JP4343819B2 - Redox-active polymer, electrode using the same, and non-aqueous battery - Google Patents
Redox-active polymer, electrode using the same, and non-aqueous battery Download PDFInfo
- Publication number
- JP4343819B2 JP4343819B2 JP2004352008A JP2004352008A JP4343819B2 JP 4343819 B2 JP4343819 B2 JP 4343819B2 JP 2004352008 A JP2004352008 A JP 2004352008A JP 2004352008 A JP2004352008 A JP 2004352008A JP 4343819 B2 JP4343819 B2 JP 4343819B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- redox
- active polymer
- general formula
- structure represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 0 *C(SCc1ccccc1)=Nc(cc1)ccc1N=C(N)SCC1=CC=CCC1 Chemical compound *C(SCc1ccccc1)=Nc(cc1)ccc1N=C(N)SCC1=CC=CCC1 0.000 description 2
- OMWQUXGVXQELIX-UHFFFAOYSA-N S=C=Nc(cc1)ccc1N=C=S Chemical compound S=C=Nc(cc1)ccc1N=C=S OMWQUXGVXQELIX-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Polyurethanes Or Polyureas (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本発明は、酸化還元活性重合体、それを用いる電極及び非水溶液系電池に関するものである。 The present invention relates to a redox active polymer, an electrode using the same, and a non-aqueous battery.
近年、高エネルギー密度を備える電池の要求が高まっている。このような電池の1つとして、単電池の電圧が高いリチウム電池を挙げることができる。前記リチウム電池によれば、非水溶液系電解液を用いることにより3V以上の高電圧を得ることができるが、正負極それぞれの電極材料の重量当たりの容量としては、例えば正極に用いるリチウム酸コバルトの場合の140〜150mAh/gのように必ずしも十分とは言えない。 In recent years, the demand for batteries with high energy density has increased. As one of such batteries, a lithium battery having a high voltage of a single battery can be given. According to the lithium battery, a high voltage of 3 V or higher can be obtained by using a non-aqueous electrolyte, but the capacity per weight of the electrode material of each of the positive and negative electrodes is, for example, that of cobalt lithium oxide used for the positive electrode As in the case of 140 to 150 mAh / g, it is not always sufficient.
そこで、正負極それぞれについて、重量当たりの容量を大きくすることができる電極材料が種々検討されている。このうち、正極については、マンガン、鉄、ニオブ等の金属酸化物が検討されているが、いずれも重量が大きく反応電子数も少ないため、大きな容量を得ることが難しい。 Therefore, various electrode materials that can increase the capacity per weight for each of the positive and negative electrodes have been studied. Among these, metal oxides such as manganese, iron, and niobium have been studied for the positive electrode. However, it is difficult to obtain a large capacity because all of them are heavy and have a small number of reaction electrons.
また、重量が小さいことから、ポリアニリン等の導電性高分子を正極材料に用いることも検討されているが、ポリアニリンの単位分子量当たりの反応電子数は0.5、重量当たりの容量は145mAh/g前後であり、前記リチウム酸コバルトを大きく上回るものとはならない。 In addition, since the weight is small, the use of a conductive polymer such as polyaniline as a positive electrode material has also been studied. However, the number of reaction electrons per unit molecular weight of polyaniline is 0.5, and the capacity per weight is 145 mAh / g. It is before and after and does not greatly exceed the lithium cobaltate.
一方、高容量で高エネルギー密度が得られる酸化還元活性重合体として、有機硫黄高分子化合物を正極材料に用いることが知られている(特許文献1、非特許文献1,2参照)。 On the other hand, it is known that an organic sulfur polymer compound is used as a positive electrode material as a redox-active polymer having a high capacity and a high energy density (see Patent Document 1, Non-Patent Documents 1 and 2).
前記有機硫黄高分子化合物は、主鎖にS−S結合を備え、R−S−S−Rで表される。前記有機硫黄高分子化合物は、還元状態では前記S−S結合が開裂して有機チオレート(R−SH)を形成し、酸化状態では有機チオレートの結合により前記S−S結合が再生されるという可逆的な酸化還元反応を行う。従って、前記有機硫黄高分子化合物は、正極材料として用いた場合、前記酸化還元反応を利用して充放電を行うことができる。 The organic sulfur polymer compound has an S—S bond in the main chain and is represented by R—S—S—R. The organic sulfur polymer compound is reversible in that the SS bond is cleaved to form an organic thiolate (R-SH) in the reduced state, and the SS bond is regenerated by the organic thiolate bond in the oxidized state. A typical redox reaction is performed. Therefore, when the organic sulfur polymer compound is used as a positive electrode material, it can be charged and discharged using the oxidation-reduction reaction.
しかし、前記有機硫黄高分子化合物は、酸化還元電位の差が大きいために反応速度が遅く、電池として作動させるためには100℃以上の高温にしなければならないという問題がある。また、前記有機硫黄高分子化合物は、還元されて有機チオレートとなったときには、分子量が小さくなるため電解液に溶解して電極外に拡散してしまい、容量の劣化を招きやすいという問題もある。 However, the organic sulfur polymer compound has a problem that the reaction rate is slow because of a large difference in oxidation-reduction potential, and a high temperature of 100 ° C. or higher is required to operate as a battery. In addition, when the organic sulfur polymer compound is reduced to become an organic thiolate, the molecular weight is small, so that the organic sulfur polymer compound is dissolved in the electrolytic solution and diffuses outside the electrode, which tends to cause capacity deterioration.
前記有機硫黄高分子化合物における問題を解決するために、分子内の隣接する位置に1対のS原子を備え、互いに隣接するS原子同士でS−S結合の開裂と再形成とによる酸化還元反応を行うようにした酸化還元活性重合体が提案されている(例えば、特許文献2参照)。 In order to solve the problem in the organic sulfur polymer compound, a redox reaction is performed by providing a pair of S atoms at adjacent positions in the molecule and cleaving and reforming SS bonds between adjacent S atoms. There has been proposed a redox-active polymer adapted to perform (see, for example, Patent Document 2).
しかしながら、前記酸化還元活性重合体では、重量当たりの容量が十分とは言えず、さらに充放電サイクルを繰り返したときに容量が低下しやすい傾向があり、さらに優れた酸化還元活性重合体が望まれる。
本発明は、かかる不都合を解消して、低温で作動することができ、大容量を得ることができると共に、充放電サイクルを繰り返しても劣化し難い酸化還元活性重合体を提供することを目的とする。 An object of the present invention is to provide an oxidation-reduction active polymer that can solve such disadvantages, can be operated at a low temperature, can obtain a large capacity, and hardly deteriorates even after repeated charge and discharge cycles. To do.
また、本発明の目的は、前記酸化還元活性重合体を用いる電極と、該電極を正極とする非水溶液系電池とを提供することにもある。 Another object of the present invention is to provide an electrode using the redox-active polymer and a nonaqueous solution battery using the electrode as a positive electrode.
かかる目的を達成するために、本発明の酸化還元活性重合体は、ジチオビウレア誘導体と2個以上のイソチオシアネート基を有する芳香族化合物との共重合体であって、還元状態では一般式(1)で表される構造を備え、酸化状態では一般式(2)で表される構造を備えることを特徴とする。
In order to achieve this object, the redox active polymer of the present invention is a copolymer of a dithiobiurea derivative and an aromatic compound having two or more isothiocyanate groups, and in the reduced state, the general formula (1) It is characterized by having a structure represented by the general formula (2) in an oxidized state.
尚、本明細書では、ジチオビウレア誘導体とは、ジチオビウレア自体でもよく、ジチオビウレアのS原子の少なくとも1つに炭素数1〜3の低級アルキル基が結合している化合物等であってもよい。また、前記芳香族化合物とは、ベンゼン、ナフタレン等の炭化水素系の芳香族化合物であってもよく、芳香族性を備える複素環式化合物であってもよい。 In the present specification, the dithiobiurea derivative may be dithiobiurea itself or a compound in which a lower alkyl group having 1 to 3 carbon atoms is bonded to at least one S atom of dithiobiurea. The aromatic compound may be a hydrocarbon-based aromatic compound such as benzene or naphthalene, or a heterocyclic compound having aromaticity.
本発明の酸化還元活性重合体では、ジチオビウレア誘導体の互いに隣接するS原子同士でS−S結合の開裂と再形成とによる酸化還元反応を行うことができる。従って、本発明の酸化還元活性重合体によれば、室温程度の低温で前記酸化還元反応を行うことができ、重量当たり大きな容量を得ることができる。また、前記酸化還元活性重合体によれば、前記S−S結合は繰り返し単位の側鎖に備えられ、分子内で結合を形成するので、還元により該S−S結合が開裂しても低分子量化することがなく、電極外への拡散による容量の劣化を防止することができ、充放電サイクルの繰り返しによる劣化を低減することができる。 In the oxidation-reduction active polymer of the present invention, an oxidation-reduction reaction can be performed by S—S bond cleavage and reformation between adjacent S atoms of a dithiobiurea derivative. Therefore, according to the oxidation-reduction active polymer of the present invention, the oxidation-reduction reaction can be performed at a low temperature of about room temperature, and a large capacity per weight can be obtained. In addition, according to the redox active polymer, the SS bond is provided in the side chain of the repeating unit and forms a bond in the molecule. Therefore, even if the SS bond is cleaved by reduction, the low molecular weight Therefore, the deterioration of the capacity due to the diffusion outside the electrode can be prevented, and the deterioration due to the repeated charge / discharge cycle can be reduced.
還元状態で一般式(1)で表される構造を備え、酸化状態で一般式(2)で表される構造を備える酸化還元活性重合体としては、例えば、2,5−ジチオビウレア−S,S’−アルキルエーテルと、フェニレン−1,4−ジイソチオシアネートとが共重合されてなり、一般式(3)で表される構造を備える酸化還元活性重合体を挙げることができる。 Comprising a structure represented by the general formula (1) in its original state changed, as the redox-active polymer comprising a structure represented by the general formula (2) oxidation state, for example, 2,5-Jichiobiurea -S, A redox-active polymer having a structure represented by the general formula (3), which is obtained by copolymerizing S′-alkyl ether and phenylene-1,4-diisothiocyanate, can be exemplified.
前記一般式(3)において、R2は前記ジチオビウレア誘導体のS原子に対する保護基であり、前記低級アルキル基に代えて、ベンジル基を用いることもできる。前記保護基にベンジル基を用いる酸化還元活性重合体としては、例えば、2,5−ジチオビウレア−S,S’−ベンジルエーテルと、フェニレン−1,4−ジイソチオシアネートとが共重合されてなり、一般式(4)で表される構造を備える酸化還元活性重合体を挙げることができる。 In the general formula (3), R 2 is a protecting group for the S atom of the dithiobiurea derivative, and a benzyl group may be used in place of the lower alkyl group. As the redox active polymer using a benzyl group as the protecting group, for example, 2,5-dithiobiurea-S, S′-benzyl ether and phenylene-1,4-diisothiocyanate are copolymerized, A redox active polymer having a structure represented by the general formula (4) can be mentioned.
また、本発明の電極は前記酸化還元活性重合体を電極材料として含有することを特徴とするものであり、本発明の非水溶液系電池は正極と電解質と負極とを備え、該正極が該酸化還元活性重合体を電極材料として含有する電極からなることを特徴とする。 The electrode of the present invention is characterized by containing the redox active polymer as an electrode material. The non-aqueous battery of the present invention comprises a positive electrode, an electrolyte, and a negative electrode, and the positive electrode is oxidized. It is characterized by comprising an electrode containing a reducing active polymer as an electrode material.
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は、本発明の第1の実施形態の酸化還元活性重合体からなる電極を正極に用いた非水溶液系電池の充放電時の電池端子電圧の経時変化を示すグラフである。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a graph showing changes over time in battery terminal voltage during charge / discharge of a non-aqueous battery using an electrode made of a redox active polymer according to the first embodiment of the present invention as a positive electrode.
次に、本発明の第1の実施形態について説明する。 Next, a first embodiment of the present invention will be described.
本実施形態では、まず、2,5−ジチオビウレア(シグマアルドリッチ社製)150mgを、N−メチル−2−ピロリドン4mlとエタノール4mlとを混合した混合溶媒に溶解し、得られた溶液に塩化ベンジル270mgを滴下した。得られた溶液を30分間、加熱還流し、室温まで冷却した後、反応溶液に、水酸化ナトリウム80mgを蒸留水10mlに溶解したアルカリ溶液を添加した。次に、前記反応溶液にエーテル40mlを添加し、エーテル層を抽出した。得られたエーテル溶液に、無水硫酸マグネシウム150mgを添加し、2時間攪拌した後、該エーテル溶液を濾過し、濾液を蒸留して2,5−ジチオビウレア−S,S’−ベンジルエーテル325mgを得た。前記反応を次式(5)に示す。 In this embodiment, first, 150 mg of 2,5-dithiobiurea (manufactured by Sigma-Aldrich) is dissolved in a mixed solvent obtained by mixing 4 ml of N-methyl-2-pyrrolidone and 4 ml of ethanol, and 270 mg of benzyl chloride is added to the resulting solution. Was dripped. The obtained solution was heated to reflux for 30 minutes and cooled to room temperature, and then an alkaline solution in which 80 mg of sodium hydroxide was dissolved in 10 ml of distilled water was added to the reaction solution. Next, 40 ml of ether was added to the reaction solution, and the ether layer was extracted. After adding 150 mg of anhydrous magnesium sulfate to the obtained ether solution and stirring for 2 hours, the ether solution was filtered and the filtrate was distilled to obtain 325 mg of 2,5-dithiobiurea-S, S′-benzyl ether. . The reaction is shown in the following formula (5).
次に、前記2,5−ジチオビウレア−S,S’−ベンジルエーテル320mgを、乾燥させたテトラヒドロフラン(ドライTHF)10mlと乾燥させたベンゼン(ドライベンゼン)10mlとの混合溶媒に溶解し、2,5−ジチオビウレア−S,S’−ベンジルエーテル溶液を調製した。次に、前記2,5−ジチオビウレア−S,S’−ベンジルエーテル溶液に、フェニレン−1,4−ジイソチオシアネート(シグマアルドリッチ社製)をドライTHF5mlとドライベンゼン5mlとの混合溶媒に溶解たものを添加し、3日間加熱還流した。得られた反応溶液を濾過し、濾紙上の固形物をアセトンで洗浄することにより、S−ベンジル化ジチオビウレットポリマー87mgが得られた。前記反応を次式(6)に示す。尚、前記S−ベンジル化ジチオビウレットポリマーを次式(6)にAで示す。 Next, 320 mg of 2,5-dithiobiurea-S, S′-benzyl ether was dissolved in a mixed solvent of 10 ml of dried tetrahydrofuran (dry THF) and 10 ml of dried benzene (dry benzene). -A dithiobiurea-S, S'-benzyl ether solution was prepared. Next, a solution obtained by dissolving phenylene-1,4-diisothiocyanate (manufactured by Sigma Aldrich) in a mixed solvent of 5 ml of dry THF and 5 ml of dry benzene in the 2,5-dithiobiurea-S, S′-benzyl ether solution. And heated to reflux for 3 days. The obtained reaction solution was filtered, and the solid on the filter paper was washed with acetone to obtain 87 mg of S-benzylated dithiobiuret polymer. The reaction is shown in the following formula (6). The S-benzylated dithiobiuret polymer is represented by A in the following formula (6).
次に、前記S−ベンジル化ジチオビウレットポリマーAを粉砕し、分級して、粒子径10〜30μmの粉末約75mgを得た。次に、前記粉末の一部を用いて導電性を確認したところ、前記S−ベンジル化ジチオビウレットポリマーAは導電性を備えておらず、電気的に絶縁物質であることが判明した。 Next, the S-benzylated dithiobiuret polymer A was pulverized and classified to obtain about 75 mg of powder having a particle size of 10 to 30 μm. Next, when the conductivity was confirmed using a part of the powder, it was found that the S-benzylated dithiobiuret polymer A was not electrically conductive and was an electrically insulating substance.
次に、前記粉末70mgに導電助剤としてのアセチレンブラック20mgと、バインダーとしてのポリテトラフルオロエチレン(PTFE)10mgとを添加し、極小型Vミキサー中で十分に混合した。次いで、前記粉末、アセチレンブラック、PTFEの混合物を自動乳鉢で十分に攪拌したものを用いて、厚さ約0.5mmのシート状体を形成した。次に、前記シート状体から直径14mmの円板を打ち抜き、直径14mmの純チタン製ネットと重ね合わせ、油圧プレスで加圧することにより一体化して電極を形成した。前記純チタン製ネットの重量を差し引いた前記電極の重量は、36mgであった。前記正極は、80℃で16時間真空乾燥した後、アルゴンガスを循環させた露点−80℃以下のグローブボックス内に保管した。 Next, 20 mg of acetylene black as a conductive additive and 10 mg of polytetrafluoroethylene (PTFE) as a binder were added to 70 mg of the powder, and mixed well in a very small V mixer. Next, a sheet-like body having a thickness of about 0.5 mm was formed using a mixture of the powder, acetylene black, and PTFE, which was sufficiently stirred in an automatic mortar. Next, a disk having a diameter of 14 mm was punched from the sheet-like body, superimposed on a pure titanium net having a diameter of 14 mm, and integrated by forming a pressure with a hydraulic press to form an electrode. The weight of the electrode minus the weight of the pure titanium net was 36 mg. The positive electrode was vacuum-dried at 80 ° C. for 16 hours, and then stored in a glove box having a dew point of −80 ° C. or lower in which argon gas was circulated.
次に、前記電極を作用極とすると共に、純度99.99%、厚さ0.2mmで20mm×20mmのリチウム箔に、20mm×20mmの純チタン製ネットを重ね合わせ、油圧プレスで加圧することにより一体化して形成した2つの電極をそれぞれ対極、参照極として、前記作用極、対極、参照極を、ビーカーに収容した電解液中に浸漬した。前記電解液は、エチレンカーボネートとジエチルカーボネートとを1:1(容積比)で混合した溶媒にLiClO4を溶解した濃度1モル/lの溶液100mlを用いた。そして、前記作用極を0.1mAで55時間電気化学的に酸化した。参照極と作用極との間の電圧は、開始時1.85V、終了時4.23Vであった。この結果、前記作用極を構成する前記S−ベンジル化ジチオビウレットポリマーAが電気化学的に酸化され、次式(7)に示すように、1,2,4−ジチアゾリンポリマーBが得られた。 Next, the electrode is used as a working electrode, and a 20 mm × 20 mm pure titanium net is superimposed on a 20 mm × 20 mm lithium foil having a purity of 99.99% and a thickness of 0.2 mm, and is pressed with a hydraulic press. The two electrodes formed integrally with each other were used as a counter electrode and a reference electrode, respectively, and the working electrode, the counter electrode, and the reference electrode were immersed in an electrolyte contained in a beaker. As the electrolytic solution, 100 ml of a 1 mol / l solution in which LiClO 4 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a ratio of 1: 1 (volume ratio) was used. The working electrode was electrochemically oxidized at 0.1 mA for 55 hours. The voltage between the reference electrode and the working electrode was 1.85 V at the start and 4.23 V at the end. As a result, the S-benzylated dithiobiuret polymer A constituting the working electrode was electrochemically oxidized, and a 1,2,4-dithiazoline polymer B was obtained as shown in the following formula (7). .
次に、前記作用極を正極とし、市販のコイン型セル(CR2032)の部品を用いて、電池を作成した。純度99.99%、厚さ0.2mm、直径15.3mmのリチウム箔からなる円板を負極とし、厚さ30μm、直径20mmのポリオレフィン系樹脂からなる円板を60℃で24時間真空乾燥した後、前記グローブボックス内に保管したものをセパレータとした。また、電解液は、エチレンカーボネートとジエチルカーボネートとを1:1(容積比)で混合した溶媒にLiClO4を溶解した濃度1モル/lの溶液を用い、該LiClO4溶液600μlを前記セパレータ上に注液して、非水溶液系電池を組み立てた。 Next, the working electrode was used as a positive electrode, and a battery was prepared using components of a commercially available coin-type cell (CR2032). A disk made of lithium foil having a purity of 99.99%, a thickness of 0.2 mm, and a diameter of 15.3 mm was used as the negative electrode, and a disk made of polyolefin resin having a thickness of 30 μm and a diameter of 20 mm was vacuum-dried at 60 ° C. for 24 hours. Then, what was stored in the said glove box was made into the separator. In addition, as the electrolytic solution, a solution having a concentration of 1 mol / l obtained by dissolving LiClO 4 in a solvent in which ethylene carbonate and diethyl carbonate were mixed at 1: 1 (volume ratio) was used, and 600 μl of the LiClO 4 solution was placed on the separator. The solution was injected to assemble a non-aqueous battery.
次に、前記非水溶液系電池を24時間放置した後、25±2℃の雰囲気温度中で充放電を繰り返し、該電池の性能を評価した。充放電前の開回路電圧は4.0Vであった。 Next, the non-aqueous battery was allowed to stand for 24 hours, and then charged and discharged repeatedly at an ambient temperature of 25 ± 2 ° C. to evaluate the performance of the battery. The open circuit voltage before charging / discharging was 4.0V.
1回目の放電は、0.2mAの定電流で終止電圧2.0V、放電容量は5.0mAhであった。次の充電は、0.2mAの定電流で終止電圧4.2Vまで行い、その後4.2Vの定電圧で充電電流が0.02mAになるまで行った。充電容量は5.1mAhであった。 The first discharge had a constant current of 0.2 mA, a final voltage of 2.0 V, and a discharge capacity of 5.0 mAh. The next charging was performed at a constant current of 0.2 mA up to a final voltage of 4.2 V, and then at a constant voltage of 4.2 V until the charging current reached 0.02 mA. The charge capacity was 5.1 mAh.
2回目の放電は、1回目の放電と同条件で行い、放電容量は4.8mAh、平均放電電圧は2.67Vであった。結果を図1に示す。 The second discharge was performed under the same conditions as the first discharge, the discharge capacity was 4.8 mAh, and the average discharge voltage was 2.67V. The results are shown in FIG.
また、前記非水溶液系電池では、20サイクル目の放電容量が4.3mAhであり、初期の放電容量に対して大きな容量低下は見られなかった。 Further, in the non-aqueous battery, the discharge capacity at the 20th cycle was 4.3 mAh, and no significant decrease in capacity was observed with respect to the initial discharge capacity.
この結果から計算したところ、本実施形態の酸化還元活性重合体からなる電極材料によれば、初期には約290mAh/g以上の容量を備えていることが明らかである。 When calculated from this result, it is apparent that the electrode material made of the redox active polymer of the present embodiment has a capacity of about 290 mAh / g or more in the initial stage.
尚、前記実施形態では、前記電極材料用高分子化合物と共に、導電助剤としてのアセチレンブラック、バインダーとしてのポリフッ化ビニリデンを用いて前記正極を形成している。しかし、前記導電助剤としては他の炭素材料、金属粉末、導電性高分子等を用いてもよく、前記バインダーとしては電極の作成に通常に用いられるポリマーであればどのようなポリマーを用いてもよい。 In the embodiment, the positive electrode is formed by using acetylene black as a conductive additive and polyvinylidene fluoride as a binder together with the polymer compound for electrode material. However, other carbon materials, metal powders, conductive polymers, etc. may be used as the conductive aid, and any polymer may be used as the binder as long as it is a polymer that is normally used for electrode preparation. Also good.
前記炭素材料としては、前記アセチレンブラックの他、ケッチェンブラック、グラファイト、鱗状黒鉛等を挙げることができ、前記金属粉末としては、ニッケル、チタン、銀等の粉末を挙げることができる。また、前記導電性高分子としては、ポリアニリン、ポリピロール、ポリアセチレン等を挙げることができる。 In addition to the acetylene black, examples of the carbon material include ketjen black, graphite, and scaly graphite. Examples of the metal powder include powders of nickel, titanium, silver, and the like. Examples of the conductive polymer include polyaniline, polypyrrole, and polyacetylene.
一方、前記バインダーに用いられるポリマーとしては、前記ポリフッ化ビニリデンの他、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。 On the other hand, examples of the polymer used for the binder include polytetrafluoroethylene (PTFE) in addition to the polyvinylidene fluoride.
次に、本発明の第2の実施形態について説明する。 Next, a second embodiment of the present invention will be described.
本実施形態では、まず、前記式(6)に示すS−ベンジル化ジチオビウレットポリマーAを、瑪瑙乳鉢中で十分に粉砕したもの0.45gに、アセチレンブラック0.45gと、バインダーとしてのポリフッ化ビニリデン粉末0.1gとを加え、よく混合した後、N−メチル−2−ピロリドン(NMP)2.5〜2.6gを少しずつ加え、よく混合して、塗布しやすい粘度の混練物を得た。 In this embodiment, first, 0.45 g of the S-benzylated dithiobiuret polymer A represented by the above formula (6), which is sufficiently pulverized in an agate mortar, 0.45 g of acetylene black and polyfluoride as a binder. Add 0.1 g of vinylidene powder and mix well, then add 2.5-2.6 g of N-methyl-2-pyrrolidone (NMP) little by little and mix well to obtain a kneaded product with a viscosity that is easy to apply. It was.
次に、前記混練物を、厚さ20μmのアルミニウム箔上に均一な厚さで塗布した後、乾燥して、該混練物と該アルミニウム箔とからなるシート状体を形成した。前記乾燥は、恒温槽内で、80℃の温度で4時間予備乾燥した後、さらに110℃の温度で2時間乾燥した。次に、前記シート状体をローラーで加圧し、前記アルミニウム箔と前記混練物との合計の厚さを70μmとした。 Next, the kneaded material was applied to a 20 μm thick aluminum foil in a uniform thickness and then dried to form a sheet-like body composed of the kneaded material and the aluminum foil. The drying was performed in a constant temperature bath at a temperature of 80 ° C. for 4 hours, followed by further drying at a temperature of 110 ° C. for 2 hours. Next, the said sheet-like body was pressurized with the roller, and the total thickness of the said aluminum foil and the said kneaded material was 70 micrometers.
次に、前記シート状体から直径14mmの円板を打ち抜いて電極を形成した。次に、前記電極を、80℃で16時間真空乾燥した後、アルゴンガスを循環させた露点−80℃以下のグローブボックス内に移し、重量を測定したところ、前記アルミニウム箔の重量を差し引いた該電極の重量は、9mgであった。 Next, a disk having a diameter of 14 mm was punched from the sheet-like body to form an electrode. Next, after the electrode was vacuum-dried at 80 ° C. for 16 hours, it was transferred into a glove box having a dew point of −80 ° C. or less in which argon gas was circulated, and the weight was measured, and the weight of the aluminum foil was subtracted. The weight of the electrode was 9 mg.
次に、前記電極を正極とし、市販のコイン型セル(CR2032)の部品を用いて、前記グローブボックス内で電池を作成した。前記電池は、純度99.99%、厚さ0.2mm、直径15.3mmのリチウム箔からなる円板を負極とし、厚さ20μm、直径20mmのポリオレフィン系樹脂からなる円板を60℃で24時間真空乾燥した後、前記グローブボックス内に保管したものをセパレータとした。また、電解液は、エチレンカーボネートとジエチルカーボネートとを1:1(容積比)で混合した溶媒にLiClO4を溶解した濃度1モル/lの溶液を用い、該電解溶液200μlを前記セパレータ上に注液して、該電解液が該セパレータ中に十分に浸透した後、電池を組み立て、非水溶液系電池を得た。 Next, the electrode was used as a positive electrode, and a battery was created in the glove box using components of a commercially available coin-type cell (CR2032). In the battery, a disk made of lithium foil having a purity of 99.99%, a thickness of 0.2 mm, and a diameter of 15.3 mm was used as the negative electrode, and a disk made of polyolefin resin having a thickness of 20 μm and a diameter of 20 mm was used at 60 ° C. What was stored in the glove box after vacuum drying for a time was used as a separator. As the electrolytic solution, a solution having a concentration of 1 mol / l obtained by dissolving LiClO 4 in a solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1 (volume ratio) is used, and 200 μl of the electrolytic solution is poured onto the separator. After the electrolyte was sufficiently permeated into the separator, the battery was assembled to obtain a non-aqueous battery.
次に、前記非水溶液系電池を室温(25℃)で24時間放置した後、同一の室温下で充放電を繰り返し、該電池の性能を評価した。前記充電は、0.1mAの定電流で電圧が4.20Vに達するまで行い、その後は4.20Vの定電圧で充電電流が0.01mAに減少するまで行った。前記放電は、0.1mAの定電流で電圧が2.0Vに降下するまで行った。 Next, the non-aqueous battery was allowed to stand at room temperature (25 ° C.) for 24 hours, and then charged and discharged repeatedly at the same room temperature to evaluate the performance of the battery. The charging was performed at a constant current of 0.1 mA until the voltage reached 4.20 V, and thereafter, the charging current was decreased at a constant voltage of 4.20 V to 0.01 mA. The discharge was performed at a constant current of 0.1 mA until the voltage dropped to 2.0V.
前記条件で充放電を20回繰り返したときの、1サイクル目、3サイクル目、10サイクル目、20サイクル目の重量当たりの放電容量(mAh/g)を表1に示す。 Table 1 shows the discharge capacity (mAh / g) per weight in the first cycle, the third cycle, the 10th cycle, and the 20th cycle when charging and discharging are repeated 20 times under the above conditions.
次に、本発明の比較例について説明する。 Next, a comparative example of the present invention will be described.
本比較例では、まず、N,N’−1,4−フェニレンビスチオウレア−S,S’−ベンジルエーテル406mgをドライTHF10mlとドライベンゼン10mlとの混合溶媒に溶解し、N,N’−1,4−フェニレンビスチオウレア−S,S’−ベンジルエーテル溶液を調製した。次に、前記N,N’−1,4−フェニレンビスチオウレア−S,S’−ベンジルエーテル溶液に、フェニレン−1,4−ジイソチオシアネート200mgをドライTHF5mlとドライベンゼン5mlとの混合溶媒に溶解たものを添加し、3日間加熱還流した。得られた反応溶液を濾過し、濾紙上の固形物をアセトンで洗浄することにより、S−ベンジル化ポリ(1−フェニル2,4−ジチオビウレット)100mgが得られた。前記反応を次式(8)に示す。尚、前記S−ベンジル化ポリ(1−フェニル2,4−ジチオビウレット)を次式(8)にCで示す。
In this comparative example, first, 406 mg of N, N′-1,4-phenylenebisthiourea-S, S′-benzyl ether was dissolved in a mixed solvent of 10 ml of dry THF and 10 ml of dry benzene, and N, N′-1, A 4-phenylenebisthiourea-S, S′-benzyl ether solution was prepared. Next, 200 mg of phenylene-1,4-diisothiocyanate is dissolved in a mixed solvent of 5 ml of dry THF and 5 ml of dry benzene in the N, N′-1,4-phenylenebisthiourea-S, S′-benzyl ether solution. Was added and heated to reflux for 3 days. The obtained reaction solution was filtered, and the solid on the filter paper was washed with acetone to obtain 100 mg of S-benzylated poly (1-
次に、前記式(8)に示すS−ベンジル化ポリ(1−フェニル2,4−ジチオビウレット)Cを用いた以外は、前記第2の実施形態と全く同一にして電極を形成した。次に、前記電極の重量を、前記第2の実施形態と全く同一にして測定したところ、前記アルミニウム箔の重量を差し引いた該電極の重量は、10mgであった。
Next, an electrode was formed in the same manner as in the second embodiment except that S-benzylated poly (1-
次に、本比較例で得られた前記電極を正極とした以外は、前記第2の実施形態と全く同一にして非水溶液系電池を得た。次に、前記非水溶液系電池の性能を、前記第2の実施形態と全く同一にして評価した。充放電を20回繰り返したときの、1サイクル目、3サイクル目、10サイクル目、20サイクル目の重量当たりの放電容量(mAh/g)を表1に示す。 Next, a nonaqueous solution battery was obtained in exactly the same manner as in the second embodiment except that the electrode obtained in this comparative example was used as a positive electrode. Next, the performance of the non-aqueous battery was evaluated in the same manner as in the second embodiment. Table 1 shows the discharge capacity (mAh / g) per weight of the first cycle, the third cycle, the 10th cycle, and the 20th cycle when the charge / discharge cycle is repeated 20 times.
表1から、本発明の第2の実施形態の電池によれば、充放電を20サイクル繰り返した後にも、比較例の電池よりも放電容量が大きく、酸化還元活性重合体が劣化し難いことが明らかである。 From Table 1, according to the battery of the second embodiment of the present invention, even after 20 cycles of charge and discharge, the discharge capacity is larger than that of the battery of the comparative example, and the redox active polymer is hardly deteriorated. it is obvious.
符号なし。 No sign.
Claims (5)
還元状態では一般式(1)で表される構造を備え、酸化状態では一般式(2)で表される構造を備えることを特徴とする酸化還元活性重合体。
A copolymer of a dithiobiurea derivative and an aromatic compound having two or more isothiocyanate groups,
An oxidation-reduction active polymer comprising a structure represented by the general formula (1) in a reduced state and a structure represented by the general formula (2) in an oxidized state.
A 2,5-dithiobiurea-S, S′-alkyl ether and a phenylene-1,4-diisothiocyanate are copolymerized to have a structure represented by the general formula (3). 1 Symbol placement redox-active polymer of claim.
2,5-dithiobiurea-S, S′-benzyl ether and phenylene-1,4-diisothiocyanate are copolymerized to have a structure represented by the general formula (4) 1 Symbol placement redox-active polymer of claim.
還元状態では一般式(1)で表される構造を備え、酸化状態では一般式(2)で表される構造を備える酸化還元活性重合体を電極材料として含有することを特徴とする電極。
A copolymer of a dithiobiurea derivative and an aromatic compound having two or more isothiocyanate groups,
An electrode comprising a redox active polymer having a structure represented by the general formula (1) in a reduced state and having a structure represented by the general formula (2) in an oxidized state as an electrode material.
還元状態では一般式(1)で表される構造を備え、酸化状態では一般式(2)で表される構造を備える酸化還元活性重合体を電極材料として含有する電極からなることを特徴とする非水溶液系電池。
A copolymer of a dithiobiurea derivative and an aromatic compound having two or more isothiocyanate groups,
It comprises an electrode comprising a redox-active polymer having a structure represented by general formula (1) in the reduced state and having a structure represented by general formula (2) in the oxidized state as an electrode material. Non-aqueous battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004352008A JP4343819B2 (en) | 2003-12-11 | 2004-12-03 | Redox-active polymer, electrode using the same, and non-aqueous battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003412784 | 2003-12-11 | ||
JP2004352008A JP4343819B2 (en) | 2003-12-11 | 2004-12-03 | Redox-active polymer, electrode using the same, and non-aqueous battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005194510A JP2005194510A (en) | 2005-07-21 |
JP4343819B2 true JP4343819B2 (en) | 2009-10-14 |
Family
ID=34829022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004352008A Expired - Fee Related JP4343819B2 (en) | 2003-12-11 | 2004-12-03 | Redox-active polymer, electrode using the same, and non-aqueous battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4343819B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103038923A (en) * | 2010-06-01 | 2013-04-10 | 株式会社保利智恩 | Rechargeable battery, functional polymer, and method for synthesis thereof |
-
2004
- 2004-12-03 JP JP2004352008A patent/JP4343819B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005194510A (en) | 2005-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108963334B (en) | Multilayer polymer electrolyte and battery | |
JP4687848B2 (en) | Power storage device | |
JP5076560B2 (en) | Electricity storage device | |
JP5332251B2 (en) | Polymer radical material / conductive material composite, method for producing the same, and power storage device | |
JP2008547157A (en) | Rechargeable cathode for lithium-ion batteries | |
JP4839573B2 (en) | Electrochemical device and electrode | |
JP2009298873A (en) | Preparation method of polyradical compound and battery | |
JP4720999B2 (en) | Power storage device | |
JP2005322610A (en) | Lithium secondary battery | |
JP4721000B2 (en) | Power storage device | |
JP2013196910A (en) | Nonaqueous electrolyte secondary battery | |
JP2003208897A (en) | Lithium battery and manufacturing method thereof | |
JP4830207B2 (en) | battery | |
JP2015165481A (en) | Electrode and power storage device using the same | |
JP4530133B2 (en) | Power storage device | |
JP2004179169A (en) | Secondary battery | |
JP2004185865A (en) | Lithium ion battery, its manufacturing method, and negative electrode structure | |
JP4343819B2 (en) | Redox-active polymer, electrode using the same, and non-aqueous battery | |
JP4139960B2 (en) | Electricity storage device | |
WO2013157458A1 (en) | Electrode and method for manufacturing said electrode, and secondary cell | |
JP5282259B2 (en) | Molecular cluster secondary battery | |
JP2014120453A (en) | Nonaqueous electrolyte secondary battery | |
KR100606170B1 (en) | Secondary battery | |
WO2014157059A1 (en) | Electrode for power storage device and power storage device using same | |
JP4476788B2 (en) | Polymer compound for electrode material, electrode using the same and non-aqueous battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061221 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20071217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090203 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090331 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090707 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090709 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120717 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130717 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140717 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |