JPH09320572A - Manufacture of composite electrode, and lithium secondary battery using the composite electrode - Google Patents

Manufacture of composite electrode, and lithium secondary battery using the composite electrode

Info

Publication number
JPH09320572A
JPH09320572A JP8134631A JP13463196A JPH09320572A JP H09320572 A JPH09320572 A JP H09320572A JP 8134631 A JP8134631 A JP 8134631A JP 13463196 A JP13463196 A JP 13463196A JP H09320572 A JPH09320572 A JP H09320572A
Authority
JP
Japan
Prior art keywords
sulfur
polyaniline
powder
methyl
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8134631A
Other languages
Japanese (ja)
Inventor
Tetsuhisa Sakai
哲久 酒井
Masahiko Ogawa
昌彦 小川
Nobuo Eda
信夫 江田
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8134631A priority Critical patent/JPH09320572A/en
Publication of JPH09320572A publication Critical patent/JPH09320572A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a composite electrode free from dispersion of charge and discharge capacity by kneading an organic disulfide compound with polyaniline in powdery state, and adding N-methyl-2-pyrolidone thereto followed by kneading. SOLUTION: An organic disulfide compound powder in which sulfur-sulfur bonding is cleaved by electrolytic reduction to generate sulfur-metal ion bonding, and the original sulfur-sulfur bonding is regenerated by electrolytic oxidation is kneaded with polyaniline powder. N-methyl2-pyrolidone is mixed to the mixed powder followed by kneading. The resulting viscous active material ink is extended on a base, and the base is heated in reduced pressure or inert gas atmosphere to remove N-methyl-2-pyrolidone, whereby a composite film is formed. The composite electrode formed of this composite film is used as the positive electrode of a lithium secondary battery. Thus, the kneading time is shortened, and a stable lithium secondary battery can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池,エレクトロ
クロミック表示素子,センサー,メモリー等の電気化学
素子に用いられる複数の有機化合物よりなる複合電極の
製造方法およびその製造方法で得られた複合電極を正極
に用いたリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a composite electrode composed of a plurality of organic compounds used in electrochemical devices such as batteries, electrochromic display devices, sensors and memories, and a composite electrode obtained by the manufacturing method. The present invention relates to a lithium secondary battery using as a positive electrode.

【0002】[0002]

【従来の技術】1971年に、白川らにより導電性のポ
リアセチレンが発見されて以来、導電性高分子を電極材
料に用いると、軽量で高エネルギー密度の電池をはじ
め、大面積のエレクトロクロミック素子,微小電極を用
いた生物化学センサー等の電気化学素子が期待できるこ
とから、導電性高分子を電極材料に用いた電極が盛んに
検討されてきた。
2. Description of the Related Art Since the discovery of conductive polyacetylene by Shirakawa et al. In 1971, when a conductive polymer is used as an electrode material, it is possible to use a large area electrochromic device such as a battery having a light weight and a high energy density. Electrodes using conductive polymers as electrode materials have been actively studied because electrochemical elements such as biochemical sensors using microelectrodes can be expected.

【0003】ポリアセチレンは、不安定で電極としては
実用性に乏しいため、他のπ電子共役系導電性高分子が
検討され、ポリアニリン,ポリピロール,ポリアセン,
ポリチオフェンといった比較的安定な高分子が開発さ
れ、これらを正極に用いたリチウム二次電池も開発され
た。
Since polyacetylene is unstable and poor in practicality as an electrode, other π-electron conjugated conductive polymers have been investigated, and polyaniline, polypyrrole, polyacene,
A relatively stable polymer such as polythiophene has been developed, and a lithium secondary battery using these as a positive electrode has also been developed.

【0004】また、高エネルギー密度が期待できる有機
材料として、有機ジスルフィルド系化合物が提案されて
いる(例えば、米国特許第4,833,048号明細書
参照)。この化合物は、簡単にはR−S−S−Rと表さ
れ(Rは脂肪族あるいは芳香族の有機基,Sは硫黄)、
S−S結合は電解還元により開裂して電解浴中のカチオ
ン(M+)と反応してR−S−・M+で表される塩を生
成し、この塩は、電解酸化により元のR−S−S−Rに
戻る。カチオン(M+)を供給する金属Mと有機ジスル
フィルド系化合物を組み合わせた金属−硫黄系二次電池
が前記の米国特許明細書に提案されている。ポリアニリ
ン,ポリピロール,ポリアセン,ポリチオフェンといっ
た導電性高分子を用いた電極は、電極反応に際してカチ
オンのみならず電解液を取り込むので、電池内にあっ
て、電解液はイオンの移動媒体として作用するだけでな
く電池反応にも関与するため、電池容量に見合う量の電
解液を電池内に供給する必要がある。そして、その分電
池のエネルギー密度が小さくなるという問題点を有して
いる。
As an organic material which can be expected to have a high energy density, an organic disulfide compound has been proposed (see, for example, US Pat. No. 4,833,048). This compound is simply represented as R-S-S-R (R is an aliphatic or aromatic organic group, S is sulfur),
The S—S bond is cleaved by electrolytic reduction and reacts with a cation (M +) in the electrolytic bath to form a salt represented by R—S− · M +, which is the original R—S by electrolytic oxidation. -Return to SR. A metal-sulfur-based secondary battery in which a metal M supplying a cation (M +) and an organic disulfide-based compound are combined is proposed in the above-mentioned US patent specification. Electrodes using conductive polymers such as polyaniline, polypyrrole, polyacene, and polythiophene take in not only cations but also electrolyte solution during electrode reaction, so that the electrolyte solution not only acts as an ion transfer medium in the battery. Since it also participates in the battery reaction, it is necessary to supply an amount of electrolytic solution corresponding to the battery capacity into the battery. Then, there is a problem that the energy density of the battery is reduced accordingly.

【0005】この場合のエネルギー密度は20〜50W
h/kg程度で、ニッケルカドミウム蓄電池,鉛蓄電池
等、通常の二次電池に較べ2分の1程度に小さいという
問題があった。また、提案されている有機ジスルフィル
ド系化合物については、上記米国特許の発明者らがJ.
Electrochem Soc., Vol.13
6, No.9, p.2570〜2575(198
9)で報告しているように、例えば[(C252
CSS−]2の電解では、酸化と還元の電位が1V以上
離れており、電極反応論に依れば電子移動過程は極めて
遅い。従って、室温付近では実用に見合う大きな電流、
例えば1mA/cm2以上の電流を取り出すことが困難
であり、100〜200℃の高温での使用に限られると
いう問題があった。
The energy density in this case is 20 to 50 W.
There is a problem that it is about half of that of ordinary secondary batteries such as nickel-cadmium storage batteries and lead storage batteries at about h / kg. Further, regarding the proposed organic disulfide-based compound, the inventors of the above-mentioned U.S. Pat.
Electrochem Soc. , Vol. Thirteen
6, No. 9, p. 2570-2575 (198
As reported in 9), for example, [(C 2 H 5 ) 2 N
In the electrolysis of CSS-] 2 , the oxidation and reduction potentials are separated by 1 V or more, and the electron transfer process is extremely slow according to the electrode reaction theory. Therefore, in the vicinity of room temperature, a large current suitable for practical use,
For example, it is difficult to extract a current of 1 mA / cm 2 or more, and there is a problem that it is limited to use at a high temperature of 100 to 200 ° C.

【0006】そこで、有機ジスルフィルド系化合物の高
エネルギー密度という特徴は損なわずに室温でも大電流
電解(充放電)が可能で可逆性に優れた新規な電極を製
造するために、少なくとも有機ジスルフィルド系化合物
(以下、SS化合物と略す)とN−メチル−2−ピロリ
ドン(CH3NC46O、以下NMPと略す)とポリア
ニリンとからなる複合電極を作製する方法が提案されて
いる。
Therefore, in order to produce a novel electrode which is capable of high-current electrolysis (charging / discharging) even at room temperature and which is excellent in reversibility without deteriorating the feature of the organic disulphide-based compound having high energy density, at least the organic disulphide-based compound is used. A method for producing a composite electrode composed of (hereinafter abbreviated as SS compound), N-methyl-2-pyrrolidone (CH 3 NC 4 H 6 O, hereinafter abbreviated as NMP) and polyaniline has been proposed.

【0007】SS化合物とNMPとポリアニリンとは、
室温下でお互いに相溶性があって粘着質の均一な複合体
を生成するが、この場合SS化合物は電極反応物質とし
て作用するとともにイオン伝導性を複合体に付与し、ま
たポリアニリンは電極反応物質ならびにSS化合物の電
極反応触媒として作用するとともに導電性を複合体に付
与している。すなわち、1V以上の差であったSS化合
物の酸化反応と還元反応との電位差が0.1Vあるいは
それ以下に小さくなり、電極反応が促進されるととも
に、複合電極内に良好なイオン伝導と電子伝導のネット
ワークが形成され、室温でも大電流での電解(充放電)
が可能となる。なお、電極触媒を有機ジスルフィルド系
化合物電極に導入することについては、前記の米国特許
明細書あるいはJ.Electrochem So
c., Vol.136, No.9,p.2570〜
2575(1989)に開示されているが、電極触媒と
しては有機金属化合物が開示されているのみであり、そ
の効果については具体的に開示されていない。
The SS compound, NMP and polyaniline are
At room temperature, they are compatible with each other and form a uniform sticky complex, in which case the SS compound acts as an electrode reactant and imparts ionic conductivity to the complex, and polyaniline is an electrode reactant. In addition, it acts as an electrode reaction catalyst for the SS compound and imparts conductivity to the composite. That is, the potential difference between the oxidation reaction and the reduction reaction of the SS compound, which was a difference of 1 V or more, is reduced to 0.1 V or less, the electrode reaction is promoted, and good ion conduction and electron conduction are achieved in the composite electrode. Network is formed, and electrolysis (charge / discharge) with a large current even at room temperature
Becomes possible. Regarding the introduction of the electrode catalyst into the organic disulfide-based compound electrode, the above-mentioned U.S. Pat. Electrochem So
c. , Vol. 136, No. 9, p. 2570-
2575 (1989), only an organometallic compound is disclosed as an electrode catalyst, and its effect is not specifically disclosed.

【0008】NMPに対するポリアニリンの溶解性は、
せいぜい数重量%程度であるが、SS化合物が存在する
とNMPに対し等モル量近く溶解する。SS化合物とN
MPとは極めて相溶性がよく等モル量であっても粘性の
ある均一な溶液が得られる。これは、SS化合物の−S
H基と、NMPの=O基と、還元脱ドープ状態でフェニ
レンジアミン構造を構成する−NH基を有するポリアニ
リンとが水素結合等を介して相互に会合し、均一な複合
体になるためと考えられている。
The solubility of polyaniline in NMP is
Although it is about several wt% at most, when an SS compound is present, it dissolves in an equimolar amount to NMP. SS compound and N
It is extremely compatible with MP and a viscous and uniform solution can be obtained even in an equimolar amount. This is -S of SS compound
It is considered that the H group, the ═O group of NMP, and the polyaniline having the —NH group that constitutes the phenylenediamine structure in the reductive dedoping state associate with each other via a hydrogen bond or the like to form a uniform complex. Has been.

【0009】SS化合物とポリアニリンとの複合電極で
も十分な伝導性が得られるが、金属,金属酸化物,黒鉛
のうちいずれか1種類またはいくつかを組み合わせて複
合電極に導電剤として添加すると、より一層伝導性が向
上し、さらに大電流電解(充放電)が可能となる。ただ
し、電極反応物質以外の物質を添加すると、エネルギー
密度が低下するので、少ない添加量でより多くのイオン
伝導,電子伝導ネットワークを形成できる物質が好まし
い。
Sufficient conductivity can be obtained even with a composite electrode of an SS compound and polyaniline. However, when one kind or a combination of any one of metal, metal oxide and graphite is added as a conductive agent to the composite electrode, more conductivity can be obtained. The conductivity is further improved, and large-current electrolysis (charging / discharging) becomes possible. However, when a substance other than the electrode reactive substance is added, the energy density is lowered, so a substance capable of forming a larger amount of ionic conduction and electron conduction networks with a small addition amount is preferable.

【0010】この条件を満たす物質としては、炭素材料
が適当であり、なかでもアセチレンブラックが適切であ
る。炭素材料は密度が金属材料と比較して小さく、少量
の重量でも体積が大きいので、電子伝導ネットワークを
形成し易く、他の炭素材料,金属材料,金属酸化物でも
アセチレンブラックと較べて、著しいエネルギー密度の
低下はないので、用途に応じては選択することが可能と
なる。
As a substance satisfying this condition, a carbon material is suitable, and acetylene black is particularly suitable. Since carbon materials have a smaller density than metal materials and have a large volume even with a small amount of weight, it is easy to form an electron conduction network, and other carbon materials, metal materials, and metal oxides have a significantly higher energy than acetylene black. Since the density does not decrease, it can be selected according to the application.

【0011】複合電極の製造方法においては、始めにS
S化合物をNMPに溶解させて溶液を作製し、次にこの
溶液にポリアニリンを溶解させて活物質インクを作製
し、この活物質インクを基板に流延した後、全体を減圧
中あるいは不活性ガス雰囲気中で加熱することにより電
極を製造している。
In the method of manufacturing the composite electrode, first, S
The S compound is dissolved in NMP to prepare a solution, then polyaniline is dissolved in this solution to prepare an active material ink, and the active material ink is cast on a substrate, and then the whole is under reduced pressure or under an inert gas. The electrode is manufactured by heating in an atmosphere.

【0012】[0012]

【発明が解決しようとする課題】従来において複合電極
を作製する方法では、SS化合物をNMPに溶解させた
溶液に、ポリアニリン粉末を添加,混合して溶解する際
に、ポリアニリン粉末の凝集が起こり易いという問題点
が生じていた。SS化合物が溶解しているNMPにおい
ては、ポリアニリンは等モルに近く溶解するが、飽和濃
度に近づくにつれて溶解し難くなって、ポリアニリンの
凝集粒が発生し、この凝集粒を含んだ活物質インクを直
接基板に流延して複合正極を作製した場合、均質な複合
正極ができ難く、リチウム二次電池を構成した際には、
充放電容量にばらつきが見られるという問題点があっ
た。
In the conventional method for producing a composite electrode, when the polyaniline powder is added to and mixed with a solution prepared by dissolving the SS compound in NMP, the polyaniline powder is likely to aggregate. There was a problem. In NMP in which the SS compound is dissolved, polyaniline is dissolved in a nearly equimolar amount, but becomes difficult to dissolve as the saturation concentration is approached, and polyaniline aggregated particles are generated, and the active material ink containing the aggregated particles is generated. When a composite positive electrode is produced by directly casting on a substrate, it is difficult to form a homogeneous composite positive electrode, and when a lithium secondary battery is constructed,
There is a problem that the charge and discharge capacities vary.

【0013】この問題点を解決するためには、NMPに
ポリアニリンを溶解させる時に、2時間以上撹拌練合す
れば凝集粒が少なくなることが判明しているが、完全に
消滅させることは不可能であり、また撹拌練合工程にお
いて2時間以上の時間を費やすと生産性が低下するとい
う新たな問題点が生じた。
In order to solve this problem, it has been found that when polyaniline is dissolved in NMP, agglomerated particles are reduced by stirring and kneading for 2 hours or more, but it cannot be completely eliminated. In addition, if a time of 2 hours or more is spent in the stirring and kneading step, there is a new problem that productivity is lowered.

【0014】[0014]

【課題を解決するための手段】上記の問題点を解決する
ために本発明は、ポリアニリンの凝集粒を抑制して均質
な複合電極を作製し、その複合電極を用いることによ
り、充放電容量の一定なリチウム二次電池を得るもの
で、その複合電極の製造方法は、撹拌練合工程におい
て、先ず有機ジスルフィルド系化合物(SS化合物)と
ポリアニリンとを粉末状態で練合して、予め均質な複合
粉末を作製した後に、N−メチル−2−ピロリドン(N
MP)を添加して溶剤練合を行う2段に練合することと
している。そして、均質な活物質インクを約30分の短
時間で調製することができ、また均質な活物質インクの
調製により、充放電容量のばらつきがない複合電極とな
り、この複合電極を用いたリチウム二次電池は容量特性
に優れたものとなる。
In order to solve the above-mentioned problems, the present invention suppresses aggregate particles of polyaniline to prepare a homogeneous composite electrode, and by using the composite electrode, the charge and discharge capacity is improved. In order to obtain a constant lithium secondary battery, the method for manufacturing the composite electrode is as follows. In the stirring and kneading step, first, an organic disulfide compound (SS compound) and polyaniline are kneaded in a powder state to obtain a homogeneous composite in advance. After preparing the powder, N-methyl-2-pyrrolidone (N
MP) is added and kneading is performed in two stages in which solvent kneading is performed. Then, a homogeneous active material ink can be prepared in a short time of about 30 minutes, and by preparing the homogeneous active material ink, a composite electrode having no variation in charge / discharge capacity can be obtained. The secondary battery has excellent capacity characteristics.

【0015】[0015]

【発明の実施の形態】本発明は、電解還元により硫黄−
硫黄結合が開裂して硫黄−金属イオンを生成し、この硫
黄−金属イオン結合が電解酸化により元の硫黄−硫黄結
合を再生する有機ジスルフィルド化合物粉末と、ポリア
ニリン粉末と、N−メチル−2−ピロリドンとを少なく
とも含む混合物を練合したものである。
BEST MODE FOR CARRYING OUT THE INVENTION
Sulfur bond is cleaved to generate sulfur-metal ion, and this sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation. Organic disulfide compound powder, polyaniline powder, and N-methyl-2-pyrrolidone. A mixture containing at least and is kneaded.

【0016】また、有機ジスルフィルド化合物(SS化
合物)粉末を、ポリアニリン(PAn)粉末とともにN
−メチル−2−ピロリドン(NMP)に混合した活物質
インクを基板上に流延し、この基板を減圧もしくは不活
性ガスの雰囲気で加熱したものである。
Further, the organic disulphide compound (SS compound) powder is mixed with the polyaniline (PAn) powder in N
An active material ink mixed with -methyl-2-pyrrolidone (NMP) is cast on a substrate, and the substrate is heated under reduced pressure or an inert gas atmosphere.

【0017】また、有機ジスルフィルド化合物粉末とポ
リアニリン粉末を、N−メチル−2−ピロリドンに混合
した活物質インクを基板上に流延した後、減圧もしくは
不活性ガスの雰囲気で加熱してN−メチル−2−ピロリ
ドンを除去して複合膜を形成するものである。
In addition, an active material ink prepared by mixing an organic disulfide compound powder and a polyaniline powder with N-methyl-2-pyrrolidone is cast on a substrate and then heated in a reduced pressure or an inert gas atmosphere to produce N-methyl. -2-Pyrrolidone is removed to form a composite film.

【0018】さらに、電解還元により硫黄−硫黄結合が
開裂して硫黄−金属イオンを生成し、この硫黄−金属イ
オン結合が電解酸化により元の硫黄−硫黄結合を再生す
る有機ジスルフィルド化合物粉末と、ポリアニリン粉末
と、N−メチル−2−ピロリドンとを少なくとも含む混
合物を練合した複合電極を正極とするものである。
Further, the sulfur-sulfur bond is cleaved by electrolytic reduction to produce a sulfur-metal ion, and this sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, and polyaniline. A composite electrode prepared by kneading a mixture containing at least powder and N-methyl-2-pyrrolidone is used as a positive electrode.

【0019】そして、SS化合物としては、一般式(R
(S)y)nで表される化合物を用いることができ、R
は脂肪族基,芳香族基、Sは硫黄、yは1以上の整数、
nは2以上の整数を示している。このような化合物とし
ては、HSCH2CH2SHで表されるジチオグリコール
(以下、DTGと呼ぶ),C22S(SH)2で表され
る2,5−ジメルカプト−1,3,4−チアジアゾール
(以下、DMcTと呼ぶ),C3333で表されるs
−トリアジン−2,4,6−トリチオール(以下、TT
Aと呼ぶ),C6643で表される7−メチル−2,
6,8−トリメルカプトプリン(以下、MTMPと呼
ぶ),C4642で表される4,5−ジアミノ−2,
6−ジメルカプトピリミジン(以下、DDPyと呼ぶ)
等があり、いずれも市販品をそのまま用いることができ
る。しかし、リチウム二次電池用正極を作製する場合に
は、可能な限り水分を除去する必要があるので、減圧加
熱を行う必要がある。
The SS compound is represented by the general formula (R
A compound represented by (S) y) n can be used, and R
Is an aliphatic group, an aromatic group, S is sulfur, y is an integer of 1 or more,
n is an integer of 2 or more. Examples of such compounds include dithioglycol represented by HSCH 2 CH 2 SH (hereinafter referred to as DTG) and 2,5-dimercapto-1,3,4 represented by C 2 N 2 S (SH) 2. - thiadiazole (hereinafter, referred to as DMcT), represented by C 3 H 3 N 3 S 3 s
-Triazine-2,4,6-trithiol (hereinafter TT
Referred to as A), 7- methyl-2 represented by C 6 H 6 N 4 S 3 ,
6,8 tri mercaptopurine (hereinafter, referred to as MTMP), C 4 H 6 N 4 4,5- diamino-2 represented by S 2,
6-dimercaptopyrimidine (hereinafter referred to as DDPy)
Etc., and commercially available products can be used as they are. However, when producing a positive electrode for a lithium secondary battery, it is necessary to remove water as much as possible, and thus it is necessary to perform heating under reduced pressure.

【0020】NMPとしては市販の試薬を用いることが
できる。上記に説明したように、市販のSS化合物を用
い、水分を除去する場合には、NMPと反応しない脱水
剤を用いることが必要となる。
A commercially available reagent can be used as NMP. As described above, when using a commercially available SS compound and removing water, it is necessary to use a dehydrating agent that does not react with NMP.

【0021】ポリアニリンとしては、アニリンを電解あ
るいは化学酸化することによりポリマー化したものが用
いられるが、溶解性の点から脱ドープ状態の還元体のポ
リアニリンが好ましい。このようなポリアニリンとして
は、日東電工(株)製の「アニリード」がある。なお、
ポリアニリンについても、リチウム二次電池用正極を作
製する場合には、減圧加熱を行うことが必要となる。
As the polyaniline, those obtained by polymerizing aniline by electrolysis or chemical oxidation are used, but from the viewpoint of solubility, the dedoped polyaniline in the reduced form is preferable. As such polyaniline, there is “Anilead” manufactured by Nitto Denko Corporation. In addition,
Polyaniline also needs to be heated under reduced pressure when producing a positive electrode for a lithium secondary battery.

【0022】SS化合物とNMPとポリアニリンとを複
合化するには、SS化合物とポリアニリンとを先ず粉末
状態で練合して混合粉末を作製する。この時、SS化合
物は粉末状態において塊が生じる場合もあるので、場合
によっては、SS化合物のみを予め練合釜にて撹拌する
ことにより、塊を粉砕しておくのが好ましい。SS化合
物の粉末にポリアニリン粉末を添加して粉末状態で混合
するに際し、SS化合物とポリアニリンとの混合割合
は、SS化合物2kgに対してポリアニリン1kg程度
が好ましい。SS化合物とポリアニリンとの複合粉末が
均質になったことを確認した後に、NMPを添加して撹
拌混合を行い、複合粉末を溶解させると均質な活物質イ
ンクが得られる。添加するNMPの割合はSS化合物2
kg,ポリアニリン1kgの複合粉末に対して、NMP
8kg〜16kg程度が好ましい。また前記の工程につ
いて、外部から水分を混入させないために、不活性ガス
雰囲気または乾燥空気中で行うことが望ましい。
In order to compound the SS compound, NMP and polyaniline, the SS compound and polyaniline are first kneaded in a powder state to prepare a mixed powder. At this time, since the SS compound may form a lump in a powder state, in some cases, it is preferable to crush the lump by previously stirring only the SS compound in a kneading vessel. When the polyaniline powder is added to the SS compound powder and mixed in the powder state, the mixing ratio of the SS compound and the polyaniline is preferably about 1 kg of polyaniline to 2 kg of the SS compound. After confirming that the composite powder of the SS compound and polyaniline is homogeneous, NMP is added and mixed by stirring to dissolve the composite powder, whereby a homogeneous active material ink is obtained. The ratio of NMP added is SS compound 2
NMP for 1 kg of polyaniline and 1 kg of polyaniline
About 8 to 16 kg is preferable. In addition, it is desirable that the above steps are performed in an inert gas atmosphere or dry air in order to prevent water from being mixed in from the outside.

【0023】以上の練合に要する時間は、従来では約2
時間以上を要したが、本発明では約30分間と短縮さ
れ、工程での生産性が向上する効果が得られる。
Conventionally, the time required for the above kneading is about 2
Although it took more time, in the present invention, it is shortened to about 30 minutes, and the effect of improving the productivity in the process can be obtained.

【0024】[0024]

【実施例】2,5−ジメルカプト−1,3,4−チアジ
アゾール(DMcT)モノマー粉末2kg(12モル)
に、ポリアニリン(PAn)として日東電工(株)製の
「アニリード」粉末1kg(6モル)を添加して粉末練
合し、均質な灰色の複合粉末を得た。この複合粉末に、
N−メチル−2−ピロリドン(NMP)を8kg(80
モル)添加して撹拌混合することにより、粘性のある黒
紫色で不透明の複合体活物質インクを得た。この複合体
活物質インクを銅よりなる厚さ20μmの金属フィルム
基板上に、厚さ150μmになるように流延し、不活性
ガスで置換した密閉容器中で80℃に加熱することで粘
着性の黒紫色で不透明の複合体を得た。この複合体を直
径1.3cmの円板状に打ち抜いて電極Aとした。な
お、以上の工程は全て乾燥空気中で行った。
Example 2,5-dimercapto-1,3,4-thiadiazole (DMcT) monomer powder 2 kg (12 mol)
Then, 1 kg (6 mol) of "anilead" powder manufactured by Nitto Denko Corporation as polyaniline (PAn) was added and kneaded to obtain a homogeneous gray composite powder. In this composite powder,
8 kg of N-methyl-2-pyrrolidone (NMP) (80
Mol) and mixed with stirring to obtain a viscous black-purple and opaque composite active material ink. The composite active material ink is cast on a metal film substrate made of copper and having a thickness of 20 μm so as to have a thickness of 150 μm, and is heated to 80 ° C. in a closed container which is replaced with an inert gas to obtain adhesiveness. To obtain a black-purple and opaque complex. This composite was punched out into a disc having a diameter of 1.3 cm to obtain an electrode A. The above steps were all performed in dry air.

【0025】上記の方法で得た電極Aを正極として用
い、厚み0.4mmの金属リチウムを負極として用い、
ポリアクリロニトリル2.5kgとLiBF4を1M溶
解したプロピレンカーボネート/エチレンカーボネート
(1:1容積比)溶液22.5kgとからなるゲル化し
たゲル電解質を厚み0.6mmのセパレータ層として用
い、直径20mmで、総高1.6cm,理論容量0.5
0mAhのコイン型リチウム二次電池Aを5セルづつ構
成した。
The electrode A obtained by the above method was used as a positive electrode, and metallic lithium having a thickness of 0.4 mm was used as a negative electrode.
A gelled gel electrolyte consisting of 2.5 kg of polyacrylonitrile and 22.5 kg of a propylene carbonate / ethylene carbonate (1: 1 volume ratio) solution in which 1 M LiBF 4 was dissolved was used as a separator layer having a thickness of 0.6 mm and a diameter of 20 mm. , Total height 1.6 cm, theoretical capacity 0.5
Five 0 mAh coin-type lithium secondary batteries A were constructed.

【0026】また、比較例として、SS化合物をNMP
に溶解した溶液に、ポリアニリンを溶解させて活物質イ
ンクを作製し、この活物質インクを基板に塗布した後、
全体を真空中あるいは不活性ガス雰囲気中で加熱するこ
とにより、作製した電極Bを用いて、電池Aの場合と同
様にして容量0.50mAhのコイン型リチウム二次電
池Bを5セルづつ構成した。以上の工程は全て乾燥空気
中で行った。
As a comparative example, the SS compound was used as NMP.
Polyaniline was dissolved in the solution dissolved in to prepare an active material ink, and after applying this active material ink to the substrate,
By heating the whole in a vacuum or in an inert gas atmosphere, using the prepared electrodes B, five coin-type lithium secondary batteries B each having a capacity of 0.50 mAh were constructed in the same manner as the battery A. . All the above steps were performed in dry air.

【0027】電池A,B各5セルを、20℃で50μA
の一定電流で15時間充電後、50μA,100μA,
500μA,1mAのそれぞれの電流で電池電圧2Vに
到達するまで放電し、その際の電池容量を記録した。得
られた電池の容量特性により電極特性を評価した結果は
表1および表2に示す通りである。
5 cells of each of batteries A and B are 50 μA at 20 ° C.
After charging for 15 hours with a constant current of 50μA, 100μA,
The cells were discharged at respective currents of 500 μA and 1 mA until the battery voltage reached 2 V, and the battery capacity at that time was recorded. The results of evaluating the electrode characteristics by the capacity characteristics of the obtained battery are as shown in Tables 1 and 2.

【0028】なお、表1は本実施例によるコイン型リチ
ウム二次電池Aの放電容量(単位:mAh)を示し、表
2は比較例によるコイン型リチウム二次電池Bの放電容
量(単位:mAh)を示している。
Table 1 shows the discharge capacity (unit: mAh) of the coin type lithium secondary battery A according to this embodiment, and Table 2 shows the discharge capacity (unit: mAh) of the coin type lithium secondary battery B according to the comparative example. ) Is shown.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】以上の結果から明らかなように、本実施例
による電極Aを用いたコイン型リチウム二次電池Aで
は、比較例による電極Bを用いたコイン型リチウム二次
電池Bに較べて容量のばらつきが少なく、安定な電池を
得ることができる。例えば、電池Bでは50μAでの放
電容量の標準偏差は0.061であるのに対して、電池
Aでは0.0080とかなり小さく、ばらつきが抑制さ
れた。すなわち、本実施例による電極を用いることによ
り放電容量のばらつきが抑制され、安定した電池を得る
ことができる。
As is clear from the above results, the coin-type lithium secondary battery A using the electrode A according to this example has a higher capacity than the coin-type lithium secondary battery B using the electrode B according to the comparative example. It is possible to obtain a stable battery with little variation. For example, in battery B, the standard deviation of the discharge capacity at 50 μA is 0.061, whereas in battery A, it is as small as 0.0080, and the variation was suppressed. That is, by using the electrode according to the present embodiment, it is possible to suppress variations in discharge capacity and obtain a stable battery.

【0032】なお、この実施例では導電剤を添加しない
電極について実施を行ったが、導電剤を添加した電極に
ついても同様な方法により作製できる。この場合におい
ても導電剤を粉末状態で撹拌練合した後に、NMPを添
加して撹拌混合することで複合体活物質インクが作製で
きる。導電剤を用いる場合についても、水分を除去する
ために事前に減圧加熱を行うのが好ましい。
In this example, the electrode was prepared by adding no conductive agent, but an electrode containing a conductive agent can be prepared by the same method. Also in this case, the composite active material ink can be produced by stirring and kneading the conductive agent in a powder state, and then adding NMP and stirring and mixing. Also in the case of using a conductive agent, it is preferable to perform heating under reduced pressure in advance in order to remove water.

【0033】[0033]

【発明の効果】有機ジスルフィルド化合物粉末と、ポリ
アニリン粉末と、N−メチル−2−ピロリドンとを複合
化した複合電極を製造する方法において、溶剤以外の成
分を粉末状で混合し、溶剤により練合することにより、
充放電容量のばらつきが抑制され、安定したリチウム二
次電池が作製可能となり、また練合時間も約30分と短
縮化が実現でき、工程での生産性を向上させることがで
きる。
INDUSTRIAL APPLICABILITY In a method for producing a composite electrode in which an organic disulphide compound powder, a polyaniline powder, and N-methyl-2-pyrrolidone are composited, components other than the solvent are mixed in powder form and kneaded with the solvent. By doing
Variation in charge / discharge capacity can be suppressed, a stable lithium secondary battery can be manufactured, and a kneading time can be shortened to about 30 minutes, so that productivity in the process can be improved.

【0034】なお、実施例では電極性能の評価に金属リ
チウムを負極とする電池系に構成することで行ったが、
電池以外に本発明の電極を用いることで発色,退色速度
の速いエレクトロクロミック素子、応答速度の速いグル
コースセンサー等の生物化学センサーを得ることができ
るし、また書き込み,読み出し速度の速い電気化学アナ
ログメモリーを構成することもできる。この場合におい
ても安定な品質の素子センサーを作製できる。
In the examples, the electrode performance was evaluated by constructing a battery system using metallic lithium as the negative electrode.
By using the electrode of the present invention in addition to the battery, it is possible to obtain a biochemical sensor such as an electrochromic device having a fast coloring and fading speed, a glucose sensor having a fast response speed, and an electrochemical analog memory having a fast writing and reading speed. Can also be configured. Even in this case, an element sensor with stable quality can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 外邨 正 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadashi Sotobe 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解還元により硫黄−硫黄結合が開裂し
て硫黄−金属イオンを生成し、この硫黄−金属イオン結
合が電解酸化により元の硫黄−硫黄結合を再生する有機
ジスルフィルド化合物粉末と、ポリアニリン粉末と、N
−メチル−2−ピロリドンとを少なくとも含む混合物を
練合する複合電極の製造方法。
1. An organic disulfide compound powder, in which a sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion, and the sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, and polyaniline. Powder and N
-A method for producing a composite electrode, which comprises kneading a mixture containing at least methyl-2-pyrrolidone.
【請求項2】 有機ジスルフィルド化合物粉末を、ポリ
アニリン粉末とともにN−メチル−2−ピロリドンに混
合した活物質インクを基板上に流延し、この基板を減圧
もしくは不活性ガスの雰囲気で加熱する請求項1記載の
複合電極の製造方法。
2. An active material ink prepared by mixing an organic disulphide compound powder with N-methyl-2-pyrrolidone together with a polyaniline powder is cast on a substrate, and the substrate is heated under reduced pressure or an inert gas atmosphere. 1. The method for manufacturing the composite electrode according to 1.
【請求項3】 有機ジスルフィルド化合物粉末とポリア
ニリン粉末を、N−メチル−2−ピロリドンに混合した
活物質インクを基板上に流延した後、減圧もしくは不活
性ガスの雰囲気で加熱してN−メチル−2−ピロリドン
を除去した複合膜を形成する請求項1記載の複合電極の
製造方法。
3. An active material ink prepared by mixing an organic disulfide compound powder and a polyaniline powder with N-methyl-2-pyrrolidone is cast on a substrate and then heated under reduced pressure or an inert gas atmosphere to produce N-methyl. The method for producing a composite electrode according to claim 1, wherein the composite film is formed by removing 2-pyrrolidone.
【請求項4】 電解還元により硫黄−硫黄結合が開裂し
て硫黄−金属イオンを生成し、この硫黄−金属イオン結
合が電解酸化により元の硫黄−硫黄結合を再生する有機
ジスルフィルド化合物粉末と、ポリアニリン粉末と、N
−メチル−2−ピロリドンとを少なくとも含む混合物を
練合した複合電極を正極とするリチウム二次電池。
4. An organic disulfide compound powder, in which a sulfur-sulfur bond is cleaved by electrolytic reduction to generate a sulfur-metal ion, and this sulfur-metal ion bond regenerates the original sulfur-sulfur bond by electrolytic oxidation, and polyaniline. Powder and N
A lithium secondary battery having a positive electrode of a composite electrode prepared by kneading a mixture containing at least methyl-2-pyrrolidone.
JP8134631A 1996-05-29 1996-05-29 Manufacture of composite electrode, and lithium secondary battery using the composite electrode Pending JPH09320572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8134631A JPH09320572A (en) 1996-05-29 1996-05-29 Manufacture of composite electrode, and lithium secondary battery using the composite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8134631A JPH09320572A (en) 1996-05-29 1996-05-29 Manufacture of composite electrode, and lithium secondary battery using the composite electrode

Publications (1)

Publication Number Publication Date
JPH09320572A true JPH09320572A (en) 1997-12-12

Family

ID=15132895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8134631A Pending JPH09320572A (en) 1996-05-29 1996-05-29 Manufacture of composite electrode, and lithium secondary battery using the composite electrode

Country Status (1)

Country Link
JP (1) JPH09320572A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266884A (en) * 2000-03-17 2001-09-28 Noboru Koyama Redox active reversible electrode and lithium secondary battery using it
JP2020046364A (en) * 2018-09-20 2020-03-26 Koa株式会社 Total solid type ion-selective electrode and method for manufacturing total solid type ion-selective electrode
CN116376279A (en) * 2023-03-01 2023-07-04 武汉大学 Sulfur-phenylenediamine polymer composite material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001266884A (en) * 2000-03-17 2001-09-28 Noboru Koyama Redox active reversible electrode and lithium secondary battery using it
JP2020046364A (en) * 2018-09-20 2020-03-26 Koa株式会社 Total solid type ion-selective electrode and method for manufacturing total solid type ion-selective electrode
CN116376279A (en) * 2023-03-01 2023-07-04 武汉大学 Sulfur-phenylenediamine polymer composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US5571292A (en) Method of producing a composite electrode
US6228532B1 (en) Lithium secondary cell
US5869206A (en) Electrode including organic disulfide compound and method of producing the same
US6090504A (en) High capacity composite electrode and secondary cell therefrom
JPH09194214A (en) Lithium manganese oxide compound and its preparation
JP3085943B2 (en) Lithium polymer secondary battery with anode containing metal composite anode
JP2003208897A (en) Lithium battery and manufacturing method thereof
JPH08138742A (en) Gel electrolyte and lithium secondary battery
JPWO2012060445A1 (en) Secondary battery
Oyama et al. Organosulfur polymer batteries with high energy density
JP2008159275A (en) Electrode active material and power storage device using the same
JP3257018B2 (en) Battery charge / discharge method
JPH09320572A (en) Manufacture of composite electrode, and lithium secondary battery using the composite electrode
JP2000311684A (en) Lithium secondary battery and manufacture of its positive electrode
JP2955177B2 (en) Composite electrode, method for producing the same, and lithium secondary battery
JPH08203530A (en) Combined electrode, manufacture thereof and lithium secondary battery
JP3237261B2 (en) Reversible composite electrode and lithium secondary battery using the same
JP3048798B2 (en) Reversible electrode and lithium secondary battery comprising the same
US10991977B2 (en) Method of manufacturing high-ion conductive sulfide-based solid electrolyte using dissolution-precipitation and composition used therefor
JP3043048B2 (en) Solid electrolyte battery
KR100302191B1 (en) Metal-Polymer Composite Electrode Material and Its Use
JP3444463B2 (en) Electrode containing organic disulfide compound and method for producing the same
JPH06150910A (en) Manufacture of electrode
JP4343819B2 (en) Redox-active polymer, electrode using the same, and non-aqueous battery
JPH10241661A (en) Electrode containing organic disulfide compound and manufacture thereof