容量維持率(%)とした。 Next, CC-CV charging (constant current constant voltage charging (termination current condition 0.05C)) at a temperature of 35 ° C., a voltage range; 2.75 to 4.2V, and a charging current value of 0.2C is performed, and then at 15 ° C. A 0.2 C CC discharge (constant current discharge) was performed, and the discharge capacity at that time was set to a 0.2 C capacity. Next, after CC-CV charging (constant current constant voltage charging (termination current condition 0.05C)) at a temperature of 35 ° C., a voltage range of 2.75 to 4.2V, and a charging current value of 0.5C, at 15 ° C. A rate test was performed on a non-aqueous electrolyte secondary battery at 10 C (306 mA, 24.48 mA / cm 2 ). From this result, the ratio of 10C capacity to 0.2C capacity {(10C capacity / 0.2C capacity) × 100} (%) was defined as the capacity retention rate (%).
[実施例1]
 原料としてMwが10×10の超高分子量ポリエチレンを用いた。超高分子量ポリエチレン17質量部に流動パラフィン83質量部を加え、さらに超高分子量ポリエチレンの質量を基準として0.5質量部の2,6-ジ-t-ブチル-p-クレゾールと0.7質量部のテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを酸化防止剤として加えて混合し、ポリエチレン樹脂溶液を調製した。得られたポリエチレン樹脂溶液を二軸押出機に投入し180℃で混練し、Tダイに供給し、押出物を15℃に制御された冷却ロールで冷却してゲル状シートを形成した。得られたゲル状シートを、テンター延伸機により117.5℃で長手方向と幅方向にそれぞれ10倍に逐次二軸延伸し、そのままテンター延伸機内でシート幅を固定し、117.5℃の温度で10秒間保持した。次いで延伸したゲル状シートを洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィン除去後乾燥を行い、ポリオレフィン微多孔膜を得た。最後にオーブンを使用し、延伸は行わず130℃の温度で10分間、熱固定を実施した。ポリオレフィン微多孔膜の原料処方及び製膜条件を表1、ポリオレフィン微多孔膜の評価結果を表3に記載する。
[Example 1]
Mw as the starting material was used an ultra-high molecular weight polyethylene of 10 × 10 5. 83 parts by mass of liquid paraffin is added to 17 parts by mass of ultra-high molecular weight polyethylene, and 0.5 parts by mass of 2,6-di-t-butyl-p-cresol and 0.7 mass by mass based on the mass of ultra-high molecular weight polyethylene. A polyethylene resin solution was prepared by adding tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and mixing them. The obtained polyethylene resin solution was put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, and the extruded product was cooled with a cooling roll controlled at 15 ° C. to form a gel-like sheet. The obtained gel-like sheet was sequentially biaxially stretched 10 times in the longitudinal direction and the width direction at 117.5 ° C. by a tenter stretching machine, and the sheet width was fixed in the tenter stretching machine as it was, and the temperature was 117.5 ° C. Was held for 10 seconds. Next, the stretched gel-like sheet was immersed in a methylene chloride bath in a washing tank, and after removing liquid paraffin, it was dried to obtain a polyolefin microporous membrane. Finally, using an oven, heat fixation was carried out at a temperature of 130 ° C. for 10 minutes without stretching. Table 1 shows the raw material formulation and film forming conditions of the polyolefin microporous film, and Table 3 shows the evaluation results of the polyolefin microporous film.
[実施例2~10、12、14、比較例1~9]
 原料処方及び製膜条件を表1、2のとおりに変更した以外は実施例1と同様にして、ポリオレフィン微多孔膜を作製した。
[Examples 2 to 10, 12, 14, Comparative Examples 1 to 9]
A polyolefin microporous film was prepared in the same manner as in Example 1 except that the raw material formulation and the film forming conditions were changed as shown in Tables 1 and 2.
 [実施例11]
 原料としてMwが9.0×10の超高分子量ポリエチレンを用いた。超高分子量ポリエチレン25質量部に流動パラフィン75質量部を加え、さらに超高分子量ポリエチレンの質量を基準として0.5質量部の2,6-ジ-t-ブチル-p-クレゾールと0.7質量部のテトラキス[メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを酸化防止剤として加えて混合し、ポリエチレン樹脂溶液を調製した。得られたポリエチレン樹脂溶液を二軸押出機に投入し180℃で混練し、Tダイに供給し、押出物を15℃に制御された冷却ロールで冷却してゲル状シートを形成した。得られたゲル状シートを、テンター延伸機により118℃で長手方向に9.0倍と幅方向に6.7に逐次二軸延伸し、そのままテンター延伸機内でシート幅を固定し、118℃の温度で10秒間保持した。 次いで延伸したゲル状シートを洗浄槽で塩化メチレン浴中に浸漬し、流動パラフィン除去後乾燥を行い、ポリオレフィン微多孔膜を得た。流動パラフィン除去後乾後のフィルムを135.5℃で幅方向に1.4倍延伸し、3分間熱固定を実施した。
[Example 11]
Mw as the starting material was used an ultra-high molecular weight polyethylene of 9.0 × 10 5. 75 parts by mass of liquid paraffin is added to 25 parts by mass of ultra-high molecular weight polyethylene, and 0.5 parts by mass of 2,6-di-t-butyl-p-cresol and 0.7 mass by mass based on the mass of ultra-high molecular weight polyethylene. A polyethylene resin solution was prepared by adding tetrakis [methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and mixing them. The obtained polyethylene resin solution was put into a twin-screw extruder, kneaded at 180 ° C., supplied to a T-die, and the extruded product was cooled with a cooling roll controlled at 15 ° C. to form a gel-like sheet. The obtained gel-like sheet was sequentially biaxially stretched 9.0 times in the longitudinal direction and 6.7 times in the width direction at 118 ° C. by a tenter stretching machine, and the sheet width was fixed as it was in the tenter stretching machine at 118 ° C. It was held at temperature for 10 seconds. Next, the stretched gel-like sheet was immersed in a methylene chloride bath in a washing tank, and after removing liquid paraffin, it was dried to obtain a polyolefin microporous membrane. After removing the liquid paraffin, the dried film was stretched 1.4 times in the width direction at 135.5 ° C. and heat-fixed for 3 minutes.
[実施例13、比較例10、11]
 原料処方及び製膜条件を表1、2のとおりに変更した以外は実施例11と同様にして、ポリオレフィン微多孔膜を作製した。
[Example 13, Comparative Examples 10 and 11]
A polyolefin microporous film was prepared in the same manner as in Example 11 except that the raw material formulation and the film forming conditions were changed as shown in Tables 1 and 2.
 なお、表1及び表2中、「UHPE」は超高分子量ポリエチレンを意味し、「HDPE」は高密度ポリエチレンを意味する。
 得られたポリオレフィン微多孔膜の評価結果は表3、表4に記載のとおりである。
In Tables 1 and 2, "UHPE" means ultra-high molecular weight polyethylene, and "HDPE" means high-density polyethylene.
The evaluation results of the obtained polyolefin microporous membrane are as shown in Tables 3 and 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 本発明の実施形態は、未開孔部の少ないポリオレフィン微多孔膜を用いることで、従来のポリオレフィン微多孔膜と比較してイオン抵抗、強度、及び収縮率に優れるため、高出力での容量維持率に優れるとともに高い安全性を有したポリオレフィン微多孔膜が得られる。 In the embodiment of the present invention, by using a polyolefin microporous membrane having few unopened pores, the ion resistance, strength, and shrinkage rate are excellent as compared with the conventional polyolefin microporous membrane, so that the capacity retention rate at high output A microporous polyolefin membrane with excellent properties and high safety can be obtained.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2019年7月25日出願の日本特許出願(特願2019-137308)、及び2019年7月25日出願の日本特許出願(特願2019-137309)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on July 25, 2019 (Japanese Patent Application No. 2019-137308) and a Japanese patent application filed on July 25, 2019 (Japanese Patent Application No. 2019-137309). Is taken here as a reference.

Claims (11)

  1.  105℃/8hのMD方向の収縮率が10%未満であり、走査型電子顕微鏡(SEM)を用いた観察により得られる表面SEM観察画像11.7μm×9.4μmの長方形状の視野を縦横それぞれ0.5μm画に分割し、R2≧R1の関係を満たす区画中の樹脂面積の総和(表面の未開孔部a)が、前記表面SEM観察画像11.7μm×9.4μmにおいて20μm以下であり、
     フィブリル径が10~50nmであるポリオレフィン微多孔膜。
     ここで表面の未開孔部aとは、分割した1区画内のフィブリル総長さを0.875μmとし、フィブリル総長さにパームポロメータにより算出したフィブリル径を乗じたフィブリルの面積(F1)と孔面積(P1)の比(F1/P1)をR1、
    前記分割した区画それぞれにおける樹脂面積(F2)と孔面積(P2)の比(F2/P2)をR2とし、
     R2≧R1の関係を満たす各区画中の樹脂面積の総和のことをいう。
    The shrinkage rate in the MD direction at 105 ° C./8 h is less than 10%, and the surface SEM observation image obtained by observation using a scanning electron microscope (SEM) is a rectangular field of 11.7 μm × 9.4 μm in each of the vertical and horizontal directions. The total resin area (unopened hole a on the surface) in the section that is divided into 0.5 μm images and satisfies the relationship of R2 ≧ R1 is 20 μm 2 or less in the surface SEM observation image 11.7 μm × 9.4 μm. ,
    A microporous polyolefin membrane having a fibril diameter of 10 to 50 nm.
    Here, the unopened hole portion a on the surface is the area (F1) and the hole area of the fibrils in which the total length of the fibrils in one divided section is 0.875 μm, and the total length of the fibrils is multiplied by the fibril diameter calculated by the palm porometer. The ratio (F1 / P1) of (P1) is R1,
    The ratio (F2 / P2) of the resin area (F2) and the hole area (P2) in each of the divided sections is defined as R2.
    It refers to the total area of the resin in each section that satisfies the relationship of R2 ≧ R1.
  2.  105℃/8hのMD方向の収縮率が10%未満であり、走査型電子顕微鏡(SEM)を用いた観察により得られる表面SEM観察画像の視野の総面積に対して表面の未開孔部bの面積比率が25%以下であり、フィブリル径が10~50nmであるポリオレフィン微多孔膜。
     ここで、表面の未開孔部bとは、表面SEM観察画像を縦横それぞれ0.5μmの区画に分割した各区画において、樹脂部の比率が(前記表面SEM観察画像の総面積から算出される開孔率(%)-2(%))以上である区画の樹脂部であり、
     表面の未開孔部bの面積比率は、前記表面SEM観察画像の視野の総面積に対する表面未開孔部bの面積の総和の比率である。
    The shrinkage rate in the MD direction at 105 ° C./8 h is less than 10%, and the unopened portion b on the surface with respect to the total field of view of the surface SEM observation image obtained by observation using a scanning electron microscope (SEM). A polyolefin microporous film having an area ratio of 25% or less and a fibril diameter of 10 to 50 nm.
    Here, the unopened portion b on the surface is an opening in which the ratio of the resin portion is calculated from the total area of the surface SEM observation image in each division in which the surface SEM observation image is divided into sections of 0.5 μm each in length and width. It is a resin part of a section having a pore ratio (%) -2 (%) or more.
    The area ratio of the unopened hole portion b on the surface is the ratio of the total area of the unopened hole portion b on the surface to the total area of the visual field of the surface SEM observation image.
  3.  走査型電子顕微鏡(SEM)を用いた観察により得られる断面SEM観察画像11.7μm×9.4μmの長方形状の視野面積に対して断面の未開孔部の面積比率が22%以下である請求項1または2に記載のポリオレフィン微多孔膜。
     ここで、断面の未開孔部とは、断面SEM観察画像を縦横それぞれ0.3μmの区画に分割し、分割した1区画に含まれる樹脂比率が80%以上の区画中の樹脂部であり、
    断面の未開孔部の面積比率は、前記断面SEM観察画像の視野の総面積に対する断面未開孔部の面積の総和の比率である。
    Claim that the area ratio of the unopened portion of the cross section is 22% or less with respect to the rectangular viewing area of 11.7 μm × 9.4 μm of the cross section SEM observation image obtained by observation using a scanning electron microscope (SEM). The polyolefin microporous film according to 1 or 2.
    Here, the unopened portion of the cross section is a resin portion in a section in which the cross-sectional SEM observation image is divided into sections of 0.3 μm in length and width, and the resin ratio contained in the divided sections is 80% or more.
    The area ratio of the unopened portion of the cross section is the ratio of the total area of the unopened portion of the cross section to the total area of the visual field of the cross section SEM observation image.
  4.  前記表面SEM観察画像における平均孔径が30~55nmである、請求項1~3のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous film according to any one of claims 1 to 3, wherein the average pore size in the surface SEM observation image is 30 to 55 nm.
  5.  前記表面SEM観察画像における孔数が90個/μm以上である、請求項1~4のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous film according to any one of claims 1 to 4, wherein the number of pores in the surface SEM observation image is 90 / μm 2 or more.
  6. 前記断面SEM観察画像における平均孔径が20~85nmである、請求項3~5のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 3 to 5, wherein the average pore size in the cross-sectional SEM observation image is 20 to 85 nm.
  7. 前記断面SEM観察画像における、孔数が60個/μm以上である、請求項3~6のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 3 to 6, wherein the number of pores is 60 / μm 2 or more in the cross-sectional SEM observation image.
  8. 膜厚を7μmに換算したときの突刺強度が3.0N以上である、請求項1~7のいずれか1項に記載のポリオレフィン微多孔膜。 The microporous polyolefin membrane according to any one of claims 1 to 7, wherein the puncture strength when the film thickness is converted to 7 μm is 3.0 N or more.
  9. 空孔率が50%以下である、請求項1~8のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 8, wherein the porosity is 50% or less.
  10. 膜厚が12μm以下である、請求項1~9のいずれか1項に記載のポリオレフィン微多孔膜。 The polyolefin microporous membrane according to any one of claims 1 to 9, wherein the film thickness is 12 μm or less.
  11. 請求項1~10のいずれか1項に記載のポリオレフィン微多孔膜からなる非水電解液二次電池用セパレータ。 A separator for a non-aqueous electrolytic solution secondary battery made of the polyolefin microporous membrane according to any one of claims 1 to 10.
PCT/JP2020/028547 2019-07-25 2020-07-22 Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries WO2021015269A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217032254A KR20220041777A (en) 2019-07-25 2020-07-22 Polyolefin microporous membrane and separator for non-aqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019137309 2019-07-25
JP2019-137308 2019-07-25
JP2019137308 2019-07-25
JP2019-137309 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021015269A1 true WO2021015269A1 (en) 2021-01-28

Family

ID=74194263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028547 WO2021015269A1 (en) 2019-07-25 2020-07-22 Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries

Country Status (2)

Country Link
KR (1) KR20220041777A (en)
WO (1) WO2021015269A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053930A1 (en) * 2021-09-29 2023-04-06 東レ株式会社 Microporous polyolefin film, separator for batteries, and secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192587A (en) * 1997-09-17 1999-04-06 Tonen Kagaku Kk Preparation of polyolefin microporous film
JPH11322988A (en) * 1998-05-18 1999-11-26 Nitto Denko Corp Porous film, its preparation and use thereof
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane
JP2016081621A (en) * 2014-10-14 2016-05-16 Tdk株式会社 Separator and lithium ion secondary battery using the same
JP2018147885A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Nonaqueous electrolyte secondary battery separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4804079B2 (en) 2004-09-30 2011-10-26 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP2012048987A (en) 2010-08-26 2012-03-08 Teijin Ltd Polyolefin microporous film, nonaqueous secondary battery separator, and nonaqueous secondary battery
EP3179535B1 (en) 2012-03-28 2020-07-01 Asahi Kasei Kabushiki Kaisha Porous film and multilayer porous film
JP2014015697A (en) 2012-07-11 2014-01-30 Teijin Ltd Fine fiber structure
CN105579226B (en) 2014-08-29 2018-05-11 住友化学株式会社 Porous layer, the distance piece that stacking porous layer forms and the nonaqueous electrolytic solution secondary battery comprising porous layer or distance piece
JP6496762B2 (en) 2017-03-03 2019-04-03 住友化学株式会社 Nonaqueous electrolyte secondary battery separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192587A (en) * 1997-09-17 1999-04-06 Tonen Kagaku Kk Preparation of polyolefin microporous film
JPH11322988A (en) * 1998-05-18 1999-11-26 Nitto Denko Corp Porous film, its preparation and use thereof
JP2008218085A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Polyolefin fine porous membrane
JP2016081621A (en) * 2014-10-14 2016-05-16 Tdk株式会社 Separator and lithium ion secondary battery using the same
JP2018147885A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Nonaqueous electrolyte secondary battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053930A1 (en) * 2021-09-29 2023-04-06 東レ株式会社 Microporous polyolefin film, separator for batteries, and secondary battery

Also Published As

Publication number Publication date
KR20220041777A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
JP5576609B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP2008055901A (en) Polyolefin multilayer microporous membrane, its production process, battery separator and battery
JP2010538097A (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JP4677663B2 (en) Polyolefin microporous membrane
JP7395827B2 (en) porous polyolefin film
JP2008255307A (en) Polyolefin multilayer microporous film, method for producing the same, separator for battery and battery
WO2011152201A1 (en) Polyolefin microporous membrane, separator for battery, and battery
JP7207300B2 (en) porous polyolefin film
JP2002194132A (en) Polyolefin fine porous film and method of manufacturing the same
JP7380570B2 (en) Polyolefin microporous membrane, battery separator, secondary battery, and manufacturing method of polyolefin microporous membrane
WO2021033735A1 (en) Polyolefin microporous film, layered body, and battery
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
JP3682120B2 (en) Composite membrane for battery separator and battery separator
JP6962320B2 (en) Polyolefin microporous membrane and batteries using it
JPH11269290A (en) Polyoelfin fine porous membrane
WO2021015269A1 (en) Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries
JP2020164861A (en) Polyolefin microporous membrane, battery separator, secondary battery and method for producing polyolefin microporous membrane
JP2020164860A (en) Polyolefin microporous membrane, battery separator, secondary battery and method for producing polyolefin microporous membrane
JP2022082461A (en) Polyolefin microporous membrane, battery separator, and secondary battery
WO2021033733A1 (en) Polyolefin micro porous film, laminate, and battery
JP2021021067A (en) Microporous polyolefin membrane and nonaqueous electrolyte secondary batteries
JP2021021068A (en) Microporous polyolefin membrane and nonaqueous electrolyte secondary batteries
JP2021105166A (en) Polyolefin microporous film, and secondary battery
WO2021033734A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
JP2021021065A (en) Polyolefin microporous film, laminate, and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843678

Country of ref document: EP

Kind code of ref document: A1