JP3048798B2 - Reversible electrode and lithium secondary battery comprising the same - Google Patents
Reversible electrode and lithium secondary battery comprising the sameInfo
- Publication number
- JP3048798B2 JP3048798B2 JP5225214A JP22521493A JP3048798B2 JP 3048798 B2 JP3048798 B2 JP 3048798B2 JP 5225214 A JP5225214 A JP 5225214A JP 22521493 A JP22521493 A JP 22521493A JP 3048798 B2 JP3048798 B2 JP 3048798B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- electrode
- mtmcp
- secondary battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池、エレクトロクロ
ミック表示素子、センサー、メモリー等の電気化学素子
に用いられる有機化合物よりなる可逆性電極およびこの
可逆性電極を用いたリチウム二次電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reversible electrode made of an organic compound used for electrochemical devices such as a battery, an electrochromic display device, a sensor, and a memory, and a lithium secondary battery using the reversible electrode.
【0002】[0002]
【従来の技術】金属リチウムあるいはリチウム合金を負
極とする高エネルギー密度リチウム二次電池の正極材料
として、米国特許第4,833,048号に有機ジスルフィド化
合物が提案されている。この化合物は、最も簡単にはR
−S−S−Rと表される(Rは脂肪族あるいは芳香族の
有機基、Sは硫黄)。S−S結合は電解還元により開裂
し、電解浴中のカチオン(M+)とR−Sー・M+で表さ
れる塩を生成する。この塩は、電解酸化により元のR−
S−S−Rに戻る。カチオン(M+)を供給、捕捉する
金属Mとジスルフィド化合物を組み合わせた金属ーイオ
ウ二次電池が前述の米国特許に提案されている。150
Wh/kg以上と、通常の二次電池に匹敵あるいはそれ
以上のエネルギー密度が期待できる。2. Description of the Related Art U.S. Pat. No. 4,833,048 proposes an organic disulfide compound as a cathode material for a high energy density lithium secondary battery using lithium metal or a lithium alloy as a negative electrode. This compound is most easily represented by R
It is represented by -SSR (R is an aliphatic or aromatic organic group, and S is sulfur). The SS bond is cleaved by electrolytic reduction to form a cation (M + ) in the electrolytic bath and a salt represented by RS - M + . This salt is converted to the original R-
Return to SSR. A metal-sulfur secondary battery combining a metal M for supplying and trapping cations (M + ) and a disulfide compound is proposed in the aforementioned U.S. Patent. 150
With an energy density of Wh / kg or more, an energy density comparable to or higher than that of a normal secondary battery can be expected.
【0003】本発明者らは、ジスルフィド化合物の高エ
ネルギー密度を有し、室温においても大電流電解(充放
電)が可能な可逆性に優れた電極としてジスルフィド化
合物とπ電子共役導電性高分子とを複合化した可逆性複
合電極を提案している。ジスルフィド化合物と複合化し
たπ電子共役導電性高分子は、ジスルフィド化合物の電
解酸化・還元に際して電極触媒として作用し、1ボルト
以上であったジスルフィド化合物単独の場合の酸化反応
と還元反応の電位差を0.1ボルトあるいはそれ以下に
小さくし、電極反応を促進し、室温においても大電流の
電解(充放電)を可能としている。電解酸化に際して
は、先ずπ電子共役導電性高分子(以下PAIと呼ぶ)
が酸化を受け、PAIの酸化体がジスルフィド化合物
(以下SSと呼ぶ)を酸化し元の還元体に戻ると共に、
SSがポリマー化した酸化体が生成する。電解還元で
は、PAIが先ず還元を受け、PAIの還元体がポリマ
ー化したSSの酸化体を還元し酸化体に戻ると共に、S
Sの還元体(モノマー)が生成する。The present inventors have proposed a disulfide compound and a π-electron conjugated conductive polymer as an electrode having a high energy density of the disulfide compound and capable of performing a large current electrolysis (charge / discharge) even at room temperature and having excellent reversibility. Have proposed a reversible composite electrode. The π-electron conjugated conductive polymer complexed with the disulfide compound acts as an electrode catalyst during the electrolytic oxidation and reduction of the disulfide compound, and reduces the potential difference between the oxidation reaction and the reduction reaction of the disulfide compound alone, which was 1 volt or more, to 0. 0.1 volts or less to promote electrode reactions and enable high-current electrolysis (charge / discharge) even at room temperature. In electrolytic oxidation, first, a π-electron conjugated conductive polymer (hereinafter referred to as PAI)
Undergoes oxidation, and the oxidized form of PAI oxidizes the disulfide compound (hereinafter referred to as SS) and returns to the original reduced form,
An oxidized product in which SS is polymerized is formed. In electrolytic reduction, PAI undergoes reduction first, and the reduced form of PAI reduces the oxidized form of SS which has been polymerized and returns to the oxidized form.
A reduced form (monomer) of S is generated.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うなSSの酸化還元過程を繰り返していると、酸化され
ポリマー化したSSは凝集し、絶縁性の塊を生成し、ポ
リマー化した酸化体を還元しても元のモノマーに100
%戻ることが出来なくなり、徐々に不活性化していく問
題が出てきた。電池の正極にこのような複合電極を用い
た場合、電池の充放電を繰り返していると、徐々に放電
容量が低下する問題がある。このような問題について本
発明者らが鋭意検討を加えたところ、前記絶縁性の塊の
生成のし易さ、し難さは、用いるSSの種類により大き
く異なることをつきとめた。本発明はこのような検討結
果に基づいてなされたものである。However, if such a redox process of SS is repeated, the oxidized and polymerized SS aggregates to form an insulating mass, and the polymerized oxidant is reduced. Even the original monomer is 100
% Could not be returned, and the problem of gradually becoming inactive came out. When such a composite electrode is used as the positive electrode of a battery, there is a problem that the discharge capacity gradually decreases when the battery is repeatedly charged and discharged. The inventors of the present invention have made intensive studies on such a problem, and have found that the easiness and difficulty of forming the insulating lump vary greatly depending on the type of SS used. The present invention has been made based on the results of such studies.
【0005】[0005]
【課題を解決するための手段】本発明は、酸化してポリ
マー化したSSが凝集し絶縁性の塊を生成し難い特定の
SS化合物である7ーメチルー2,6,8ートリメルカ
プトプリンをπ電子共役導電性高分子と複合化して可逆
性電極を構成する。According to the present invention, 7-methyl-2,6,8-trimercaptopurine, which is a specific SS compound in which oxidized and polymerized SS hardly aggregates to form an insulating mass, is converted to π. A reversible electrode is formed by complexing with an electron conjugated conductive polymer.
【0006】また、本発明のリチウム二次電池は、7ー
メチルー2,6,8ートリメルカプトプリン、ポリアニ
リン、アクリロニトリルの共重合体、および有機電解質
を含む組成物よりなる正極層、アクリロニトリルの共重
合体を含む有機電解質層、およびリチウムを活物質とす
る負極層を有する。Further, the lithium secondary battery of the present invention has a positive electrode layer comprising a composition containing a copolymer of 7-methyl-2,6,8-trimercaptopurine, polyaniline and acrylonitrile, and a composition containing an organic electrolyte; It has an organic electrolyte layer containing a coalescence and a negative electrode layer using lithium as an active material.
【0007】[0007]
【作用】化1に示すように、7ーメチルー2,6,8ー
トリメルカプトプリン(以下、MTMcPと呼ぶ)は、
一分子中にアミノ基を3個有しており、このアミノ基の
作用により、ポリマー化した場合においても電解質への
溶解性が良好に保持され、絶縁性の塊の生成が抑えられ
る。As shown in Chemical formula 1, 7-methyl-2,6,8-trimercaptopurine (hereinafter referred to as MTMcP)
One molecule has three amino groups, and by the action of the amino groups, even when polymerized, good solubility in the electrolyte is maintained, and formation of an insulating mass is suppressed.
【0008】[0008]
【化1】 Embedded image
【0009】MTMcPと複合化されるπ電子共役導電
性高分子としては、ポリアニリン、ポリピロール、ポリ
チオフェン、ポリアセン等のAg/AgCl電極に対し
て0〜±1.0ボルトで可逆性の高い酸化還元反応を起
こす導電性高分子が有効に用いられる。特に、3個のア
ミノ基を有するMTMcPは、キノンジイミン構造とフ
ェニレンジアミン構造とを有するポリアニリンときわめ
て親和性がよく、MTMcP自身の電解質への溶解性の
良さに加えて、ポリアニリンと複合化すると、親和性の
良さにより絶縁性の塊の生成がさらに緩和される。The π-electron conjugated conductive polymer complexed with MTMcP is a highly reversible oxidation-reduction reaction at 0 to ± 1.0 volts with respect to an Ag / AgCl electrode such as polyaniline, polypyrrole, polythiophene, and polyacene. Is effectively used. In particular, MTMcP having three amino groups has a very good affinity for polyaniline having a quinone diimine structure and a phenylenediamine structure. Due to the good properties, the formation of insulating lumps is further reduced.
【0010】ポリマー化したMTMcPが還元して塩を
形成する際の金属イオンには、アルカリ金属イオン、ア
ルカリ土類金属イオンに加えて、プロトンも用いること
ができる。プロトンを用い、プロトンを供給および捕捉
する電極として LaNi5等の金属水素化物を用い、プ
ロトンを伝導する電解質を用いると、電圧が1から2ボ
ルトの電池を構成することができる。アルカリ金属イオ
ンとしてリチウムイオンを用いる場合は、リチウムイオ
ンを供給および捕捉する電極として金属リチウムあるい
はリチウムーアルミニウム等のリチウム合金を用い、リ
チウムイオンを伝導する電解質を用いると、電圧が3〜
4ボルトの電池を構成できる。さらに、電解質として、
アクリロニトリルとアクリル酸メチルあるいはメタアク
リル酸メチルとの共重合体と、リチウム塩と、プロピレ
ンカーボネート、エチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、ジメトキシエタン、
スルホランおよびメチルスルホランよりなる群から選ば
れる少なくとも1種の溶媒を含む固形電解質組成物を用
いることにより、絶縁性の塊の生成をさらに緩和するこ
とができる。As the metal ions when the polymerized MTMcP is reduced to form a salt, protons can be used in addition to alkali metal ions and alkaline earth metal ions. When a proton is used, a metal hydride such as LaNi 5 is used as an electrode for supplying and capturing the proton, and an electrolyte that conducts the proton is used, a battery having a voltage of 1 to 2 volts can be formed. When lithium ions are used as the alkali metal ions, if the lithium ions are supplied and trapped using lithium metal or a lithium alloy such as lithium-aluminum and an electrolyte that conducts lithium ions is used, the voltage becomes 3 to
A 4 volt battery can be configured. Furthermore, as an electrolyte,
A copolymer of acrylonitrile and methyl acrylate or methyl methacrylate, a lithium salt, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane,
By using a solid electrolyte composition containing at least one solvent selected from the group consisting of sulfolane and methylsulfolane, formation of an insulating mass can be further reduced.
【0011】MTMcPとポリアニリンからなる複合電
極を固形電解質組成物中に分散混合することにより、可
逆性複合電極が得られる。このような可逆性複合電極に
おいては、MTMcPあるいはMTMcPポリマーが前
記固形電解質組成物中一部あるいは全部良好に溶解し、
溶解した単量体あるいはポリマーはポリアニリンとの相
互作用により固形のポリアニリン上あるいはその内部に
良好に固定されるため、MTMcPあるいはMTMcP
ポリマーがきわめて均一に分散した状態となり、絶縁性
の塊の生成が有効に抑制されるものと本発明者らは考え
ている。A reversible composite electrode is obtained by dispersing and mixing a composite electrode comprising MTMcP and polyaniline in a solid electrolyte composition. In such a reversible composite electrode, MTMcP or the MTMcP polymer is partially or entirely dissolved in the solid electrolyte composition,
Since the dissolved monomer or polymer is well fixed on or in solid polyaniline by interaction with polyaniline, MTMcP or MTMcP
The present inventors believe that the polymer is in a very uniformly dispersed state, and that the formation of insulating lumps is effectively suppressed.
【0012】MTMcPとπ電子共役導電性高分子との
複合化は、混合、含浸、共析、重ね塗り等公知の方法に
より行うことができる。例えば、ステンレススチール基
体上に導電性高分子のフィブリル層を電解重合により形
成したのち、MTMcPの塩を溶解した溶液をフィブリ
ル層内に含浸し、次いで溶媒を除くことにより、複合電
極を得ることができる。また、MTMcP粒子をπ電子
共役導電性高分子を溶解した溶媒中に分散したのち溶媒
を除くことにより、MTMcP粒子の表面にπ電子共役
導電性高分子の層を形成して複合化してもよい。化学重
合あるいは電解重合で得たπ電子共役導電性高分子粉末
とMTMcP粉末とを混合することにより複合化するこ
ともできる。また、可逆性複合電極には、前記成分の
他、導電剤として、金属粉末、炭素粉末を必要に応じ加
えることができる。The compounding of MTMcP and the π-electron conjugated conductive polymer can be performed by a known method such as mixing, impregnation, eutectoid deposition, and recoating. For example, a composite electrode can be obtained by forming a fibril layer of a conductive polymer on a stainless steel substrate by electrolytic polymerization, impregnating the fibril layer with a solution in which a salt of MTMcP is dissolved, and then removing the solvent. it can. Further, by dispersing the MTMcP particles in a solvent in which the π-electron conjugated conductive polymer is dissolved, and removing the solvent, a layer of the π-electron conjugated conductive polymer may be formed on the surface of the MTMcP particles to form a composite. . Compounding can also be achieved by mixing the π-electron conjugated conductive polymer powder obtained by chemical polymerization or electrolytic polymerization with MTMcP powder. Further, in addition to the above components, a metal powder and a carbon powder can be added to the reversible composite electrode as a conductive agent, if necessary.
【0013】[0013]
【実施例】以下、本発明を実施例により詳しく説明す
る。 [実施例1]ホウフッ化リチウム(LiBF4)2.3
3g、プロピレンカーボネート10.47gおよびエチ
レンカーボネート7.86gを混合し、120℃に加熱
して均一溶液を得る。この溶液に、分子量5万のアクリ
ロニトリルとアクリル酸メチルとのモル比20:1の共
重合体粉末3gを混合し、密封した100mlの三角フ
ラスコ中で150℃に加熱し、共重合体粉末を完全に溶
解し、粘ちょうな透明の液体を得る。この液体にアセト
ニトリルを30g添加し電解質溶液を得る。The present invention will be described below in more detail with reference to examples. [Example 1] lithium borofluoride (LiBF 4) 2.3
3 g, 10.47 g of propylene carbonate and 7.86 g of ethylene carbonate are mixed and heated to 120 ° C. to obtain a homogeneous solution. This solution was mixed with 3 g of a copolymer powder of acrylonitrile having a molecular weight of 50,000 and methyl acrylate at a molar ratio of 20: 1, and heated to 150 ° C. in a sealed 100 ml Erlenmeyer flask to complete the copolymer powder. To obtain a viscous transparent liquid. 30 g of acetonitrile is added to this liquid to obtain an electrolyte solution.
【0014】MTMcP粉末(アルドリッチ製)1.5
gと、ホウフッ化水素酸(HBF4)酸性中で過硫酸ア
ンモニウムを用いてアニリンを化学重合することにより
得たHBF4をドープしたポリアニリン粉末1.0gと
を乳鉢で混合し、この混合粉末と前記の電解質溶液10
gとを混合して電極スラリーを得る。電極スラリーを直
径が90mmのガラスシャーレに流延し、60℃の乾燥
アルゴン気流中で1時間乾燥し、さらに60℃で1時間
真空乾燥することにより、厚さ約160μmの可撓性の
あるシート状の可逆性複合電極Aを得る。また、これと
は別に、電解質溶液のみ10gを直径90mmのガラス
シャーレに流延し、同様に60℃で乾燥して厚さ380
μmのゲル電解質膜Aを得る。MTMcP powder (Aldrich) 1.5
g, and HBF 4 -doped polyaniline powder (1.0 g) obtained by chemically polymerizing aniline using ammonium persulfate in borofluoric acid (HBF 4 ) acid were mixed in a mortar. Electrolyte solution 10
g to obtain an electrode slurry. The electrode slurry is cast on a glass Petri dish having a diameter of 90 mm, dried for 1 hour in a dry argon gas stream at 60 ° C., and further vacuum-dried at 60 ° C. for 1 hour to obtain a flexible sheet having a thickness of about 160 μm. A reversible composite electrode A is obtained. Separately, only 10 g of the electrolyte solution was cast on a glass Petri dish having a diameter of 90 mm, and was similarly dried at 60 ° C.
A μm gel electrolyte membrane A is obtained.
【0015】可逆性複合電極A、ゲル電解質膜A、およ
び厚さ80μmの金属リチウム箔を直径13mmの円板
に打ち抜き、内径13mmのテフロン円筒中に挿入し
て、図1に示す構成の電池を形成する。図1において、
1は金属リチウム負極、2はゲル電解質膜、3は正極と
して作用する可逆性複合電極Aである。A reversible composite electrode A, a gel electrolyte membrane A, and a metal lithium foil having a thickness of 80 μm were punched into a disk having a diameter of 13 mm and inserted into a Teflon cylinder having an inner diameter of 13 mm to obtain a battery having the structure shown in FIG. Form. In FIG.
Reference numeral 1 denotes a lithium metal negative electrode, 2 denotes a gel electrolyte membrane, and 3 denotes a reversible composite electrode A acting as a positive electrode.
【0016】[比較例1]ジスルフィド化合物としてM
TMcPに換えて市販の特級試薬2,5ージメルカプト
ー1,3,4ーチアジアゾール(以下DMcTと呼ぶ)
を用いた以外は実施例1と同様にして厚さ170μmの
可逆性複合電極Bを調製する。さらに、実施例1と同様
にして、可逆性複合電極Bを正極とし、ゲル電解質膜
A、金属リチウム負極よりなる直径13mmの円板状電
池Bを構成する。Comparative Example 1 As a disulfide compound, M
Commercially available special grade reagent 2,5 dimercapto-1,3,4-thiadiazole (hereinafter referred to as DMcT) in place of TMcP
A reversible composite electrode B having a thickness of 170 μm was prepared in the same manner as in Example 1 except that を was used. Further, in the same manner as in Example 1, a disc-shaped battery B having a diameter of 13 mm constituted by the gel electrolyte membrane A and the metal lithium anode was used with the reversible composite electrode B as the positive electrode.
【0017】これらの電池A、電池Bを20℃におい
て、4.05〜1.5Vの範囲内で、0.27mAの一
定電流で充放電試験をした。図2は、1サイクル目の放
電容量を100%としたときの各サイクルの放電容量の
値と充放電サイクル数との関係を示している。図2より
明らかなように、本発明に従いジスルフィド化合物とし
てMTMcPを用いた電池Aは、50サイクル後におい
ても1サイクル目の80%以上の容量を得ることができ
る。一方、ジスルフィド化合物としてDMcTを用いた
比較例の電池Bは、50サイクル後において1サイクル
目の約55%の容量を与えるにすぎない。The batteries A and B were subjected to a charge / discharge test at 20 ° C. within a range of 4.05 to 1.5 V at a constant current of 0.27 mA. FIG. 2 shows the relationship between the value of the discharge capacity in each cycle and the number of charge / discharge cycles when the discharge capacity in the first cycle is 100%. As is clear from FIG. 2, the battery A using MTMcP as the disulfide compound according to the present invention can obtain a capacity of 80% or more in the first cycle even after 50 cycles. On the other hand, the battery B of the comparative example using DMcT as the disulfide compound gives only about 55% of the capacity in the first cycle after 50 cycles.
【0018】[実施例2]分子量が3000のポリエチ
レントリオール1重量部をメチルエチルケトン20重量
部に溶解したポリエチレントリオール溶液中に、エチレ
ンオキサイド(EO)とリチウムのモル比(EO/L
i)が8/1となるように過塩素酸リチウムを溶解した
後、平均粒径が0.3μmの人造黒鉛粉末1重量部と、
実施例1で用いた化学重合により得られたポリアニリン
を還元、脱ドープしたポリアニリン粉末4重量部と、M
TMcPを水酸化リチウムで中和したのち沃素で酸化重
合することにより得たポリスルフィド粉末4重量部とを
分散する。この分散液に、ポリエチレントリオールと等
モル量のトリレンジイソシアネートを添加混合し、80
℃で2時間反応後、直径90mmのシャーレに流延し、
真空中80℃で24時間保持することで厚さ160μm
の可逆性複合電極Cを得る。Example 2 In a polyethylene triol solution obtained by dissolving 1 part by weight of polyethylene triol having a molecular weight of 3000 in 20 parts by weight of methyl ethyl ketone, a molar ratio of ethylene oxide (EO) to lithium (EO / L) was used.
After dissolving lithium perchlorate so that i) becomes 8/1, 1 part by weight of artificial graphite powder having an average particle size of 0.3 μm;
4 parts by weight of a polyaniline powder obtained by reducing and dedoping the polyaniline obtained by the chemical polymerization used in Example 1,
4 parts by weight of a polysulfide powder obtained by neutralizing TMcP with lithium hydroxide and then oxidatively polymerizing with iodine are dispersed. To this dispersion, an equimolar amount of tolylene diisocyanate was added and mixed with polyethylene triol.
After 2 hours of reaction at ℃, cast on a Petri dish 90mm in diameter,
160 μm thick by holding at 80 ° C. in vacuum for 24 hours
To obtain a reversible composite electrode C of
【0019】また、過塩素酸リチウムを溶解したポリエ
チレントリオール溶液に等モル量のトリレンジイソシア
ネートを添加混合し、80℃で2時間反応後、直径90
mmのシャーレに流延し、真空中80℃で24時間保持
することで厚さ約300μmのポリマー電解質を得る。
このようにして得られた電極組成物を正極とし、ポリマ
ー電解質を電解質膜とし、図1で示されるのと同様の構
造を有する金属リチウムを負極とする電池Cを構成す
る。Further, an equimolar amount of tolylene diisocyanate is added to a polyethylene triol solution in which lithium perchlorate is dissolved, and the mixture is reacted at 80 ° C. for 2 hours.
The mixture is cast on a Petri dish having a thickness of 300 mm and kept at 80 ° C. for 24 hours in a vacuum to obtain a polymer electrolyte having a thickness of about 300 μm.
A battery C was prepared in which the electrode composition thus obtained was used as a positive electrode, the polymer electrolyte was used as an electrolyte membrane, and lithium metal having a structure similar to that shown in FIG. 1 was used as a negative electrode.
【0020】[比較例2]MTMcPに換えてDMcT
を用いた以外は実施例2と同様にして厚さ170μmの
可逆性複合電極Dを調製し、実施例2と同様にして電池
Dを構成する。これらの電池C、Dを100℃におい
て、4.05〜1.5Vの範囲内で、0.27mAの一
定電流で充放電試験をした。図3は、1サイクル目の放
電容量を100%としたときの各サイクルの放電容量の
値と充放電サイクル数との関係を示している。図3より
明らかなように、本発明に従いジスルフィド化合物とし
てMTMcPの重合物を用いた電池Cは、50サイクル
後においても1サイクル目の80%以上の容量を得るこ
とができる。一方、ジスルフィド化合物としてDMcT
の重合物を用いた比較例の電池Dは、50サイクル後に
おいて1サイクル目の約45%の容量を与えるにすぎな
い。[Comparative Example 2] DMcT instead of MTMcP
A reversible composite electrode D having a thickness of 170 μm was prepared in the same manner as in Example 2 except that was used, and a battery D was formed in the same manner as in Example 2. These batteries C and D were subjected to a charge / discharge test at 100 ° C. within a range of 4.05 to 1.5 V at a constant current of 0.27 mA. FIG. 3 shows the relationship between the value of the discharge capacity in each cycle and the number of charge / discharge cycles when the discharge capacity in the first cycle is 100%. As is clear from FIG. 3, the battery C using the polymer of MTMcP as the disulfide compound according to the present invention can obtain a capacity of 80% or more in the first cycle even after 50 cycles. On the other hand, as a disulfide compound, DMcT
The battery D of the comparative example using the polymer of the formula (1) gives only about 45% of the capacity in the first cycle after 50 cycles.
【0021】[0021]
【発明の効果】本発明に従い、ジスルフィド化合物とし
て7ーメチルー2,6,8ートリメルカプトプリンを用
い、これをπ電子共役導電性高分子と複合化した複合電
極は、可逆性に優れ、特にリチウム二次電池の正極に用
いると極めて優れた充放電サイクル特性を得ることがで
きる。According to the present invention, a composite electrode obtained by using 7-methyl-2,6,8-trimercaptopurine as a disulfide compound and compounding it with a π-electron conjugated conductive polymer has excellent reversibility, especially lithium. When used for the positive electrode of a secondary battery, extremely excellent charge / discharge cycle characteristics can be obtained.
【図1】本発明の実施例におけるリチウム二次電池の縦
断面図である。FIG. 1 is a longitudinal sectional view of a lithium secondary battery according to an embodiment of the present invention.
【図2】本発明の一実施例および比較例のリチウム二次
電池の放電容量の相対値と充放電サイクル数との関係を
示す図である。FIG. 2 is a diagram showing the relationship between the relative value of the discharge capacity and the number of charge / discharge cycles of the lithium secondary batteries of one example and a comparative example of the present invention.
【図3】本発明の他の実施例および比較例のリチウム二
次電池の放電容量の相対値と充放電サイクル数との関係
を示す図である。FIG. 3 is a diagram showing the relationship between the relative value of the discharge capacity and the number of charge / discharge cycles of the lithium secondary batteries of other examples and comparative examples of the present invention.
1 負極 2 電解質 3 正極 1 negative electrode 2 electrolyte 3 positive electrode
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−359866(JP,A) 特開 平5−6708(JP,A) 米国特許4833048(US,A) 直井勝彦他、「ジスルフィド系化合物 の重合・解重合電極反応とリチウム二次 電池正極材料への応用」、第32回電池討 論会講演要旨集、平成3年9月10日発 行、第245−246頁 (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/60 H01M 10/40 ────────────────────────────────────────────────── (5) References JP-A-4-359866 (JP, A) JP-A-5-6708 (JP, A) US Patent 4833048 (US, A) Katsuhiko Naoi et al., "Disulfide Compounds" Polymerization and Depolymerization Electrode Reactions and Application to Cathode Materials for Lithium Secondary Batteries, ”Proceedings of the 32nd Battery Symposium, September 10, 1991, pp. 245-246 (58) Field (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/60 H01M 10/40
Claims (2)
トプリンとπ電子共役導電性高分子を含むことを特徴と
する可逆性電極。1. A reversible electrode comprising 7-methyl-2,6,8-trimercaptopurine and a π-electron conjugated conductive polymer.
トプリン、ポリアニリン、アクリロニトリルの共重合
体、および有機電解質を含む組成物よりなる正極層、ア
クリロニトリルの共重合体を含む有機電解質層、および
リチウムを活物質とする負極層を有することを特徴とす
るリチウム二次電池。2. A positive electrode layer composed of a composition containing a copolymer of 7-methyl-2,6,8-trimercaptopurine, polyaniline and acrylonitrile, and an organic electrolyte layer containing a copolymer of acrylonitrile and lithium. A lithium secondary battery comprising a negative electrode layer containing:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5225214A JP3048798B2 (en) | 1993-08-17 | 1993-08-17 | Reversible electrode and lithium secondary battery comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5225214A JP3048798B2 (en) | 1993-08-17 | 1993-08-17 | Reversible electrode and lithium secondary battery comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0757723A JPH0757723A (en) | 1995-03-03 |
JP3048798B2 true JP3048798B2 (en) | 2000-06-05 |
Family
ID=16825778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5225214A Expired - Fee Related JP3048798B2 (en) | 1993-08-17 | 1993-08-17 | Reversible electrode and lithium secondary battery comprising the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3048798B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586246B2 (en) | 2008-09-01 | 2013-11-19 | Sony Corporation | Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099223B2 (en) | 2011-05-27 | 2015-08-04 | Basf Se | Composite materials, production thereof and use thereof in electrical cells |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
-
1993
- 1993-08-17 JP JP5225214A patent/JP3048798B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4833048A (en) | 1988-03-31 | 1989-05-23 | The United States Of America As Represented By The United States Department Of Energy | Metal-sulfur type cell having improved positive electrode |
Non-Patent Citations (1)
Title |
---|
直井勝彦他、「ジスルフィド系化合物の重合・解重合電極反応とリチウム二次電池正極材料への応用」、第32回電池討論会講演要旨集、平成3年9月10日発行、第245−246頁 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8586246B2 (en) | 2008-09-01 | 2013-11-19 | Sony Corporation | Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JPH0757723A (en) | 1995-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5690702A (en) | Method of making electroactive high storage capacity polycarbon-sulfide materials and electrolytic cells containing same | |
US6174621B1 (en) | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same | |
US5733683A (en) | Electrochemical storage cell containing at least one electrode formulated from a fluorophenyl thiophene polymer | |
US5571292A (en) | Method of producing a composite electrode | |
JP2000067852A (en) | Lithium secondary battery | |
EP0199175B1 (en) | Negative electrodes for non-aqueous secondary batteries composed of conjugated polymer and alkali metal alloying or inserting material | |
JP3257018B2 (en) | Battery charge / discharge method | |
JPH11339808A (en) | Electrode | |
JP3048798B2 (en) | Reversible electrode and lithium secondary battery comprising the same | |
JPH06184396A (en) | Conductive polymer composite having high electrical activity density and its preparation | |
JP3237261B2 (en) | Reversible composite electrode and lithium secondary battery using the same | |
JP3089707B2 (en) | Solid electrode composition | |
JP2940198B2 (en) | Solid electrode composition | |
US6309778B1 (en) | Electroactive high storage capacity polyacetylene-co-polysulfur materials and electrolytic cells containing same | |
JP3239374B2 (en) | Electrode composition | |
JPH07130356A (en) | Electrode for secondary battery and secondary battery having the electrode | |
JP2955177B2 (en) | Composite electrode, method for producing the same, and lithium secondary battery | |
JP3115165B2 (en) | Lithium secondary battery | |
JPH04264363A (en) | Reversible compound electrode | |
JP3042743B2 (en) | Electrode manufacturing method | |
JPH06150910A (en) | Manufacture of electrode | |
JP3047492B2 (en) | Solid electrode composition | |
JPH0660907A (en) | Organic compound battery | |
JP2501821B2 (en) | Secondary battery | |
JPH09320572A (en) | Manufacture of composite electrode, and lithium secondary battery using the composite electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |