JPH0722014A - Separator for battery - Google Patents

Separator for battery

Info

Publication number
JPH0722014A
JPH0722014A JP16695093A JP16695093A JPH0722014A JP H0722014 A JPH0722014 A JP H0722014A JP 16695093 A JP16695093 A JP 16695093A JP 16695093 A JP16695093 A JP 16695093A JP H0722014 A JPH0722014 A JP H0722014A
Authority
JP
Japan
Prior art keywords
polyethylene
molecular weight
separator
film
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16695093A
Other languages
Japanese (ja)
Inventor
Yasuo Kaminami
康夫 神波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP16695093A priority Critical patent/JPH0722014A/en
Publication of JPH0722014A publication Critical patent/JPH0722014A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To realize an excellent property at low temperatures and hold the shape of a sealing film even at high temperatures by laminating the porous film composed of micro molecular weight polyethylene having a specific viscosity average molecular weight, and nonwoven fabric including multiple layer fiber provided with a core made of a resin having a melting point higher than that of polyethylene. CONSTITUTION:A composition composed of micro molecular polyethylene having a viscosity average molecular weight (MV) of 500,000 or more and a plasticizer is fused and extruded, thus obtaining a sheet. A plasticizer is extracted from the sheet, thereby obtaining a porous film. Nonwoven fabric consisting of an outer layer of polyethylene and a core of polyester and including multiple layer fiber made of a resin having a melting point higher by 20 deg.C than that of polyethylene is laminated on the porous film by heat lamination or the like, thus obtaining a separator. It is preferable that the porous film has a thickness of 10-50mum, air permeability of 20-3000sec/100cc, and a hole ratio of 25-80%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池用セパレーターに関
する、詳しくは、気体、液体およびイオン透過性に優
れ、高温での膜形状維持性が優れている多孔膜と不織布
とを積層してなる電池セパレターに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery separator, and more particularly to a battery formed by laminating a non-woven fabric and a porous film having excellent gas, liquid and ion permeability and excellent film shape retention at high temperature. Regarding the separation letter.

【0002】[0002]

【従来の技術】携帯用小型機器の発達にともない小型で
高性能な電池が求められるようになってきた。リチウム
電池は最も卑な金属であるリチウムを使うことにより発
生起電圧が高く小型高性能電池用電極材としては非常に
有用である。しかしリチウムは反応性が高く取扱を間違
えると電池の破裂等を起こす。リチウム電池においても
過去に発火などの事例が発生しており不足の事態の防止
は重要課題である。
2. Description of the Related Art With the development of small portable devices, small size and high performance batteries have been required. The lithium battery is highly useful as an electrode material for a small high-performance battery because it has a high electromotive voltage due to the use of the base metal, lithium. However, lithium is highly reactive and will cause battery rupture if mishandled. Even in the case of lithium batteries, cases such as ignition have occurred in the past, and prevention of shortage is an important issue.

【0003】[0003]

【発明が解決しようとする課題】リチウム電池のセパレ
ーターは多孔質の膜からなり正極と負極との間に介在さ
せ、正極と負極間にイオンは通すが正極と負極の物理的
接触を防止するためのものである。セパレーターは通常
ポリプロピレン等多孔質の膜から構成されているが、セ
パレーターの高温膜形状維持特性及び高温での孔の熱閉
塞性が不足していると、外部短絡事故などで短時間に大
電流が流れた場合、リチウム電池は発熱し、熱によりセ
パレーターが膜形状を維持出来なくなり、正極と負極が
物理的に接触し内部短絡を起こし、破裂等の事故が発生
することがある。従って、セパレーターには電池内部温
度が上昇した時、セパレーターの孔が熱により自動的に
閉塞する性質(自己閉塞性)と高温になっても膜形状を
維持し電極を隔てておく性質(高温膜形状維持特性)が
必要とされる。
The separator of a lithium battery is made of a porous film and is interposed between the positive electrode and the negative electrode to allow ions to pass between the positive electrode and the negative electrode but prevent physical contact between the positive electrode and the negative electrode. belongs to. The separator is usually composed of a porous film such as polypropylene.However, if the high-temperature film shape retention property of the separator and the heat blocking property of the pores at high temperature are insufficient, a large current will be generated in a short time due to an external short-circuit accident. When flowing, the lithium battery generates heat, the separator cannot maintain the film shape due to the heat, the positive electrode and the negative electrode physically contact with each other to cause an internal short circuit, and an accident such as rupture may occur. Therefore, when the internal temperature of the battery rises in the separator, the property that the pores of the separator are automatically closed by heat (self-closing property) and the property that the film shape is maintained and the electrodes are separated even when the temperature becomes high (high temperature film) Shape retention properties) are required.

【0004】ポリプロピレン製の多孔膜からなるセパレ
ーターは高温での形状維持性に優れているが、特にリチ
ウム電池セパレーターとして使用する際、自己閉塞性を
発現する温度が約175℃でありリチウムの発火温度1
80℃と接近しており、短絡事故等の際確実に自己閉塞
を起こさないと破裂等の問題がある。また、セパレータ
ー膜においては通常強度向上のために延伸を行うが、延
伸した膜は高温膜形状維持特性が低くポリエチレン製で
は150〜160℃、ポリプロピレン製では180℃近
辺で収縮や破断を起こし、電極の隔離性に問題を生じ
る。
A separator made of a polypropylene porous film is excellent in shape retention at high temperatures, but when it is used as a lithium battery separator, the temperature at which it self-closes is about 175 ° C., which is the ignition temperature of lithium. 1
The temperature is close to 80 ° C, and there is a problem such as bursting unless self-closing is surely caused in the case of a short circuit accident. Further, the separator film is usually stretched to improve the strength, but the stretched film has low high-temperature film shape retention property, and shrinkage or rupture occurs in the vicinity of 150 to 160 ° C. for polyethylene and 180 ° C. for polypropylene, so that the electrode Creates a problem with the isolation of the.

【0005】[0005]

【課題を解決するための手段】そこで発明者らはかかる
問題点を解決すべく鋭意検討を行った結果、特殊な多孔
膜と特殊な不織布とを積層した積層体により、低温閉塞
性が高く、高温膜形状維持特性を有する、セパレーター
として極めて満足し得る膜を発明するに至った。本発明
の要旨は、粘度平均分子量(Mv)500,000以上
の超高分子量ポリエチレンからなる多孔膜と、不織布と
を積層した積層体からなり、該不織布が外層がポリエチ
レンで、中芯が該ポリエチレンより融点が30℃以上高
い樹脂よりなる多層の繊維を含有する不織布であること
を特徴とする電池用セパレーターに存する。
The inventors of the present invention have conducted extensive studies to solve such problems, and as a result, have a high low-temperature occluding property due to a laminate in which a special porous membrane and a special nonwoven fabric are laminated, The inventors have invented a membrane having a high temperature membrane shape maintaining property, which is extremely satisfactory as a separator. The gist of the present invention is a laminate in which a porous membrane made of ultra-high molecular weight polyethylene having a viscosity average molecular weight (Mv) of 500,000 or more and a non-woven fabric are laminated, wherein the non-woven fabric is polyethylene as an outer layer and the polyethylene is a core. A separator for a battery, which is a non-woven fabric containing multi-layered fibers made of a resin having a higher melting point of 30 ° C. or higher.

【0006】以下本発明を詳細に説明する。本発明の積
層体を構成するポリエチレン多孔膜(多孔シート)は粘
度平均分子量(Mv)500,000以上の超高分子量
ポリエチレンからなる多孔膜である。多孔膜の厚さは1
0〜50μm程度が良く、更に好ましくは 15〜30
μmである。10μmより薄い膜は絶対強度が小さく、
製膜時や積層加工時に破断したり、電池加工後の膜破れ
などが発生しやすい。また、50μmを超えた膜厚では
透水量が小さくなったり、電池内に占めるセパレーター
の割合が大きくなり電池の容量低下を起こす場合があ
る。透気度は20〜1000秒/100cc程度が良
く、好ましくは50〜300秒/100ccである。透
気度が20秒/100cc未満だと膜表面積に占める孔
の割合(開孔率)が大きくなりすぎ、膜の強度が低下す
る傾向がある。1000秒/100ccより大きいとイ
オンの透過抵抗が大きくなりセパレーターとしては好ま
しくない。
The present invention will be described in detail below. The polyethylene porous film (porous sheet) constituting the laminate of the present invention is a porous film made of ultra-high molecular weight polyethylene having a viscosity average molecular weight (Mv) of 500,000 or more. The thickness of the porous membrane is 1
0 to 50 μm is preferable, and more preferably 15 to 30
μm. Films thinner than 10 μm have small absolute strength,
It is easy to break during film formation or lamination processing, or film breakage after battery processing. Further, when the film thickness exceeds 50 μm, the amount of water permeation may be small, or the proportion of the separator in the battery may be large, resulting in a decrease in battery capacity. The air permeability is preferably about 20 to 1000 seconds / 100 cc, and preferably 50 to 300 seconds / 100 cc. If the air permeability is less than 20 seconds / 100 cc, the ratio of the pores to the surface area of the film (open area ratio) becomes too large, and the strength of the film tends to decrease. If it is more than 1000 seconds / 100 cc, the permeation resistance of ions becomes large, which is not preferable as a separator.

【0007】本発明のポリエチレン多孔膜は130〜1
45℃で孔が閉塞し、イオン電流を遮断する。しかし、
不織布と積層しているので200℃程度の温度まで昇温
しても膜形状を保つ。従って、電池が短絡事故など発熱
しても安全に電極反応を止めることが出来る。
The polyethylene porous membrane of the present invention has a thickness of 130-1.
At 45 ° C, the pores close and block the ionic current. But,
Since it is laminated with a non-woven fabric, the film shape is maintained even if the temperature is raised to about 200 ° C. Therefore, the electrode reaction can be safely stopped even if the battery generates heat such as a short circuit.

【0008】空孔率は25〜80%程度が良い。空孔率
が25%未満だと孔構造が緻密すぎてイオンの透過性が
低下する。80%より大きいと単位体積中に占めるポリ
エチレンの量が少なくなりすぎ強度が低下する。破断点
強度は縦、横どちらの方向にも100kg/cm2以上
あることが好ましい。これ未満だと膜製造時に破断しや
すく、作業性が悪くなる。バブルポイントは2〜5kg
/cm2以上であることが望ましい。バブルポイントが
2kg/cm2未満だと孔構造が疎となり実用的でな
い。また5kg/cm2より大きいと孔構造が緻密すぎ
て濾過やイオン透過の抵抗となってしまう。
The porosity is preferably about 25 to 80%. If the porosity is less than 25%, the pore structure becomes too dense and the ion permeability decreases. If it is more than 80%, the amount of polyethylene occupying the unit volume becomes too small and the strength is lowered. The breaking strength is preferably 100 kg / cm 2 or more in both the longitudinal and lateral directions. If it is less than this range, the film is likely to be broken during production, resulting in poor workability. Bubble point is 2-5kg
/ Cm 2 or more is desirable. If the bubble point is less than 2 kg / cm 2 , the pore structure becomes sparse and it is not practical. On the other hand, if it is larger than 5 kg / cm 2 , the pore structure becomes too dense, resulting in resistance to filtration and ion permeation.

【0009】透水量は100〜1500リットル/hr
・m2・atm程度が良い。透水量が100リットル/
hr・m2・atm未満だとイオンの透過性が低下す
る。1500リットル/hr・m2・atmより大きい
と孔構造が疎となり電池セパレーターとして使用したと
き電極同志が接触する危険がある。0.091μmのス
チレンラテックス粒子は50%以上を阻止するのが望ま
しい。50%未満だと孔の大きさにむらがありすぎ電極
同志が接触する危険がある。
The water permeability is 100 to 1500 liters / hr.
・ M 2・ atm is good. Permeability is 100 liters /
If it is less than hr · m 2 · atm, the ion permeability is lowered. If it is more than 1500 liters / hr · m 2 · atm, the pore structure becomes sparse and there is a risk that the electrodes contact each other when used as a battery separator. It is desirable that 0.091 μm styrene latex particles block 50% or more. If it is less than 50%, there is a risk that the electrodes are in contact with each other due to the uneven size of the holes.

【0010】本発明の積層体に用いる多孔膜を得るのに
好ましい方法としては、超高分子量ポリエチレンと可塑
剤からなる組成物を溶融押出してシートを得、延伸は行
わず、ついで該シートから可塑剤を溶剤等で抽出、除去
して得られる多孔膜である。多孔膜を安定化のため熱処
理することも可能であり、熱処理には加熱ロール法、ま
たはテンター方式等を用いることができる。このように
して得られた多孔膜は緻密な網目状構造を有している。
A preferred method for obtaining the porous membrane used in the laminate of the present invention is to melt-extrude a composition comprising ultra-high molecular weight polyethylene and a plasticizer to obtain a sheet, without stretching, and then plasticize the sheet. It is a porous membrane obtained by extracting and removing the agent with a solvent or the like. The porous film can be heat-treated for stabilization, and the heat treatment can be performed by a heating roll method, a tenter method, or the like. The porous film thus obtained has a dense network structure.

【0011】多孔膜に使用されるポリエチレンは重量平
均分子量が500,000以上であるいわゆる超高分子
量ポリエチレンであり、特に粘度平均分子量が1×10
6〜3.0×106のものが好ましい。
The polyethylene used for the porous membrane is a so-called ultra high molecular weight polyethylene having a weight average molecular weight of 500,000 or more, and particularly a viscosity average molecular weight of 1 × 10.
6 to 3.0 × 10 6 is preferable.

【0012】分子量が低すぎると可塑剤と均一混練する
ことが困難で微細孔構造を有する多孔膜を得ることがで
きない。また安定したシート成形が不可能となる。多孔
膜の製造に用いられる可塑剤としては超高分子量ポリエ
チレンとの相溶性がよく、沸点が該超高分子量ポリエチ
レンの溶融成形温度(〜250℃)以上でしかもシート
成形中に蒸散が起こりにくい様、蒸気圧が低いことが好
適条件である。可塑剤の超高分子量ポリエチレン(マト
リックス樹脂)への相溶性の良、不良は160〜200
℃における、この2つの成分の溶融混練体が安定的に溶
融押出できる程度の均一分散系であるか否かで分かれ
る。具体的にはフローテスターで該溶融混練体の見掛け
粘度を多数測定した場合、その振れ幅が30%以下、好
ましくは10%以下に収まる程度の安定した流動性を有
するものを相溶性が良いとする。
If the molecular weight is too low, it is difficult to uniformly knead with the plasticizer, and a porous membrane having a fine pore structure cannot be obtained. Further, stable sheet formation becomes impossible. As a plasticizer used in the production of a porous film, it has good compatibility with ultra-high molecular weight polyethylene, has a boiling point higher than the melt-forming temperature (up to 250 ° C) of the ultra-high molecular weight polyethylene, and does not easily evaporate during sheet forming. A low vapor pressure is a preferable condition. 160-200 good or poor compatibility of plasticizer with ultra high molecular weight polyethylene (matrix resin)
It depends on whether or not the melt-kneaded body of these two components at 0 ° C. is a uniform dispersion system that can be stably melt-extruded. Specifically, when a large number of apparent viscosities of the melt-kneaded product are measured with a flow tester, those having stable fluidity with a swing range of 30% or less, preferably 10% or less are considered to have good compatibility. To do.

【0013】さらに、多孔膜の製造途中段階で得られる
超高分子量ポリエチレンと可塑剤からなるシートの成形
安定性、取扱の容易さを考慮すると、可塑剤は具体的に
は流動パラフィン、固形パラフィン、ステアリルアルコ
ール、セチルアルコール等が望ましい。特に常温で固体
であるものは取扱上非常に有用である。これら可塑剤と
超高分子量ポリエチレンとは通常はミキサー等で混合さ
れた後、溶融混練により均一混練され、次いでペレット
化した後シート成形に供される。ステアリルアルコール
を用いた場合は、細かい顆粒状にして使用することがで
き、粉末状である超高分子量ポリエチレンと機械的なブ
レンドが容易であることから、このまま押出機供給部に
供給することにより安定したシートの押出成形が可能で
ある。さらに本組成に熱安定剤、酸化防止剤、着色剤な
どを添加しても構わない。
Further, in consideration of the molding stability of a sheet comprising an ultrahigh molecular weight polyethylene and a plasticizer obtained in the intermediate stage of the production of the porous membrane and the ease of handling, the plasticizer is specifically liquid paraffin, solid paraffin, Stearyl alcohol and cetyl alcohol are preferable. In particular, those that are solid at room temperature are very useful in handling. These plasticizers and ultra-high molecular weight polyethylene are usually mixed with a mixer or the like, then uniformly kneaded by melt-kneading, then pelletized and then subjected to sheet forming. When stearyl alcohol is used, it can be used in the form of fine granules and can easily be mechanically blended with powdery ultra high molecular weight polyethylene. It is possible to extrude the formed sheet. Further, a heat stabilizer, an antioxidant, a colorant and the like may be added to the composition.

【0014】超高分子量ポリエチレンと可塑剤との混合
の比率は通常、重量比で超高分子量ポリエチレン/可塑
剤=10/90〜40/60であり、好ましくは15/
85〜35/65の範囲である。ポリエチレンの比率が
低すぎると、押出機における押出状態が不安定となり良
好なシートを得ることができない。またポリエチレンの
比率が高すぎると粘度が大きくなり過ぎ、ダイス部分で
の流れが不安定となり安定したシートを得ることが不可
能となる。これら組成物を一旦溶融混練してペレット化
したものはシート成形時に該ポリエチレンと可塑剤の分
離を防止することができ成形安定性の向上につながる。
The mixing ratio of ultrahigh molecular weight polyethylene and plasticizer is usually ultrahigh molecular weight polyethylene / plasticizer = 10/90 to 40/60, preferably 15 /
The range is 85 to 35/65. If the proportion of polyethylene is too low, the extruded state in the extruder becomes unstable and a good sheet cannot be obtained. On the other hand, if the proportion of polyethylene is too high, the viscosity becomes too high, and the flow at the die becomes unstable, making it impossible to obtain a stable sheet. Those obtained by melt-kneading these compositions and pelletizing them can prevent the polyethylene and the plasticizer from being separated during the sheet formation, and thus improve the molding stability.

【0015】シートの成形はポリエチレンと可塑剤を溶
融混練したペレットまたはポリエチレンと可塑剤を機械
的にブレンドした混合物を押出機に供給し、次に均一な
溶融状態とし、適宜選択されたダイスからシート状に押
し出すことによって行う。シート成形により得られるシ
ートの厚みは通常0.03〜0.5mmであり、好まし
くは0.03〜0.08mmである。
The sheet is formed by feeding pellets obtained by melt-kneading polyethylene and a plasticizer or a mixture obtained by mechanically blending polyethylene and a plasticizer to an extruder, and then bringing the mixture into a uniform molten state, and then a sheet is formed from an appropriately selected die. It is done by extruding into a shape. The thickness of the sheet obtained by sheet forming is usually 0.03 to 0.5 mm, preferably 0.03 to 0.08 mm.

【0016】この際、シートに延伸を加えず、分子配向
をなるべく起こさないように成形する事が望ましい。次
に行う可塑剤の除去(抽出)は可塑剤をよく溶解する、
易揮発性溶剤による抽出法が望ましい。易揮発性溶剤と
してはペンタン、ヘキサン、ヘプタン等の炭化水素系、
塩化メチレン、クロロホルム、四塩化炭素、三フッ化エ
タン等のハロゲン化炭化水素系、メタノール、エタノー
ル、プロパノール等のアルコール類、ジエチルエーテ
ル、ジオキサン等のエーテル類等が挙げられ、可塑剤を
抽出除去し、その後乾燥により揮発性溶剤を除くことに
より多孔性のシートを得る。この多孔性シートに残存す
る可塑剤含有率は1重量%未満にするのが好ましい。可
塑剤の除去は除去効率をよくするため常温以上、通常5
0℃〜90℃程度で行うのが望ましい。易揮発性溶剤を
用いる場合発火温度に注意する必要があり、除去温度が
発火温度に近い場合は易揮発性溶剤に水等を混合し、発
火温度を除去温度より充分に低くして行うのが良い。可
塑剤の除去に当たってはシートが厚さ方向に5%〜30
%程度収縮するような条件下に行うのが好ましい。
At this time, it is desirable that the sheet is not stretched and molded so as not to cause molecular orientation as much as possible. The next removal (extraction) of the plasticizer dissolves the plasticizer well,
An extraction method using an easily volatile solvent is preferable. As the volatile solvent, hydrocarbon system such as pentane, hexane, heptane,
Examples include halogenated hydrocarbons such as methylene chloride, chloroform, carbon tetrachloride and ethane trifluoride, alcohols such as methanol, ethanol and propanol, and ethers such as diethyl ether and dioxane. Then, the volatile solvent is removed by drying to obtain a porous sheet. The content of the plasticizer remaining in this porous sheet is preferably less than 1% by weight. The plasticizer should be removed at room temperature or higher, usually 5 to improve removal efficiency.
It is desirable to carry out at about 0 ° C to 90 ° C. When using a volatile solvent, it is necessary to pay attention to the ignition temperature.If the removal temperature is close to the ignition temperature, mix the volatile solvent with water etc. and make the ignition temperature sufficiently lower than the removal temperature. good. When removing the plasticizer, the sheet is 5% to 30% in the thickness direction.
It is preferable to carry out the treatment under the condition that the shrinkage is about%.

【0017】上記多孔膜は充分な強度、耐熱性を有して
いるが、電池用セパレーターとして更に安全性を高める
ため、特殊な構成のポリオレフィン系不織布と積層す
る。多孔膜は可塑剤を除去したものをそのまま用いて積
層体としても良いが、温度による収縮を防止するために
熱処理した後、積層に供することが好ましい。 熱処理
は、工業的には加熱ロール法、テンター法等があり、熱
処理温度は高温の方が望ましいが、該ポリエチレンの融
点以上になると孔が閉塞して透気度が大幅に上昇して好
ましくない。加熱ロール法の場合、融点以下、好ましく
は130℃以下で熱処理を行うのが好ましい。熱処理は
熱処理前のシートが厚さ方向に2%〜20%程度収縮す
る位の温度、圧力、時間で行うのが好ましい。
Although the above-mentioned porous film has sufficient strength and heat resistance, it is laminated with a polyolefin-based nonwoven fabric having a special structure in order to further enhance safety as a battery separator. The porous film may be used as it is by removing the plasticizer as it is, but it is preferable that the porous film is subjected to heat treatment to prevent shrinkage due to temperature and then subjected to lamination. The heat treatment industrially includes a heating roll method, a tenter method, and the like, and it is preferable that the heat treatment temperature is high. However, when the heat treatment temperature is higher than the melting point of the polyethylene, the pores are blocked and the air permeability is significantly increased, which is not preferable. . In the case of the heating roll method, it is preferable to perform heat treatment at a melting point or lower, preferably 130 ° C. or lower. The heat treatment is preferably performed at a temperature, pressure and time such that the sheet before heat treatment shrinks about 2% to 20% in the thickness direction.

【0018】次に、上記多孔膜と積層体を形成するポリ
オレフィン系不織布について説明する。不織布は、外層
がポリエチレンで、中芯が外層ポリエチレンより融点が
20℃以上、好ましくは30℃以上高い合成樹脂からな
る多層の繊維を含有する不織布である。多層繊維の中芯
として用いうる樹脂としては、例えばポリプロピレン、
ポリ−4メチルペンテン−1、ポリ−3メチルブテン−
1等のポリオレフィン樹脂、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート、ポリカーボネート等
のポリエステル樹脂、ポリアミド樹脂等が挙げられる。
中芯の太さは繊維径の1/5〜4/5程度であること
が、外層の接着性と中芯による形状保持効果を保つ上で
望ましく、中芯の位置は繊維の中心であっても、偏芯し
ていても良い。
Next, a polyolefin-based nonwoven fabric forming a laminate with the porous film will be described. The non-woven fabric is a non-woven fabric containing polyethylene as an outer layer and a multi-layered fiber made of a synthetic resin having a melting point of 20 ° C. or higher, preferably 30 ° C. or higher as the outer layer of polyethylene. Examples of the resin that can be used as the core of the multilayer fiber include polypropylene,
Poly-4 methyl pentene-1, poly-3 methyl butene-
1 and other polyolefin resins, polyethylene terephthalate, polybutylene terephthalate, polyester resins such as polycarbonate, polyamide resins and the like.
The thickness of the core is preferably about 1/5 to 4/5 of the fiber diameter in order to maintain the adhesiveness of the outer layer and the shape retaining effect of the core, and the position of the core is the center of the fiber. Alternatively, it may be eccentric.

【0019】不織布を構成する繊維は0.5デニール〜
15デニール程度、好ましくは1.5〜5デニール程度
の太さの繊維が好ましい。不織布の目付けとしては5〜
30g/m2程度、好ましくは8〜20g/m2 程度の
ものが好ましい。また、不織布はスパンボンド法、乾式
法、湿式法等で製造したものが使用出来るが、短繊維を
水中に分散してすいた、所謂湿式法によるものが厚さム
ラや目付けムラがなく好適に用いられる。不織布の製造
時に上記多層の繊維に、ポリエチレン製の合成パルプや
他の合成繊維を混合するのが好ましい、混合割合は、多
層の繊維との合計量にして5〜60重量%、好ましくは
20〜40重量%である。上記の多層の繊維、ポリエチ
レン製の合成パルプや他の合成繊維は接着性を向上させ
るため、無水マレイン酸等の不飽和カルボン酸をグラフ
トした変性樹脂を用いても良い。グラフト量は500p
pm〜30000ppm程度が好ましい。
The fibers constituting the non-woven fabric are 0.5 denier or more.
A fiber having a thickness of about 15 denier, preferably about 1.5 to 5 denier is preferable. The basis weight of non-woven fabric is 5
30 g / m 2, preferably about preferably about 8 to 20 g / m 2. As the non-woven fabric, one produced by a spunbond method, a dry method, a wet method, or the like can be used, but a so-called wet method in which short fibers are dispersed in water is suitable without unevenness in thickness or unit weight. Used. It is preferable to mix the synthetic fibers made of polyethylene and other synthetic fibers with the above-mentioned multilayer fibers at the time of producing the nonwoven fabric. The mixing ratio is 5 to 60% by weight, preferably 20 to 20% by total amount with the multilayer fibers. It is 40% by weight. In order to improve the adhesiveness, the above-mentioned multi-layered fibers, polyethylene synthetic pulp and other synthetic fibers may be modified resins grafted with an unsaturated carboxylic acid such as maleic anhydride. Graft amount is 500p
It is preferably about pm to 30,000 ppm.

【0020】ポリエチレン多孔膜と不織布とは接着剤を
用いて積層することも考えられるが、通常は、低温熱溶
融接着(熱ラミネート)により積層される。熱溶融接着
に当たっては、通常、不織布側を加熱して多孔膜と押圧
することにより行うが、この際不織布のポリエチレンを
溶融させ、融点の高い繊維の中芯で形状を保ちつつ多孔
膜と積層することにより、多孔膜の孔を過剰に潰す様な
こともなく、また不織布の形状を保ちつつ、安定的に積
層体が得られる。
Although it is conceivable that the polyethylene porous membrane and the nonwoven fabric are laminated using an adhesive, they are usually laminated by low temperature hot melt adhesion (thermal lamination). The hot melt adhesion is usually performed by heating the non-woven fabric side and pressing it against the porous membrane. At this time, polyethylene of the non-woven fabric is melted and laminated with the porous membrane while maintaining the shape with the core of the fiber having a high melting point. As a result, a laminated body can be stably obtained without excessively crushing the pores of the porous film and maintaining the shape of the nonwoven fabric.

【0021】次に、本発明の積層体の製造方法の一例に
ついて説明する。積層体の製造方法は、例えば、加熱ロ
ールと冷却ロールの間に予熱された不織布と上記のよう
にして得られた多孔膜とを加熱ロール側に不織布が接す
る様にして送給して熱ラミネートし、得られた積層体を
製品巻き取りロールに巻き取る等の方法による。
Next, an example of the method for producing the laminate of the present invention will be described. The manufacturing method of the laminate is, for example, a non-woven fabric preheated between the heating roll and the cooling roll and the porous film obtained as described above are fed so that the non-woven fabric is in contact with the heating roll side and heat lamination. Then, the obtained laminate is wound on a product winding roll.

【0022】積層に当たっては、加熱ロールやエンボス
熱ロールを使用することにより、多孔膜と不織布との熱
ラミネートを均一に行う。表面平滑な加熱ロールを用い
れば全面均一にヒートシールされる。この場合、加熱ロ
ールにより不織布の表面が溶融状態とされるものである
から不織布を構成する繊維が多孔膜の表面に融着した状
態となる。従って、多孔膜の通気性等が大きく変化する
ことはない。エンボス熱ロールを使用する場合は、例え
ば、点状、線状、格子状のエンボス熱ロールでヒートシ
ール部分を形成し、全面的に見た場合は均一に、部分的
に見た場合はヒートシール部分が点在しているようなラ
ミネート溶着構造となる。斯かる部分的なラミネート構
造とすれば、多孔膜の部分的な変形に対する自由度が確
保され、応力がかかっても多孔膜が伸びて緩衝力が作用
して破損が防止される。熱ラミネートの面積(不織布を
構成する繊維が多孔膜の表面に融着している面積)は、
全体の面積の1〜50%、好ましくは5〜20%の範囲
とするのがよい。
Upon lamination, a heating roll or an embossing heat roll is used to uniformly heat laminate the porous membrane and the nonwoven fabric. If a heating roll having a smooth surface is used, the entire surface can be heat-sealed uniformly. In this case, since the surface of the non-woven fabric is melted by the heating roll, the fibers forming the non-woven fabric are fused to the surface of the porous membrane. Therefore, the air permeability of the porous film does not change significantly. When using an embossed heat roll, for example, form a heat-sealed portion with a dot-shaped, linear-shaped, or grid-shaped embossed heat roll. The laminate welding structure is such that the portions are scattered. With such a partial laminated structure, the degree of freedom for partial deformation of the porous membrane is secured, and even if stress is applied, the porous membrane stretches and a buffering force acts to prevent damage. The area of the thermal laminate (the area where the fibers forming the nonwoven fabric are fused to the surface of the porous membrane) is
The range is 1 to 50%, preferably 5 to 20% of the total area.

【0023】そして、本発明においては、熱ラミネート
に必要な予熱を不織布について行うことが特に重要であ
る。すなわち、熱ロールを使用して予熱を行う場合、多
孔膜について行うと熱により多孔膜の孔が熱により閉塞
する恐れがある。これに対し、不織布は、繊維が絡み合
った構造であるため、上記のような孔の閉塞は生じな
い。しかも本発明で用いる不織布は前述したように、外
層がポリエチレンで、中芯が該ポリエチレンより融点が
30℃以上高い合成樹脂からなる多層繊維を含有する不
織布であるから、この効果は大変大きい。
In the present invention, it is particularly important that the non-woven fabric is preheated for thermal lamination. That is, when preheating is performed using a hot roll, the pores of the porous film may be closed due to heat when the preheating is performed on the porous film. On the other hand, since the non-woven fabric has a structure in which fibers are entangled with each other, the above-described blockage of pores does not occur. Moreover, as described above, the non-woven fabric used in the present invention is a non-woven fabric containing polyethylene as an outer layer and a multi-layer fiber made of a synthetic resin whose core has a melting point of 30 ° C. or more higher than that of polyethylene.

【0024】熱ロールとしては、通常、ゴム巻きロール
が使用される。加熱方式は、心材としての金属製ロール
の内部に熱媒体を循環する間接加熱または金属製ロール
の内部にヒータを設ける直接加熱のいずれでもよい。エ
ンボス熱ロールを用いる場合のロール表面のエンボスの
形状は、特に制限されず、点状、線状、格子状などの任
意の形状を採用することが出来る。熱ロールの表面温度
は、不織布に使用したポリエチレンの融点から適宜決定
されるが、通常120〜150℃、好ましくは130〜
145℃の範囲である。また、ライン速度は、通常10
〜100m/分、好ましくは40〜60m/分の範囲で
ある。多孔膜と不織布との積層体としての厚さはセパレ
ーターとしての用途から10〜200μ、好ましくは5
0〜150μ程度である。
A rubber winding roll is usually used as the heat roll. The heating method may be either indirect heating in which a heating medium is circulated inside a metal roll as a core material or direct heating in which a heater is provided inside the metal roll. The shape of the embossing on the surface of the roll when the embossing heat roll is used is not particularly limited, and any shape such as a dot shape, a linear shape, or a lattice shape can be adopted. The surface temperature of the heat roll is appropriately determined from the melting point of polyethylene used for the nonwoven fabric, but is usually 120 to 150 ° C, preferably 130 to
It is in the range of 145 ° C. The line speed is usually 10
-100 m / min, preferably 40-60 m / min. The thickness of the laminated body of the porous membrane and the non-woven fabric is 10 to 200 μ, preferably 5 because of its use as a separator.
It is about 0 to 150 μ.

【0025】このようにして得られた積層体をリチウム
電池のセパレーターとして正極と負極との間に介在させ
る。この積層体からなるセパレーターは、外部短絡等の
事故の場合、電池内温度が上昇して135℃程度になる
と多孔膜の孔が熱により自動的に閉塞しイオンの通過を
止める。積層体の形状は不織布により維持されているの
で、更に温度が上がっても破膜による正極と負極との物
理的接触による内部短絡を起こす恐れはない。この積層
体からなるセパレーターは200℃程度の温度に加熱し
ても破膜しないことが確かめられている。即ち、自己閉
塞性と高温膜形状維持特性がバランス良く達成されたセ
パレーターといえる。
The thus obtained laminated body is interposed between the positive electrode and the negative electrode as a separator of a lithium battery. In the case of an accident such as an external short circuit, the separator made of this laminated body automatically blocks the pores of the porous membrane due to heat and stops the passage of ions when the temperature inside the battery rises to about 135 ° C. Since the shape of the laminate is maintained by the nonwoven fabric, even if the temperature further rises, there is no possibility of causing an internal short circuit due to physical contact between the positive electrode and the negative electrode due to the membrane rupture. It has been confirmed that the separator composed of this laminate does not break even when heated to a temperature of about 200 ° C. That is, it can be said that the separator achieves a good balance between the self-closing property and the high temperature film shape maintaining property.

【0026】[0026]

【実施例】以下、本発明を実施例を挙げて詳細に説明す
るが、本発明はその要旨を越えない限り下記の実施例に
限定されるものではない。実施例における試験方法は次
の通りである。 1.透気度(単位;秒/100cc) JIS P81
17 2.空孔率(%)=空孔容積/多孔膜容積×100% 3.破断強度(単位;Kg/cm2) JIS K67
81 4.バブルポイント(BP) JIS K3832 5.透水量(単位;リットル/hr・m2・atm)
アミコン社製 8010型セルを使用し、差圧1kg/c
2温度23℃にて測定 6.孔径測定(スチレンラテックス阻止率) ダウ社製
重量平均粒径0.091μm、0.212μmのスチ
レンラテックス粒子を水に分散させ、アミコン社製80
10型セルをしようして差圧1Kg/cm2にて透過試
験を実施しその前後のスチレンラテックス濃度をUV計
で測定してその阻止率を次の式で求めた。
EXAMPLES The present invention will now be described in detail with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. The test method in the examples is as follows. 1. Air permeability (unit: second / 100cc) JIS P81
17 2. Porosity (%) = pore volume / porous membrane volume × 100% 3. Breaking strength (unit: Kg / cm 2 ) JIS K67
81 4. Bubble point (BP) JIS K3832 5. Permeability (unit: liter / hr · m 2 · atm)
Using Amicon 8010 type cell, differential pressure 1kg / c
Measured at m 2 temperature of 23 ° C. 6. Pore Size Measurement (Styrene Latex Rejection Rate) Dow's weight average particle diameters of 0.091 μm and 0.212 μm styrene latex particles are dispersed in water.
A 10-type cell was used to conduct a permeation test at a differential pressure of 1 kg / cm 2, and the styrene latex concentration before and after the permeation test was measured with a UV meter, and the blocking rate was determined by the following formula.

【0027】[0027]

【数1】阻止率(%)=(透過前の濃度−透過後の濃
度)/( 透過前の濃度)×100
## EQU1 ## Rejection rate (%) = (concentration before permeation-concentration after permeation) / (concentration before permeation) × 100

【0028】実施例1 粘度平均分子量2×106のポリエチレンパウダー(融
点135℃)20重量部と粒状のステアリルアルコール
80重量部のドライブレンド物を押出機に供給して24
0℃で混練しながら連続的に幅550mm、ダイクリア
ランス0.2mmのTダイより押し出して厚さ0.07
mmのシートを得た。
Example 1 A dry blend of 20 parts by weight of a polyethylene powder having a viscosity average molecular weight of 2 × 10 6 (melting point: 135 ° C.) and 80 parts by weight of granular stearyl alcohol was fed to an extruder for 24 hours.
While kneading at 0 ° C, it is continuously extruded from a T-die with a width of 550 mm and a die clearance of 0.2 mm to a thickness of 0.07.
A sheet of mm was obtained.

【0029】このシートを60℃のイソプロピルアルコ
ール浴でステアリルアルコールを抽出し、ポリエチレン
製多孔膜を得た。この膜の物性は (a)膜厚 47μm (b)透気度 105秒/100cc (c)空孔率 67% (d)破断点強度 170Kg/cm2(縦方向)、1
20Kg/cm2(横方向) (e)バブルポイント 3.4Kg/cm2 (f)透水量 400リットル/hr・m2・atm (g)スチレンラテックス阻止率(SR阻止率) 98
%以上であった。
Stearyl alcohol was extracted from this sheet in an isopropyl alcohol bath at 60 ° C. to obtain a polyethylene porous membrane. The physical properties of this film are as follows: (a) film thickness 47 μm (b) air permeability 105 seconds / 100 cc (c) porosity 67% (d) breaking strength 170 Kg / cm 2 (vertical direction), 1
20 Kg / cm 2 (horizontal direction) (e) Bubble point 3.4 Kg / cm 2 (f) Water permeability 400 liters / hr · m 2 · atm (g) Styrene latex blocking rate (SR blocking rate) 98
% Or more.

【0030】この膜を熱風循環オーブン中150℃で1
分間加熱したものの透気度は測定不能(1200秒/1
00cc以上)であった。即ち、良好な自己閉塞性を備
えていることが分かる。さらにこの膜を175℃で1分
間加熱処理しても膜形状は保持されたままだった。即
ち、良好な高温膜形状維持特性を備えていることが分か
る。上記で得たポリエチレン製多孔膜とポリエチレン系
不織布(外層ポリエチレン、融点:120℃、心材ポリ
エステル、融点:230℃)(目付け:15g/m 2
湿式法)との熱ラミネートを行った。
This film was placed in a hot air circulation oven at 150 ° C. for 1 hour.
The air permeability of the sample heated for 1 minute cannot be measured (1200 seconds / 1
00cc or more). That is, it has a good self-closing property.
You can see that In addition, this membrane is placed at 175 ° C for 1 minute.
The film shape was maintained even after the heat treatment. Immediately
It has been found that it has good high-temperature film shape retention characteristics.
It Polyethylene porous membrane obtained above and polyethylene type
Non-woven fabric (outer layer polyethylene, melting point: 120 ℃, core material poly
Ester, melting point: 230 ° C) (Basis weight: 15 g / m 2,
Thermal lamination with a wet method) was performed.

【0031】すなわち、表面温度が145℃に設定され
た熱ロールに不織布を、冷却ロールにポリエチレン製多
孔膜を接触させ、10kg/cmの線圧で両ロールを押
しつけて50m/分のライン速度でラミネートを行っ
た。得られた積層体(長さ:約1000m)は、製品巻
き取りロールによって巻き取った。積層体の厚さは平均
65μであった。熱融着部の面積は全体の10%であっ
た。
That is, a non-woven fabric was brought into contact with a hot roll whose surface temperature was set at 145 ° C., and a polyethylene porous membrane was brought into contact with a cooling roll, and both rolls were pressed at a linear pressure of 10 kg / cm to obtain a line speed of 50 m / min. Lamination was performed. The obtained laminate (length: about 1000 m) was wound by a product winding roll. The thickness of the laminate was 65 μm on average. The area of the heat-sealed portion was 10% of the whole.

【0032】得られた積層体についてピンホールの有無
と耐水圧の測定(JIS L 1092に準拠)を行っ
た結果、ピンホールの発生は認められず、また、耐水圧
は3Kg/cm2 以上であった。得られた積層体の引張
強度は3100g/cmと多孔膜単体と比べ2.5倍の
強度が得られた。また、電気伝導度は多孔膜単体の2.
3ms/cmsと変わらなかった。リチウム電池のセパ
レーターとして良好に用いうるものであった。電気伝導
度は電極として2cm2の白金板を用い電極間を6cm
とし、電解液はプロピレンカーボネートとジエトキシカ
ーボネートとの1:1溶液を、電解質はLiPF6を1
mole/lの濃度で用いた。
The presence of pinholes and the water pressure resistance of the obtained laminate were measured (in accordance with JIS L 1092). As a result, no pinholes were found and the water pressure resistance was 3 Kg / cm 2 or more. there were. The tensile strength of the obtained laminate was 3,100 g / cm, which was 2.5 times that of the porous membrane alone. The electric conductivity of the porous membrane is 2.
It was the same as 3 ms / cms. It was successfully used as a separator for lithium batteries. The electric conductivity is 6 cm between electrodes using a platinum plate of 2 cm 2 as electrodes.
And the electrolyte was a 1: 1 solution of propylene carbonate and diethoxy carbonate, and the electrolyte was 1 LiPF 6 .
Used at a concentration of mole / l.

【0033】実施例2 実施例1で得られた膜厚47μmのポリエチレン製多孔
膜を表面温度120℃の加熱ピンチロールを用いて30
秒間熱処理して33μmの膜を作成し、多孔膜を得た。
この膜を実施例1と同様にしてポリエチレン系不織布
(外層ポリエチレン、融点:135℃)(芯材ポリプロ
ピレン、融点:175℃)(目付け:15g/m2 )と
の熱ラミネートを行った。
Example 2 The polyethylene porous film having a thickness of 47 μm obtained in Example 1 was heated with a heating pinch roll having a surface temperature of 120 ° C. for 30 minutes.
It was heat-treated for 2 seconds to form a 33 μm film, and a porous film was obtained.
This film was heat laminated with a polyethylene non-woven fabric (outer layer polyethylene, melting point: 135 ° C.) (core polypropylene, melting point: 175 ° C.) (unit weight: 15 g / m 2 ) in the same manner as in Example 1.

【0034】得られた積層体についてピンホールの有無
と耐水圧の測定(JIS L 1092に準拠)を行っ
た結果、ピンホールの発生は認められず、また、耐水圧
は2.5Kg/cm2 以上であった。得られた積層体を
130℃から5℃刻みで各温度に5分間放置し、通気性
の変化を測定、熱による破膜の有無を確認した。この結
果、140℃で通気度はガーレー法で1万秒以上とな
り、また、200℃まで破膜は認められなかった。リチ
ウム電池のセパレーターとして良好に用いうるものであ
った。
With respect to the obtained laminate, the presence or absence of pinholes and the water pressure resistance were measured (according to JIS L 1092). As a result, no pinholes were observed and the water pressure resistance was 2.5 Kg / cm 2. That was all. The obtained laminated body was allowed to stand at 130 ° C. to 5 ° C. at each temperature for 5 minutes, the change in air permeability was measured, and the presence or absence of film rupture due to heat was confirmed. As a result, the air permeability at 140 ° C. was 10,000 seconds or more by the Gurley method, and no film rupture was observed up to 200 ° C. It was successfully used as a separator for lithium batteries.

【0035】比較例1 実施例1で得られた多孔膜を単独で用いた。この膜を実
施例2と同様にして130℃から5℃刻みで各温度に5
分間放置し、通気性の変化を測定、熱による破膜の有無
を確認した。この結果、140℃で通気度はガーレー方
で1万秒以上となったが200℃で破膜した。
Comparative Example 1 The porous membrane obtained in Example 1 was used alone. This membrane was treated in the same manner as in Example 2 at 5 ° C increments from 130 ° C at 5 ° C for each temperature.
After leaving for a minute, the change in air permeability was measured, and the presence or absence of film rupture due to heat was confirmed. As a result, the air permeability at 140 ° C was 10,000 seconds or more in the Gurley method, but the membrane ruptured at 200 ° C.

【0036】実施例3 実施例1で用いた不織布に替え、無水マレイン酸を20
00ppmグラフトした変性ポリエチレンを外層ポリエ
チレンとして用いた不織布(外層ポリエチレン、融点:
120℃、心材ポリプロピレン、融点:175℃)(目
付け:15g/m2 、湿式法)を用い、ラミネート温度
を140℃とした他は実施例1と同様にしてセパレータ
ーを作成した。リチウム電池のセパレーターとして実施
例1とほぼ同様の結果が得られた。
Example 3 The non-woven fabric used in Example 1 was replaced with 20% maleic anhydride.
Nonwoven fabric using modified polyethylene grafted with 00 ppm as outer layer polyethylene (outer layer polyethylene, melting point:
A separator was prepared in the same manner as in Example 1 except that 120 ° C., polypropylene core material, melting point: 175 ° C. (unit weight: 15 g / m 2 , wet method) was used, and the laminating temperature was 140 ° C. As a separator of a lithium battery, almost the same results as in Example 1 were obtained.

【発明の効果】本発明によれば低温閉塞性に優れ、しか
も高温まで膜形状を保持した多孔性の積層体からなる膜
を作成することが出来る。この膜により安全性に優れた
電池用セパレーターを供することが出来る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to prepare a film composed of a porous laminate which is excellent in low-temperature occluding property and retains the film shape even at high temperatures. This membrane can provide a battery separator with excellent safety.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 粘度平均分子量(Mv)500,000
以上の超高分子量ポリエチレンからなる多孔膜と、不織
布とを積層した積層体からなり、該不織布が、外層がポ
リエチレンで、中芯が該ポリエチレンより融点が20℃
以上高い樹脂よりなる多層の繊維を含有する不織布であ
ることを特徴とする電池用セパレーター。
1. Viscosity average molecular weight (Mv) 500,000
It is composed of a laminate in which a porous membrane made of the above-mentioned ultra high molecular weight polyethylene and a non-woven fabric are laminated, the non-woven fabric has a polyethylene outer layer and a melting point of 20 ° C. higher than that of the polyethylene.
A separator for a battery, which is a non-woven fabric containing multi-layered fibers made of high resin.
【請求項2】 超高分子量ポリエチレンからなる多孔膜
が、(a)厚さ10〜50μm、(b)透気度20〜3
000秒/100cc、(c)空孔率25〜80%、
(d)破断点強度が縦方向、横方向とも100Kg/c
2以上、(e)バブルポイント(BP値)2〜5Kg
/cm2、(f)透水量100リットル/hr・m2・a
tm以上、(g)0.091μmのスチレンラテックス
粒子を50%以上阻止する多孔膜である請求項1に記載
の電池用セパレーター。
2. A porous membrane made of ultra high molecular weight polyethylene (a) having a thickness of 10 to 50 μm, and (b) having an air permeability of 20 to 3
000 seconds / 100 cc, (c) Porosity 25-80%,
(D) Strength at break is 100 kg / c in both longitudinal and transverse directions
m 2 or more, (e) bubble point (BP value) 2 to 5 kg
/ Cm 2 , (f) Water permeability 100 liters / hr · m 2 · a
The battery separator according to claim 1, wherein the separator is a porous film that blocks 50% or more of styrene latex particles having a particle size of tm or more and (g) 0.091 μm.
【請求項3】 積層が熱ラミネートによる請求項1に記
載の電池用セパレーター。
3. The battery separator according to claim 1, wherein the lamination is thermal lamination.
【請求項4】 不織布を構成する繊維の中芯がポリプロ
ピレンである請求項1に記載の電池用セパレーター。
4. The battery separator according to claim 1, wherein the core of the fibers forming the nonwoven fabric is polypropylene.
JP16695093A 1993-07-06 1993-07-06 Separator for battery Pending JPH0722014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16695093A JPH0722014A (en) 1993-07-06 1993-07-06 Separator for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16695093A JPH0722014A (en) 1993-07-06 1993-07-06 Separator for battery

Publications (1)

Publication Number Publication Date
JPH0722014A true JPH0722014A (en) 1995-01-24

Family

ID=15840638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16695093A Pending JPH0722014A (en) 1993-07-06 1993-07-06 Separator for battery

Country Status (1)

Country Link
JP (1) JPH0722014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326250A (en) * 1996-06-04 1997-12-16 Tonen Chem Corp Composite film for battery separator
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
JP2002190291A (en) * 2000-12-22 2002-07-05 Sumitomo Chem Co Ltd Separator and lithium ion secondary battery
KR100428971B1 (en) * 1999-04-21 2004-04-28 삼성에스디아이 주식회사 Lithium polymer secondary battery and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09326250A (en) * 1996-06-04 1997-12-16 Tonen Chem Corp Composite film for battery separator
JPH1044348A (en) * 1996-08-02 1998-02-17 Tonen Chem Corp Polyolefin porous membrane, manufacture thereof, separator for electric cell using membrane
KR100428971B1 (en) * 1999-04-21 2004-04-28 삼성에스디아이 주식회사 Lithium polymer secondary battery and method for manufacturing the same
JP2002190291A (en) * 2000-12-22 2002-07-05 Sumitomo Chem Co Ltd Separator and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5202949B2 (en) Polyolefin multilayer microporous membrane and battery separator
JP5774249B2 (en) Battery separator and method for producing the battery separator
JP4780960B2 (en) Polyolefin microporous membrane and evaluation method thereof
JP5296917B1 (en) Battery separator
JP5528361B2 (en) Microporous film and method for producing the same
JP5250262B2 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
EP1097961B1 (en) Polyolefin microporous film and method for preparing the same
TWI414548B (en) Polyolefin multi-layered micro-porous film, method of manufacturing the same, separator for battery and battery
EP1097962B1 (en) Polyolefin microporous film and method for preparing the same
JP6443333B2 (en) Polyolefin microporous membrane and method for producing the same
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
JP5250263B2 (en) Polyolefin microporous membrane and method for producing the same, battery separator and battery
JP7395827B2 (en) porous polyolefin film
TW200903885A (en) Multilayer porous membrane and method for producing the same
JPWO2004089627A1 (en) Polyolefin microporous membrane
JP2015208894A (en) Polyolefin-made laminated microporous film
JPWO2014192861A1 (en) Polyolefin multilayer microporous membrane and method for producing the same
JP2012131990A (en) Separator for use in electricity-storage device
JPH05310989A (en) Polyethylenic porous film
JPWO2019163935A1 (en) Porous polyolefin film
JP3682120B2 (en) Composite membrane for battery separator and battery separator
WO2020149294A1 (en) Polyolefin multilayer microporous film and production method therefor
JP4467114B2 (en) Multilayer composite film
JP6000590B2 (en) Laminated microporous film and battery separator
JP2003217554A (en) Polyolefin micro porous membrane for battery separator