JP3043048B2 - Solid electrolyte battery - Google Patents
Solid electrolyte batteryInfo
- Publication number
- JP3043048B2 JP3043048B2 JP2301738A JP30173890A JP3043048B2 JP 3043048 B2 JP3043048 B2 JP 3043048B2 JP 2301738 A JP2301738 A JP 2301738A JP 30173890 A JP30173890 A JP 30173890A JP 3043048 B2 JP3043048 B2 JP 3043048B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- solid electrolyte
- alkali metal
- solvent
- organic polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は導電性フィルムを用いた固体電解質電池に関
する。The present invention relates to a solid electrolyte battery using a conductive film.
(口)従来の技術 近年の電子機器類の小型化、軽量化、薄型化に伴い、
これに使用する電池としても小型で、且つ総厚み寸法が
0.5mm程度という極めて薄型の高性能なものが要望され
ている。(Mouth) Conventional technology With the recent reduction in size, weight, and thickness of electronic devices,
The battery used for this is small and has a total thickness
There is a demand for a very thin and high-performance one with a thickness of about 0.5 mm.
これらの用途に用いられる電池としては、リチウム電
池が高エネルギー密度、信頼性の点で有望であるが、従
来使用される電解質は液体電解質であった。この場合、
電池の封口方法としてガスケットを介したクリンプシー
ルを用いた封口技術が主として用いられている。As a battery used for these applications, a lithium battery is promising in terms of high energy density and reliability, but a conventionally used electrolyte is a liquid electrolyte. in this case,
As a battery sealing method, a sealing technique using a crimp seal via a gasket is mainly used.
(ハ)発明が解決しようとする課題 ところで上記従来の電池では電池が薄くなるほど封口
部材の電池容積に占める割合が大きくなり、電池のエネ
ルギー密度の低下を招いてしまい、また、電解液と電極
活物質が反応してしまうため、電解液の分解が生じ、電
池の特性劣化を招いたり、自己放電も大きいという問題
があった。(C) Problems to be Solved by the Invention By the way, in the above-mentioned conventional battery, as the battery becomes thinner, the ratio of the sealing member to the battery volume becomes larger, which causes a decrease in the energy density of the battery, and also the electrolyte and the electrode activity. Since the substances react, decomposition of the electrolytic solution occurs, causing deterioration of battery characteristics and large self-discharge.
このため、従来の電池系では電解液の分解による電池
の特性劣化や自己放電率が大きく、また電池の薄型化が
困難であるという問題点があった。For this reason, in the conventional battery system, there were problems that the characteristics of the battery deteriorated due to the decomposition of the electrolytic solution, the self-discharge rate was large, and it was difficult to reduce the thickness of the battery.
本発明が解決しようとする課題は、係る従来技術の問
題点に鑑み、漏液や電解液分解の心配のない電池を提供
し、且つ電池の薄型形状に適した正極、及び負極を提供
することを目的としている。The problem to be solved by the present invention is to provide a battery that is free from the risk of liquid leakage and decomposition of an electrolyte in view of the problems of the related art, and to provide a positive electrode and a negative electrode that are suitable for a thin shape of the battery. It is an object.
(ニ)課題を解決するための手段 本発明は、正極として無機金属化合物或るいは導電性
ポリマーと、有機高分子化合物と、アルカリ金属塩とを
溶剤に溶解させ、これを基材上にキャストし、乾燥する
ことによって形成した導電性フイルムを用い、負極とし
て炭素材料と、有機高分子化合物と、アルカリ金属塩と
を溶剤に溶解させ、これを基材上にキャストし、乾燥す
ることによって形成した導電性フィルムを用い、電解質
として有機高分子化合物と、アルカリ金属塩とを溶剤に
溶解させ、これを基材上にキャストし、乾燥することに
よって形成した導電性フィルムを用いた固体電解質電池
にある。(D) Means for Solving the Problems The present invention provides a method of dissolving an inorganic metal compound or a conductive polymer, an organic polymer compound, and an alkali metal salt in a solvent as a positive electrode, and casting this on a substrate. Then, using a conductive film formed by drying, a carbon material, an organic polymer compound, and an alkali metal salt are dissolved in a solvent as a negative electrode, and this is cast on a substrate and dried to form. Using a conductive film made, an organic polymer compound as an electrolyte, and an alkali metal salt are dissolved in a solvent, cast on a substrate, and dried to form a solid electrolyte battery using a conductive film formed by drying. is there.
(ホ)作用 上記の構成により、薄くて均一で、形状自由度の大き
な正極、負極、高分子固体電解質フィルムを容易に作製
することが可能となる。(E) Function With the above configuration, it is possible to easily produce a positive electrode, a negative electrode, and a polymer solid electrolyte film which are thin, uniform, and have a large degree of freedom in shape.
また、固体の電解質は電池の漏液や、電解液の分解を
抑制し、自己放電も抑えることも可能となる。In addition, the solid electrolyte can suppress leakage of the battery and decomposition of the electrolyte, and can also suppress self-discharge.
そしてこれらの構成により、特に電極の薄型化に有効
となる。These configurations are particularly effective for reducing the thickness of the electrode.
(ヘ)実施例 以下に実施例を挙げ、本発明を具体的に説明する。(F) Examples Hereinafter, the present invention will be described specifically with reference to Examples.
[実施例1] まず、アルカリ金属塩としてのLiBF4を溶剤としての
N−メチル−2−ピロリドンに溶解し、これに有機高分
子化合物としてのポリエチレンオキサイドを加え、均一
になるまで振り混ぜ、さらに、MnO2を加えて均一になる
まで振り混ぜ、この液を正極外装体上にキャストし、80
℃の条件で真空乾燥し、厚み30μmの正極用導電性フィ
ルムを得た。[Example 1] First, LiBF 4 as an alkali metal salt was dissolved in N-methyl-2-pyrrolidone as a solvent, polyethylene oxide as an organic polymer compound was added thereto, and the mixture was shaken until uniform, and further, , Add MnO 2 and shake until uniform, cast this solution on the cathode case,
Vacuum drying was performed under the condition of ° C. to obtain a conductive film for a positive electrode having a thickness of 30 μm.
また、LiBF4をN−メチル−2−ピロリドンに溶解
し、これにポリエチレンオキサイドを加え、均一になる
まで振り混ぜ、これに炭素材料としてのグラファイトを
加えて再度均一になるまで振り混ぜ、この液を負極外装
体上にキャストし、80℃の条件で真空乾燥して、厚み寸
法30μmの負極用導電性フィルムを得た。In addition, LiBF 4 was dissolved in N-methyl-2-pyrrolidone, polyethylene oxide was added thereto, and the mixture was shaken until uniform, graphite as a carbon material was added thereto, and the mixture was shaken again until the mixture became uniform. Was cast on a negative electrode package, and vacuum-dried at 80 ° C. to obtain a conductive film for negative electrode having a thickness of 30 μm.
さらに、LiBF4をN−メチル−2−ピロリドンに溶解
し、これにポリエチレンオキサイドを加え、均一になる
まで振り混ぜ、この液をガラス基板上にキャストし、80
℃の条件で真空乾燥し、厚み寸法30μmの高分子固体電
解質フィルムを得た。Further, LiBF 4 was dissolved in N-methyl-2-pyrrolidone, polyethylene oxide was added thereto, and the mixture was shaken until uniform, and the solution was cast on a glass substrate.
Vacuum drying was performed under the condition of ° C. to obtain a solid polymer electrolyte film having a thickness of 30 μm.
以上の電極及び電解質を用いて第1図に示すような扁
平型リチウム二次電池を組み立てた。第1図において、
1は正極フィルム、2は負極フィルム、3は高分子固体
電解質フイルムであり、前記方法を用いて形成されたも
のである。また、4は絶縁封口材、5は正極外装体、6
は負極外装体である。このようにして組み立てられた電
池を本発明電池Aとする。A flat lithium secondary battery as shown in FIG. 1 was assembled using the above electrodes and electrolyte. In FIG.
Reference numeral 1 denotes a positive electrode film, 2 denotes a negative electrode film, and 3 denotes a polymer solid electrolyte film, which is formed using the above method. In addition, 4 is an insulating sealing material, 5 is a positive electrode exterior body, 6
Denotes a negative electrode package. The battery assembled in this manner is referred to as Battery A of the present invention.
また、比較例として、前記高分子固体電解質フイルム
の代わりに、電解液にLiBF4−PC溶液(液体)を用い、
これをポリプロピレン製のセパレータに含浸せしめた以
外は前記本発明電池Aと同様にして比較電池Bを作製し
た。As a comparative example, a LiBF 4 -PC solution (liquid) was used as an electrolyte instead of the polymer solid electrolyte film,
A comparative battery B was produced in the same manner as the battery A of the present invention, except that this was impregnated with a polypropylene separator.
こうして得られた電池A、Bについて充放電試験を行
った。この時の条件は充電の場合、充電電流1mAで、3.6
Vまで、放電の場合は放電電流1mAで2.0Vまで行うことに
した。The batteries A and B thus obtained were subjected to a charge / discharge test. The condition at this time is a charging current of 1 mA, 3.6
V, and in the case of discharge, up to 2.0 V with a discharge current of 1 mA.
第2図は前記各電池A、Bの1ケ月間室温保存後の放
電特性を示す図である。いずれの電池も初期放電特性で
は容量20mAhを示し、充放電効率は100%を示したがこの
図のように保存後では本発明電池Aが20mAh放電できる
のに対し、比較電池Bは僅かに12mAhしか放電できない
ことが分かる。FIG. 2 is a diagram showing the discharge characteristics of each of the batteries A and B after storage at room temperature for one month. Each battery showed a capacity of 20 mAh in the initial discharge characteristics and a charge / discharge efficiency of 100%. However, as shown in this figure, the battery A of the present invention was able to discharge 20 mAh after storage, while the comparative battery B was only 12 mAh. It can be seen that only discharge can be performed.
これは、電解液にLiBF4−PC溶液を用いた比較電池B
の場合、電極活物質が電解液と反応してしまうが本発明
電池Aではそのような反応がないためと考えられる。This is a comparative battery B using a LiBF 4 -PC solution as the electrolyte.
In this case, the electrode active material reacts with the electrolytic solution, but it is considered that such a reaction does not occur in the battery A of the present invention.
[実施例2] 実施例1のMnO2の代わりにポリアニリンを正極に用い
た以外は実施例1と同様な方法を用いて、N−メチル−
2−ピロリドンからなる高分子固体電解質を用いた本発
明の薄型電池Cと、液体電解液としてのプロピレンカー
ボネートを用いて作製した比較例の薄型電池Dと、を作
製した。[Example 2] N-methyl- was prepared in the same manner as in Example 1 except that polyaniline was used for the positive electrode instead of MnO 2 in Example 1.
A thin battery C of the present invention using a polymer solid electrolyte made of 2-pyrrolidone and a thin battery D of a comparative example manufactured using propylene carbonate as a liquid electrolyte were produced.
これらの電池C、Dについて充放電試験を行った。こ
の時の条件は充電の場合、充電電流1mAで、3.6Vまで、
放電の場合は放電電流1mAで2.5Vまで行うことにした。These batteries C and D were subjected to a charge / discharge test. The condition at this time is a charging current of 1 mA, up to 3.6 V,
In the case of discharging, it was decided to carry out up to 2.5 V at a discharging current of 1 mA.
第3図は前記各電池C、Dの1ケ月間室温保存後の放
電特性を示す図である。いずれの電池も初期放電特性で
は容量4mAhを示し、充放電効率は100%を示したがこの
図のように保存後では本発明電池Cが4mAh放電できるの
に対し、比較電池Dは僅かに2.8mAhしか放電できないこ
とが分かる。FIG. 3 is a view showing the discharge characteristics of each of the batteries C and D after storage at room temperature for one month. All of the batteries showed a capacity of 4 mAh in the initial discharge characteristics and a charge / discharge efficiency of 100%. However, as shown in this figure, the battery C of the present invention can discharge 4 mAh after storage, whereas the comparative battery D has only 2.8 mAh. It can be seen that only mAh can be discharged.
これは、電解液にLiBF4−PC溶液を用いた比較電池D
の場合、電極活物質が電解液と反応してしまうが本発明
電池Aではそのような反応がないためと考えられる。This is a comparative battery D using a LiBF 4 -PC solution as the electrolyte.
In this case, the electrode active material reacts with the electrolytic solution, but it is considered that such a reaction does not occur in the battery A of the present invention.
尚、上記実施例において有機高分子化合物としては溶
剤に溶解するものならばその種類を問わないが、具体的
には、ポリエチレンオキサイド、ポリプロピレンオキサ
イド、ポリホスファゼンなどが挙げられる。In the above examples, the organic polymer compound is not particularly limited as long as it can be dissolved in a solvent, and specific examples thereof include polyethylene oxide, polypropylene oxide, and polyphosphazene.
また、溶剤としては窒素原子を含む環状化合物、特に
ピロリドン及びその誘導体が良く、具体的にはN−メチ
ル−2−ピロリドン等が挙げられる。As the solvent, a cyclic compound containing a nitrogen atom, in particular, pyrrolidone and its derivatives are preferable, and specific examples thereof include N-methyl-2-pyrrolidone.
さらにアルカリ金属塩として例えばLiC1O4、LiBF4、L
iCF3SO3、LiPF6、NaPF6、NaBF4、NaClO4、NaAsF6、KP
F6、KAsF6、KClO4、KBF4等が挙げられる。Further example LiC1O as alkali metal salts 4, LiBF 4, L
iCF 3 SO 3 , LiPF 6 , NaPF 6 , NaBF 4 , NaClO 4 , NaAsF 6 , KP
F 6 , KAsF 6 , KClO 4 , KBF 4 and the like.
一方、本発明の固体電解質電池の正極の種類には特に
制限はなく、上記有機高分子化合物とアルカリ金属塩と
に混合させる化合物としてアルカリ金属と可逆的に反応
するMnO2、TiS2、FeS2、Nb3S4、Mo3Se4、CoS2、V2O5、P
2O5、CrO3、V3O6、TeO2、GeO2等の無機化合物及ぴ電解
質アニオンが可逆的にドープ、脱ドープするポリアニリ
ン、ポリピロール、ポリチオフェン等の導電性ポリマー
を用いることができる。On the other hand, the type of the positive electrode of the solid electrolyte battery of the present invention is not particularly limited, and MnO 2 , TiS 2 , and FeS 2 that reversibly react with an alkali metal as a compound to be mixed with the organic polymer compound and an alkali metal salt are used. , Nb 3 S 4, Mo 3 Se 4, CoS 2, V 2 O 5, P
Inorganic compounds such as 2 O 5 , CrO 3 , V 3 O 6 , TeO 2 , and GeO 2 and conductive polymers such as polyaniline, polypyrrole, and polythiophene, which are reversibly doped and undoped with electrolyte anions, can be used.
そして負極は上記有機高分子とアルカリ金属塩にカー
ボンを混合して用いるが、この場合のカーボンとしては
グラファイトやコークス等が挙げられる。このカーボン
の粒径は100μm以下が望ましく、特に50μm以下のも
のが望ましい。The negative electrode is used by mixing carbon with the above organic polymer and alkali metal salt. Examples of carbon in this case include graphite and coke. The particle size of the carbon is desirably 100 μm or less, particularly desirably 50 μm or less.
(ト)発明の効果 以上述べた如く、本発明は無機金属化合物或るいは導
電性ポリマーと、有機高分子化合物と、アルカリ金属塩
とを溶剤に溶解させ、これを基材上にキャストし、乾燥
することによって得た導電性フィルムを正極として用
い、炭素材料と、有機高分子化合物と、アルカリ金属塩
とを溶剤に溶解させ、これを基材上にキャストし、乾燥
することによって得た導電性フィルムを負極に用い、両
極間に有機高分子化合物と、アルカリ金属塩とを溶剤に
溶解させ、これを基材上にキャストし、乾燥することに
よって得た固体電解質を介在せしめたことにより、薄く
て、均一で、形状自由度の大きな正極、負極、高分子固
体電解質フィルムを容易に作製することが可能となり、
且つ電池の漏液や電解液の分解の心配がなく、自己放電
も抑制することができる。(G) Effects of the Invention As described above, the present invention dissolves an inorganic metal compound or a conductive polymer, an organic polymer compound, and an alkali metal salt in a solvent, and casts this on a substrate. Using a conductive film obtained by drying as a positive electrode, a carbon material, an organic polymer compound, and an alkali metal salt are dissolved in a solvent, and this is cast on a substrate, and the conductive film obtained by drying is obtained. By using a conductive film as a negative electrode, an organic polymer compound and an alkali metal salt are dissolved in a solvent between the two electrodes, and this is cast on a substrate, and a solid electrolyte obtained by drying is interposed. It is possible to easily produce thin, uniform, positive electrodes, negative electrodes, and polymer solid electrolyte films with a large degree of freedom in shape,
In addition, there is no need to worry about leakage of the battery or decomposition of the electrolyte, and self-discharge can be suppressed.
また、特に電極を薄型化することが可能となり、超薄
型電池を容易に製造できる効果が生まれる。Further, in particular, the thickness of the electrode can be reduced, and an effect of easily manufacturing an ultra-thin battery can be obtained.
第1図は本発明電池の構造を示す断面図、第2図及び第
3図は夫々本発明電池と比較電池との保存後の放電特性
を示す図である。 1…正極フィルム、2…負極フィルム、3…固体電解質
フィルム、4…絶縁封口材、5…正極外装体、6…負極
外装体。FIG. 1 is a sectional view showing the structure of the battery of the present invention, and FIGS. 2 and 3 are diagrams showing the discharge characteristics of the battery of the present invention and the comparative battery after storage, respectively. DESCRIPTION OF SYMBOLS 1 ... Positive electrode film, 2 ... Negative electrode film, 3 ... Solid electrolyte film, 4 ... Insulating sealing material, 5 ... Positive electrode package, 6 ... Negative electrode package.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭64−657(JP,A) 特開 平1−319268(JP,A) 特開 昭62−12064(JP,A) 実開 昭63−105269(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 4/02 - 4/04 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-64-657 (JP, A) JP-A-1-319268 (JP, A) JP-A-62-12064 (JP, A) 105269 (JP, U) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 10/40 H01M 4/02-4/04
Claims (1)
と、有機高分子化合物と、アルカリ金属塩とを溶剤に溶
解させ、これを基材上にキャストし、乾燥することによ
って得た導電性フィルムを正極として用い、炭素材料
と、有機高分子化合物と、アルカリ金属塩とを溶剤に溶
解させ、これを基材上にキャストし、乾燥することによ
って得た導電性フィルムを負極に用い、両極間に有機高
分子化合物と、アルカリ金属塩とを溶剤に溶解させ、こ
れを基材上にキャストし、乾燥することによって得た固
体電解質を介在せしめてなる固体電解質電池。1. A conductive film obtained by dissolving an inorganic metal compound or a conductive polymer, an organic polymer compound and an alkali metal salt in a solvent, casting this on a substrate and drying. Is used as a positive electrode, a carbon material, an organic polymer compound, and an alkali metal salt are dissolved in a solvent, and this is cast on a base material, and the conductive film obtained by drying is used as a negative electrode. A solid electrolyte battery in which an organic polymer compound and an alkali metal salt are dissolved in a solvent, cast on a substrate, and dried to interpose a solid electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2301738A JP3043048B2 (en) | 1990-11-06 | 1990-11-06 | Solid electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2301738A JP3043048B2 (en) | 1990-11-06 | 1990-11-06 | Solid electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04171676A JPH04171676A (en) | 1992-06-18 |
JP3043048B2 true JP3043048B2 (en) | 2000-05-22 |
Family
ID=17900572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2301738A Expired - Fee Related JP3043048B2 (en) | 1990-11-06 | 1990-11-06 | Solid electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3043048B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220085311A1 (en) * | 2019-02-01 | 2022-03-17 | Zeon Corporation | Conductive film and production method thereof, electrode, and solar cell |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002260740A (en) * | 2001-03-05 | 2002-09-13 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte battery and manufacturing method |
JP3615491B2 (en) | 2001-03-05 | 2005-02-02 | 松下電器産業株式会社 | Non-aqueous electrolyte secondary battery and manufacturing method thereof |
-
1990
- 1990-11-06 JP JP2301738A patent/JP3043048B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220085311A1 (en) * | 2019-02-01 | 2022-03-17 | Zeon Corporation | Conductive film and production method thereof, electrode, and solar cell |
Also Published As
Publication number | Publication date |
---|---|
JPH04171676A (en) | 1992-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6228532B1 (en) | Lithium secondary cell | |
US5518841A (en) | Composite cathode | |
US8980497B2 (en) | Secondary battery including anode with a coating containing a SO3 containing compound | |
US20040043295A1 (en) | Rechargeable composite polymer battery | |
JP3687513B2 (en) | battery | |
KR101066446B1 (en) | Battery | |
JPH0520874B2 (en) | ||
JP4512776B2 (en) | Non-aqueous electrolyte solution containing additive for capacity enhancement of lithium ion battery and lithium ion battery using the same | |
JP3043048B2 (en) | Solid electrolyte battery | |
JP3451781B2 (en) | Organic electrolyte secondary battery | |
JP3396990B2 (en) | Organic electrolyte secondary battery | |
JP2002313416A (en) | Non-aqueous electrolyte secondary battery | |
JP2797693B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2965674B2 (en) | Lithium secondary battery | |
JP3115153B2 (en) | Electrochemical devices and secondary batteries | |
JP2002260726A (en) | Nonaqueous electrolyte secondary battery | |
JP3722462B2 (en) | Nonaqueous electrolyte secondary battery separator and nonaqueous electrolyte secondary battery using the same | |
JP3021543B2 (en) | Manufacturing method of non-aqueous electrolyte battery | |
JP3418715B2 (en) | Organic electrolyte secondary battery | |
JP4134556B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH0359963A (en) | Lithium secondary battery | |
JP2950916B2 (en) | Method for producing solid electrolyte film | |
WO2021187417A1 (en) | Electrode active material, electrode and secondary battery | |
JP2557659B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3036798B2 (en) | Solid electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |